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Abstract

The availability of maps of indoor environments is often fundamental for au-

tonomous mobile robots to efficiently operate in industrial, office, and domestic

applications. When robots build such maps, some areas of interest could be in-

accessible, for instance, due to closed doors. As a consequence, these areas are

not represented in the maps, possibly causing limitations in robot localization

and navigation. In this paper, we provide a method that completes 2D grid

maps by adding the predicted layout of the rooms behind closed doors. The

main idea of our approach is to exploit the underlying geometrical structure of

indoor environments to estimate the shape of unobserved rooms. Results show

that our method is accurate in completing maps also when large portions of

environments cannot be accessed by the robot during map building. We exper-

imentally validate the quality of the completed maps by using them to perform

planning tasks.
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1. Introduction

In recent years, ground mobile robots have been successfully employed in

several indoor applications in industrial, office, and domestic environments [1].

When a robot is deployed in a new setting, it often autonomously builds a map

representing the environment in which it operates. Then, the robot exploits the5

map to efficiently localize, navigate, and plan paths and tasks in the environ-

ment. Sometimes, the robot building the map and the robot using the map are

different. 2D metric maps, like grid maps, are widely employed since they can

be built from data coming from pervasive and relatively cheap sensors like 2D

laser range scanners by using consolidated 2D SLAM methods [2]. Moreover,10

such maps are rather robust to events like day/night light changes, the presence

of people, and objects moving around [1].

Ideally, a map should represent the entire operational environment of the

robot. However, during the process of map building, it could happen that

some areas of interest for the robot’s activity are inaccessible, due to temporary15

conditions that are beyond the robot’s control, like a blocked path or a closed

door. As a consequence, these areas are not represented on the map, and this

can limit the autonomy and operations of the robot exploiting the map. For

example, if the robot is unaware of the presence of some rooms behind closed

doors, it has no means to plan in advance the actions to be performed when the20

doors are opened (e.g., in order to visit them).

In this paper, we provide an initial contribution towards solving the above

problem, by presenting a method that completes robot 2D grid maps with the

predicted layouts (i.e., the geometrical shapes) of unobserved rooms behind

closed doors, which we call closed rooms. The main idea of our approach is to25

exploit the underlying geometrical structure of indoor environments that can be

detected from the walls to provide knowledge about parts of the environment

that are not directly observable at mapping time.

This estimated knowledge, although approximated [3], could provide mean-

ingful insights to the robot about the structure of the environment and could30
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(a) Map built when some doors are closed (blue dots).

(b) Completed map with the predicted layout of closed rooms.

Figure 1: An example run of our approach for predicting layouts of rooms that are behind

doors closed at mapping time, where we simulated 5 closed doors in a map from [5].

be exploited in tasks such as exploration [4], localization, task planning, and

reasoning. In particular, the availability of a reliable estimate about the shape

of closed rooms can improve robot performance in tasks that involve offline

planning on a map; this way, the robot can plan visits to closed rooms, in the

same way it does with the portion of the environment it actually observed. In35

the following, we show how our completed maps are enough reliable to be used

to plan paths for full coverage of the environments also when several rooms are

closed when the map has been built.

We assume a robot that is able to build a 2D grid map of an indoor environ-

ment in which some doors are closed and that is able to detect the positions of40

such closed doors. Since detecting doors (e.g., from vision) is not the purpose

of this paper, we assume that the robot employs a method like [6, 7]. Given a

grid map (Fig. 1a) and the positions in the map of the closed doors, our method

identifies the main structural features of the environment by detecting the walls.

The directions of the walls are associated with representative lines that are used45
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to partition the map into a number of polygonal faces. Although we assume

that most of the walls can be approximated by straight lines, which is the case

for the vast majority of indoor environments, we do not enforce any Manhat-

tan structure, but we use the walls’ main directions, directly retrieved from the

map, for making predictions. The predicted layout of a closed room is the set50

of faces that maximize an evaluation function that accounts for the consistency

with the known portion of the environment. Finally, the predicted layouts of

closed rooms are inpainted within the grid map (Fig. 1b). An interesting fea-

ture of our method is that it can jointly predict the layouts of multiple adjacent

closed rooms (e.g., when all rooms along the same side of a corridor are closed).55

Experimental evaluation is performed by considering both large-scale simulated

environments and real-world grid maps from publicly available datasets. Re-

sults show that our method successfully predicts the layout of closed rooms and

accurately completes grid maps even when large portions of the environments

are not accessible at mapping time. Moreover, we show that the completed60

map can be efficiently used to plan offline a path for covering the environment.

The planning is performed by solving a Traveling Salesperson Problem (TSP)

on a graph derived using a Voronoi segmentation of the completed map of the

environment, after the inpaiting of the predicted layout of closed rooms.

This paper extends our previous work [8]. Specifically, we add the appli-65

cation of our approach to planning a coverage path (Section 5). Moreover, we

develop a variant of our method that uses the robust structural features com-

putation of [9] to identify representative lines, showing that the performance of

our prediction method are rather independent of how the structural features are

detected (Section 4.2).70

2. Related Work

In this section, we survey some techniques developed across different fields

to retrieve structural knowledge in indoor environments and to predict their

unobserved parts.
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Within the field of mobile robotics, a popular approach towards structure75

identification in indoor environments is room segmentation, where rooms are

identified by dividing a metric map into semantically meaningful parts. A survey

that compares 2D room segmentation methods is reported in [10]. Authors

of [11] present a room segmentation method that uses structural line features

similar to the representative lines we use in this paper. Another popular problem80

is the structure identification in indoor environments from 3D point clouds [12,

13, 14, 15, 16]. We take inspiration from the structure identification steps of [16],

but we adapt them to noisy 2D grid maps. While the above methods identify

structures within the map representing the observed part of the environment,

in this paper we are interested in predicting the structure of unobserved rooms.85

The method of [17], starting from a 2D metric map of an indoor environment,

reconstructs a geometrical representation of (partially) observed rooms using

Markov Logic Networks and data-driven Markov Chain Monte Carlo (MCMC)

sampling. The shape of a room, approximated by a polygon, is obtained using

a set of logic rules identifying the desired properties (e.g., perpendicular walls,90

box model). In [18], we propose a method to complete partially observed rooms.

In this paper, we assume to have no knowledge about the closed rooms whose

layout we predict.

The idea of obtaining knowledge on unobserved parts of environments has

recently been addressed using heterogeneous approaches. Some of them pre-95

dict unknown features of an environment by exploiting knowledge coming from

other maps previously acquired in the same or in other environments. For in-

stance, [19] predicts loop closures in a metric map. The parts of the metric map

that are yet unknown are completed by superimposing matching maps from a

database of previously observed environments. The method of [20] uses a li-100

brary of map structures to predict the unknown parts of a map incrementally

explored by a team of robots. Another recent method is that of [21], where

a variational autoencoder (VAE) is employed to predict unobserved regions of

an environment starting from a partial map. However, [21] considers buildings

that are very similar to each other (see [22] for a discussion of a similar prob-105
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lem in a different, but related, setting), thus providing an approach that seems

difficult to generalize to other different environments. Several methods predict

the presence of specific elements in the unobserved parts of environments using

neural networks trained on similar environments. For instance, [23] trains a con-

volutional neural network (CNN) on a set of images representing building floor110

plans and uses it to predict the locations of emergency exits. In [24], U-nets, a

type of CNNs, are used to expand egocentric RGB-D observations to infer the

occupancy state beyond the visible regions. In doing so, the robot can antici-

pate the next sensorial readings. The method of [25] uses Conditional Neural

Process for predicting the local map of the unobserved parts of an environment115

to improve online trajectories planning.

Some other approaches, like the one we present in this paper, do not rely

on external knowledge but only on the content of the partial map. In this

sense, a method that shares some similarities with our approach is that of [26],

which reconstructs the neighborhood of a frontier between known and unknown120

portions of a map by identifying similar structures in the known map. If a

match is found, the matching portion of the known map is superimposed to the

frontier, thus providing an estimate of the structure of its neighborhood.

Some methods predict the existence and the semantic labels of unobserved

rooms, but they do not predict their geometrical shapes nor update the metric125

map with the prediction, as we do in this paper. Examples are the systems

proposed in [27], that uses semantic knowledge in the form of chain graphs to

predict the existence of a room (and its label) in the unexplored space, and

in [28], where the prediction of the existence of a new room is made by using

sum-product networks. The approach of [29] predicts the topology and the la-130

bels of unobserved rooms by matching the observed part of the environment

(represented as a labeled graph) to a database of environments. Also [30] pre-

dicts the presence of new rooms in partially observed environments by reasoning

on graphs using graph kernels.

To the best of our knowledge, no method addresses our specific problem,135

that of predicting the geometrical shape of rooms behind closed doors.
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(a) Partial map with closed

doors.

(b) Inpainted map with pre-

dicted closed rooms.

(c) Full map.

Figure 2: A partial map of a large-scale indoor environment with 14 closed doors (2a), the

map completed by our method (2b), and the actual full map (2c).

3. Our Method

Our method predicts the layout of rooms behind closed doors in a purely

geometrical way, without learning models from other environments. It starts

from a 2D grid map M of an indoor environment obtained by a robot through140

a SLAM mapping process using data acquired by a laser range scanner. This

map is composed of identical square cells that are labeled as known or unknown

according to the fact that they have been perceived or not by the robot. Known

cells are further labeled as either free or obstacle, according to the occupancy

of the corresponding area. The grid map is assumed partial in the sense that145

some rooms could not be accessed by the robot during the mapping process due

to some closed doors and, as a consequence, are not included in the map. We

propose a method that predicts the possible layout of these closed rooms, which

is then used to complete the grid map.

Our method assumes that the robot can detect the position of closed doors150

inside the environment (blue dots in Fig. 2a), for example by using existing

computer vision methods like [6, 7]. Consequently, the initial input of our

method is a grid map M and a set of closed door locations d ∈ D. Although

doors are represented as line segments in 2D maps, our method considers their

middle points. Hence, each d = (x, y) represents the mid-point coordinates155

(coordinate system of M) of the line segment corresponding to a closed door in
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the map. We assume that each closed room has exactly one door.

Our method predicts the possible layouts of closed rooms by leveraging the

fact that, due to the structured nature of indoor environments, their geometrical

shapes have some common features with other rooms and walls in the metric160

map. The method is based on a sequence of steps that are detailed in the next

sections using the map of Fig. 2 as a reference.

3.1. Structural features

The first step relies on the method of [18] to extract the structure of indoor

environments by identifying the direction of walls in the metric map M and to165

partition M using those directions. The method starts by extracting a set of line

segments from M by using the Canny edge detection [31] and the probabilistic

Hough line transform [32]. Line segments are clustered together in two phases.

First, the mean shift algorithm [33] clusters together line segments with similar

angular coefficients. Then, for each angular cluster, all line segments that are170

also collinear (along the same line) are clustered together by performing spatial

clustering. Full details are omitted for brevity, please refer to [18].

Each spatial cluster is then associated to a representative line, in red in

Fig. 3, which indicates the direction of collinear, but possibly spatially separated,

walls. The result is the detection of a (hopefully small) number of representative175

lines that describe the direction of all the walls within the environment. Four

additional boundary lines are added at the extremity of M at a fixed distance

from the bounding box of the map and with the same angular coefficients of

the two largest angular clusters of line segments. We do not assume Manhattan

environments, as the directions of the representative lines are directly recovered180

from the map. However, in many real-world indoor environments, most walls

are perpendicular (e.g., see [34]) and, consequently, the representative lines used

for map segmentation are often perpendicular. For example, the Intel Lab

map from [5], shown in Fig. 4, contains curved walls, but representative lines

corresponding to most walls are perpendicular. The resulting approximation185

is adequate for accurately predicting the geometrical shape of closed rooms, as
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shown in Section 4.

The intersections of all the representative lines partition the map into faces.

A face f ∈ F is a polygon having as edges the line segments obtained by

the intersections of the representative lines (Fig. 3). The faces with an edge190

belonging to a boundary line are called border faces.

Finally, we separate the faces that are inside the part of the environment

observed by the robot from those that belong to the unobserved parts of the

environment, as only the latter ones will be considered when predicting the

layout of a closed room. Specifically, we keep only faces f ∈ Fu ⊆ F where at195

least a 30% of their area is unknown.

3.2. Closed room locations

The prediction of the geometrical shape of closed rooms starts from the

faces that are immediately behind closed doors. We associate each closed door

d = (x, y) to its closest edge ed (on a representative line), thus determining the200

door orientation as collinear to ed. As edges are the boundaries between faces,

we consider the two faces that share an edge ed: one of the two faces is inside

the known part of M and the other one belongs to the unknown part of M . The

latter face is the one that is behind the closed door d and is inserted in the set

of initial faces I ⊆ Fu, which are used as seeds to estimate the layouts of the205

rooms behind the closed doors. Initial faces of closed rooms for the map of Fig.

2 are shown in Fig. 3.

A particular case arises when there are two closed doors, d1 and d2, that are

associated with the same edge ed along a representative line ` (and, consequently,

that have the same initial face). As we assume that there is only one door for210

each closed room, we artificially add a representative line perpendicular to `

and passing at equal distance from the two doors’ positions d1 and d2. In this

way, ed is split into ed1
and ed2

. This allows us to address situations, as in the

corridors of Fig. 6, with multiple closed rooms adjacent to each other.
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Figure 3: Representative lines (red) and faces obtained from segmenting the map of Fig. 2.

Initial faces of closed rooms are shown with different colors: green for independent rooms and

light blue for dependent rooms, while initial faces of closed rooms on the border (border faces)

are in purple. A particular case is the initial face in yellow, which represents a room that is

initially independent but, expanding, becomes dependent by touching the predicted layout of

a nearby closed room (in light blue at its left).

Figure 4: Representative lines for the Intel Lab map from [5].
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3.3. Closed rooms expansion215

The predicted layout of a closed room r in the environment is composed

of one or more faces f ∈ Fu and is obtained by selecting the most likely set

of faces from Fu, adjacent to its initial face ir, according to the surrounding

environment.

We define as d(f, f ′) the topological distance between faces f and f ′. For220

instance, if two faces have one common edge, their distance is 1. The process

of identifying the predicted layouts of closed rooms is performed greedily by

jointly iteratively expanding them by considering an increasingly larger set of

faces. More precisely:

(1) We initialize k = 1.225

(2) For each closed room r, we select a set of candidate faces from Fu as:

F k
r = {f : f ∈ Fu | ∃f ′ ∈ F̂ k−1

r and d(f, f ′) = 1},

where F̂ 0
r = {ir} (with ir ∈ I) is the initial face behind door d of room

r. Calling P(·) the power set and Φ(·) an evaluation function (described

in Section 3.4), we select the best layout for room r at step k as the set

of faces F that, together with F̂ k−1
r (thus expanding the layout at step

k − 1), maximize Φ(·):

F̂ k
r = arg max

F∈P(Fk
r )

Φ(F̂ k−1
r ∪ F ).

We remove the faces in F̂ k
r from Fu (so that a face belongs to the predicted

layout of at most one closed room) and we consider the next closed room

r. For a given k, we consider closed rooms ordered from the smallest to the

largest F k
r (ties are broken randomly). However, we empirically observed

that room ordering has a small impact on the final result.230

(3) We increase k ← k+1 and we repeat from (2), until no faces are left in Fu

or a threshold for k is reached. For each room, the set of faces F̂ ∗r = F̂ k
r

selected in the last step is considered as the predicted layout.
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At a generic step k, the predicted layout F̂ k
r of a closed room r is thus

updated from the predicted layout F̂ k−1
r at the previous step. The idea is that235

we jointly expand the predicted layouts of all closed rooms until a good estimate

is found for each one of them. This is motivated by the fact that closed rooms

can belong to two categories: independent closed rooms, whose predicted layout

is not adjacent to the predicted layout of any other closed room; and dependent

closed rooms, which have at least a face of their predicted layout that is adjacent240

to a face of the predicted layout of another closed room. Examples of initial

faces of independent (dependent) rooms are shown in green (light blue) in Fig. 3.

Note that, with the increase of k, some independent closed rooms may become

dependent; this happens when the predicted layouts F̂ k
r and F̂ k

r′ of two rooms

r and r′ are expanded in opposing direction, eventually sharing adjacent faces.245

An example is the room in yellow of Fig. 3. The reason for separating these

two closed room types is that, while the predicted layouts of independent rooms

should be consistent only with M , the predicted layouts of dependent rooms

should be jointly estimated with that of the nearby closed rooms.

3.4. Candidate layout evaluation250

A possible predicted layout of a room r, represented as a set of faces F̂ k−1
r ∪

F , is scored using an evaluation function Φ(F̂ k−1
r ∪ F ). The function embeds

competing objectives, like to maximize the area of the room and to maximize

the coherence of the room structure wrt that of nearby rooms. Because of that,

the objective function is a weighted sum of some different components, that are255

now described. In what follows, with a slight abuse of notation, we use F to

denote the layout F̂ k−1
r ∪ F .

The first component, area(F ), is the room layout area.

The second component is the convex hull ratio CHR, that prefers regular

room layouts:

CHR(F ) = CH(F )/area(F ),

where CH is the area of the room’s predicted convex hull.
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The third and fourth components are designed to maximize the similarity260

between the predicted layout of the room and the rest of the map. In particular,

the third component minimizes the edges of a predicted layout that touch the

unknown parts of the map. More precisely, the ratio of the free edges FER is

defined as the ratio between the sum of the length of the edges of F that are

also edges of a face f ∈ Fu (where Fu is the set of unobserved faces remaining265

after the application of the algorithm in the previous section) and the sum of

the length of all edges along the external contour of F . The fourth component

penalizes the predicted layouts that are not regular. More precisely, free faces

penalty FFP is defined as the number of faces f ∈ F that have at least two

edges in common with faces f ∈ Fu.270

The fifth component is the room proportion P , the ratio between the two

main dimensions of the room’s bounding box, which is intended to favor regular

predicted layouts.

We define two different evaluation functions, Φind and Φdep, for independent

and dependent rooms, respectively:

Φind(F ) = ω1 ·
√

area(F )− ω2 · CHR(F )

− ω3 · FER(F ) + ω4 · FFP(F ),

Φdep = ω1 ·
√

area(F )− ω2 · CHR(F )− ω5 · FER(F )

−max(ω4 · (FFP(F )− 1), 0)− ω6 · (P (F ) ·min(FFP(F ), 1)).

In the case of multiple adjacent closed rooms, the last term in Φdep tends to

prevent that the expansion is stopped before all these rooms have a similar275

shape.

We do not enforce a square or rectangular shape for the predicted layouts (as

shown, for example, in Fig. 6), but our evaluation function aims at predicting

accurate room shapes according to the observed map. However, since real-world

indoor environments are inherently structured and most walls are perpendicular280

also in non-Manhattan environments (Section 3.1 and Fig. 4), good predictions

are usually rectangular.
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The next two steps address special cases.

3.5. Joint rooms layout prediction

At the end of the expansion (Section 3.3) it could be the case that two

adjacent dependent rooms have different shapes (e.g., this happens when one

of the two rooms is by chance initially expanded in the direction of the other

room’s initial face, thus limiting the expansion of the second room). To adjust

such situations, we give to adjacent dependent closed rooms the possibility to

swap one or more faces between them. Given two sets of faces F̂ ∗r and F̂ ∗r′ ,

representing the predicted layouts of dependent rooms r and r′, we compute

E as the set of faces in F̂ ∗r (or in F̂ ∗r′) that have an edge in common with a

face in F̂ ∗r′ (F̂ ∗r ) and that, consequently, could be exchanged between the two

rooms. We jointly evaluate all the possible combinations of face assignments

P(E) (in one assignment, some faces of E are assigned to r, the other ones to

r′) by evaluating the corresponding rooms’ predicted layouts F̄ ∗r F̄ ∗r′ using the

following function:

Φjoint(F̄
∗
r , F̄

∗
r′) =

ω7 ·
√

min(area(F̄ ∗r ), area(F̄ ∗r′))/max(area(F̄ ∗r ), area(F̄ ∗r′))

− ω8 · (FFP(F̄ ∗r ) + FFP(F̄ ∗r′))

We eventually select the face assignment that maximizes Φjoint and we swap285

the corresponding faces between r and r′. If the adjacent rooms are more than

two, they are considered in pairs.

3.6. Closed rooms on the borders

The layout of a closed room r may extend outside the bounding box of the

current map. In that situation, we cannot directly use faces and representative290

lines to predict the layout of r, as M does not provide any knowledge on one of

the dimensions of the room. This happens when the initial face ir of a room r

is one of the border faces (e.g., that in purple in Fig. 3). To provide a layout

also in this case with limited information, we roughly predict the shape of the
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# env 1 1 1 2 2 4 9

max |D| 7 9 10 11 12 13 15

Table 1: Number of simulated environments and corresponding max |D| number of closed

doors.

room as a square (of the same size as the edge ed of the initial face ir, see295

Section 3.2). If there are multiple dependent rooms in this condition, we adjust

(by averaging) their outwards dimension to the same value.

3.7. Inpainting predicted layouts into the grid map

In this last step, we inpaint the predicted layouts of closed rooms into the

map M . This is done by creating open passages corresponding to the positions300

of the doors D in the map (door width is a customizable parameter, which

we set to 80 cm) and by changing the value of cells in M from unknown to

free or obstacle, according to the fact that they correspond to the inner area

of a predicted layout or to one of its external edges. As a result, a completed

(predicted) grid map Mpred is eventually available to the robot. The predicted305

map for the partial map of Fig. 2a is shown in Fig. 2b. Note that the largest

difference wrt the actual map of Fig. 2c is in the rough predictions of closed

rooms on the borders.

4. Experimental Evaluation

In this section we present the experimental activities performed to evaluate310

the proposed method to predict the layouts of closed rooms in indoor envi-

ronments. We present both quantitative results obtained in simulation and

qualitative results obtained by applying our method to real-world maps from

public datasets. We also investigate the robustness of our prediction approach

by evaluating the impact of using a way different from that of Section 3.1 to315

extract structural features from the metric map M .

15



1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
closed doors

0.0

0.2

0.4

0.6

0.8

1.0
Io

U
Our Method
LoS Baseline
Geometric Baseline

Figure 5: Average and standard deviation of the IoU of the predicted layout of closed rooms,

wrt the number of closed doors in the environment.

4.1. Predicted map evaluation

We start presenting results obtained in 20 simulated indoor environments

(office and school environments) in which we consider up to 15 closed doors.

Maps are obtained by running the ROS implementation1 of the GMapping al-320

gorithm [35] on data collected by a robot equipped with a laser range scanner

during the autonomous exploration of the buildings simulated in Stage2. The

environments have different sizes and, accordingly, different maximum numbers

of closed doors max |D| that a robot can find (see Table 1). We limit the number

of possible closed doors to 15 even for the larger environments in order to have325

a balanced evaluation of the method performance.

For each environment, we repeat 15 times the following procedure: we build

1http://wiki.ros.org/gmapping
2http://wiki.ros.org/stage
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N = max |D| different maps by incrementally closing 1, 2, . . . , N doors (if a door

is closed in a map where i doors are closed, it is closed also for all maps in which

i + 1, . . . , N doors are closed). Closed doors are selected randomly. For each330

map obtained in this way, we run our method in order to predict the shape

of the closed rooms. Overall, we evaluated 3, 885 maps (for a total of 24, 045

predicted room shapes). In each run, our method receives in input a grid map

M and a set of closed doors D. We empirically set values of weights [ωi] to

[0.06, 10, 7, 10, 2.5, 2, 1, 2] and the maximum number of expansion steps k of335

Section 3.3 to 9. Experiments are performed on a commercial laptop and each

run requires less than 2 minutes for all maps.

Given the predicted layout of a closed room F̂ ∗r and that of its ground truth

counterpart F ∗r (obtained from the floor plan of the simulated environment), we

compute their Intersection over Union (IoU) as:

IoU(F̂ ∗r , F
∗
r ) =

F̂ ∗r ∩ F ∗r
F̂ ∗r ∪ F ∗r

.

An high IoU indicates that the geometric prediction F̂ ∗r accurately resembles

F ∗r (IoU is commonly used for this type of evaluation, as in [14]).

Since, as discussed in Section 2, we are not aware of any other method that340

predicts the layout of closed rooms, we compare our method against two baseline

methods. The first one is called line of sight (LoS ) baseline and predicts the

layout of a closed room as the free area that could be observed in line of sight

from the corresponding closed door d. This method is based on the assumption

that all the unobserved area behind a closed door is part of the closed room.345

The predicted layout of the room is spatially limited by the bounding box of the

map. The second method is called geometric baseline and adds to the predicted

layout of a room all the faces f ∈ Fu that are in line-of-sight from the door d,

until boundary faces are met.

Fig. 5 shows the performance of the proposed method against the two base-350

lines. Our method obtains stable and accurate predictions of closed rooms’

layouts even when a large number of doors are closed across the environments.

On the other side, baseline approaches perform well when few rooms are closed
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(a) Partial map. (b) Predicted map. (c) Full map.

(d) Partial map. (e) Predicted map. (f) Full map.

Figure 6: Two examples in which our method predicts the layouts of 15 and 10 closed rooms.

(because they basically flood-fill gaps in the maps), but have a dramatic drop

in performance as the number of closed doors increases.355

Fig. 6 shows that our method can complete metric maps also when large

parts of the buildings are not explored (15 closed doors). For instance, it pro-

vides a rather accurate prediction of all the closed rooms connected to the upper

corridor in Fig. 6b. Fig. 6e shows a similar result where, despite the presence

of multiple closed doors connected to the same corridor, our method provides a360

sound estimate of the environment map.

In Fig. 7 we show two examples where large portions of the environments are

not mapped: only the corridors and few rooms are observed by the robot, while

most rooms are closed. Specifically, in these environments 14 (respectively, 8)

doors are closed, and only 6 (7) rooms are mapped in M . As it can be seen from365

Figs. 7b and 7e, our method can reliably predict the entirety of the map even in

these challenging settings. The predicted maps are similar to the actual maps
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(a) Partial map. (b) Predicted map. (c) Full map.

(d) Partial map. (e) Predicted map. (f) Full map.

Figure 7: Two examples in which our method predicts the layouts of closed rooms starting

from little knowledge, mainly about the structure of the environments.

of the environments (Figs. 7c and 7f) and thus the predicted maps represent a

reliable source of knowledge by the robot.

Finally, Figs. 1 and 8 show how our method can complete real-world partial370

maps (obtained from publicly available datasets [5, 36]) with multiple closed

doors. For these results, we manually remove some rooms from the original maps

and we predict their possible layouts using our method. (Note that, although

some maps in [5] have multiple closed doors, their locations are not provided.)

Despite large missing portions of the map, our method provides a valid estimate375

of layouts of closed rooms even in the presence of clutter and inaccuracies.

Further results on both simulated and real-world maps are available in a video3.

4.2. Results with a different identification of structural features

In this section, we show that our approach to predict the layout of closed

rooms is rather independent of the method used to extract structural features380

3https://amigoni.faculty.polimi.it/research/ECMR2021-completing-maps-

closed-rooms.html
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(a) Partial map. (b) Predicted map. (c) Full map.

(d) Partial map. (e) Predicted map. (f) Full map.

Figure 8: Application of our method to publicly available real-world maps from [5, 36].

from M . All the above results are obtained with structural features identified

as described in Section 3.1.

We introduce a variant of our proposed approach that employs the feature

extraction method of [9], called ROSE. ROSE identifies the dominant directions

of M , namely the main directions of straight lines using a frequency-based385

technique. In the variant, we initially filter the metric map M keeping only the

line segments along the dominant directions identified by ROSE and we then

align the representative lines to the dominant directions. This variant provides

robustness when dealing with cluttered and noisy maps (as ROSE is explicitly

designed to extract robust structural features in such settings).390

To compare the two variants, we evaluate the IoU using the same exper-

imental setting of Section 4.1. The results are shown in Fig. 9 and show no

noticeable statistical difference in performance.

This shows that our approach to predict the layout of closed rooms could be

applied in different settings with different low-level processing of metric maps.395

5. An Application to Coverage

In this section, we show how the availability of the estimated layout of closed

rooms, inpainted in the grid map Mpred returned by our approach, can be used

by a robot that plans a sequence of actions to be performed in an environment.
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Figure 9: Average and standard deviation of the IoU of the predicted layout of closed rooms

for two variants of our approach (Mpred extracts structural features as per Section 3.1 and

MROSE extracts structural features as per [9]).

More precisely, the robot can use the reliable estimate provided by Mpred to400

plan actions also in the (unobserved) closed rooms that are not represented in

the initial metric map M . We focus on a specific task, the coverage of a set

of locations in the environment [37], where the robot has to plan the shortest

path that visits all the locations. This algorithmic task is underlying several

real-world applications, like monitoring, cleaning, and patrolling. We naturally405

model the problem as a Traveling Salesperson Problem (TSP) on an undirected

topological graph whose vertices are the locations to visit and edges denote the

direct connections between (mutually visible) locations with the corresponding

distance. For example, such a graph and the TSP solution on it are used as

prior knowledge in [38] for efficiently exploring an unknown environment. In410

the following, we detail how the topological graph is built and how the TSP

solution on the graph is calculated. Then, experimental results are presented.
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5.1. Topological graph computation

The topological graph depends on the specific application. For example, its

vertices could be close to each other in the case of cleaning and farther apart in415

the case of patrolling. For our purposes, we build an application-independent

topological graph from the Voronoi graph [10]. The Voronoi graph of a metric

map features vertices and edges that have the maximal distance from at least two

obstacles in the map. The Voronoi graph provides a meaningful representation of

the structure of the environment and its vertices are (almost) equally distributed420

over the rooms of the environment (Fig. 10(a)). Thus, visiting all the vertices

of such a graph amounts to cover the entire environment. Now we detail the

procedure we follow to build the topological graph.

We start from a grid (metric) map. The map is then processed with the

method of [9] to filter non-structural features (e.g., clutter) that could introduce425

unnecessary vertices in the graph. The clean map is then feed to the skeletonize

function of the Python module Scikit-image4. The output is the skeleton of

the map, i.e., a 1-pixel wide representation of the map, that is then processed

using the NetworkX5 module in order to obtain the Voronoi graph. Then, like

in [38], we keep, as vertices of the topological graph, the vertices in the Voronoi430

graph that are leaves (i.e., that have degree 1) or those that are junctions of

three or more edges (i.e., that have degree at least 3). At this point, we ensure

that each edge that connects two vertices does not cross any obstacles in M , so

that two connected vertices are visible from each other. Note that, if the initial

metric map has closed doors, we also add to the topological graph vertices at435

the locations of closed doors D (in blue in Fig. 10).

To evaluate the effect of different degrees of knowledge in planning a coverage

path, we compute the topological graph starting from different types of metric

maps:

• the original map with closed doors M , in which closed rooms are missing;440

4https://scikit-image.org/
5https://networkx.org/
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(a) Voronoi graph. (b) Topological graph.

Figure 10: Example of Voronoi graph and of the final topological graph.

• the predicted map Mpred, obtained starting from M by applying the

method proposed in this paper;

• the ground truth map MGT, the actual map of the environment in which

all the doors are open and there are no closed rooms.

Examples of topological graphs built from these three types of metric maps are445

shown in Fig. 11.

(a) Partial map M . (b) Predicted map Mpred. (c) Ground truth map MGT.

Figure 11: Topological graphs computed on three types of maps. The vertices corresponding

to the closed doors are in blue.

5.2. TSP solution

The locations of the vertices in the topological graph are given by their

positions within the metric map. The graph building process ensures that two

vertices are connected only if they are visible from each other. As a consequence,

we set the weight wij of an edge eij of the topological graph, connecting the
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vertices vi and vj with coordinates (xi, yi) and (xj , yj) respectively, equal to the

Euclidean distance between the two vertices:

wij =
√

(xi − xj)2 + (yi − yj)2.

To find a solution to the TSP we rely on the Christofides algorithm [39] using

tabu search [40, 41] to escape local minima and possibly reach better solutions.

The algorithm is run for 60 seconds and the best solution found during this time450

is retained as the TSP solution. The implementation is based on the OR-Tools6

library.

We compute the TSP solution for the topological graphs obtained from the

three maps introduced before, M , Mpred, and MGT. For M , we add to the

topological graph a vertex at the location of each closed door, as explained455

above. Consequently, we obtain three coverage costs of a given environment,

TSPclosed, TSPpred, and TSPGT. More precisely,

• TSPGT is the actual cost of the TSP solution as computed from the full

map of the environment;

• TSPclosed is an understimate of the cost of the TSP solution, as it is460

obtained from a map with closed rooms;

• TSPpred is an approximation of the cost of the TSP solution informed by

our proposed method.

As M covers significantly less area than MGT, TSPclosed is a too rough un-

derestimate of the actual cost TSPGT. Consequently, we add a fourth estimate,

TSPbaseline = TSPclosed + C, where:

C =
TSPclosed

|R|
· |D|

represents an estimate of the cost of visiting closed rooms. |R| is the number of

observed rooms and |D| is the number of closed doors in M .465

6https://developers.google.com/optimization

24



Note that we cannot use here the two baseline methods of Section 4, as they

predict the layouts of single closed rooms independently and do not guarantee

that the predicted layouts of different closed rooms do not overlap. As a con-

sequence, their predicted maps could be geometrically inconsistent and cannot

be used for computing a coverage path.470

5.3. Results

We consider 15 of the 20 simulated indoor environments used in Section 4.1.

Similarly to Section 4.1, for each environment, we perform 10 runs where we

close up to 15 doors. For each run, we set a different random seed and assure

that the first closed door is different with respect to the other runs. Overall, we475

consider 1, 957 different maps.

We compare TSPclosed, TSPbaseline, and TSPpred against TSPGT, computing

the error in estimating the actual cost of the TSP. For example, for TSPpred:

error%pred =
|TSPGT − TSPpred|

TSPGT
· 100,

and similarly for error%closed and error%baseline.

Overall, averaging over runs and environments, TSPpred turns out to be a

good estimate of the real cost TSPGT, with error%pred = 6.21 (σ = 9.06),

performing better than TSPclosed and TSPbaseline: error%baseline = 21.4 (σ =480

23.38) and error%closed = 21.37 (σ = 16.18).

Fig. 12 shows the details of the comparison between TSPclosed, TSPbaseline,

and TSPpred with different numbers of closed doors. Our approach consistently

returns an estimate that is close to the actual value of TSPGT and that is sta-

ble, namely rather independent of the number of closed doors (i.e., the estimate485

is accurate in maps that are almost complete and in maps with several closed

rooms). The same does not hold for TSPclosed and TSPbaseline, whose errors

follow a similar trend and increase with the number of closed doors. In particu-

lar, error%baseline is slightly better when few doors are closed and error%closed

is sometimes better when more than 10 doors are closed.490
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Figure 12: Errors in the length of coverage paths (averaged over the runs and the environ-

ments) obtained with different types of maps.

Fig. 13 shows two examples in order to get some insights relative to the above

results. The good approximation of TSPpred is achieved because the topological

graph build from Mpred is similar to the actual topological graph built from

MGT. In the first example, shown in Figs. 13a-13c, we have error%pred =

0.33, error%baseline = 50.48, and error%closed = 49.21. In the second example,495

shown in Figs. 13d-13f, we have error%pred = 15.87, error%baseline = 40.54,

and error%closed = 35.36. Note that these two examples are the same of Fig. 7

of Section 4.1, in which most of the environment is not directly observed by

the robot when building M . Little more than the main structure of corridors

is observed and available to the robot. Nevertheless, our method effectively500

completes the map and the prediction is used to achieve a reliable estimate of

the length of a coverage path.

Finally, Fig. 14 shows that using the ROSE variant of Section 4.2 does not

impact on the performance, further supporting that our approach for prediction
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(a) Partial map M . (b) Predicted map Mpred. (c) Ground truth map MGT .

(d) Partial map M . (e) Predicted map Mpred. (f) Ground truth map MGT .

Figure 13: Topological graphs used to plan coverage paths on the maps of Fig. 7.

is rather independent of the way in which structural features are extracted from505

the metric map.

6. Conclusions

In this paper, we presented a method for predicting the geometrical shape

of closed rooms in indoor environments. The proposed method starts from

a grid map in which the positions of closed doors that the robot could not510

enter are known and exploits the structural regularities of buildings to estimate

the layouts of rooms behind such doors. The grid map is then completed by

inpainting the layouts of closed rooms. Experiments show the effectiveness of

our method, also compared against baseline methods, for large environments

with up to 15 closed doors. The method is also shown to depend little on the515

way in which the structural features are identified. Moreover, we shown that

the availability of a reliable estimate of the layout of closed rooms can enable

accurate offline planning tasks like that of planning a full coverage path starting

from a partially known environment.

In future work we will lift the assumption that a closed room has only one520
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Figure 14: Errors in the length of coverage paths (averaged over runs and environments)

obtained with two ways for extracting structural features from metric maps.

door and we will integrate the proposed method in a deployed robot system,

using a vision-based system for identifying closed doors and developing a way to

update the predicted map as new knowledge is available. We will also investigate

the possible uses of our method for search and exploration and for enhancing

the understanding of working spaces for collaborative and service robots.525
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