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Abstract— This paper presents a method of topological
modeling in home environments using only low-cost sonar
sensors. The proposed method constructs a topological model
using sonar gridmap by extracting subregions incrementally. A
confidence for each occupied grid is evaluated to obtain reliable
regions in a local gridmap, and a convexity measure is used
to extract subregions automatically. Through these processes,
the topological model is constructed without predefining the
number of subregions in advance and the extracted subregions
are guaranteed the convexity. Experimental results verify the
performance of proposed method in real home environment.

I. INTRODUCTION

An autonomous mobile robot needs to represent its en-
vironment as a map which can be recognized by robotic
sensors such as range sensors or vision sensors. The map is
used to execute self-localization and navigation to perform
tasks in the environment. For this purpose, many researchers
have developed various types of map representation during
last two decades [1].

In general, robotic mapping methods can be classified into
metric map and topological map. The metric map represents
exact locations of geometric entities in the environment with
respect to a reference frame. Occupancy gridmaps [2] and
feature based maps [3] are typical examples of the metric
map. The metric map would be helpful to perform elaborate
tasks in the robot’s workspace. On the other hand, topological
maps [4], [5] represent the environment as a graphical model
which consists of nodes and edges. The topological map
has an advantage of compact and abstracted form of the
environmental modeling and is useful for performing path
planning because connectivity between places is represented
well. Recently, by fusing metric and topological approaches,
globally topological and locally metric maps are also pro-
posed in some literatures [6], [7].

For the range sensor based map generation, laser sensors
and sonar sensors are used popularly. A map generation
using laser sensor is relatively easier than using sonar sensors
because the sensory information of laser sensor is quite dense
and accurate. In fact, successful results with laser sensor
are reported by many researchers using the aforementioned
mapping algorithms. However, use of the laser sensor is
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restricted by its expensive cost. On the other hand, sonar
sensors which are cheap and give relatively accurate range
readings can be an alternative. However, this cheap sensor
suffers from significant angular uncertainty because of its
large beam width.

The feature based approach using sonar sensor is not easy
to obtain reliable mapping result especially in unstructured
environment like home due to the difficulty of extracting
robust features. On the other hand, occupancy gridmaps from
sonar sensor can result in accurate environmental modeling
by accumulating sensor information, and the topological map
using sonar sensor can also give a reliable result due to
the abstracted form of map model. However, using only
gridmap is not sufficient for the autonomous mobile robot
system because it gives only existence of obstacle for each
locations. The topological approach using sonar sensor could
not be an alternative because it is difficult to extract some
meaningful points such as junctions in home environments.
For these reasons, combining a topological map and a
grid map can give a practical solution using sonar sensors
in home environment. A global topological map which is
extracted from a gridmap would be helpful for global path
planning and a local gridmap corresponding to each node
in topological map can be used to perform navigation and
localization in local areas.

For this purpose, several researchers have tried to extract
topological models from gridmaps. Thrun divided an occu-
pancy gridmap into several subregions based on the voronoi
diagram [8]. Similarly, graph partitioning methods are used
to divide a gridmap into several nodes [9], [10]. Room-like
spaces are extracted in gridmaps by using fuzzy morpholog-
ical opening and watershed segmentation by Buschka and
Saffiotti [11]. Even though those methods show successful
topology extraction from gridmaps, they are not easy to apply
directly in home environments because they are suitable for
corridor environments or considers only narrow passages to
extract topological model.

In this paper, incremental topological modeling using
sonar gridmap is considered for home environments. In our
previous work, a topological model was extracted from the
gridmap by dividing the whole gridmap into several subre-
gions using approximate cell decomposition and normalized
graph cut [12]. However, the method can only be performed
after generating gridmap over the entire environment, and
the number of subregions should be given in advance. To
overcome those limitations, a method which constructs a
topological model incrementally while generating gridmap
is proposed. The incremental extraction of the topological
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model from the sonar gridmap is performed in three steps :
1) apply approximate cell decomposition, 2) obtain reliable
cells from noisy local gridmap, 3) extract new subregion.
The extraction of a new subregion is performed to guarantee
convexity of the extracted subregions because a convex
region contains similar spatial characteristics generally.

The proposed method constructs a well-structured topo-
logical representation of the home environment using only
sonar sensors. It has several benefits. Firstly, reliable cells are
obtained by filtering out noisy data in local gridmap using
a confidence value which can be calculated from the sound
pressure function of sonar sensors. Secondly, a topological
map can be constructed without predefining the number of
subregions in advance. Lastly, the extracted subregions are
similar to a spatial recognition of human by guaranteeing the
convexity of subregions.

This paper is organized as follows. In Section II, our
previous work is briefly summarized. Then, incremental
topological modeling is described in Section III. Section
IV presents experimental results and conclusion follows in
Section V.

II. OFFLINE TOPOLOGICAL MODELING USING SONAR

GRIDMAP

This section summarizes our previous work which per-
forms offline topological modeling using sonar gridmap
[12]. The topological modeling is achieved by partitioning
navigable area in the gridmap into predefined number of
subregions. The offline topological modeling is executed by
the following processes.

A. Offline topological modeling

The first step for the offline topological modeling is gener-
ating occupancy gridmap using sonar sensors and odometry
data. For this purpose, a grid mapping method in [13] is
used. Fig. 1(a) shows an example of gridmap generation.
The gridmap consists of empty grids, m(x, y) = 0, which
represent free space and occupied grids, m(x, y) = 1, where
obstacle exists.

After generating gridmap, approximate cell decomposition
is applied to the gridmap. The approximate cell decomposi-
tion, also known as quadtree cell decomposition, divides a
square cell into four smaller square cells of same size if the
original cell is composed of both free and obstacle spaces
[14]. This process is recursively executed until every cell gets
decomposed into free and obstacle spaces separately. The
approximate cell decomposition can extract empty regions
in the gridmap effectively, and the empty regions can be
modeled as various sizes of squares. A large empty region
would be mainly modeled as a few large size of squares
and the remaining parts are supplemented by relatively small
squares. The result of the approximate cell decomposition
provides an initial draft model of topological representation
of the environment. Each extracted cell becomes node of
the draft topological model, and the connecting edge is
determined from the adjacency of two cells.
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Fig. 1. Offline Topological Modeling : (a) Generated gridmap, (b)
Clustering as 8 subregions (Each cluster is represented as different color),
and (c) Topological model.

The constructed topological model from the approximate
cell decomposition provides a connected graph structure
for the empty regions of the environment. However, many
small cells should be merged with large cells which could
be considered as same region because the environment is
divided into too many cells. For an effective clustering,
normalized graph cut algorithm is applied to the draft topol-
ogy model. Normalized graph cut algorithm is a cluster-
ing method using graph partitioning [15]. It uses a graph
structure, G(V,E), which is composed of a set of vertices
(or nodes) V = {V1, V2, · · · , Vn} and a set of edges E =
{E1, E2, · · · , Em}. Each edge has weight wij which repre-
sents a similarity between Vi and Vj . Then, normalized cut
(Ncut) is defined to measure similarity between two clusters
that should be partitioned. Ncut between two clusters C1 and
C2 is obtained as

Ncut =

∑
i∈C1,j∈C2

wij∑
i∈C1,j∈V wij

+

∑
i∈C1,j∈C2

wij∑
i∈C2,j∈V wij

. (1)

Normalized graph cut algorithm considers a graph cut,
which results in minimum Ncut, as an optimal solution of
clustering. Unfortunately, finding the minimum Ncut is NP-
hard problem. So, spectral clustering is generally used as an
approximate solution. Spectral clustering for the minimum
Ncut is performed by following procedures.

1) Construct a neighborhood graph with corresponding
n × n affinity matrix W (i, j) = wij .

2) Compute the normalized graph Laplacian L =
D−1/2(D − W )D−1/2 where D = diag{d1, · · · , dn}
and di =

∑
j Wij .

3) Find the k smallest eigenvectors u1, · · · , uk of L and
form the matrix U = [u1 · · ·uk] ∈ R

n×k.
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Fig. 2. Flowchart for the incremental topological modeling using sonar
gridmap.

4) Form matrix Ũ from U by re-normalizing each row of
U to have unit norm, i.e, Ũij = Uij/(

∑
j Uij)1/2.

5) Treating each row of Ũ as a point in R
k, segment them

into k groups using k-means algorithm.
6) Assign Vi to cluster j if and only if row i of Ũ is

assigned to cluster j.

To apply the normalized graph cut to the draft graph
model, the weight value between two cells needs to be
defined to calculate the affinity matrix W . Therefore, the
weight value for arbitrary two cells are defined as follows :

wij =
{

� of adjacent grids if Vi and Vj are adjacent
0 otherwise.

(2)
Using the draft model and affinity matrix W , k clusters are

extracted with a predefined variable k. Fig. 1 shows results
of segmenting the whole gridmap into 8 subregions. The
topological modeling for the entire environment could be
achieved successfully by considering the obtained subregions
as nodes in topological model (Fig. 1(c)).

B. Limitations of offline topological modeling

The offline topological modeling method can extract topo-
logical representation from the gridmap successfully. How-
ever, the offline method has two limitations.

1) The number of cluster k should be predefined manu-
ally.

2) Topological model can be extracted after generating
gridmap over the entire environment.

Using the same gridmap, the extracted topological model
gives different results for the different predefined number of
cluster. Furthermore, the topological model can be extracted
when the gridmap generation is finished over the entire
environment. If the robot navigates unexplored areas after
extracting topological model, the topological model should
be extracted totally again. To overcome those limitations, an

(a) (b)

(c) (d)

Fig. 3. Obtaining reliable region in local gridmap : (a) Noisy local gridmap,
(b) Boundary tracing, (c) A contour for reliable region, and (d) Reliable
cells.

incremental topological modeling will be proposed in the
following section.

III. INCREMENTAL TOPOLOGICAL MODELING USING

SONAR GRIDMAP

The incremental topological modeling performs subregion
extraction and gridmap generation simultaneously. As a robot
navigates an environment, a local gridmap is generated
around the robot and the subregions are extracted using the
local gridmap. During this process, the subregion can be
extracted without predefining the number of subregions. In
other words, the robot performs the incremental topological
modeling using sonar gridmap autonomously. For this pur-
pose, this paper concentrates on the extraction of topological
model and assumes that robot poses are given.

Fig. 2 shows flowchart for the incremental topological
modeling. Most processes are similar to the offline topolog-
ical modeling. The major differences are a reliable region
extraction in local gridmap and determining extraction of
new subregion. The following subsections describe these
different processes of the proposed incremental topological
modeling in detail.

A. Obtaining Reliable Region in Local gridmap

The local gridmap contains noisy data inevitably because
sensor data couldn’t be accumulated sufficiently to filter out
spurious sonar data (Fig. 3(a)). For this reason, obtaining
reliable region in the local gridmap should be performed by
filtering out the noisy data.

As a first step of obtaining reliable region, a boundary
tracing technique is applied to find boundaries between
occupied and empty regions (Fig. 3(b)). The boundary tracing
method finds a contour which encloses the empty regions in
the local gridmap. Then, a sonar sensor model is used to
measure a confidence for each occupied grid. A sonar beam
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(a) (b)

Fig. 4. Convex hulls for (a) 1 cluster, and (b) 2 clusters. (Blue and green
cells represent two different clusters obtained from normalized graph cut)

(S) fired from a transmitter has a sound pressure function,
PS(r, θ), as follows:

PS(r, θ) =
βfa4

r2

(
2J1(kasinθ)

kasinθ

)2

, (3)

where r is a distance from the transmitter, and θ is an
angle with respect to direction of the transmitter. Detail
explanations for other variables can be found in [16].

The sound pressure function can be used to measure the
amount of sensor information. So, by using the sensor model,
the confidence for each occupied grid m(x, y) is evaluated
as

Conf(x, y) =
∑

m(x,y)∈Occ.(S)

PS(r, θ), (4)

where Occ.(S) is a set of grids which are determined as
occupied by sensor data S.

Then, occupied grids which have high confidence value
are regarded as confident grids (5),

Conf(x, y) > avg(Conf), (5)

and the reliable region can be found by obtaining a contour
which connects those confident grids (Fig. 3(c)).

Finally, obtaining reliable region in the local gridmap can
be achieved by removing the decomposed cells which are
outside of the contour (Fig. 3(d)). Through the aforemen-
tioned processes, a reliable region can be extracted from
the noisy local gridmap and the remaining reliable cells are
applied to the normalized graph cut to extract subregions.

B. Extracting New Subregion

The aforementioned processes give a successful result
of obtaining reliable cells which correspond to the reliable
regions in the local gridmap. Then, the incremental topo-
logical modeling is performed by extracting new subregion
from the obtained reliable cells. To extract new subregion,
the proposed method determines whether the obtained cells
should be divided into 2 clusters or not. If the obtained cells
should be divided into 2 clusters, one of the 2 divided clusters
is extracted as new subregion. Otherwise, the robot continues
to generate a gridmap.

For this purpose, a convexity of the subregion is used as a
criterion of extracting new subregion. In other words, a new
subregion is extracted if the obtained reliable region couldn’t
be regarded as a convex region. The measure of evaluating

(a) (b)

(c) (d)

Fig. 5. Example of incremental topological modeling using sonar gridmap.

convexity is obtained as follows. At first, a convex hull of
all the obtained cells is acquired to measure the convexity
when the cells are considered as 1 cluster (Fig. 4(a)). Then,
a convexity measure for the case of 1 cluster is evaluated as,

C1cluster =
� of occ. grids ∈ CH1∑

size of Cell
, (6)

where CH1 is convex hull for 1 cluster. The convexity
measure, C1cluster represents a ratio of occupied grids in the
convex hull CH1 with respect to total size of reliable cells.

Similarly, the convexity measure for the case of 2 clusters
is also evaluated. Normalized graph cut is applied to the
obtained reliable cells with the number of cluster 2 to
segment the reliable region into 2 subregions. Then, two
convex hulls for the segmented two clusters are acquired
like Fig. 4(b), and the convexity measure for the case of 2
clusters is obtained as

C2clusters =
∑2

i=1 � of occ. grids ∈ CH2(i)∑
size of Cell

, (7)

where CH2(i) represents a convex hull for ith cluster.
Using the convexity measures, C1cluster and C2clusters, a new

subregion is extracted if the following conditions are satisfied
(8).

C1cluster > ct & C2clusters < 0.5 × C1cluster (8)

where ct is a threshold value. The threshold value is used as
0.2 in the proposed method by determining experimentally.
In other words, 20% of occupied grids in the subregion are
allowed to regard the subregion as same space.

If the conditions in (8) are satisfied, one of the 2 divided
clusters, whichever one is older, is extracted as a new
subregion. Then, such extracted subregion is not considered
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(a) (b) (c) (d)

(e) (f) (g) (h)

Fig. 7. Experimental results of incremental topological modeling. (a)-(d) Incremental subregion extraction (Each subregion is represented as different
color), and (e)-(h) Corresponding topological model (Blue and green cells in (a)-(c) are not included in topological model because they are not extracted
as new subregion yet).

(a) (b)

Fig. 6. Experimental Setup : (a) PIONEER3-DX with 12 MURATA sonar
sensors, and (b) Experimental environment.

for any subsequent segmentation unless the robot navigates
back to the same subregion again.

Fig. 5 shows the process of extracting a new subregion
incrementally. During the first two steps (Fig. 5(a)–5(b)), the
obtained cells are considered as the same subregion because
they couldn’t satisfy the dividing conditions (8). Then the
dividing conditions are satisfied in Fig.5(c) and as a result,
green cells, which are older than blue cells, are extracted as
a new subregion. These cells are represented as red cells in
Fig. 5(d), and they are not reconsidered for the subsequent
extraction of a new subregions. In other words, remaining
spaces (blue and green cells) except the extracted new
subregion are used to extract another subregion in Fig. 5(d).
Through these processes, a successful topological modeling
can be achieved incrementally from a sonar gridmap.

IV. EXPERIMENTAL RESULTS

This section shows experimental results of the proposed
incremental topological modeling in home environment. Ex-
periments were carried out using a differential drive robot
PIONEER-DX (Fig. 6(a)) equipped with 12 MA40B8 sonar

Fig. 8. Convexity measure for extracted subregions.

sensors from MURATA company [17] in home environment
(Fig. 6(b)).

The home environment, which is composed of several
rooms and contains a few pieces of furniture and electronics,
covers an area of 11.4m × 8.7m. The mobile robot was
driven a wall following path manually with an average speed
of about 0.15m/s and acquired sonar sensor data in 4Hz
frequency.

The experimental results of incremental topological mod-
eling using sonar gridmap are presented in Fig. 7. The results
of extracting subregions are shown in Fig. 7(a)-(d), and the
corresponding topological models are shown in Fig. 7(e)-(h).
The experimental results show that the reliable cells within
the reliable region are obtained successfully by filtering out
the noisy data and the topological models are constructed
effectively by extracting subregions from the gridmap as the
robot moves.

As a result, the entire environment is partitioned into 10
subregions (Fig. 7(d)) and the subregions are constructed as
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a topological model successfully as shown in Fig. 7(h). The
constructed topological model represents the environment
properly. Three rooms are classified into three different
subregions (D, H, and I) and a kitchen is extracted as node
F. In a living room, the areas are segmented into several
subregions because a sofa and a table are located in the center
of the living room.

The proposed method extracted subregions with guar-
anteeing the convexity well. To evaluate the convexity of
extracted subregion, a measure similar to (6) is calculated
for each node. Because this measure evaluates convexity
of each subregion, both empty grids which belong to other
subregions and occupied grid are considered to obtain the
convexity measure. The convexity measure for each grid is
shown in Fig. 8. As shown in the result, most subregions have
convexity measure under the threshold value (ct = 0.2). Only
node B has convexity measure larger than the threshold value
due to the upper left corner area of the environment.

Consequently, the proposed method provides a successful
topological modeling result using sonar gridmap by extract-
ing subregions incrementally.

V. CONCLUSIONS

This paper addressed incremental topological modeling
using low-cost sonar sensor in home environment. Firstly,
a reliable region is obtained from local gridmap. The confi-
dence of each occupied grid is evaluated using sonar sensor
model and the reliable region is obtained by effective filtering
of noisy data using the confidence value. Secondly, subregion
extraction is performed by using normalized graph cut and
convexity measure of the extracted subregion. The subregion
extraction is executed incrementally with guaranteeing the
convexity of the extracted subregion.

As a result, the topological model could be constructed
without predefining the number of subregions in advance by
performing the topological modeling and gridmap generation
simultaneously.

Experimental results verified that the proposed method
can be applied to home environment. The topological model
is constructed from sonar gridmap successfully and the
extracted subregions are guaranteed the convexity.
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