11 research outputs found

    Topology Recognition from Crossroad Plan

    Get PDF
    Tato diplomová práce se zabývá průzkumem, návrhem a tvorbou postupů pro rozpoznávání topologických informací z plánu křižovatky. Vysvětluje metody používané v oblasti zpracování obrazu za účelem segmentace obrazu, rozpoznávání objektů v obraze, popisuje existující přístupy zpracování map reprezentovaných rastrovými obrazy a cílové prostředí, do kterého bude praktická část práce integrována. Práce je zaměřena především na porovnání různých přístupů získávání příznaků z rastrových map křižovatek a určení jejich sémantického významu. Praktická část je realizovaná v jazyku C# s využitím knihovny OpenCV.This master‘s thesis describes research, design and development of system for topology recognition from crossroad plan. It explains the methods used for image processing, image segmentation, object recognition. It describes approaches in processing of maps represented by raster images and target software, in which the final product of practical part of project will be integrated. Thesis is focused mainly on comparison of different approaches in feature extraction from raster maps and determination their semantic meaning. Practical part of project is implemented in C# language with OpenCV library.

    Detecting Urban Road Changes using Segmentation and Vector Analysis

    Get PDF
    The rapid growth of urbanization is driving increased road infrastructure development. Detecting and monitoring changes in urban road areas is challenging for city planners. This research proposes using semantic segmentation and vector analysis on high-resolution images to identify road network changes. The U-Net model performs semantic segmentation, pre-trained on a Massachusetts road dataset, predicting labels for a specific area with temporal data and co-registration to reduce distortions. Predicted labels are converted to shapefiles for vector analysis. Satellite images from Google Earth archives demonstrate the change detection process. The outcome of this predictive phase was the transformation of projected labels into shapefiles, thereby facilitating vector analysis to pinpoint and characterize alterations

    Effects of georeferencing effort on mapping monkeypox case distributions and transmission risk

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Maps of disease occurrences and GIS-based models of disease transmission risk are increasingly common, and both rely on georeferenced diseases data. Automated methods for georeferencing disease data have been widely studied for developed countries with rich sources of geographic referenced data. However, the transferability of these methods to countries without comparable geographic reference data, particularly when working with historical disease data, has not been as widely studied. Historically, precise geographic information about where individual cases occur has been collected and stored verbally, identifying specific locations using place names. Georeferencing historic data is challenging however, because it is difficult to find appropriate geographic reference data to match the place names to. Here, we assess the degree of care and research invested in converting textual descriptions of disease occurrence locations to numerical grid coordinates (latitude and longitude). Specifically, we develop three datasets from the same, original monkeypox disease occurrence data, with varying levels of care and effort: the first based on an automated web-service, the second improving on the first by reference to additional maps and digital gazetteers, and the third improving still more based on extensive consultation of legacy surveillance records that provided considerable additional information about each case. To illustrate the implications of these seemingly subtle improvements in data quality, we develop ecological niche models and predictive maps of monkeypox transmission risk based on each of the three occurrence data sets.</p> <p>Results</p> <p>We found macrogeographic variations in ecological niche models depending on the type of georeferencing method used. Less-careful georeferencing identified much smaller areas as having potential for monkeypox transmission in the Sahel region, as well as around the rim of the Congo Basin. These results have implications for mapping efforts, as each higher level of georeferencing precision required considerably greater time investment.</p> <p>Conclusions</p> <p>The importance of careful georeferencing cannot be overlooked, despite it being a time- and labor-intensive process. Investment in archival storage of primary disease-occurrence data is merited, and improved digital gazetteers are needed to support public health mapping activities, particularly in developing countries, where maps and geographic information may be sparse.</p

    An Evolutionary Approach to Adaptive Image Analysis for Retrieving and Long-term Monitoring Historical Land Use from Spatiotemporally Heterogeneous Map Sources

    Get PDF
    Land use changes have become a major contributor to the anthropogenic global change. The ongoing dispersion and concentration of the human species, being at their orders unprecedented, have indisputably altered Earth’s surface and atmosphere. The effects are so salient and irreversible that a new geological epoch, following the interglacial Holocene, has been announced: the Anthropocene. While its onset is by some scholars dated back to the Neolithic revolution, it is commonly referred to the late 18th century. The rapid development since the industrial revolution and its implications gave rise to an increasing awareness of the extensive anthropogenic land change and led to an urgent need for sustainable strategies for land use and land management. By preserving of landscape and settlement patterns at discrete points in time, archival geospatial data sources such as remote sensing imagery and historical geotopographic maps, in particular, could give evidence of the dynamic land use change during this crucial period. In this context, this thesis set out to explore the potentials of retrospective geoinformation for monitoring, communicating, modeling and eventually understanding the complex and gradually evolving processes of land cover and land use change. Currently, large amounts of geospatial data sources such as archival maps are being worldwide made online accessible by libraries and national mapping agencies. Despite their abundance and relevance, the usage of historical land use and land cover information in research is still often hindered by the laborious visual interpretation, limiting the temporal and spatial coverage of studies. Thus, the core of the thesis is dedicated to the computational acquisition of geoinformation from archival map sources by means of digital image analysis. Based on a comprehensive review of literature as well as the data and proposed algorithms, two major challenges for long-term retrospective information acquisition and change detection were identified: first, the diversity of geographical entity representations over space and time, and second, the uncertainty inherent to both the data source itself and its utilization for land change detection. To address the former challenge, image segmentation is considered a global non-linear optimization problem. The segmentation methods and parameters are adjusted using a metaheuristic, evolutionary approach. For preserving adaptability in high level image analysis, a hybrid model- and data-driven strategy, combining a knowledge-based and a neural net classifier, is recommended. To address the second challenge, a probabilistic object- and field-based change detection approach for modeling the positional, thematic, and temporal uncertainty adherent to both data and processing, is developed. Experimental results indicate the suitability of the methodology in support of land change monitoring. In conclusion, potentials of application and directions for further research are given

    Analysis and Modular Approach for Text Extraction from Scientific Figures on Limited Data

    Get PDF
    Scientific figures are widely used as compact, comprehensible representations of important information. The re-usability of these figures is however limited, as one can rarely search directly for them, since they are mostly indexing by their surrounding text (e. g., publication or website) which often does not contain the full-message of the figure. In this thesis, the focus is on making the content of scientific figures accessible by extracting the text from these figures. A modular pipeline for unsupervised text extraction from scientific figures, based on a thorough analysis of the literature, was built to address the problem. This modular pipeline was used to build several unsupervised approaches, to evaluate different methods from the literature and new methods and method combinations. Some supervised approaches were built as well for comparison. One challenge, while evaluating the approaches, was the lack of annotated data, which especially needed to be considered when building the supervised approach. Three existing datasets were used for evaluation as well as two datasets of 241 scientific figures which were manually created and annotated. Additionally, two existing datasets for text extraction from other types of images were used for pretraining the supervised approach. Several experiments showed the superiority of the unsupervised pipeline over common Optical Character Recognition engines and identified the best unsupervised approach. This unsupervised approach was compared with the best supervised approach, which, despite of the limited amount of training data available, clearly outperformed the unsupervised approach.Infografiken sind ein viel verwendetes Medium zur kompakten Darstellung von Kernaussagen. Die Nachnutzbarkeit dieser Abbildungen ist jedoch häufig limitiert, da sie schlecht auffindbar sind, da sie meist über die umschließenden Medien, wie beispielsweise Publikationen oder Webseiten, und nicht über ihren Inhalt indexiert sind. Der Fokus dieser Arbeit liegt auf der Extraktion der textuellen Inhalte aus Infografiken, um deren Inhalt zu erschließen. Ausgehend von einer umfangreichen Analyse verwandter Arbeiten, wurde ein generalisierender, modularer Ansatz für die unüberwachte Textextraktion aus wissenschaftlichen Abbildungen entwickelt. Mit diesem modularen Ansatz wurden mehrere unüberwachte Ansätze und daneben auch noch einige überwachte Ansätze umgesetzt, um diverse Methoden aus der Literatur sowie neue und bisher noch nicht genutzte Methoden zu vergleichen. Eine Herausforderung bei der Evaluation war die geringe Menge an annotierten Abbildungen, was insbesondere beim überwachten Ansatz Methoden berücksichtigt werden musste. Für die Evaluation wurden drei existierende Datensätze verwendet und zudem wurden zusätzlich zwei Datensätze mit insgesamt 241 Infografiken erstellt und mit den nötigen Informationen annotiert, sodass insgesamt 5 Datensätze für die Evaluation verwendet werden konnten. Für das Pre-Training des überwachten Ansatzes wurden zudem zwei Datensätze aus verwandten Textextraktionsbereichen verwendet. In verschiedenen Experimenten wird gezeigt, dass der unüberwachte Ansatz besser funktioniert als klassische Texterkennungsverfahren und es wird aus den verschiedenen unüberwachten Ansätzen der beste ermittelt. Dieser unüberwachte Ansatz wird mit dem überwachten Ansatz verglichen, der trotz begrenzter Trainingsdaten die besten Ergebnisse liefert

    Methodology and Algorithms for Pedestrian Network Construction

    Get PDF
    With the advanced capabilities of mobile devices and the success of car navigation systems, interest in pedestrian navigation systems is on the rise. A critical component of any navigation system is a map database which represents a network (e.g., road networks in car navigation systems) and supports key functionality such as map display, geocoding, and routing. Road networks, mainly due to the popularity of car navigation systems, are well defined and publicly available. However, in pedestrian navigation systems, as well as other applications including urban planning and physical activities studies, road networks do not adequately represent the paths that pedestrians usually travel. Currently, there are no techniques to automatically construct pedestrian networks, impeding research and development of applications requiring pedestrian data. This coupled with the increased demand for pedestrian networks is the prime motivation for this dissertation which is focused on development of a methodology and algorithms that can construct pedestrian networks automatically. A methodology, which involves three independent approaches, network buffering (using existing road networks), collaborative mapping (using GPS traces collected by volunteers), and image processing (using high-resolution satellite and laser imageries) was developed. Experiments were conducted to evaluate the pedestrian networks constructed by these approaches with a pedestrian network baseline as a ground truth. The results of the experiments indicate that these three approaches, while differing in complexity and outcome, are viable for automatically constructing pedestrian networks

    General Approach for Extracting Road Vector Data from Raster Maps

    No full text
    Raster maps are easily accessible and contain rich road information; however, converting the road information to vector format is challenging because of varying image quality, overlapping features, and typical lack of metadata (e.g., map geocoordinates). Previous road vectorization approaches for raster maps typically handle a specific map series and require significant user effort. In this paper, we present a general road vectorization approach that exploits common geometric properties of roads in maps for processing heterogeneous raster maps while requiring minimal user intervention. In our experiments, we compared our approach to a widely-used commercial product using 40 raster maps from 11 sources. We showed that overall our approach generated high quality results with low redundancy with considerably less user input compared to competing approaches
    corecore