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Deep Learning for Opponent Action Prediction
in Robot Soccer Middle Size League

Maria E. van ’t Klooster, prof. dr. Henk Nijmeijer and dr. Gijs Dubbelman

Eindhoven University of Technology
Department of Mechanical Engineering

Master track Dynamics and Control

Abstract In this research, we propose deep learning to predict future opponent actions for autonomous soccer robots and
evaluate this in the context of the RoboCup Middle Size League. The ability to predict actions of opponents will be of key benefit
for planning team strategy on positioning and team play, resulting in gaining faster ball possession and a stronger defense. We
leverage advances in Convolutional Neural Networks by representing the game state, containing the positions of all elements
on the field over time, as a temporal occupancy grid which can be represented and processed as an RGB image. Our approach
is evaluated using measurement data that was recorded during nine international tournaments over the past four years which
contains 4200 actions in total. The results demonstrate that 77% of the test-data can be correctly classified in three types of
actions, , i.e. shot-on-goal, pass, and other actions, by our proposed network structure in real-time. This work shows promising
results for opponent action prediction, potentially allowing for more strategic and intelligent team play in RoboCup.

1 Introduction

The RoboCup Middle-Size League is a competition within
RoboCup, where ten fully autonomous robots play soccer
according to a subset of the FIFA rules. The objective
of RoboCup is to stimulate development of robotics and
innovation in Artificial Intelligence (AI) researches, with
the aim to win the World championships against human
by 2050 [1]. Since 2012, the robot soccer matches in the
Middle-Size League are more directed to game play and
strategies [2]. The robots react continuously on the actions
of opponents and movement of the ball on real-time basis.
The current software of Tech United, a team participating in
the Middle Size League with already three world titles on
their name, contains a rule-based system, where the strategic
decisions are based on the current position and velocity of
any object on the field, i.e. the ball, peers and opponents. The
recognition of situations and prediction of opponent strategies
and movements, which is the aim of our research, would be
a significant improvement. The prediction of strategies and
movements makes it possible to anticipate on future events.
Moreover, with the knowledge of the next action of the
opponent, the most promising counter action can be selected
to gain possession of the ball.

The focus of this study is to investigate the possibility to
predict the next action of the opponent in ball-possession by
the use of a deep Convolutional Neural Networks (CNN) with
as input temporal occupancy grid map which represents the
robots’ world state. The effectiveness of this method will be
demonstrated on real game data of the past four years.

Fig. 1 Illustration of a match in the Middle Size League, where two
teams of five autonomous robots play soccer on a field of 18x12m.

The research yields the following contributions:
• A representation of spatio-temporal information from the

game state in an occupancy grid map.

• A Convolutional Neural Network design for predicting
future opponent actions of soccer robots from these oc-
cupancy grid maps.

• Validation of the proposed representation and Convolu-
tional Neural Network on real game play data.

This paper is divided in three main parts, Section 2 discusses
related work on machine learning within RoboCup and the
use of occupancy grid maps. Our method will be described
in Section 3, explaining the world state representation as a
temporal occupancy grid map and the structure of the CNN.
In Section 4 and 5, the performance of the representation in
combination with the CNN is evaluated, the reliability of the
used data is determined, and the accuracy of the network to
predict the opponent next action is verified. Section 6 lists the
recommendations.
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2 Related Work
Machine learning is already applied in the RoboCup envi-

ronment for different purposes and in different leagues. An
example, Gabel et al.[3] used a Markov decision process to
select the action which can be performed by a Middle Size
soccer robot. Reinforcement learning is used to solve the
Markov decision processes and to learn individual skills of
a single robot. An interesting discovery was the capability of
the robots to perform higher level concepts, like passing to
each other, with only the individual skills, e.g. shooting, driv-
ing. Copete et al.[4] proposed the prediction of the motion
trajectory of players depending on ball and player positions
without prior knowledge of the team’s actions or strategies.
Hereby, deep neural networks are used to represent player
positions and a one-hidden-layer neural network for the es-
timation of the movement direction of the ball. This approach
looks promising, the ball direction was estimated correctly for
84.1% and the robots’ direction between 50.6% and 69.9%,
but this has only been tested in the Soccer Simulation League.
Briegel et al.[5] identified which action an opponent robot is
going to execute without prior knowledge of a teams strat-
egy. Using Support Vector Machines, the situations, gener-
ated in a simulator, were classified in a pass or shot on goal.
The Support Vector Machine classifier achieved a correct pre-
diction of 91%. The calculation could not be performed in
real-time because the data required a considerable amount of
pre-processing. In addition, only two classes are determined
which will give many false positives in other situations. Cur-
rently, the functional performance of the methods above are
insufficient to be used on real match data and during live game
play of the Middle Size League. This limitation is addressed
by our approach whereby opponents’ future action is predicted
in the Middle Size Leauge on real match data with the aid of
Convolutional Neural Networks in real-time.

Movement and action prediction is not only an active re-
search in robot soccer, a lot of research has been performed
already in the automotive sector[6][7][8][9]. Byeoung Do et
al.[10] proposed trajectory prediction via Recurrent Neural
Network with long short term memory, representing the pre-
diction on an occupancy grid map. This method performed
better than a Kalman-based prediction model. Wagenaar et
al. [11] describes a problem similar to the one posed in this
work but then for human soccer. They proposed to predict
goalscoring opportunities on a dataset containing images ex-
tracted from the interval of 10 seconds before shot on goal oc-
curred by representing the world state in an occupancy map of
256 x 256 pixels. Here, Convolutional Neural Networks are
used to categories the state in a promising or less promising
goal opportunity. The best achieved result with this method
is 67.1%. Compared to [11] and [5], our classification cat-
egories are more specific, instead of only two classes, our
network classifies game situations in pass, shot on goal and

other actions including e.g. scrum, intercept. Furthermore,
our method will be applicable during the whole match instead
of only 10 seconds before a goal-scoring opportunity will oc-
cur.

To summarize, the correct prediction rates of state-of-the-
art methods give result in the range of 67.1% for human soccer
data and 91% for simulated robot soccer data. These numbers
are the baseline for the lower and upper performance bounds
that we aim to achieve with our novel approach.

3 Method
The prediction of future opponent actions will be treated

as a classification task, where the world state information of
the soccer robots, until the current time step, is encoded in
occupancy grid maps. These grid maps are the input to a clas-
sifier that classifies this world state with the next action of
the opponent, i.e. pass, shot, and other actions. The advan-
tages of using occupancy grid maps is the capability to capture
both spatial and temporal information. Furthermore, occu-
pancy grid maps have many similarities to images and can be
processed by state-of-the art Convolutional Neural Networks,
which have shown very promising results on image-related
classification tasks [12][13][14]. A key property of images is
the on spatial information relation between pixels in an image
which decreases with distance. This segmentation information
is comparable with the cell information of an occupancy grid
map which contains the robot’s trajectory. Because images
and occupancy grid maps share these properties, CNNs are a
promising approach to perform classification, detection, and
prediction tasks on occupancy grid maps. In addition, CNNs
can be deployed in real-time systems. The following subsec-
tions describe the occupancy grid map representation and the
structure of two Convolutional Neural Networks, which are
evaluated by experiments in Section 4.

3.1 Representation of World State
The two dimensional positions of opponent, peer, and the

ball on the field are stored in three separated occupancy grid
maps with size of 40x28 cells, where the cells size is 50x50 cm
and approximately the size of a Middle Size robot. The tem-
poral information is encoded in the occupied cells of the occu-
pancy grid map. The highest value (255) represents the current
position, the previous positions have progressively lower val-
ues. The value with which it decreases is equal to 255 divided
by the number of included time steps. The cells of the occu-
pancy grid map which are not occupied will have the value 0.
For example, for the occupancy grid including 30 time steps
representing the peer locations, a value of 230 in cell with lo-
cation x=11, y=22, means that a peer was located at the field
on x=6m, y=11m, two time steps back. The three occupancy
grid maps (peer, opponent, ball) can be stacked and processed
and visualized as RGB images.
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Fig. 2 World state representation as occupancy grid map. Game
situation before shot at goal occur of Figure 5a.

Figure 2 shows an example of the world state before a shot

on goal, every channel corresponds to one of the three occu-
pancy grid maps. The temporal information is made visible
through the increasing intensity of the color. Note, that our
CNN approach is not limited to occupancy grids with three
channels and can handle arbitrary number of auxiliary chan-
nels.

3.2 Convolutional Neural Network structure

Two networks are compared; The first one is an existing
CNN for recognizing and classifying the CIFAR-10 dataset
[15]. The CIFAR-10 dataset contains 60.000 32x32 colour im-
ages and is divided in ten classes (cat, dog, etc.). The structure
of the existing CIFAR-10 network is shown in Figure 3 and
achieves a test accuracy of 79-80% on the CIFAR-10 dataset
for image classification [16].

Fig. 3 Convolutional Neural Network Structure 1

The second CNN is an improvement of the first network
[12][17]. Containing more convolutional layers for under-
standing higher-order features of the occupancy grid maps.
Furthermore, more pooling layers are included, this affects
the information of the input which the neuron receives in the
last layers. One neuron of CNN 1 in the last layer, before
the fully connected layer, receives information of 4x4 cells at
once. However, one neuron of CNN 2, after the average pool-
ing layer, receives information of 28x28 cells of the input.
Therefore, CNN 2 classifies the occupancy grid maps using
information at a larger spatial resolution. Figure 4 shows the
structure of the CNN 2 which can be divided in two parts; fea-
ture detection and classification. Table 1 lists the parameters
of the layers within the feature detection part of both CNNs.
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Fig. 4 Convolutional Neural Network Structure 2

Furthermore, the convolutional layers use Rectified Linear
Units (ReLU) for the activation function of the output, mean-
ing if the output of the neuron is negative it will be set to zero.
The classification is done by flattening the last output matrix
after the average pooling layer into one vector which is fully-
connected to the softmax layer. The softmax layer use the
softmax function:

pi =
eai

∑
3
k=1 eak

, (1)

which takes as input a1...a3, which are the raw output of the
fully connected layer for classes 1 to 3 (pass, shot on goal, and
other actions), and converts them into normalized confidence
values between 0 and 1. The output of the classifier is the class
with the highest confidence.

Table 1 Parameters feature detection layers CNN

Layer type Filter size Stride #Filters

C
N

N
1 Convolutional (CL) 5 x 5 1 64

Max Pooling (MP) 2 x 2 2 -

C
N

N
2 Convolutional (CL) 3 x 3 1 64

Max Pooling (MP) 3 x 3 2 -
Average Pooling (AVP) 7 x 7 1 -

*All layers use zero-padding

Training of the neuron activation weights is done by the
Adam optimizer[18], using the cross entropy loss function,
which computes adaptive learning rate for each parameter.
The cross entropy loss function is the sum of the cross en-
tropy loss for each individual training occupancy grid maps.
This, per grid loss for training grid n with ground truth label
yn(1,2,3), is

Hn =−log(pyn) (2)

4 Experiments
The following experiments are performed to determine the

accuracy of the temporal data and the achievable performance
of the network on the proposed world state representation for
opponent action prediction.

I Performance validation of CNN and representation: To
determine whether the proposed representation is appli-
cable in game situations of the MSL soccer robots, the
achievable test accuracy and the computation time will
be verified with classifying referee tasks. The achievable
test accuracy of the CNN for the described world state
representation is determined with a simple experiment,
namely to recognize the referee tasks. The network will
be trained with two easy referee situations, specifically
Kickoff and Throw In, and should be classified with high
accuracy by the CNN. These are straightforward because
the position of the ball is obvious in these situations. In
the second validation step of experiment 1, seven referee
tasks are evaluated. The time which is needed for clas-
sification will be determined, to evaluate if the network
is fast enough for the real-time strategy decisions of the
soccer robots.

II Correctness validation of processed data for opponent
action classes: The goal of the second experiment is to
evaluate if the selected data is sufficient to predict a dy-
namic action. I.e., does the data contain enough detail to
detect a pass or a shot on goal. The method to evaluate
this is based on classifying occurred actions. A com-
plete sequence of time steps where a pass is given is
represented by a single occupancy grid and provided to
the network. A measure for the performance of the net-
work is the number of correctly detected passes or shots
at goal. Figure 5 shows an example of a pass and shot on
goal respectively. The remaining situations are allocated
in a third class, which is of high importance when the
system is used real-time in the software, because every
situations must be classifiable.

III Action prediction: The final experiment is to define the
performance of the network on the test-set during pre-
diction of the future action of an opponent with the ball.
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Hereby, an optimum for the included time period in the
occupancy grid map will be determined.

Fig. 5 Game situations represented by different number of time
steps. (a) Pass (b) Shot at goal. For both, the cell size is 50 cm and
respectively 15 and 12 past time steps are encoded in the occupancy
grid.

4.1 Datasets and augmentation
The Middle Size soccer robots are equipped with sensors

to observe the environment around them. The observed data
and their own position on the field is communicated with each
other at 40 Hz. This information is used to build a world
model including velocity, movement direction etc. of peers,
opponents and the ball on the field. Since 2010 match data
is saved of World Championships and European tournaments.
This historical data contains even more information besides
the robots positions, such as status of some hardware parts and
the communicated referee decisions. This data is stored with a
sample rate of around 20 Hz for each robot of Tech United. As
the games are more directed to game play and strategies due
to innovation of robots and changes in rules [2], data of the
last four years will be used. The data of World Championship
2017 will be used for the test-set. The training and test-set are
in every case evenly distributed over the classes, this because
research shows that balanced data-sets perform better[19][20].
To avoid over-fitting on the data by the Convolutional Neural
Network, the occupancy grid maps of the training data will be
mirrored on the horizontal and vertical axis and added to the
training dataset.

The used datasets for the three experiments are described in
the next paragraphs followed by three sections with the results.

I Referee task-datasets: The achievable test accuracy and
the needed computation time will be determined with two
datasets containing referee tasks, both with only the po-
sitions of the robots and ball at the field on one specific

moment in time. The first dataset includes 2 types of ref-
eree tasks and the other data-set contains all types. The
amount of game situations which is used for these exper-
iments is listed in Table 2.

Table 2 Referee task dataset 1 and 2: Number of game situations in
the training- and test-set.

Data-set 1 Data-set 2
Refbox type Training Test Training Test
Kickoff 1000 100 1000 50
Throw In 1000 100 1000 50
Freekick - - 1000 50
Corner - - 1000 50
Penalty - - 40 2
Goalkick - - 1000 50
Dropped ball - - 410 25

Total 2000 200 5450 277

II Occurred action-datasets: A dataset is generated
whereby the actions pass, shot on goal and random other
actions took place. The number of time steps included
in the occupancy grid map differs. The time steps which
are included for a pass is from the moment a pass starts
till the ball is received by the peer. For shot on goal,
the time steps between the start of a shot till the ball is
nearby the backline are included. The third class contains
random game-play situations other than pass and shot on
goal with different number of time steps. Two data-sets
are composed to compare the quality of information of
the stored data of opponent and peers. The dataset con-
taining opponent actions is based on observations of the
Tech United robots. Table 3 lists the number of game sit-
uations with the ratio of Peer or Opponent for Dataset 3.
Table 4 lists the amount of data with only Peer informa-
tion.

Table 3 Action dataset 3: Number of game situations per class.
With the ratio between Peer-data and Opponent-data.

Training Test

Action #
Si

tu
at

io
ns

Pe
er

po
rt

io
n

O
pp

on
en

tp
or

tio
n

#
Si

tu
at

io
ns

Pe
er

po
rt

io
n

O
pp

on
en

tp
or

tio
n

Pass 2500 38% 62% 100 45% 55%
Shot on goal 2500 98% 2% 100 91% 9%
Other Actions 2500 100

Total 7500 300
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III Future opponent action-datasets: This dataset contains
game situations which are taken backwards in time with
different number of included time steps from the moment
a robot receive the ball. An optimum number between 1
and 100 steps backwards in time will be determined for
predicting an action. As mentioned earlier, data is stored
with a frequency around 20Hz, hence a duration of max-
imal 5 seconds backwards in time will be included in the
occupancy grid map. Figure 5 shows two different exam-
ples: before a pass, and before a shot on goal and both
with another amount of included time steps. The Action
prediction-datasets contains only Peer-data and the num-
ber of game situations is equal to Table 4.

Table 4 Action dataset 4: Number of game situations per class of
only Peer-data

Action Training Test
Pass 1400 100
Shot on goal 1400 100
Other Actions 1400 100

Total 4200 300

4.2 Validation of CNN and representation results
The proposed world state representation where information

of the opponents, peers and the ball is separated in the RGB
channels is effective. As listed in Table 5, an accuracy of
98,5% is achieved on the first dataset with CNN 1. This high
test accuracy was already achieved after one training batch of
400 game situations. Even with more classes, the network
performs well. This can be substantiated with Table 7, which
shows the confusion matrices of both CNNs after all game sit-
uations are trained. A confusion matrix lists the performance

Table 5 Experiment results on Test-set 1 after every training batch
containing 400 game situations from Referee task dataset 1.

Batch Training time Accuracy

CNN 1

0 - 50.0% (100/200)
1 2:48 min 99.0% (198/200)
2 2:52 min 98.5% (197/200)
3 2:49 min 98.5% (197/200)
4 2:39 min 98.5% (197/200)
5 2:42 min 98.5% (197/200)

CNN 2

0 - 50.0% (100/200)
1 6:32 min 98.0% (196/200)
2 6:02 min 97.5% (195/200)
3 6:50 min 97.0% (194/200)
4 6:56 min 97.5 % (195/200)
5 6:53 min 98.0% (196/200)

Table 6 Experiment results on Test-set 2 after every training batch
containing 1090 game situations from Referee task dataset 2.

Batch Training time Accuracy

CNN 1

0 - 18.1% (50/277)
1 7:41 min 75.5% (209/277)
2 7:45 min 77.3% (214/277)
3 7:53 min 77.3% (214/277)
4 8:11 min 78.4% (218/277)
5 8:10 min 77.6% (215/277)

CNN 2

0 - 19.5% (54/277)
1 11:33 min 69.3% (192/277)
2 14:42 min 74.4% (206/277)
3 17:49 min 76.2% (211/277)
4 18:07 min 77.3% (214/277)
5 16:56 min 76.5% (212/277)

on particular class and can only be read horizontally and il-
lustrates the number of right and wrong predicted classifica-
tions, as can been seen on the third row of Table 7a. A Free-
kick is more often confused with a Goalkick than the other
way around. Kickoff, Throw In, and Corner are easy to indi-
cate. However, dynamic situations are harder to classify, with
dynamic is meant the position where these referee tasks are
taken.

Table 7 Confusion matrix of Referee task dataset 2

a. CNN 1

K
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C
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G
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lk
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k

D
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ed
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m
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ce

Kickoff 49 1 0 0 0 0 0 98%
Throw In 1 43 4 1 0 0 1 86%
Freekick 0 11 30 2 0 7 0 60%
Corner 0 0 0 50 0 0 0 100%
Penalty 1 0 0 0 1 0 0 50%
Goalkick 1 4 6 1 0 38 0 76%
Dropped ball 3 4 11 1 0 2 4 16%

b. CNN 2

K
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Kickoff 50 0 0 0 0 0 0 100%
Throw In 1 43 2 3 0 0 1 86%
Freekick 1 10 30 2 0 7 0 60%
Corner 0 1 0 49 0 0 0 98%
Penalty 0 0 1 0 1 0 0 50%
Goalkick 0 9 10 1 0 30 0 60%
Dropped ball 3 3 9 1 0 0 9 36%
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For example, the referee tasks Freekick and Dropped ball
achieve low performance percentages namely 50% and 16%
for CNN 1. The achieved results from CNN 1 and CNN 2 on
dataset 1 and dataset 2 look promising, high test accuracy is
possible when the condition of the class is well defined. E.g.
a Kickoff is always taken at the center of the field.

Not only performance of the network on the datasets is of
importance, also the duration to classify the game situations
are significant, because eventually the network should be ap-
plied during a match. The training time values are listed after
every batch in Table 5 and Table 6 column 2. Note; the train-
ing batches have a different size for the datasets. CNN 1 needs
approximately 1.97 milliseconds and CNN 2 needs 7.61 mil-
liseconds for classifying an game situation of the test-set. The
strategic decisions of the robots are calculated on 1000 Hz and
are communicated around 40 Hz with each other. A dedicated
computation unit with similar computational power, has to be
considered to execute this in real-time at the robot. Both Con-
volutional Neural Network structures can achieve high per-
formance on the proposed representation in a time period in
which strategic decisions must be taken.

4.3 Validation of action-dataset
Previous experiment confirms that the proposed representa-

tion is effective. In the following experiment, the measure-
ment data for action prediction will be tested on reliability
and the achievable performance will be determined. Figure 6
shows the test accuracy after every 500 trained game situations
of the two networks trained on the occurred action-datasets.

This procedure is repeated five times for the same training
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Fig. 6 Test performance on two data-sets containing occured actions

batches. The red and purple lines correspond to dataset 3 con-

Table 8 Confusion Matrices related to occurred actions from CNN 1

a. Peer and Opponent data
Confusion matrix Pass Shot on goal Other actions

Pass 74 4 22
Shot on goal 7 80 13

Other actions 23 10 67
Average performance 73.6% 221/300

b. Peer data
Confusion matrix Pass Shot on goal Other actions

Pass 92 0 8
Shot on goal 9 73 18

Other actions 11 7 82
Average performance 82.3% 247/300

taining opponent and peer information. The blue and green
lines belongs to dataset 4 containing only peer-information.
The thick lines show the average of these experiments. Fo-
cusing only on the results of CNN 1, the two mean curves
have the same shape only shifted along the vertical axis. This
means that the Peer-dataset is more reliable than the dataset
with Opponent information. This also applies for the results
of CNN 2. The difference between those two data-sets are a
result of wrong selected game situations from opponent data.
It is not possible to track the opponent accurately. Moreover,
as it is when an opponent moves outside the camera range and
again inside, the label of the robot changes. This means that
if the robot dribbles with the ball, a pass will be selected for
the data-set because of the label change. This can be con-
firmed by comparing the two confusion matrices; Table 8b
shows larger numbers of correct predicted passes and other
actions in comparison with Table 8a without a large change in
number of wrong predicted passes and other actions as shot
on goal. The reliability is supported with the variance of the

Table 9 Confusion Matrices related to occurred actions from CNN 2

a. Peer and Opponent data
Confusion matrix Pass Shot on goal Other actions

Pass 77 2 21
Shot on goal 4 91 5

Other actions 15 7 78
Average performance 82% 246/300

b. Peer data
Confusion matrix Pass Shot on goal Other actions

Pass 93 1 6
Shot on goal 2 92 6

Other actions 5 12 84
Average performance 89,7% 269/300
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Fig. 7 Training performance on two data-sets containing occured
actions

training process, which is in this case constant for both net-
works. After reproducing the experiments five times, the vari-
ance for CNN 1 for Peer-data is only σ = 1.8% and for CNN 2
is σ = 2.2%. The test accuracy depends not only on the reli-
ability but also on the amount of available data. The disad-
vantage of using only Peer-data is that less data is available
through elimination of opponent data. However, the amount of
training-data which is used seems sufficient for CNN 1, as can
be concluded from the shape of the mean curve. The training-
set would be too small if the curve is still increasing. This
can also be confirmed in Figure 7 which shows the training
accuracy, as can be seen the curves for CNN 1 both converge
to 100%. This indicates that the performance cannot increase
higher than 73.6% and 82.3% for the data-sets. In contrast to
this, the curves of CNN 2 are still increasing, which means
the performance can still increase when more train data would
be available. However, the data-set for action prediction will
only contain Peer-information because the reliability is more
important than the amount of available data.
The achieved test accuracy of both networks on dataset 4 in-
dicates a convenient prospect. The highest average after 4200
trained game situations is 82.3% for CNN 1 and 89.7% for
CNN 2. The difference between those results can be found
in the confusion matrices. Table 8 and Table 9 give average
confusion matrices of the experiments from the last three mea-
surement points. Taking a closer look to the performance on
individual actions in the confusion matrix of CNN 1 shows
that; The lower number of correct predicted shot on goals in
comparison with passes could be a result of the velocity of the
ball during these actions. A shot on goal is harder to classify

because the ball has a higher velocity and is therefore visible
in only a small amount of time steps, see Figure 5a for ex-
ample. However, CNN 2 performs better on the class shot on
goal, this can be a result of an understanding of higher-order
features corresponding with the larger field-of-view of the ker-
nel. Furthermore, CNN 2 performs well on the classes shot on
goal and pass with the Peer-dataset. The class other actions
score lower because of the variety of the situations. This ex-
periment has been conducted to determine the correctly clas-
sified dynamic actions to define the upper bound performance
for the next experiment. The goal of this next experiment is to
predict future opponent actions by the Convolutional Neural
Network instead of actions that have already occurred. The
performance average of CNN 2 on the Peer-data is the tar-
get performance during the opponent action prediction exper-
iments.

4.4 Opponent action prediction results

In the previous two sections the representation and the Con-
volutional Neural Network are validated and considered use-
ful to recognize game situation in Robot Soccer. This section
presents the results of the main experiment III; the prediction
of opponent actions. The prediction of future opponent actions
is determined through a classification task, where the follow-
ing classes are defined; pass, shot on goal or other actions. The
highest test accuracy average for action prediction is 76.9%
achieved with CNN 2 on the dataset with 10 past time steps
included. Figure 8 shows the performance of the CNNs on
datasets with occupancy grid maps including a certain length
of historical information. Every dataset is trained and tested
five times, the mean values of these tests are listed in Table 10.
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Fig. 8 Performance of CNN on different data-sets with increasing
length of historical information
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Table 10 Mean values corresponding to Figure 8

Historical time window t t-10 t-20 t-30 t-40 t-50
Mean [%] CNN 1 64.5 64.0 65.5 63.2 60.9 61.8
Mean [%] CNN 2 72.0 76.9 71.4 72.8 68.3 67.1

Historical time window t-60 t-70 t-80 t-90 t-100
Mean [%] CNN 1 60.5 60.3 60.3 59.6 59.1
Mean [%] CNN 2 68.7 67.5 67.6 62.8 64.9

Table 11 Confusion Matrices related to the highest mean value

a. CNN 1
Confusion matrix Pass Shot on goal Other actions

Pass 76 7 17
Shot on goal 19 52 29

Other actions 22 10 68
Average performance 65.3% 196/300

b. CNN 2
Confusion matrix Pass Shot on goal Other actions

Pass 74 11 15
Shot on goal 18 73 9

Other actions 15 6 79
Average performance 75.3% 226/300

The average is only 1.6% higher than the average of the
corresponding confusion matrix in Table 11, which is due to
rounding of the overall test accuracy values. It is interesting
to see in Table 10 that the next action of a soccer robot can be
predicted using only position data of the robots on the field.

0 500 1000 1500 2000 2500 3000 3500 4000 4500

# Trained game situations [-]

0

10

20

30

40

50

60

70

80

90

100

P
er

fo
rm

an
ce

 [%
]

Training accuracy

CNN 1
CNN 2

Fig. 9 Training batch accuracy of both CNNs

CNN 2 is able to predict the action for 72.0% with only
the positions. The performance increases 4.9% with historical

data in the occupancy grid maps, but the prediction is getting
worse with more than 10 past time steps. A prediction
accuracy of 76.9% is already a good performance but not
as high as the aimed performance of 89.7% in the previous
section. However, the limiting factor in the prediction for
CNN 2 is the amount of training data, Figure 9 shows that the
training accuracy is still converging to 100%, hence a higher
performance could be possible.

5 Conclusions
In this research, measurement data from the past four years

of the RoboCup Middle Size League soccer matches has been
used to predict future actions of soccer robots using Convolu-
tional Neural Networks. A representation is developed where
current and past object positions are been represented in occu-
pancy grid maps. We demonstrated the effectiveness of cap-
turing the world state of the soccer robots in occupancy grid
maps by classifying referee tasks with only information of a
snapshot. In addition, we have verified that post analysis of
game situations can be accurately classified for around 89.7%
by including the robots trajectory in the occupancy grid map.
Finally, we showed that Convolutional Neural Networks can
learn to predict actions correctly for 76.9% by using occu-
pancy grid maps filled with 0.5 seconds of historical data.

6 Recommendations
In future work, to gain better results, the dataset can be in-

creased with simulation data and within several years, better
data of the opponent can be obtained of shared data. Since a
year, data is logged during the game of both teams, in a few
years this could be enough data to use for this approach. In ad-
dition, the representation can be extended by including more
information of the world state, e.g. the height of the ball could
be integrated. This information could visualize the bouncing
of the ball and might give a better insight for the neural net-
work whether a pass is going to be received. Another example,
for classifying a pass more accurately, velocity and movement
direction could be included. Hence, the classes can then be
divided in more detailed actions, e.g. pass versus intercept.
However, using additional information has consequences for
the neural network, which may need to be extended with more
layers to extract higher-order features. Eventually, our ap-
proach will be integrated into the TU/e Middle Size League
robots and evaluated during live game play, where, for ex-
ample, the defense can be improved, because it is possible
to anticipate on an upcoming pass or shot on goal. Instead
of classifying a certain situation, a region of interest could be
identified by the neural network, like the position where a pass
is going to be received by the opponent, whereby the robot can
intercept easier. Or the best position of the robots during a pas-
sive referee task could be determined by the neural network,
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to gain faster ball possession. This research shows that the
combination of multi-channel occupancy grad maps together
with CNNs offer a powerful and extensible approach. It lays
the foundation for many potential extensions to improve the
cognitive capabilities of soccer robots.
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Appendix A. Convolutional Neural Network
Deep Neural Network is the umbrella name of neural net-

works with hidden layers. Examples are Recurrent Neural
Network, Recursive Neural Network and Convolutional Neu-
ral Network. The last form is chosen for this research because
of the efficiency of the network, less memory is required and
the performance is better. Furthermore, Convolutional Neu-
ral Networks (CNN) are easier to tune and less time is needed
to train the network. Finally, CNNs are especially successful
in processing data which has a grid-structured topology. [21]
[22]. Therefore, CNN is potentially well applicable for a soc-
cer robot environment. An existing CNN for recognizing and
classifying CIFAR-10 dataset is used, because good perfor-
mance (79-80%) is achieved on this dataset. The CIFAR-10
dataset contains 60.000 32x32 colour images and is divided
in 10 classifiers. This resolution is suitable for the data of the
soccer robots.

A.1 Network structure
The first network used in this research is shown in Fig-

ure 10. It consist of two Convolutional layers (CL) and the
output of these layers are down sampled by Pooling layers
(PL). The output of the last pooling layer is connected to
two Fully-Connected layers (FC) ending in a Softmax layer
(SML). All the different layers has its own functionality. Table
12 gives an overview of all parameters which are adjustable in
the layers.

Fig. 10 Convolutional Neural Network Structure

A.2 Functionality of Neural Network components
The most important components of a Convolutional Neu-

ral Network are the convolutional, pooling and classification

Table 12 Adjustable parameters CNN.

Feature detection layers
Convolutional layers (CL)
Number of layers 2 [-]
Size of filters FS 5 x 5 [pixel]
Number of filters #F 64 [-]
Zero-padding ZP 3 [-]
Stride S 1 [pixel]
Activation RELU
Pooling layers
Type Max Pooling
Size of filter FS 2 x 2 [pixel]
Stride S 2 [pixel]

Classification layers
1st Fully-connected layer (FC)
Vector size 256
2nd Fully-connected layer
Vector size 128
2nd Softmax layer (SML)
Vector size 3

components;

• Convolution; The Convolutional layer contains a number
of certain sized filters. These are shifting with a step size
along the input image matrix to search for features by
calculating the dot product between the filter and input
image. Figure 11 shows an image of 40x28 pixels with a
filter of 5x5, which moves with a stride of 2 pixels along
the image. As can be seen the filter doesn’t come out
exactly in the left image, which results in information
loss around the edge of the image. To solve this problem
a stroke of zeros will be added as demonstrated in the
right picture. This is called zero-padding. The result of
the dot product between the filters and the image is an
Activation Map containing a feature, like edges, circles
etc. More convolution layers can be coupled to find more
complicated features [23], the input of the second layer
is the activation map of the first layer

• Pooling; After extracting the activation map the image
dimensions are reduced by spatial pooling. Comparable
with the procedure of a Convolution layer, a matrix is
moved along the image. The region which the matrix
covers could be averaged, summed or the maximal value
could be extracted. This value is stored in a smaller fea-
ture map. Some benefits of pooling is reduction of com-
putations, less over-fitting, less sensitive for transforma-
tions, distortions and translations.

• Classification; The classification part consist of fully-
connected layers and a Softmax layer. The Fully-
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Connected layers ensures a relation between all the fea-
tures of the last Convolutional layer and the Softmax
layer. The Softmax layer produces the outcome of the
neural network, which is a vector containing probability
values for the different classifiers. These probability val-
ues together has a value of 1.

The Convolutional layers and Fully-Connected layers are
build up out of neurons. The manner in which neurons are
connected determines the property of these layers.

Fig. 11 A 40x28 pixel image in combination with a 5x5 filter with a
stepsize of 2 pixels. The left image is without zero-padding and the
right with zero-padding.

A.3 One single neuron
A Neural Network is build up from many neurons. These

are connected to each other with certain weight factors, which
are determined during the training process. A large dataset
of input images is labeled with the corresponding output re-
sponse and is used for training the neurons. The values of
the input images are multiplied with weight factors. All con-
nections linked to a neuron are added together including a
bias value for an offset, which is also adjusted during training
phase. Then, the summation goes through an activation func-
tion to introduce non-linearity in the system before it leaves
the neuron. There are several types of activation functions
which can be used; Sigmoid, Tanh or in the chosen network
a Rectified Linear Unit (ReLU). The training process with
ReLU functions is faster as Sigmoid or Tanh functions. The
downside of ReLU functions is the possiblity to over-train the
network which results in non-active neurons.
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Appendix B. CNN Improvement
An existing CNN with only two convolutional layers is cho-
sen for predicting actions of the soccer robots, this CNN will
be compared with another CNN which will be chosen in this
appendix. A benchmark is set-up for the CIFAR-10 dataset
containing 32x32 images[24]. This size is comparable with
the input representation of the world state of the soccer robots.
Therefore, a network structure of the benchmark will be used
as starting point which will be improved for the specific rep-
resentation. CNN 1 in Table 14 is the second best performing
CNN on the CIFAR-10 dataset[17]. Preference is given to this
structure because of the few layers.

B.1 Experiment
Table 14 and Table 15 shows slightly different CNN struc-
tures. By comparing the performance of the CNNs on the
same data-sets the most optimal CNN could be composed.
Table 13 gives an overview of parameters which can be de-
termined by comparing specific CNNs. The parameters of the
Max-pooling layers haven’t been changed because previous
researches shows those settings are commonly used for CNN
architectures.[12][17]

Table 13 CNN comparison

CNN X w.r.t. CNN Y Parameter Result
CNN 2 - CNN 3 Type of classification layers 1%
CNN 3 - CNN 4 Increase # filters per layer -1%
CNN 2* - CNN 5 Increase in filter size -4.6%
CNN 2* - CNN 7 Zero - padding last layer -
CNN 6 - CNN 8 Extra pooling layer 6.4%
CNN 2* - CNN 6 Increase # convolutional layers -5%

B.1.1 Data-sets
The action prediction data-set with only Peer-information
with 20 frames from the past included is used for the CNNs
of Table 14. This data-set is enlarged with passes from earlier
years and with the remaining data from the last World cham-
pionship for the CNNs of Table 15.

B.1.2 Results
The results of the CNNs are listed in the last 3 rows of Table 14
and Table 15. Table 13 third column shows the test accuracy
difference between the compared CNNs. Figure 12 shows the
training accuracy of the CNNs.

B.2 Conclusion
Several CNNs structures are compared with each other by

testing the performance on the same dataset. Figure 12 gives
an indication on which CNNs are still learning. CNN 3 and
CNN 4 are after 2000 trained images already converged to
100%, the difference between those two and the other CNNs
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Fig. 12 Training accuracy CNNs

are the classification layers. In combination with the com-
parison of CNN 2 with CNN 3, as described in Table 13, it
can be concluded that average pooling can be better used than
fully-connected layers. Furthermore, the performance differ-
ence between CNN 3 and CNN 4 is only 1%, so more filters in
a convolutional layer doesn’t improve the recognition of more
features, but increases the training time enormously. The size
of a filter and number of convolutional layers has also influ-
ence on the training time and feature recognition; an increase
in those two parameters doesn’t improve the network in this
case. This because the data-set is not large enough for learn-
ing higher-order features. For further research CNN 7 will be
used, this because the training time isn’t increased much with
zero-padding comparing with CNN 2 and, the training accu-
racy converge slower to 100% as CNN 8 which CNN 2 has the
capability to perform better with a larger training dataset.
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Table 14 CNN structures and results on training data-set 1

CNN 1 CNN 2 CNN 3 CNN 4

St
ru

ct
ur

e

FS S #F FS S #F FS S #F FS S #F
CL 1 3 x 3 1 64 CL 1 3 x 3 1 64 CL 1 3 x 3 1 64 CL 1 3 x 3 1 96
CL 2 3 x 3 1 64 CL 2 3 x 3 1 64 CL 2 3 x 3 1 64 CL 2 3 x 3 1 96
[HTML]C0C0C0MP 1 [HTML]C0C0C03 x 3 [HTML]C0C0C02 [HTML]C0C0C0 [HTML]C0C0C0MP 1 [HTML]C0C0C03 x 3 [HTML]C0C0C02 [HTML]C0C0C0 [HTML]C0C0C0MP 1 [HTML]C0C0C03 x 3 [HTML]C0C0C02 [HTML]C0C0C0 [HTML]C0C0C0MP 1 [HTML]C0C0C03 x 3 [HTML]C0C0C02 [HTML]C0C0C0
CL 3 3 x 3 1 64 CL 3 3 x 3 1 64 CL 3 3 x 3 1 64 CL 3 3 x 3 1 192
CL 4 3 x 3 1 64 CL 4 3 x 3 1 64 CL 4 3 x 3 1 64 CL 4 3 x 3 1 192
[HTML]C0C0C0MP 2 [HTML]C0C0C03 x 3 [HTML]C0C0C02 [HTML]C0C0C0 [HTML]C0C0C0MP 2 [HTML]C0C0C03 x 3 [HTML]C0C0C02 [HTML]C0C0C0 [HTML]C0C0C0MP 2 [HTML]C0C0C03 x 3 [HTML]C0C0C02 [HTML]C0C0C0 [HTML]C0C0C0MP 2 [HTML]C0C0C03 x 3 [HTML]C0C0C02 [HTML]C0C0C0
CL 5 3 x 3 1 64

CL 5 3 x 3 1 64 CL 5 3 x 3 1 64 CL 5 3 x 3 1 192CL 6 1 x 1 1 64
CL 7 1 x 1 1 3

AP 7 x 7 1 No ZP AP 7 x 7 1 No ZP
FC 256 FC 256
FC 128 FC 128

SML 3 SML 3 SML 3 SML 3

Input 28 x 28 4 x 4 4 x 4
Training time 44 min 43 min (58 min*) 43 min 3h 50 min
Test accuracy 70% 73.3% (74.3%*) 72.3% 71.3%
*Performance on data-set 2
Note; all layers use zero-padding (ZP) unless otherwise is indicated.

Table 15 CNN structures and results on training data-set 2

CNN 5 CNN 6 CNN 7 CNN 8
FS S #F FS S #F FS S #F FS S #F

CL 1 5 x 5 1 64 CL 1 3 x 3 1 64 CL 1 3 x 3 1 64 CL 1 3 x 3 1 64
CL 2 5 x 5 1 64 CL 2 3 x 3 1 64 CL 2 3 x 3 1 64 CL 2 3 x 3 1 64
[HTML]C0C0C0MP 1 [HTML]C0C0C03 x 3 [HTML]C0C0C02 [HTML]C0C0C0 [HTML]C0C0C0MP 1 [HTML]C0C0C03 x 3 [HTML]C0C0C02 [HTML]C0C0C0 [HTML]C0C0C0MP 1 [HTML]C0C0C03 x 3 [HTML]C0C0C02 [HTML]C0C0C0 [HTML]C0C0C0MP 1 [HTML]C0C0C03 x 3 [HTML]C0C0C02 [HTML]C0C0C0
CL 3 5 x 5 1 64 CL 3 3 x 3 1 64 CL 3 3 x 3 1 64 CL 3 3 x 3 1 64
CL 4 5 x 5 1 64 CL 4 3 x 3 1 64 CL 4 3 x 3 1 64 CL 4 3 x 3 1 64
[HTML]C0C0C0MP 2 [HTML]C0C0C03 x 3 [HTML]C0C0C02 [HTML]C0C0C0 [HTML]C0C0C0MP 2 [HTML]C0C0C03 x 3 [HTML]C0C0C02 [HTML]C0C0C0 [HTML]C0C0C0MP 2 [HTML]C0C0C03 x 3 [HTML]C0C0C02 [HTML]C0C0C0 [HTML]C0C0C0MP 2 [HTML]C0C0C03 x 3 [HTML]C0C0C02 [HTML]C0C0C0

CL 5 3 x 3 1 64 CL 5 3 x 3 1 64
[HTML]C0C0C0MP 3 [HTML]C0C0C03 x 3 [HTML]C0C0C02 [HTML]C0C0C0CL 5 5 x 5 1 64

CL 6 3 x 3 1 64
CL 5 3 x 3 1 64

CL 6 3 x 3 1 64
AP 7 x 7 1 No ZP AP 7 x 7 1 No ZP AP 7 x 7 1 AP 4 x 4 1 No ZP

St
ru

ct
ur

e

SML 3 SML 3 SML 3 SML 3
Input 28 x 28 28 x 28 28 x 28 32 x 32
Training time 2h 10min 1h 1min 1h 1min 58 min
Test accuracy 69.7% 69.3% 74.3% 75.7%
Note; all layers use zero-padding unless otherwise is indicated.
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Appendix C. Data generation
This appendix explains the selecting procedure of the classi-
fiers from measurement data.

C.1 Filtering data for referee situation prediction
The Greenfield data contains information of the robots such as
position, velocity, status of some hardware parts etc. but also
the communicated information from the Referee box (refbox).
For validation of CNN and representation the referee tasks are
used in the data-sets. The frame which is selected for the data-
set is taken at the moment when the robots are positioned to
restart the game after a referee task is given.

C.2 Filtering data for action prediction
As mentioned before Greenfield data contains much informa-
tion about the status of the match. The situations shot on goal
and pass can be filtered by different methods. The paragraph
below describes which method is used for selecting data for
the data-sets.

• Shot on goal: The first step is to find the frame when ref-
box tasks; goalkick and kickoff, are given. These refbox
situations are a result of a shot on goal. Next step is to
select the moment when the ball is last possessed by a
robot before a stop signal is given, corresponding with
the mentioned refbox tasks. The frame is being checked
on two points to ensure the selected data is a shot on goal.
First criteria is if the robot is in a range of 0.5 meters
from the ball, and second if the shot really is towards
the goal by determine position dependent boundaries in
which the ball moves. Figure 13 shows an example; The
two boundaries start from the robot and crosses the inter-
section of the goalarea and the backline on both sides of
the goal. The ball position should be higher than the left
boundary but lower than the right boundary. Note that
the conditions changes depending on the position on the
field.

• Pass: Information about whether an opponent or peer is
controlling the ball and in particular which robot is pos-
sessing the ball is stored in Greenfield data. This infor-
mation is used to determine the passes. During a pass or
intercept the ball possession changes between the robots.
In case of a pass there is an ID change between two oppo-
nents or two peers. If a change occurs between opponent
and peer than an intercept took place.

• Other actions: The third classifier contains different
types of situations; scrum, intercept, dribble. These situ-
ations are selected randomly but during gameplay and the
filtered frames for shot on goal and pass are eliminated.

C.3 Data augmentation
A large amount of data is needed to achieve proper output
of neural networks [21]. To avoid over-fitting, the training

Fig. 13 Shown situation is a shot on goal during a match. Black
lines are boundaries in which the ball should stay inside.

data will be mirrored on the horizontal and vertical axis for all
experiments. Furthermore, the training and test-set is evenly
distributed over the classifiers, this because researches shows
that balanced data-sets perform better. [19][20] Therefore, the
amount of data for the training-set with referee situations is in-
creased by including extra frames before the start signal. This
is the situation when robots are almost positioned for the ref-
box moment, but gives a small variation of the robots location
in comparison with the unique image. Table 16 second col-
umn shows the amount of unique refbox situations and the
third column shows the extra frames per unique image. Ta-
ble 17 column 2 lists the number of available data for action
prediction. Hereby, the classifier shot on goal is increased by
using the view of different robots. Every robot observes the
environment and capture the positions of the objects on the
field, which gives small variation in data.

Table 16 Number of unique refbox situations

Refbox type Unique Extra frames
Kickoff 831 1
Throw In 1181 0
Freekick 869 1
Corner 259 5
Penalty 6 9
Goalkick 406 2
Dropped ball 66 9

Total 3618

Table 17 Number of actions

Training Test

Peer
Opponent

Peer
Opponent

Pass 1449 2396 358 432

Shot on goal
Unique 877 33 111 7
Extra 1625 7

Other actions 5423 1053
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