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Zusammenfassung

Wissenschaftliche Abbildungen sind ein viel verwendetes Medium zur
kompakten Darstellung von Kernaussagen. Auch über wissenschaftliche
Publikationen hinaus finden diese Abbildungen, oft auch als Infografik
bezeichnet, weit verbreitete Verwendung. Die Nachnutzbarkeit dieser Ab-
bildungen ist jedoch häufig limitiert, da sie selten direkt auffindbar sind,
sondern meist über die umschließenden Medien, wie beispielsweise Pu-
blikationen oder Webseiten, indexiert sind. Da diese Abbildungen in den
meisten Fällen als Bilddateien gespeichert sind, lässt sich aus diesen nicht
ohne weiteres deren Inhalt, sowohl weder der textuelle noch der graphisch
kodierte, extrahieren. Erste Ansätze zur Extraktion des Inhalts mit Me-
thoden der Bildverarbeitung wurden in der Vergangenheit vorgeschlagen,
aber diese Ansätze sind meist auf spezifische Abbildungstypen beschränkt
und nur auf einer handvoll Abbildungen getestet. In der Realität haben
wissenschaftliche Abbildungen jedoch eine große Varianz in ihrer Dar-
stellung (beispielsweise den verwendeten graphischen Elementen, beim
Farbschema, der Ausrichtung und Rotation der Texte und variierenden
Schriftgrößen), selbst innerhalb des selben Abbildungstyps. Eine Gemein-
samkeit, den die meisten Abbildungen besitzen, ist jedoch, dass sie in
irgendeiner Form Informationen als Text enthalten.

Diese Arbeit fokussiert sich auf die Extraktion der textuellen Inhalte
und versucht die bestehenden Lücken zu schließen. Zunächst erfolgt eine
umfangreiche Analyse verwandter Arbeiten, um dann basierend auf dieser
Analyse einen generalisierenden, modularen Ansatz für die Textextraktion
aus wissenschaftlichen Abbildungen zu entwickeln. Dies bedeutet, dass
keine Annahmen über die Abbildungen getroffen werden und sich nicht
auf spezifische Abbildungstypen beschränkt wird. Mittels des modularen
Ansatzes werden sieben unüberwachte Ansätze und ein überwachter An-
satz zusammengestellt, um diverse Methoden aus der Literatur sowie neue
und bisher noch nicht genutzte Methoden zu vergleichen. Der beste der
sieben unüberwachten Ansätze wird durch systematische Veränderung
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angepasst um 16 verschiedene Ansätze zu schaffen und zu evaluieren um
den besten unüberwachten Ansatz für die Textextraktion aus wissenschaft-
lichen Abbildungen zu finden. Zudem wurde der überwachter Ansatz
weiter entwickelt und optimiert, sodass er auch mit geringen Mengen an
Trainingsdaten funktioniert. Zum Abschluss wird der beste unüberwachte
Ansatz mit dem optimierten überwachten Ansatz zur Textextraktion aus
wissenschaftlichen Abbildungen verglichen.

Um den Vergleich und die Evaluation durchzuführen wurden zwei
Datensätze mit insgesamt 241 wissenschaftlichen Abbildungen erstellt und
mit den nötigen Gold Standard Informationen annotiert. Außerdem wer-
den drei weitere, existierende Datensätze für die Evaluation herangezogen.
Für das Trainieren des überwachten Ansatzes wurden zudem zwei weitere
Datensätze aus verwandten Text Extraktions Bereichen verwendet. Die
Überlegenheit des unüberwachten Ansatzes über klassische Optical Cha-
racter Recognition Verfahren wird mit dem ersten Experiment gezeigt. Das
zweite Experiment und das dritte Experiment ermitteln aus der Menge
an evaluierten Konfigurationen die beste Kombination and Methoden zur
unüberwachten Extraktion von Text aus wissenschaftlichen Abbildungen.
Das vierte Experiment optimiert das überwachte Verfahren. Das fünfte
und letzte Experiment vergleicht die beste unüberwachte Variante mit dem
optimierten überwachten Ansatz. Auch wenn der unüberwachte Ansatz
vielversprechende Ergebnisse liefert, so wird er schlussendlich doch durch
den überwachten Ansatz in den Schatten gestellt.
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Abstract

Scientific figures are widely used as compact, comprehensible represen-
tations of important information. These kinds of information graphics
are used in scientific publications, news media and other contexts. The
re-usability of these figures is however limited, as one can rarely search
directly for them. Most search engines index these figures via their sur-
rounding text (e. g., publication or website) which often does not contain
the full-message of the scientific figure. In addition, these figures are of-
ten stored as bitmaps which makes the content extraction difficult. Some
approaches for content extraction from figures have been proposed that
rely on computer vision methods. However, these approaches are mostly
limited to specific figure types and are only tested on a handful of figures.
In reality, figures are divers (for example with respect to graphical ele-
ments, colors, text orientation and size) even those from the same figure
type. One thing almost all figures have in common is that they contain
information as text.

This thesis aims to close the gaps by performing an extensive literature
survey and comparison of the various approaches to build a modular
pipeline for text extraction from scientific figures. This new modular
pipeline does not make any assumptions about the figures and is not
limited to any figure type. With the modular pipeline seven unsupervised
approaches and one supervised approach are build to compare the differ-
ent methods from the literature as well as methods that have not been used
in the literature so far. The best of the seven unsupervised approaches is
further modified to form and evaluate 16 additional approaches, which
have not been analyzed in the literature before, to find the best unsuper-
vised approach for text extraction from scientific figures. Furthermore, the
supervised approach is improved and optimized, so that it can work with
limited training data. A comparison between the best unsupervised ap-
proach and the best supervised approach for text extraction from scientific
figures is conducted.
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To conduct the comparison and evaluate the approaches, two datasets
of in total 241 scientific figures were created and annotated with gold
standard information. In addition three existing datasets are used for
evaluation. Furthermore, additional, existing datasets for text extraction
from other types of images are used for training the supervised approach.
The superiority of the unsupervised pipeline over common Optical Char-
acter Recognition engines is proven with the first experiment. The second
and third experiment identify the best approach for unsupervised text
extraction from the set of selected unsupervised approaches. The fourth
experiment optimizes the proposed supervised approach. The fifth and
final experiment compares the optimized supervised approach with the
best unsupervised approach. Even though the unsupervised approach
produces promising results, it is clearly outperformed by the supervised
approach.

vi



Acknowledgments

First of all, I would like to thank my supervisor Prof. Ansgar Scherp
for introducing me to the area of data mining and machine learning.
He gave me the opportunity to learn and work independently in this
interesting area, and showed me how to become a better scientist and
teacher. Second, I would like to personally thank my colleagues who
created a great working environment. They always had an open ear for
discussing research topics and gave valuable feedback (in alphabetic order):
Till Blume, Paula Bräuer, Lukas Galke, Arne Martin Klemenz, Athanasios
Mazarakis, Ahmed Saleh, Falko Schönteich and Iacopo Vagliano. Last but
not least, I would like to thank my student assistants Tilman Beck, Morten
Jessen, Oke Nissen and Eike Lurz for their valuable support by developing
software and executing experiments.

vii





Contents

1 Introduction 1
1.1 Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
1.2 Problem Statement and Research Questions . . . . . . . . . . 3
1.3 Contributions . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
1.4 Publication Record . . . . . . . . . . . . . . . . . . . . . . . . 6
1.5 Outline . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

2 Related Work 9
2.1 Unsupervised Text Extraction from Scientific Figures . . . . 9
2.2 Supervised Text Extraction from Scientific Figures . . . . . . 13
2.3 Text Extraction from Natural Images . . . . . . . . . . . . . . 14
2.4 Data Reconstruction and Summarization of Scientific Figures 17
2.5 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

3 General Text Extraction Pipeline 23
3.1 Definition of the Text Extraction Pipeline . . . . . . . . . . . 23

3.1.1 Extraction of Regions . . . . . . . . . . . . . . . . . . 24
3.1.2 Identification of Text Elements . . . . . . . . . . . . . 26
3.1.3 Text Recognition from Text Elements . . . . . . . . . 27

3.2 Methods of the Text Extraction Pipeline . . . . . . . . . . . . 28
3.2.1 Unsupervised Extraction of Regions . . . . . . . . . . 28
3.2.2 Unsupervised Identification of Text Elements . . . . 34
3.2.3 Supervised Extraction of Text Elements . . . . . . . . 40
3.2.4 Text Recognition from Text Elements . . . . . . . . . 41

3.3 Configurations of the Text Extraction Pipeline . . . . . . . . 46
3.3.1 Unsupervised Pipeline Configurations . . . . . . . . 46
3.3.2 Supervised Pipeline Configurations . . . . . . . . . . 47

ix



Contents

4 Experimental Apparatus for the Evaluation of the Modular Text
Extraction Pipeline 49
4.1 Datasets . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49

4.1.1 Existing Datasets . . . . . . . . . . . . . . . . . . . . . 49
4.1.2 New Datasets . . . . . . . . . . . . . . . . . . . . . . . 53
4.1.3 Summary . . . . . . . . . . . . . . . . . . . . . . . . . 58

4.2 Evaluation Measurements . . . . . . . . . . . . . . . . . . . . 59
4.2.1 Text Detection . . . . . . . . . . . . . . . . . . . . . . . 60
4.2.2 Text Recognition . . . . . . . . . . . . . . . . . . . . . 63

5 Experiment I: Baseline Comparison with Optical Character Recog-
nition Engines 67
5.1 Procedure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67
5.2 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69

6 Experiment II: Comparison of Unsupervised Approaches from
the Related Work 73
6.1 Pipeline Configurations . . . . . . . . . . . . . . . . . . . . . 73
6.2 Procedure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76
6.3 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77

7 Experiment III: Optimization of the Unsupervised Approach 81
7.1 Pipeline Configurations . . . . . . . . . . . . . . . . . . . . . 81
7.2 Procedure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84
7.3 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85

8 Experiment IV: Optimization of the Supervised Approach 93
8.1 Hyperparameter Optimization . . . . . . . . . . . . . . . . . 93
8.2 Pretraining of the Supervised Model . . . . . . . . . . . . . . 94
8.3 Augmentation of Training Data . . . . . . . . . . . . . . . . . 95

9 Experiment V: Best Unsupervised Approach vs Best Supervised
Approach 97
9.1 Pipeline Configurations . . . . . . . . . . . . . . . . . . . . . 97
9.2 Procedure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 98
9.3 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 99

x



Contents

10 Discussion 101
10.1 Main Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . 101
10.2 Limitations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 105
10.3 Threats to Validity . . . . . . . . . . . . . . . . . . . . . . . . 106

11 Conclusion and Outlook 109
11.1 Summary of the Contributions . . . . . . . . . . . . . . . . . 109
11.2 Future Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . 110

A SciFiS - A Prototype for Scientific Figure Search 113
A.1 Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 113
A.2 Prototypical Implementation . . . . . . . . . . . . . . . . . . 114

A.2.1 Data . . . . . . . . . . . . . . . . . . . . . . . . . . . . 116
A.2.2 Architecture . . . . . . . . . . . . . . . . . . . . . . . . 116
A.2.3 Evaluation . . . . . . . . . . . . . . . . . . . . . . . . . 117

A.3 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 118

B Basics 119
B.1 Methods and Algorithms . . . . . . . . . . . . . . . . . . . . 119

B.1.1 Conditional Dilation Algorithm . . . . . . . . . . . . 119
B.1.2 (Convolutional) Neural Network . . . . . . . . . . . . 120
B.1.3 Density-Based Spatial Clustering of Applications

with Noise . . . . . . . . . . . . . . . . . . . . . . . . . 122
B.1.4 Faster R-CNN . . . . . . . . . . . . . . . . . . . . . . . 123
B.1.5 K-Means . . . . . . . . . . . . . . . . . . . . . . . . . . 125
B.1.6 Mean-Shift . . . . . . . . . . . . . . . . . . . . . . . . . 126
B.1.7 Median-Cut . . . . . . . . . . . . . . . . . . . . . . . . 127
B.1.8 Morphological Operations . . . . . . . . . . . . . . . 127
B.1.9 Minimum Spanning Tree Clustering . . . . . . . . . . 130
B.1.10 Region of Interest Align/Pool . . . . . . . . . . . . . 131

B.2 Evaluation Measures . . . . . . . . . . . . . . . . . . . . . . . 133
B.2.1 Levenshtein Distance . . . . . . . . . . . . . . . . . . . 133
B.2.2 Normalized Discounted Cumulative Gain . . . . . . 133
B.2.3 Precision, Recall and F1-Measure . . . . . . . . . . . 134

Bibliography 137

xi





List of Figures

1.1 Examples of figures (Source: Wikimedia Commmons Public
Domain) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2

3.1 An example of a binary scientific figure . . . . . . . . . . . . 25
3.2 An example of a grey-scale scientific figure . . . . . . . . . . 26
3.3 Connected Component Labeling with 8-pixel-neighborhood. 33
3.4 A block of rotated text with the corresponding Minimum

Spanning Tree (MST) on the center of mass of the characters
to split the block into multiple text lines. . . . . . . . . . . . 38

3.5 An example of the necessity of text line extraction. . . . . . 39
3.6 The Faster R-CNN Object Detection Network [RHG+15]. . . 40
3.7 The center of mass of a text line are transformed into Hough

space. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43
3.8 An overview of the different possibilities to combine the

methods of the unsupervised text extraction pipeline into
configurations. . . . . . . . . . . . . . . . . . . . . . . . . . . 47

3.9 One possible configuration of the unsupervised text extrac-
tion pipeline. . . . . . . . . . . . . . . . . . . . . . . . . . . . 47

3.10 The supervised text extraction pipeline. . . . . . . . . . . . 48

4.1 Four example figures from the CHIME-R dataset. . . . . . . 51
4.2 Four example figures from the CHIME-S dataset. . . . . . . 52
4.3 Four example figures from the DeTEXT dataset. . . . . . . 53
4.4 Four example figures from the MS-COCO-Text dataset. . . 54
4.5 Four example figures from the Total-Text-Dataset. . . . . . 55
4.6 These six images were used to explain the interface of the

annotation tool to the users. . . . . . . . . . . . . . . . . . . 56
4.7 Four example figures from the Economics dataset. . . . . . 58
4.8 Four example figures from the DeGruyter dataset. . . . . . 59

xiii



List of Figures

4.9 Definition of True Positives, False Positives and False Nega-
tives after the text element matching process. Blue elements
are from the gold standard. Red elements are generated by
the pipeline. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61

7.1 Comparison of the confidence values of words from scien-
tific figures and words from a text document . . . . . . . . . 85

A.1 SciFiS search interface with two results for the search term
"China" which is also highlighted in the figures. . . . . . . . 115

B.1 An simple neural network with three layers (Source: Wikipedia
Public Domain). . . . . . . . . . . . . . . . . . . . . . . . . . . 121

B.2 The architecture of the Fast R-CNN object detection system. [Gir15]123
B.3 The Faster R-CNN Object Detection Network [RHG+15]. . . . 124
B.4 Example of the k-Means algorithm on an example dataset.

The algorithm terminates after two iterations (no change in
the cluster means). . . . . . . . . . . . . . . . . . . . . . . . . 125

B.5 Color space reduction of an image using Mean Shift. Source:
https://spin.atomicobject.com/2015/05/26/mean-shift-clustering/ . . . 126

B.6 Examples for the erosion operator and dilation operator
using 4-pixel-neighborhood. . . . . . . . . . . . . . . . . . . . 128

B.7 Examples for the close operator and open operator using
4-pixel-neighborhood. . . . . . . . . . . . . . . . . . . . . . . 129

B.8 An example of a Minimum Spanning Tree build on top a
set of datapoints. . . . . . . . . . . . . . . . . . . . . . . . . . 130

B.9 An example of a MST build on top a set of datapoints with
the longest edges marked for removal. . . . . . . . . . . . . . 131

B.10 A region proposal on a 10�15 feature map which is mapped
to a 3� 3 RoI Pooling output. . . . . . . . . . . . . . . . . . 132

B.11 A region proposal on a 10�15 feature map which is mapped
to a 3� 3 output by using RoI Align which uses four sample
points per box for bilinear interpolation. . . . . . . . . . . . 132

xiv

https://spin.atomicobject.com/2015/05/26/mean-shift-clustering/


List of Tables

3.1 Page Segmentation Modes of Tesseract. . . . . . . . . . . . . 44

4.1 Number of figures, average figure width and height and
average number of text elements (TE), words and characters
(Chars) per figure. . . . . . . . . . . . . . . . . . . . . . . . . 60

5.1 Average number of n-grams, average number of words and
average word length for GS, P1, T1 and T2 on the Economics
dataset . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70

5.2 Mean micro Precision, micro Recall, micro F1-Measure for
T1, T2 and P1 . . . . . . . . . . . . . . . . . . . . . . . . . . . 71

5.3 Mean macro Precision, macro Recall, macro F1-Measure for
T1/T2/P1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71

5.4 Macro F1-Measure (ωF1-Measure (F1)), micro F1-Measure
(µF1), Average micro Levenshtein Distance (µLevenshtein
Distance (LD)), Average macro Levenshtein Distance (ωLD)
and Operations Per Character (OPC) for standalone AB-
BYY FineReader A1 and the configuration P2-T/O using
Tesseract as well as Ocropy as OCR engine. . . . . . . . . . . 72

6.1 Macro Precision (ωP), macro Recall (ωR), macro F1-Measure
(ωF1), Element Ratio (ER) and Matched Element Ratio (MER).
Results are averaged over all datasets for the configurations. 77

6.2 Average macro F1-Measure and Standard Deviation per con-
figuration for the individual datasets Economics, DeGruyter,
CHIME-R and CHIME-S. . . . . . . . . . . . . . . . . . . . . 78

6.3 Micro Precision (µP), micro Recall (µR) and micro F1-Measure
(µF1). Results are averaged over all datasets for the configu-
rations. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78

xv



List of Tables

6.4 Average micro F1-Measure and Standard Deviation per con-
figuration for the individual datasets Economics, DeGruyter,
CHIME-R and CHIME-S. . . . . . . . . . . . . . . . . . . . . 78

6.5 Average micro Levenshtein Distance (µLD) and macro Lev-
enshtein Distance (ωLD) and Operations Per Character
(OPC) over all datasets for the configurations using Tesseract. 79

6.6 Average micro Levenshtein Distance and Standard Devia-
tion per configuration for the individual datasets Economics,
DeGruyter, CHIME-R and CHIME-S. . . . . . . . . . . . . . 79

7.1 Macro Precision (ωP), macro Recall (ωR), macro F1-Measure
(ωF1), Element Ratio (ER) and Matched Element Ratio
(MER). Results are averaged over all datasets. . . . . . . . . 86

7.2 Micro Precision (µP), Recall (µR) and F1-Measure (µF1).
Results are averaged over all datasets. . . . . . . . . . . . . 87

7.3 Average macro F1-Measure and Standard Deviation per con-
figuration for the individual datasets Economics, DeGruyter,
CHIME-R and CHIME-S. . . . . . . . . . . . . . . . . . . . . 87

7.4 Average micro F1-Measure and Standard Deviation per con-
figuration for the individual datasets Economics, DeGruyter,
CHIME-R and CHIME-S. . . . . . . . . . . . . . . . . . . . . 88

7.5 Average micro Levenshtein Distance (µLD) and macro Lev-
enshtein Distance (ωLD) and Operations Per Character
(OPC) over all datasets for the systematic configurations
using Tesseract. . . . . . . . . . . . . . . . . . . . . . . . . . . 88

7.6 Average micro Levenshtein Distance (µLD) and macro Lev-
enshtein Distance (ωLD) and Operations Per Character
(OPC) over all datasets for the systematic configurations
using Ocropy. . . . . . . . . . . . . . . . . . . . . . . . . . . . 89

7.7 Average micro Levenshtein Distance (µLD) and macro Lev-
enshtein Distance (ωLD) and Operations Per Character
(OPC) over all datasets for the systematic configurations
with ABBYY FineReader. . . . . . . . . . . . . . . . . . . . . . 89

7.8 Average micro Levenshtein Distance and Standard Devia-
tion per configuration for the individual datasets Economics,
DeGruyter, CHIME-R and CHIME-S using Tesseract. . . . . 90

xvi



List of Tables

7.9 Average micro Levenshtein Distance and Standard Devia-
tion per configuration for the individual datasets Economics,
DeGruyter, CHIME-R and CHIME-S using Ocropy. . . . . . 90

7.10 Average micro Levenshtein Distance and Standard Devi-
ation per configuration for the individual datasets Eco-
nomics, DeGruyter, CHIME-R and CHIME-S using AB-
BYY FineReader. . . . . . . . . . . . . . . . . . . . . . . . . . 91

7.11 Macro F1-Measure (ωF1), Micro F1-Measure (µF1), Aver-
age Micro Levenshtein Distance (µLD), Average Macro
Levenshtein Distance (ωLD) and Operations Per Charac-
ter (OPC) for the configurations M09[SSOD], N1[0AVG]
and N2[0MIN]. . . . . . . . . . . . . . . . . . . . . . . . . . . 91

8.1 Comparison of the AP50 and AP75 measures for different
Hyperparameters (architecture, layer (l), cardinality (c), bot-
tleneck width (b) and image width (w)). . . . . . . . . . . . 94

8.2 Comparison of the AP50 and AP75 measures for ResNet101
with and without pretraining. . . . . . . . . . . . . . . . . . 95

8.3 Comparison of the AP50 and AP75 measures for ResNet101
with and without training data augmentation. . . . . . . . . 95

9.1 Comparison of the result of the 5-fold cross-validation of
the supervised approach NeuralNet with the result of the un-
supervised approach N2[0MIN]-O for the measures macro
Precision, macro Recall and macro F1-Measure as well as
macro Levenshtein Distance (ωLD) and micro Levenshtein
Distance (µLD). . . . . . . . . . . . . . . . . . . . . . . . . . . 98

xvii





List of Abbreviations

AP Average Precision

API Application Programming Interface

BM25 Best Matching 25

CCL Connected Component Labeling

CDA Conditional Dilation Algorithm

CG Cumulative Gain

CNN Convolutional Neural Network

CPU Central Processing Unit

DBSCAN Density-Based Spatial Clustering of Applications with Noise

DCG Discounted Cumulative Gain

ER Element Ratio

Fast R-CNN Fast Region Convolutional Neural Network

Faster R-CNN Faster Region Convolutional Neural Network

FN False Negatives

FP False Positives

F1 F1-Measure

GPU Graphical Processing Unit

HSL Hue-Saturation-Luminance

HSV Hue-Saturation-Value

IDCG Ideal Discounted Cumulative Gain

IoU Intersection-over-Union

LD Levenshtein Distance

xix



List of Tables

MER Matched Element Ratio

MST Minimum Spanning Tree

NDCG Normalized Discounted Cumulative Gain

OCR Optical Character Recognition

OPC Operations Per Character

P Precision

PDF Portable Document Format

PSD Perpendicular Squared Distance

R Recall

R-CNN Region Convolutional Neural Network

ResNet Residual Neural Network

REST Representational State Transfer

RGB Red-Green-Blue

RoI Region of Interest

RoI Align Region of Interest Align

RoI Pool Region of Interest Pool

RPN Region Proposal Network

SciFiS Scientific Figure Search

SSOD Single String Orientation Detection

SVG Scalable Vector Graphic

SVM Support Vector Machine

TF-IDF Term Frequency - Inverse Document Frequency

TN True Negatives

TP True Positives

VEM Visual Extraction Module

XML Extensible Markup Language

xx



Chapter 1

Introduction

1.1 Motivation

Scientific Documents are more than just the text they contain. Popular
platforms like Semantic Scholar have identified figures (e. g., plots, di-
agrams, bar charts) in scientific documents as a key component whose
value has been underestimated so far [SLP+18]. Four examples of these
kinds of figures are shown in Figure 1.1. Lee et al. [LWH18] identified a
significant correlation between the number of figures in a document and
its scientific impact, i. e., a publication with a high scientific impact tends
to include more figures. Thus, these figures are an integral part of high
impact publications. However, while the retrieval of documents and natu-
ral images (e. g., photos) has made progress over the years, the retrieval
of figures has only gotten little attention [LSC+13]. Even though figures
visualize information which should be used to retrieve these figures by
their actual content [LCF+14a; YAD+14], figures are usually indexed like
natural images through their surrounding text, if at all, which usually
does not contain the message of the figure itself [NAA+10]. In addition
it is a known, open challenge to optimize how much of the surrounding
text one should use for indexing images [AM10]. Finally, creating a better
understanding and retrieval of these figures also enables a new way to
access scientific documents.

Scientific documents are predominantly available in the Portable Doc-
ument Format (PDF). There are two image types that appear in these
documents. Figures can either be bitmap images or Scalable Vector Graph-
ics (SVGs). Scalable Vector Graphics are machine readable, but they are
difficult to extract from PDFs, as their parts can be scattered throughout a
PDF when parsing it. In addition, especially in older scientific documents,
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Figure 1.1. Examples of figures (Source: Wikimedia Commmons Public Domain)

only a small fraction of figures are actually vector graphics. However,
every vector graphic can be converted into a bitmap figure by taking a
screenshot of the rendered vector graphic at a suitable resolution. Thus,
the focus in this thesis is on improving the understanding of bitmap fig-
ures from scientific documents. Scientific figures commonly consist of
textual and graphical components and the information that they convey is
encoded in both. While graphic components give a rough estimate of the
message, text is often use to make the message more precise. Therefore
the extraction of text is important since text can stand for itself while
graphical elements might be imprecise or lose its meaning. This thesis
introduces, describes, compares and evaluates a modular pipeline for text
extraction from scientific figures which combines existing approaches as
well as newly introduced approaches to find the best approach for text
extraction from scientific figures.
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1.2 Problem Statement and Research Questions

Text extraction from scientific figures poses several challenges since these
figures are designed for human readability, but not necessarily machine
comprehension.

First of all, different types of scientific figures exist - like for example
bar charts, line graphs or Venn diagrams - and more and more types and
variations appear over time. Second, different tools (e. g., Microsoft Excel,
LibreOffice, Matlab) can be used to create scientific figures and thus a wide
range of customization and variation in the visualization is possible. Third,
due to the heterogeneity of the figures, a lack of (training) datasets exist.
Fourth, extracting text from scientific figures poses different challenges
than extracting text from natural images. For example, graphical elements
of scientific figures have features more similar to text than natural objects
in photos and thus can easily be mistaken as text (e. g., markers, dashed
lines). While approaches for text extraction on natural images often can
make assumptions about color homogeneity [GF05; LCJ+10; YT11] or the
consistency of stroke width [EOW10], such assumptions usually can not
be applied on scientific figures. Fifth, Optical Character Recognition (OCR)
engines are designed to analyze whole pages of documents and thus work
best on horizontal black and white text. However, scientific figures can
contain text of various orientations and color, making the extraction even
more difficult.

The following challenges are addressed in this thesis:

1. Text extraction from scientific figures with only limited amount of
training data available.

2. Text extraction from scientific figures without making assumptions
about the figure type.

3. Text extraction from scientific figures without making assumptions
about the figure coloring.

4. Text extraction from scientific figures without making assumptions
about text placement.

5. Text extraction from scientific figures without making assumptions
about text orientation.
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Based on the challenges presented above, four research questions were
identified:

RQ1: How good are commonly used document Optical Character Recognition
engines at extracting text from scientific figures?

RQ2: Which unsupervised approach is the state-of-the-art, measured by the
accuracy of the text localization and recognition quality, in extracting
text from scientific figures?

RQ3: Can a new, unsupervised approach combining existing and new meth-
ods improve on the text location and extraction quality?

RQ4: How does the best unsupervised approach compare with a supervised
approach which is trained on a small dataset?
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1.3 Contributions

Based on the research questions, in summary, this thesis makes the follow-
ing contributions:

� A thorough analysis of the state-of-the-art is conducted to map the
area of unsupervised text extraction from scientific figures and related
image types. Based on this analysis, a unified pipeline for text extraction
from scientific figures is abstracted which can be used to compare the
different approaches and their methods.

� The analysis of the state-of-the-art reveals that almost no datasets
for text extraction from scientific figures are publicly available and
those that are available only contain horizontal text or no orientation
information is given. Thus, two datasets, of 121 and 120 scientific figures
respectively, are created and annotated with gold standard information
to be able to evaluate the different approaches.

� The analysis of the state-of-the-art shows a lack in approaches that
can deal with rotated text. Thus, a new approach to detect and extract
rotated text from scientific figures is proposed. It is capable of detecting
text at arbitrary orientation in the range [�900, 900].

� A comparison of the different state-of-the-art unsupervised methods
and approaches for text extraction as well as new methods is conducted
to find the best unsupervised approach for text extraction from scientific
figures. In further iterations, the best state-of-the-art approach is refined
by creating and evaluating new pipelines. These new pipelines only
differ with respect to one step to the base pipeline to identify further
improvements.

� Supervised approaches usually rely on large training datasets which are
non-existent for text extraction from scientific figures. Nevertheless, a
supervised approach was developed and optimized which is capable of
working with limited amount of training data which achieves more than
competitive results. Finally, this optimized supervised approach is set
in comparison with the best unsupervised approach for text extraction
from scientific figures. The comparison shows that the supervised
approach clearly outperforms the unsupervised approach.
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1.4 Publication Record

This thesis is based on several publications which have been presented
at/in different workshops, conferences and journals over the last years.
The following publications contribute to this thesis:

� F. Böschen and A. Scherp. ”Multi-Oriented Text Extraction from In-
formation Graphics”. In: Proceedings of the 2015 ACM Symposium on
Document Engineering, DocEng 2015, Lausanne, Switzerland, September
8-11, 2015, ACM, 2015, pp. 35-38.

� F. Böschen and A. Scherp. ”Formalization and Preliminary Evaluation
of a Pipeline for Text Extract From Infographics”. In: Proceedings of
the LWA 2015 Workshops: KDML, FGWM, IR, and FGDB, Trier, Germany,
October 7-9, 2015, CEUR-WS.org, 2015, 1458, pp. 20-31

� F. Böschen and A. Scherp. ”A Systematic Comparison of Different Ap-
proaches of Unsupervised Extraction of Text from Scholarly Figures [Ex-
tended Report]”. Institut für Informatik der Christian-Albrechts-Universität
zu Kiel, 2016

� F. Böschen and A. Scherp. ”A Comparison of Approaches for Auto-
mated Text Extraction from Scholarly Figures”. In: Proceedings of the
Multimedia Modeling - 23rd International Conference, MMM 2017, Reykjavik,
Iceland, January 4-6, 2017, Part I, Springer, 2017, 10132, pp. 15-27

� F. Böschen, T. Beck and A. Scherp. ”Survey and Empirical Comparison
of Different Approaches for Text Extraction from Scholarly Figures”. In:
Multimedia Tools and Applications, 2018, 77, 29475-29505

� M. Jessen, F. Böschen and A. Scherp. ”Text Localization in Scientific Fig-
ures using Fully Convolutional Neural Networks on Limited Training
Data”. Proceedings of the 2019 ACM Symposium on Document Engineering,
DocEng 2019, Berlin, Germany, September 23-26, 2019, ACM, 2019 (Best
Student Paper Award)

This thesis rephrases and reorganizes the content of these papers, articles
and reports and extends them with additional aspects.
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1.5 Outline

The remainder of this thesis is structured as follows: Subsequently, in
Chapter 2, the related work in text extraction from scientific figures and
similar image types are presented and analyzed. From that analysis, a
generic pipeline for text extraction is derived and presented in Chapter 3.
The pipeline is formally defined in Section 3.1. In Section 3.2, various
methods for the steps of the pipeline are extracted from the related work
and mapped onto the pipeline. Section 3.3 explains how to build working
configurations of the pipeline from these methods. In Chapter 4 the evalu-
ation setup is described. It starts in Section 4.1 with a description of the
datasets that are used in the experiments, followed by a specification of
the evaluation measurements in Section 4.2. Five experiments and their
results are outlined in the Chapters 5-9 which are then discussed in Chap-
ter 10. Each of the five experiments was executed to address one of the
research questions (compare Section 1.2). The first experiment in Chapter 5
addresses RQ1 about the usefulness of document OCR engines. The second
and third experiments (see Chapter 6 and Chapter 7 respectively) answer
the research question RQ2 on the best unsupervised approach from the
literature and the research question RQ3 on the best and optimized, un-
supervised approach. The fourth experiment in Chapter 8 optimizes the
supervised approach in preparation for the fourth research question RQ4.
The final, fifth experiment (see Chapter 9) addresses the last research
question RQ4 by comparing the best unsupervised approach with the
best supervised approach. Finally, in Chapter 11, a summarization of the
thesis and its results as well as an outlook for future research directions
are given.
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Chapter 2

Related Work

Different terms have been used for figures in the context of text extrac-
tion from images, e. g., information graphics [CED06], figures [CG15],
charts [HTL05], diagrams [CCA15], graphs [LCF+14a] and different varia-
tions and combinations of them. In this thesis, all of these variations are
summarized under the term scientific figures or figures for short.

In this chapter, an overview of existing approaches for text extraction
from scientific figures is presented. It also covers a selection of related
approaches for text extraction from natural images which propose in-
teresting ideas as well as approaches that go beyond the text extraction
from scientific figures and also extract the data encoded in the graphical
elements for data reconstruction or figure summarization.

2.1 Unsupervised Text Extraction from Scientific
Figures

Several researchers have addressed the problem of extracting text from
scientific figures. In the following, a broad selection of research works
are described in chronological order to show the development of text
extraction from figures.

Fletcher and Kasturi [FK88] proposed an algorithm for an automated
document analysis system which can extract text strings from technical
document-like images with a mixture of text and graphical elements. Their
algorithm separates text from graphical elements but does not perform
character recognition. First, Connected Component Labeling (CCL) is used
to identify coherent regions which are then grouped into character strings
using the Hough transformation. They conclude that their algorithm is
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relatively tolerant with respect to text font style, size and orientation based
on an evaluation on two test images.

Deseilligny et al. [DMS95; DML+97] focused on the extraction of text
elements from scanned topographic maps. Topographic maps use text
elements to show city and street names, regions and landmarks. The
approach by Deseilligny et al. relies on Connected Component Labeling for
region extraction. Deseilligny et al. normalize each region in order to apply
a rotation invariant character recognition. Multiple character hypotheses
are generated for each region and those hypotheses are selected which
create coherent strings and follow specific syntactic rules. They evaluate
their approach on a small set of maps from the French national geographic
institute and only a small fraction of less than 5% of the strings in these
maps is not correctly recognized.

Adam et al. [AOC+99; AOC+00; ARO+01] developed an approach for
extracting the character layer from urban maps which are overlayed with
the network of the French Telephonic Operator (France Telecom). They
first use a combination of a multi-thresholding technique and morphologic
criteria selection to separate the urban, the network and the character-
s/symbols layers. Then they use a shape extractor to find patterns which
then are enriched with a feature vector based on the Mellin Fourier Trans-
formation. Finally, the feature vectors are fed to a classifier which has to
identify which of 51 classes (characters) the shape belongs to. They evalu-
ate their approach on a clean, artificial dataset of about 400 samples for
which they achieve a classification rate of 97%. Furthermore, they evaluate
on a real-world dataset of 14.000 samples from France telecom where they
achieve a classification rate of 87%.

Jayant et al. [JRW+07] proposed a semi-automated approach for text
extraction from figures with conversion to Braille, the language for the visu-
ally impaired. First, a color reduction is conducted with Adobe Photoshop.
Subsequently, the figure is manually classified into a set of predefined
figure types. Connected Component Labeling is applied to the figure to
extract regions. In order to separate text elements from graphical elements,
the authors manually train a Support Vector Machine (SVM) per figure
type as well as per book where the figures were taken from. Subsequently,
a separation into text line structures is performed, using a so-called label
training algorithm which uses a MST with manually created test data. The
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text line orientation is estimated by minimizing the Perpendicular Squared
Distance (PSD). Finally, OCR is conducted and the recognized text can be
translated into Braille.

Takagi [Tak09] addressed the specific problem of extracting and con-
verting text from mathematical line graphs into Braille. The focus is hereby
on the detection of broken lines, which can be wrongly classified as text.
The proposed approach starts with binarization, noise reduction and Con-
nected Component Labeling. A set of heuristic rules is applied to separate
text components from graphical components. Local segment density, fuzzy
inference and hierarchical clustering are used to identify broken line seg-
ments. The limited evaluation with 6 figures shows that the separation
into text and graphical components is only successful for two figures.

An algorithm for text detection in biomedical images, as part of the
Yale Image Finder, was proposed by Xu and Krauthammer [XK10]. The
authors first detect and remove so-called layout elements, followed by a
binarization, median filter and edge detection with the Sobel operator.
The text region extraction, based on horizontal and vertical histogram
projection analysis, is conducted on the edge image. This is performed re-
cursively until the image cannot be split any further. During this recursive
processing of the regions, heuristic filters are applied to only subdivide
those regions that contain text and discard the others. They evaluate their
approach on a self-created dataset of 161 biomedical images from PubMed
Central. The evaluation measures are the Precision, Recall and F1-Measure
on the pixel level between bounding boxes as well as what they call the
modulated overlapping area which is calculated using the union of the
bounding boxes of the gold standard and those created by their algorithm.
Their best result is a F1-Measure of 0.6.

Chiang and Knoblock [CK11; CK15] presented a semi-automatic text
extraction from maps. In contrast to most of the other works, the input
image is not converted to grey-scale. Instead, a color quantization algo-
rithm is applied to analyze the dominant colors separately. The authors
separate text elements from graphical elements using a run-length smooth-
ing algorithm based semi-automatic extraction that requires a positive
and a negative example for each text-color/background-color combination.
Text lines are detected by applying dilation operators on the connected
components. The orientation of each line is estimated using a Single String

11



2. Related Work

Orientation Detection (SSOD) algorithm, which is based on morphological
operations. The algorithm evaluates all possible orientations of text line
candidates in a brute-force manner. The text line is rotated to horizon-
tal orientation and the commercial ABBYY FineReader1 is applied for
Optical Character Recognition. After the OCR phase, a recognition confi-
dence score is computed to filter the results. The evaluation is conducted
on 3 scanned maps and 12 computer-generated maps. The results show
that on the scanned maps, the algorithm is much more inaccurate than
on the computer-generated maps. However, overall, they can show an
improvement over using a stand-alone OCR solution.

Sas and Zolnierek [SZ13] proposed a three-stage approach for text
extraction from figures. Starting with a conversion of the input image
to grey-scale, the authors apply filtering operations, binarization and
Connected Component Labeling to generate coherent regions. Regions
are filtered by empirical thresholds and classified into text and graphic
elements using a decision tree. Tesseract2 is used for Optical Character
Recognition. Besides normal orientation, the input to the OCR engine is
also rotated at a 90� angle to capture vertical text elements such as labels
of the y-axis. Finally, the text detection is verified by assessing the number
of special characters recognized in the text regions. Unfortunately, the
authors did not assess the quality of their OCR results.

One of the contributions of this thesis (see Section 1.3 and Section 1.4)
is an unsupervised text extraction pipeline from scientific figures [BS15b;
BS15a]. The text extraction pipeline uses an adaptive binarization method
based on Otsu’s method [Ots79] to convert images to binary format. Sub-
sequently, Connected Component Labeling is applied to extract coherent
regions. Heuristic rules are applied to drop certain (noise) regions before
the remaining regions are clustered using DBSCAN in order to separate
text elements from graphical elements. A MST clustering is applied to
the clusters to detect single text lines. The orientation of the text lines is
computed using a discrete Hough transformation and each line is rotated
into horizontal mode in order to send it to an OCR engine. The pipeline
was extended into a modular framework for evaluating several methods
from the literature [BS16; BS17; BBS18].

1http://www.abbyy.com/ocr-sdk/, last access: November, 2018
2https://github.com/tesseract-ocr/, last access: November, 2018
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2.2 Supervised Text Extraction from Scientific Fig-
ures

Modern supervised methods, i. e., neural networks, have only been recently
used for text extraction from scientific figures. The most relevant research
is mentioned below.

Almakky et al. [APR19] presented a deep Convolutional Neural Net-
work (CNN) architecture for text localization in biomedical figures. Their
model maintains the image size from end-to-end and does not apply di-
mensionality reduction by padding the input in each layer. In addition,
Almakky et al. used different transformation functions to account for the
different possible variations in text appearances. These transformations
included random crop, random sized crop, random rotation, color inverse
and scaling. They used two datasets in their experiments. First, for pre-
training their model, they used the SynthText in the Wild dataset which
consists of 800,000 images with synthetic scene-text which accounts for the
local scene geometry. Second, for training and evaluating their model,the
DeTEXT dataset from the ICDAR2017 robust reading challenge with 500
biomedical figures was used. Their model achieves 91% Recall and 62%
Precision under the assumption that a text element was correctly detected
when the bounding box overlap is 50% or greater.

Sarshogh and Hines [SH19] proposed a model for text localization
and text recognition for what they call complex documents. Their model
consists of a shallow DenseNet, a pyramid network, a region proposal
layer and three heads (bounding box regression, text classifier and text
recognition). They pre-trained their model with 10,000 synthetical created
images before fine-tuning it with the training set of the ICDAR 2017
DeTEXT dataset which was then used to evaluate their model. Their results
show an increase in the mean average precision for both text localization
and text recognition.

Morris et al. [MTE19] proposed a deep convolutional architecture for
text extraction from scientific figures. They used a modified version of
EAST (An Efficient and Accurate Scene Text Detector) [ZYW+17] to localize
the text in the figures, because certain aspects like angled (rotated with
respect to the camera perspective) text usually does not appear in scientific
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figures. In a second step, Tesseract is used to recognize the text. Two
datasets were used to evaluate their model. A dataset with 500,000 labeled
images from the arXiv platform and the Multi-Type Web Images dataset.
They report that they outperform the best unsupervised approaches of
Böschen et al. [BS17; BBS18].

Morten et al. [JBS19] presented a neural network based approach that
uses a modified Faster Region Convolutional Neural Network (Faster R-CNN)
architecture [RHG+15] based on ResNet [HZR+16] for the detection of text
elements in scientific figures. The model is pretrained with the MS-COCO
Text dataset [LMB+14]. For training and evaluation five different datasets
are considered and artificially extending by creating augmented versions
of the figures in the datasets. The augmentations include translation,
rotations, scaling, flipping and addition of noise. After text location with
the modified Faster R-CNN, Tesseract is used to recognize the text. Text at
different orientations is addressed by brute-force rotating the elements
before recognizing it with Tesseract. The experiments show that they
surpass the unsupervised approaches of Böschen et al. [BS17; BBS18].

2.3 Text Extraction from Natural Images

Another large research area is the extraction of text from natural images,
also known as scene text extraction. Approaches in this area usually make
assumptions about the difference between the text and the rest of the
image which can not be directly applied to scientific figures. However,
certain methods are interesting and worth to evaluate on scientific figures.

Gllavata et al. [GF05] proposed an approach for text segmentation
in images with varying background colors. They first execute a fuzzy
c-Means clustering to identify the different colors in the image. Then they
create multiple binary images, one per color cluster, and apply Connected
Component Labeling to create regions. Features are assigned to the regions
and evaluated to find the cluster that contains the color of the text. A
heuristic enhancement process which also uses morphological operations
concludes the text segmentation. Their experiments include two datasets,
the MPEG-7 test set with 45 images and a second test set which consists
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of 18 video frames. From the in total 2,486 Latin characters 90.4% were
correctly recognized and 78% of the 441 words were correctly recognized.

Liu and Samarabandu [LS06] made the assumption that text can be
identified based on edge strength, density and orientation variance. Their
three-staged approach consists of candidate detection, text detection and
text extraction. For candidate detection, they use as multi-scale edge
detector to measure the edge strength via the second derivative of edge
intensity which is combined with density and orientation information via
scale fusion. Text detection is performed using morphological operations
to merge characters into text blobs. Finally, the text pixels are extracted and
a binary image is created which is fed to an OCR engine for recognition. The
approach was tested on 75 images which show text of different font sizes,
colors, orientations and perspective projections under different lightning
conditions and achieved a Precision of 0.918 and Recall of 0.966.

Liu and Sarkar [LS08] proposed an approach for text extraction from
outdoor images. First, Niblacks algorithm is used to binarize the input
image. Next, regions are generated and grouped based on four features
(horizontal alignment, similar intensity, similar height and closeness).
Afterwards, an intensity filter and a shape filter are applied to remove
noise and non-text areas. The ICDAR2003 text locating dataset from the
Robust Reading Competition with 249 images is used for evaluation and
the proposed approach achieves 0.66 Precision, 0.46 Recall and 0.54 F1-
Measure.

Epshtein et al. [EOW10] developed a novel image operator that esti-
mates the stroke width of each image pixel which can be used for text
detection in natural images. The creation of an edge map using the Canny
edge detector is the first step in their pipeline. Next, their stroke width
transformation is applied to the edge image. Text character candidates are
identified using a modified version of the Connected Component Labeling
and heuristic rules. Based on the assumption that single characters do
not appear in images, characters are grouped into lines to eliminate noise.
Finally, the line is broken down into words by analyzing the distances
between the characters. Datasets from the ICDAR2003 and ICDAR2005
text detection competitions are used for evaluation and their algorithm
achieves a Precision of 0.73, a Recall of 0.60 and F1-Measure of 0.66.
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The pipeline proposed by Fraz et al. [FSE15] relies on color informa-
tion for text extraction from natural images. The pipeline starts with an
estimation of the color constancy using the grey-world algorithm, fol-
lowed by a noise reduction step using median filters. The third step is a
minimum-variance color quantization into 8 colors and a binary image
is computed for each color on which Connected Component Labeling is
applied. The generated regions are analyzed with respect to their height,
width and aspect ratio to identify text candidate regions. Next, the HOG
feature descriptor is computed for each remaining candidate region and
a SVM is trained to differentiate between text and non-text regions. In
the last step, words are formed from the individual characters. A second
pipeline is applied for character identification before the characters and
words are recognized. The text detection is evaluated on the ICDAR11
benchmark datasets and the Street View Text dataset. The character recog-
nition is evaluated on the Chars74K-15 and ICDAR03-CH datasets. Their
two pipelines achieve competitive results (e. g., an F1-Measure of 0.71 on
ICDAR11) when compared with state-of-the-art approaches.

An edge-based approach using support vector regression was devel-
oped by Lu et al. [LCT+15] for text extraction from natural images. The
edge image is created using Canny’s edge detector and three features
(contrast, shape and stroke structure) are derived from that edge image at
multiple scales. A global thresholding is applied to detect text bounding
box candidates and a support vector regression is used to remove non-text
bounding boxes. Their approach achieves a F1-Measure of 0.78 on the
ICDAR2013 Robust Reading Competition dataset.

Borisyuk et al. [BGS18] presented a large scale Optical Character Recog-
nition system called Rosetta. They use a Faster R-CNN state-of-the-art object
detection network to localize text in natural images. Their neural network
replaces the common convolutional body of ResNet [HZR+16] with a
ShuffleNet-based architecture [ZZL+18]. Two additional models for text
recognition are evaluated, one based on character sequence encoding
and one based on fully-convolutional model (ResNet-18). In a thorough
evaluation, a trade-off between accuracy and efficiency is found.
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2.4 Data Reconstruction and Summarization of
Scientific Figures

Some researchers go beyond the extraction of text from figures and see
it only as one part of a larger system for data reconstruction and/or
summarization of the content of a figure. A selection of these approaches
is presented in the following.

Huang et al. [HTL03; HTL05; HT07] proposed an approach for data and
text extraction from scientific figures, especially bar charts, pie charts and
line graphs. Their extraction pipeline starts with a Connected Component
Labeling that generates components of coherent text elements and graphics
elements. In a subsequent step, these elements are separated by applying
a series of filters. In the next step, the text elements are grouped using
a derivation of Newton’s formula for “Gravity” from classical physics.
The authors claim that this method is capable of separating text at differ-
ent orientations into different groups of text elements. Optical Character
Recognition is applied on these text groups and the recognized text is
classified into strings and numbers. Finally, the recognized text is manu-
ally corrected in order to have a clean assignment to the corresponding
graphical elements. The graphical elements are analyzed and mapped
with the extracted text to retrieve the original data values.

A joint project of the University of Delaware and the Millersville
University had the goal of making figures accessible to sight-impaired
individuals. Chester and Elzer [CE05] presented the Visual Extraction
Module (VEM) for conversion of figure images into an XML representation.
Their focus was on simple bar charts, line charts and pie charts, but their
system was designed with the possibility of extension to other figure
types. The VEM first creates connected components from uniformly colored
regions in the figure. Heuristics are used to distinguish between connected
components that represent text and those that represent graphical elements.
Followed by a simple optical character recognition algorithm to extract the
characters from the connected component text candidates based on simple
template matching. Using another heuristic, characters are grouped into
words using morphological operations. Semantic labels like title or Y-axis
descriptor are assigned to the recognized words based on certain location
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assumptions. Next, the graphical components are broken down into their
core components and grouped such that the figure type can be identified.
All information is outputted in XML format. Several projects are build
upon VEM [BCE08; Dem08; DCM08; DOS+10; BCE10; WCE+10; ECZ11;
CSM+12]. They all assume having a perfect text extraction given by the
VEM and focus on figure summarization, message identification and user
interaction. In 2012, Gao et al. [GZB12] from the University of Delaware
tried a new approach and developed the Visual Information Extraction
Widget to automatically extract the data from bar charts, pie charts and
line graphs. First, the input image is segmented into text and graphic
components based on pixel intensity using morphology that generates
connected components which are sorted by heuristic rules. Then geometric
features are extracted from the graphical components which are used by
a Support Vector Machine to identify the figure type. Depending on the
identified figure type, for bar charts, pie charts and line graphs, a unique
type-specific data extraction method is applied. They collected 100 bar
charts, 100 pie charts and 100 line graphs for their evaluation and showed
that their classification accuracy achieves 97.3% in a 5-fold cross validation.

Kataria et al. [KBM+08] proposed a system for extracting the numerical
values from 2D plots. First, the 2D plot is binarized. Then, the axes are
detected and the plot is segmented by applying Connected Component
Labeling. The text detection is based on fuzzy rules and includes a method
for separating overlapping characters. Finally, OCR is applied to extract
the text. The recognized text is removed from the figure and a data points
detection algorithm is applied next which uses a k-Median filtering. Lu
et al. [LKB+09] further developed it into a retrieval engine for scientific
figures in chemistry.

Mishchenko and Vassilieva [MV11] developed a framework that au-
tomatically extracts data from figures and converts them to XML. The
framework consists of a figure type classifier, text and graphic component
extraction and a semantic relation extraction between text and graphics.
Their system supports column charts, bar charts, pie charts, line graphs
and area charts which present some tabular data. The figure type classifier
works on a vectorized edge image and goes through all the edges and
tries to estimate to which of the aforementioned classes it most likely
belongs. The text extraction is performed in three steps. First, Connected
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Component Labeling is applied with some heuristic filtering to identify
text candidates. The Hough Transformation is used to find text lines from
the set of potential characters. Finally, the distance between different char-
acters and the size of the candidate characters is checked to verify the text
line recognition. The extracted text lines are passed to an OCR engine for
recognition. The textual information is combined with the graphical ele-
ments to extract the data of a figure. Two artificially created datasets with
980 and 300 figures were used to evaluate the framework. They conclude
that the text recognition quality is 20 times better than with regular OCR.

Savva et al. [SKC+11] proposed ReVision a tool to extract the data from
figures to enable restyling. A bitmap image is taken as input and the figure
is classified into different figure types using a Support Vector Machine.
The text extraction from the figure is crowd-sourced and not automatically
performed. ReVision is only capable of extracting the encoded data of
bar charts and pie charts. Under the assumption of a linear mapping in
the graphics representation, the graphical objects of bar charts and pie
charts are associated with the extracted text components to estimate the
original data. Afterwards, it is possible to present the reconstructed data
with different styles. A dataset of 52 bar charts and 53 pie charts was used
in the evaluation of the extraction technique and ReVision was able to
recover all graphical data objects for 79% of the bar charts and 62% of the
pie charts. For 71% of the bar charts and 64% of the pie charts for which all
graphical data objects were correctly extracted, ReVision could also fully
reconstruct the underlying data.

Al-Zaidy and Giles [AG15] presented an approach for data extraction
from bar charts. Connected Component Labeling on the image in Lab
color space is used to identify the graphical components of the figure.
Text extraction is conducted on a binarized version of the image. Isotropic
dilation is applied on the binary image before Connected Component
Labeling is used to extract words which are then recognized by an OCR

engine. Next, graphic and text components are combined for data extrac-
tion. The system was tested on 18 bar charts and showed only mediocre
success, being only capable of recovering 87% of the bars and having
problems with identifying the y-axis. Al-Zaidy and Giles [ACG16] re-used
this data extraction [AG15] for generating linguistic summaries of bar
charts based on protoforms, a linguistic construct based on fuzzy-logic to
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create sentences from structured data. They further improved their rule-
based approach [AG15] by replacing the rules with a machine learning
based approach [AG17] and performing a larger evaluation on a set of
213 bar charts. The highest Precision is achieved with a random forest
binary classifier, while the highest Recall is obtained with a random forest
multi-class classifier.

Poco and Heer [PH17] proposed a pipeline that can extract data from a
bitmap image of a figure. The pipeline consists of a text analysis pipeline
and a Convolutional Neural Network for mark type classification. The text
extraction pipeline starts with a binarization of the image using Otsu’s
method. Next, a network for text pixel identification from Darknet [Red16],
a CNN framework, is used to identify and remove non-text pixel. Af-
terwards, the remaining pixel are merged into words using Connected
Component Labeling and a Minimum Spanning Tree approach. Finally,
the words are recognized by an OCR engine. They evaluate their approach
on three datasets. First, an artificially created dataset of 4,318 figures was
created using the Vega visualization tools [SRH+16]. 475 SVGs from the
news website Quartz3 were converted to bitmap figures and manually
annotated to form the second dataset. Third, 332 figures from papers of
the ACL Anthology repository were selected and manually annotated
for the final dataset. The approach achieves a minimum F1-Measure of
80% for text detection and recognition. For the mark type classification a
minimum F1-Measure of 98% is achieved.

Cliche et al. [CRM+17] proposed an automated data extraction ap-
proach for scatter plots using neural networks. They created an artificial
dataset of 25,000 scatter plots for training and 600 scatter plots for testing
their neural network using a single tool, the Python Matplotlib. Addition-
ally, to show that their approach can generalize, a small real world dataset
of 50 scatter plots was collected. Their neural network object detection
model is ReInspect [SAN16] which is used to find the bounding boxes for
graphical objects (points, tick marks) and text (tick values). They achieve
an average Precision of 87.1% for points, 99.1% for tick values and 93.0%
for tick marks. The tick value bounding boxes are extracted and rotated
into horizontal position using a heuristic that minimizes the area of the

3http://qz.com
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enclosing rectangle. The rotated bounding box is then processed by an
OCR engine for text recognition. They report an accuracy of 91.2% for the
text recognition (63.8% if the bounding boxes are not preprocessed). The
tick values are assigned to the nearest tick mark and then clustered using
DBSCAN to assign them to the X- or Y-axis. A mapping from pixels to chart
coordinates is performed with RANSAC regression to enable the data
extraction. The overall system is capable of extracting 89% of the data from
the 600 test figures, under the assumption of a 2% tolerance.

Dai et al. [DWN+18] addressed the problem of data extraction from
figures with a figure type classifier and a data extraction for bar charts.
First, they compared different existing Convolutional Neural Network
architectures for figure type classification and came to the conclusion
that GoogLeNet performs best. For the text extraction from bar charts,
they reuse and modify the approach of Poco and Heer [PH17]. Next, the
graphical components are extracted and matched with the text extraction
for data extraction. They report that their approach can find 90% of the
text on a real world corpus and extract the text with a 75% accuracy, while
it finds 98% of text in the artificial corpus with a recognition accuracy
of 93%. The overall data extraction accuracy is about 57% for the 59 bar
charts in the real world corpus and about 82% for the 500 bar charts in the
artificial corpus.

Madan et al. [MBT+18] claimed that the text extraction from figures is
solved and thus focus on the analysis of the visual components of a figure.
Their goal is to identify standalone icons in figures and combine them
with the extracted text to create a multi-modal summary of the figure by
producing visual and textual hashtags. They rely on Google Cloud Vision
API for text extraction. They collected a dataset of about 29,000 figures
(Visually29k) from which 544 where annotated with tags by humans and
are used for evaluating their approach.

2.5 Summary

The large variety of research for text extraction from scientific figures shows
that the development of a general text extraction from figures is still an
open challenge, even though some claim that it is solved [MBT+18]. Over
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the years, the approaches evolved from heuristic-based approaches [Tak09]
and unsupervised approaches [HTL03; HTL05; HT07; BS15b; BS15a; AG15;
BS17; BBS18] to supervised approaches [PH17; CRM+17; APR19; SH19;
MTE19; JBS19]. Nonetheless, datasets are still scarce and thus supervised
approaches are just starting to overcome their limitations to specific figure
types. However, even though many researchers focus on specific problems
like bar charts or line graphs to reduce the complexity, most of the pro-
posed approaches have a similar structure. They can usually be separated
into two steps:

� Text extraction

� Text recognition

Most of the unsupervised approaches can be further broken down into
three core components:

� Identification of (connected) components in the figure image

� Separation of text components from graphical components

� Optical Character Recognition on the text components

These steps will be used as a basis in the remainder of this thesis for
creating a general pipeline for text extraction from scientific figures.

Disclaimer: This thesis focuses on research which has been published
until 2019, concluding with a first attempt at text localization from sci-
entific figures with a Faster Region Convolutional Neural Network ar-
chitecture [JBS19]. In the following two years, further research into text
localization and recognition from scientific figures, for example with
Faster R-CNN [ZZC+21] or super-resolution deep convolutional neural net-
works [CYL+20] has been conducted. However, this research is out of the
scope of this thesis.
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Chapter 3

General Text Extraction Pipeline

3.1 Definition of the Text Extraction Pipeline

In this chapter, a general text extraction pipeline is presented that was
derived from the related work in the field of text extraction from scientific
figures (see Chapter 2). Please note, for describing the steps of the general
pipeline the following terminology is used: The bitmap representation
of a scientific figure is referred to as image since it is the accepted term
in computer vision. A region is a set of pixels of an image. Each region
represents either one or sometimes multiple alphanumeric characters or
graphical symbols. A text element or text line is a set of regions represent-
ing text (e. g., a label, word, phrase) without a line-break and is defined by
its position, dimension and orientation of the bounding box enclosing the
contained set of regions.

The expected input of the pipeline is a (color) image and the output of
the pipeline is a set of text elements. For the text extraction pipeline, three
main steps were identified from the state-of-the-art analysis (compare
Section 2.5):

1. Extraction of Regions

2. Identification of Text Elements

3. Text Recognition from Text Elements

This three step pipeline is an improved version of previously published
definition of a general text extraction pipeline [BS15a].

For neural network based supervised approaches, the first and second
step are usually not separated but intertwined. Thus, the description below
applies more to unsupervised approaches.
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Next, a detailed description of the three different steps of the general
text extraction pipeline follows.

3.1.1 Extraction of Regions

The first step of the pipeline is to identify the interesting regions inside a
figure and extract those, i. e., separate the foreground elements (text and
graphical elements) from the background.

Preprocessing

In the pipeline, an image is defined as an 3D array of pixels of dimensions
width� height� colorchannels. Each pixel has a color information assigned
which consists of one or multiple values depending on the color space of
the image. The most common color spaces are:

� Binary: A binary image is a three dimensional array where the third
dimension has a length of one and each pixel value is either black (0)
or white (1). An example for a binary image is Figure 3.1.

� Greyscale: A greyscale image is a three dimensional array with only
one color-channel as well but each pixel can have a value between 0
(black) and 255 (white). An example is Figure 3.2.

� RGB: A three dimensional array with more than one color channel is
required to store the information for an Red-Green-Blue (RGB) color
image. Each pixel has three values, the red component (R), the green
component (G) and the blue component (B). Each of these values ranges
from 0 to 255. A black pixel has the minimum values [0, 0, 0] while a
white pixel has the maximum [255, 255, 255].

� HSV: The Hue-Saturation-Value (HSV) color space [Smi78] differs from
the RGB color space by arranging the colors in a radial slice and using
the other two components for the color saturation and brightness. The
Hue component has a range from 0 to 360, while the Saturation and
Value components range from 0.0 to 1.0.
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The proposed pipeline accepts images with any of the above mentioned
color spaces. However, the region extraction process usually requires a
binary image as input. Thus, given a color or grey-scale image as input, it
has to be converted into one or multiple binary images.

Figure 3.1. An example of a binary scientific figure

Extraction

Given a binary image, an extraction algorithm can extract interesting
sets of pixels (regions) from the image which potentially depict textual
characters and other graphical components. Each region is a subset of
pixels and all regions are non-empty and disjoint.

Postprocessing

The generated set of regions can be filtered - if needed - to remove graphical
components or background elements.
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Figure 3.2. An example of a grey-scale scientific figure

3.1.2 Identification of Text Elements

The second step of the pipeline processes the extracted regions so that
graphical components are separated from textual components and the
latter are further processed to recognize text lines.

Feature Generation

First, for each region, features need to be identified that can be used
to distinguish between text components and graphical components and
should help to identify text lines. Thus, features based on the position and
size of the regions are of interested so that adjacent text components can
later be grouped together.

Region Grouping

Given the regions with their associated features, all the regions can be
grouped to separate text components from graphical components as text
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components usually have unique characteristics. Each cluster is a collection
of a set of regions and all cluster are disjoint. Clusters that most likely
contain regions that are considered as noise/graphical elements can be
dropped, using for example heuristic rules.

Text Line Identification

Many off-the-shelf OCR engines work best on horizontal text. The orienta-
tion of text can more accurately be estimated from individual text lines
than from text blocks. Thus, the next step is to create a set of single line text
element candidates from the text element clusters by further subdividing
each cluster, if the cluster does not already comprise a text line. Each text
element candidate contains a subset of the regions of a specific cluster
which appear to be on a single line. All candidates for text elements are
non-empty and disjoint.

3.1.3 Text Recognition from Text Elements

Given the candidates for text elements from the previous step, standard
Optical Character Recognition engines can be used to recognize the text of
the text element candidates. However, common OCR engines are designed
to recognize text from plain document pages. Thus, most of them can only
recognize horizontal text with a small tolerance margin. Therefore, differ-
ent kinds of preprocessing is needed to make the text element candidates
ready for recognition.

Preprocessing

Most Optical Character Recognition engines have only a small tolerance
with respect to the orientation of text. Thus, for all OCR engines, it is
necessary to rotate text into horizontal alignment. Every orientation angle
for a text element candidate can have an integer value from -90 to 90
degree. The limitation results from the observation that text usually does
not occur upside down in a scientific figure, at least not in the datasets at
hand. Further, OCR-specific preprocessing might be needed like resizing
the input to a certain size.
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Optical Character Recognition

After rotating and preprocessing each text element candidate, the text of
all text element candidates can be extracted using a standard OCR tool.
The recognizable text is limited by the OCR engine, which is for this the-
sis the following character set: [A-Za-z0-9!"§$%&/()=?´°{[]}\‘+-*,.;:|’#@_-
� ¡eé£©®¥¢] The output is a set of text elements, each consisting of the
recognized text which is combined with its size, position and orientation.

Postprocessing

Finally, as a last step, an optional postprocessing can be applied on all
text elements to mitigate recognition errors and to remove noise. This
postprocessing either updates the text of each text element or removes
it completely. It does not alter the position or size of a text element
as no information between regions and recognized text exist. Several
approaches for correcting text extraction results have been proposed in
the past like for example, methods using dictionaries [SRS+03], methods
using the structure of sentences [KST+96], or methods that use datasources
from the web like Google [BA12a; BA12b]. However, due to the special
characteristics of text in scientific figures, which are often very sparse and
contain abbreviations and numbers, it is difficult to apply these methods
and more simplistic methods without external input are required.

3.2 Methods of the Text Extraction Pipeline

The previous section described a general pipeline for text extraction from
scientific figures. The following sections explain in detail the methods that
were implemented for the different steps of the text extraction pipeline
in this thesis. The structure follows the steps of the pipeline that were
outlined in the previous Section 3.1.

3.2.1 Unsupervised Extraction of Regions

Three parts were identified in Section 3.1.1 for the extraction of regions
from images: Preprocessing, Extraction and Postprocessing. In the fol-
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lowing, a selection of preprocessing methods for color conversion and
binarization are presented in Section 3.2.1. The presented methods are
those most commonly used in the literature for generating binary images.
Different methods for the extraction of regions from binary images are
presented in Section 3.2.1 as well. No postprocessing method on the raw
regions is used but postprocessing on the regions based on the features
generated for each region (see Section 3.2.2).

Preprocessing

Given a color image, two common methods exist to reduce the number of
color channels from three channels down to one channel. The first option
is to convert the color image to grey-scale which can then be binarized.
The second option is to split the image up into multiple images to deal
with the different colors separately.

Conversion to Grey A common way to ease the processing of color
images, is to convert them to grey-scale images. Different methods exist to
perform such a conversion.

Color images are often represented in the RGB color space and thus
have three color components (red, green and blue). Other color images
that use for example the HSV color space can be converted to the RGB color
space using the following equations:

C = V � S (3.2.1)

X = C � (1� |(
H

60�
mod 2� 1|) (3.2.2)

m = V � C (3.2.3)

(R1, G1, B1) =



(C, X, 0) , 0� ¤ H   60�

(X, C, 0) , 60� ¤ H   120�

(0, C, X) , 120� ¤ H   180�

(0, X, C) , 180� ¤ H   240�

(X, 0, C) , 240� ¤ H   300�

(C, 0, X) , 300� ¤ H   360�

(3.2.4)

(R, G, B) = ((R1 + m) � 255, (G1 + m) � 255, (B1 + m) � 255) (3.2.5)
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Grey-scale images have only one color component. Thus, when trans-
forming from color to grey scale, the three color components need to be
combined into one component. One simple method is to calculate the grey
value by giving each component the same weight:

Y = 0.33R + 0.33G + 0.33B (3.2.6)

Another popular method it to use a Luminance preserving method based
on the principles of photometry, which adjusts the weights of the compo-
nents to better mimic the human perception:

Y = 0.2126R + 0.7152G + 0.0722B (3.2.7)

Since the pipeline is designed for processing figures, which are meant to
be read by humans, the conversion to grey scale based on Equation 3.2.7
is selected.

Binarization Several methods [Ots79; JB82; KSW85; KI86; Nib86; Ber86;
SSH+97; GPP06; BAO11] exist for binarizing a grey-scale image. To limit
the number of options, three of those methods - namely Otsu’s algorithm,
given its popularity, Niblack’s algorithm, because it computes a binariza-
tion threshold per pixel, and a newly developed, hierarchical, adaptive
Otsu algorithm - were chosen and those methods are explained in more
detail below.

Otsu’s algorithm [Ots79] is a common method which uses a single
threshold to binarize an image. Set to a specific grey value, all pixels with
a value above the threshold are considered as foreground and all pixels
with a value below the threshold are considered as background. However,
finding the right threshold can be difficult. Otsu proposed a method
to automatically determine the ’best’ threshold for binarization [Ots79].
Otsu’s algorithm finds the binarization threshold by maximizing the inter-
class variance. This threshold is then applied on the whole image for
binarization.

The standard Otsu algorithm applies only one global threshold on
the entire image. However, images often contain local inhomogeneities
and varying color combinations for text and background. Thus, a global
threshold may not be the best solution. Therefore, a modified version of
Otsu’s algorithm, which is called Adaptive Otsu in this thesis, was devel-
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oped [BS15b] which computes several thresholds based on how detailed
certain parts of an image are. The algorithm starts by calculating the thresh-
old using Otsu’s algorithm on the whole image and then subdividing the
image into four equal-sized parts with a quadtree like datastructure. A
quadtree is a two dimensional data structure which recursively subdivides
the space into four tiles. The ’leaf’-regions contain a certain, interesting
spatial information. Here, the algorithm recursively further subdivides
the image when necessary to fine-tune the thresholds, i. e., that each re-
gion is homogeneous enough to be binarized by a single threshold. On
each tile that was binarized using Otsu’s algorithm, the popular Sobel
operator [Sob14] is applied to determine the edges. The Hausdorff dis-
tance [Hau14] is computed over the edges of the current tiles and their
parent tile. A tile is further subdivided if a specified empirical determined
threshold for the Hausdorff Distance is not reached. The final threshold
for each leaf tile is computed by averaging the thresholds estimated by
Otsu’s algorithm over all tiles in the hierarchy up to the root.

In contrast to Otsu’s algorithm, Niblack’s algorithm [Nib86] calculates
an individual threshold per pixel. This is achieved by using a sliding
window approach that takes the mean grey value m of the pixels in
the sliding window and their standard deviation s into account when
calculating the threshold:

TNiblack = m + k � s (3.2.8)

There parameter k is usually set to �0.2.

Color Quantization A different approach is to identify the different col-
ors in an image and to create binary images for each of these colors where
in each image one color is considered as the foreground and everything
else is background. However, given that there is a multitude of colors
possible in an image and not all of them should be considered as indi-
vidual colors, a so-called color quantization can be performed to reduce
the color spectrum of an image to the most prominent ones. The follow-
ing approach is motivated by the work of Chiang and Knoblock [CK15],
Fraz et al. [FSE15] and Jayant et al. [JRW+07] and is mainly based on the
approach of Chiang and Knoblock [CK13].
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The color quantization approach takes a color image as an input and
first transforms it into the HSL color space. A Mean-Shift algorithm [CM02]
is applied to preserve edges and remove noise, followed by a Median-Cut
algorithm [Hec82] and k-Means clustering [Llo82] to identify the main col-
ors (see Appendix B for details on Mean-Shift, Median-Cut and k-Means).
For each cluster, the cluster center is chosen as the representative color
and a new image is created where each pixel’s color is replaced by the
representative color of the cluster it was assigned to. Finally, the image is
split into k binary images where k is the number of representative colors/-
clusters as specified by the k-Means algorithm. The default setting for k is
8. Each of the binary images contains only one of the colors (replaced by
black pixels) and the remaining pixels are set to white (background).

Extraction

The extraction of regions is the next processing step after binarizing
the image, i. e., the foreground pixels in the binary image need to be
analyzed and combined into regions which may represent text elements.
In the following, two methods are presented that can create regions from
foreground pixels in binary images.

Connected Component Labeling The most common approach for iden-
tifying regions in a binary image is the so-called Connected Component
Labeling (CCL) [ST88]. The CCL algorithm iterates over the whole image
and assigns each pixel to a region by taking the assignment of the adjacent
pixels into account (4-/ 8-pixel-neighborhood). In this thesis the 8-pixel-
neighborhood is used. Figure 3.3 illustrates the process. The algorithm
starts at the pixel in the top left corner - the origin [0,0] - and iterates
through the image row-wise. If a pixel belongs to the foreground, i. e., it
is black in the binary image, its neighbors that were already visited are
checked to see whether they belong to a connected component/region. If
the neighbor pixels belong to the same component, then the current pixel
is assigned to that component as well. If the neighbor pixels are assigned to
different components, then the current pixel is assigned to the component
with the smallest index and mappings between the components of the
neighbors are stored in the so-called mapping table.
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(a) Binary image with black foreground pixel (1) and white background pixel (0).

(b) Labeled image after the first pass. The list of adjacent labels is stored separately.

(c) Final results after merging of adjacent labels.

Figure 3.3. Connected Component Labeling with 8-pixel-neighborhood.

If none of the neighbors are part of a component, i. e., all visited
neighbors are background pixel, then a new component is introduced.
After the first pass through the image, a second pass is conducted to merge
adjacent components based on the mapping table.

Pivoting Region Extraction Xu and Krauthammer [XK10] proposed a
pivoting histogram projection approach to extract regions from images.
Here, first an edge image of the binary image is computed. The edge
image’s pixels are alternately projected on the x and y-axes and the image
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is split after every projection at the minimal point(s) of the histogram into
multiple sub-images. Each sub-image is further processed while alternating
the direction until no further split is possible. Thus, one obtains multiple
rectangular sub-images, which are converted into regions by taking all
foreground pixels of each sub-image from the binary image and thus
create one region per sub-image.

3.2.2 Unsupervised Identification of Text Elements

The second step in the pipeline is to identify text elements in the image as
defined in Section 3.1.2. First, most methods require an aggregated view
of the regions, i. e., it is necessary to compute features for the regions that
were extracted from the binary image(s). The feature generation that is
used in this thesis for unsupervised text extraction is described below.
Second, the regions are grouped using the computed features to separate
text elements from graphical elements. Different methods for this task are
presented in the following. Finally, if the previous step has not already
created them, individually text lines need to be extracted.

Feature Generation

Different features can be envisioned for describing the regions. They
should characterize the regions with respect to their position and their size
and shape as this is often a criteria for differentiating between text elements
and graphical elements. Here, some of the so-called image moments [Hu62]
are used as features which are a popular, simple method in computer
vision.

For each region, a five-dimensional feature vector is computed. Given
the pixel-based representation of the regions, a center-based representation
of the location of the region is computed using the image moments:

mpq = ∑
x

∑
y

xpyqΨ with p, q = 0, 1, 2, . . . (3.2.9)

Please note that p, q hereby denote the p, qth moment. For binary images,
Ψ takes the values 0 or 1 and therefore only pixels contained in a region
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are considered for the computation of the moments. Using the first-order
moments, one can compute each regions center of mass (m10,m01):

m10 = ∑
x

∑
y

x1y0 (3.2.10)

m01 = ∑
x

∑
y

x0y1 (3.2.11)

These are the first two components of the feature vector. The third and
fourth component are the width w and height h of the bounding box of the
region and the final and fifth component is the area-occupation-ratio aor
which is simply computed as the number of pixels of a region divided by
the number of pixels of the enclosing bounding box. Thus, the full feature
vector is:

ÝÑv =


m10
m01
w
h

aor

 (3.2.12)

Having computed the feature vectors for all regions, simple heuristics [BS15b;
SZ13] are used to postprocess the set of region to filter obvious graphical
elements. All regions that fulfill the following constraints are discarded
as they most likely compose graphical components: (a) Either width w or
height h of the region’s bounding box are above the average width/height
plus 3 times standard deviation (e. g., axes) or (b) the bounding box is
smaller than 0.001% of the figure’s size (noise) as well as (c) elements
occupying more than 80% of their bounding box (e. g., legend symbols).

Region Grouping

The regions with their feature vectors need to be further grouped to
separate the remaining graphical components from the text components
and to create an initial grouping of the text components (characters) into
word-like or text-line-like structures. Four methods are considered here:
Gravity-based grouping, Minimum Spanning Tree clustering, morphologi-
cal grouping and Density-Based Spatial Clustering of Applications with
Noise (DBSCAN).
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Gravity-based Grouping Huang et al. [HTL05] proposed grouping rules
based on Newtons gravity equation from classical physics:

G =
C1 � C2

r2 (3.2.13)

C1 and C2 are hereby the size of the two components which are considered
for grouping together and r is the distance between them. The formula
computes a value which is compared with a threshold which defines
whether two regions are grouped together. An empirical determined
threshold of 20 was used in this thesis as no information was provided by
Huang et al. [HTL05]. The connected regions form text elements, each of
which - according to Huang et al. - represent a single text line.

Minimum Spanning Tree Clustering Another clustering algorithm, the
Minimum Spanning Tree (MST) clustering, has also been used for the task
of region grouping [JRW+07] (see also Appendix B). First, a Minimum
Spanning Tree is constructed on the data points. Second, the MST is split
up and the clusters are formed from the connected data points. There are
multiple possibilities on how to split a tree like removing the longest edges,
removing edges whose length are above a certain threshold or inconsistent
edges. Here, a split at inconsistent edges is used, i. e., edges that are longer
than the local average edge length are removed.

Morphological Grouping Chiang and Knoblock [CK15] proposed a
method based on morphological operations to merge characters into
words on a pixel level and thus do not need the features mentioned
in Section 3.2.2. The Conditional Dilation Algorithm (CDA) iterates multi-
ple times over the input image with an alternating evaluate-and-expand
mechanic. Initially, all regions are marked as expandable and all back-
ground pixels that have a pixel of a region in their neighborhood are
marked as expansion candidates if they connect at most two regions of
similar size and similar baseline orientation. The second scan validates the
expansion candidates again because during the first scan the expansion
candidates themselves are not considered as belonging to a region. The
remaining expansion candidates are converted to foreground pixels and
are added to the regions. This process is repeated until no region can be
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expanded anymore. A region is not a valid expansion target if it is already
connected to two other regions and/or it was extended to its maximum
which was defined by Chiang and Knoblock as 1/5 of the region size.
After completion of the CDA, regions that got connected belong to the
same cluster/are grouped together.

Density-based spatial clustering of applications with noise (DBSCAN)
Different types of clustering exist and DBSCAN [EKS+96] (see Appendix B
for a general description of DBSCAN) is as the name suggest a density-
based clustering which is well suited for the task of separating text regions
and graphical regions since text is usually more dense than the graphical
components. DBSCAN has been successfully applied for this task in the
past [BS15b]. Given that the feature vector includes the size and position
of the regions, regions that are of similar size like characters which are
located close to each other are grouped together. Graphical elements which
appear in a less structured pattern and are usually of different size than
text can often be seen as individual noise elements or form groups that
have different characteristics than text. The standard DBSCAN algorithm is
quite simple and only requires two parameters: ε which specifies the size
of the neighborhood and the number of minimal points that are required
for a point to be a cluster point. The DBSCAN algorithm starts at any data
point (i. e., feature vector), evaluates whether it is a so called core point
of a cluster (i. e., it has at least the minimal number of points in its ε-
neighborhood) and if that is the case then it collects all the points in the
neighborhood, adds them to the cluster and evaluates those in the same
way. Thus, the clusters are build iteratively until no more neighbors are
found. The algorithm then continues with another random data point that
has not yet been processed or terminates otherwise. If a data point is not a
core point and is not contained in the neighborhood of a core point, then
it is marked as noise and the algorithm continues with the next point. The
difficulty is to properly set the ε parameter since the size of the images
and therefore the size of text vary which influences the range of values
of the feature vector. Since objects of approximately the same size shall
be grouped together, an adaptive ε-parameter is used which is calculated
based on the size of the current region.
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Figure 3.4. A block of rotated text with the corresponding MST on the center of
mass of the characters to split the block into multiple text lines.

Text Line Extraction

Since not all grouping methods necessarily create individual text lines
but rather blocks of text, a further subdivision of these clusters was pro-
posed [BS15b] to create individual text lines. The proposed method is
a Minimum Spanning Tree clustering which is computed on a reduced
feature vector, i. e., only on the coordinates of the centers of mass of the
regions of a cluster. The assumption is that characters of the same text
line are closer to each other than characters from different text lines. Thus,
most edges in the Minimum Spanning Tree will have a similar orientation
along the main direction of each text line, assuming they all have the same
orientation, while far lesser edges connect across the different text lines
(see Figure 3.4). Edges connecting different lines will have orientations
that differ strongly from the main orientation and can therefore be easily
detected and removed. Figure 3.5 gives an example for the usefulness of
this step.
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(a) An example figure with the overlayed result from DBSCAN clustering. Several text lines
are merged which should not be merged, for example the x- and y-axis labels.

(b) An example figure with the overlayed clustering results after a second iteration with the
angle-based minimum spanning tree clustering. Text lines are now correctly separated.

Figure 3.5. An example of the necessity of text line extraction.
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3.2.3 Supervised Extraction of Text Elements

In recent years, the most successful and promising supervised approaches
for image analysis are based on neural networks. In this thesis, the focus is
on one specific neural network architecture, the Faster R-CNN Object Detec-
tion Network [RHG+15] (also see Appendix B), which was lately especially
successful in image processing tasks and is depicted in Figure 3.6.

Figure 3.6. The Faster R-CNN Object Detection Network [RHG+15].

It consists of a Convolutional Neural Network (CNN) which feeds a
region proposal network and both feed the final classifier. However, some
changes are made to the originally proposed version. Instead of the CNN, a
Residual Neural Network is used and the RoI Pool is replaced with RoI Align.
More details on CNN, RoI Pool and RoI Align can be found in Appendix B.

A Residual Neural Network (ResNet) is a neural network with skip
connections that jump over some layers. ResNet was developed by He et
al. [HZR+16] to address the degradation problem of deep neural networks.
They addressed the problem that with increasing network depth, the
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accuracy gets saturated and then quickly degrades. Thus, they let the
network explicitly fit a residual mapping F(x) = H(x) + x which can
be reformulated as H(x) = F(x) + x instead of H(x). They hypothesize
that it is easier to optimize the residual mapping than the original one.
Practically, F(x) + x can be realized adding shortcuts (skip connections) to
the feedforward neural network. As with all neural networks, the input
dimensionality (width) and the depth of the network are parameters that
should be optimized.

ResNeXt is a modified version of ResNet proposed by Xie et al. [XGD+17].
It alters the ResNet architecture by adding a cardinality parameter which
splits the network layers into parallel blocks. Thus, ResNeXt has three
parameters to optimize: width, depth and cardinality.

In summary, the following steps are performed for supervised text
extraction:

1. Pass Image to ResNet/ResNext

2. Extract feature maps from Feature Pyramid Network

3. Pass feature maps to Region Proposal Network (RPN)

4. Pass proposals from RPN by applying RoI Align to classifier to get bound-
ing boxes that are classified as containing text

3.2.4 Text Recognition from Text Elements

Having separated graphical components from textual components and
having identified individual text lines in the figure, the next step is to
recognize the text from the extracted text lines to convert it into a ma-
chine readable format. Three popular OCR engines are used in this thesis:
Tesseract, Ocropy and ABBYY FineReader. The methods for preprocessing
of the input for the OCR engines, the OCR engines themselves and the
postprocessing of their output are described below.

Preprocessing

Standard Optical Character Recognition engines often require that the
text of the input image has a approximately horizontal orientation as they
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are mostly tuned for recognizing document pages. Thus, the single text
lines produced in the second step of the pipeline need to be rotated into
horizontal alignment if they have an orientation that differs too much
from it. Different options exist for computing the orientation of a text
line and three of those methods from the related work are presented here.
Subsequently, text lines are rotated into the opposite direction to bring
them into horizontal alignment.

Depending on the OCR engine, further preprocessing might be neces-
sary. For example, Tesseract works best when the text has some space to
the edges of the image, i. e., the bounding box is not too cropped. Thus,
each image is extended with a border of 5 pixels which has the background
color. Ocropy requires the input to have a certain size and thus, the input
image is modified to fulfill the required thresholds by scaling up the input
images if they are too small.

Perpendicular Squared Distance Method Jayant et al. [JRW+07] pro-
posed the PSD method to approximate the orientation of a text line by
minimizing its bounding box. Their method approximates the angle by
computing the perpendicular least square fit, i. e., the line that minimizes
the Perpendicular Squared Distance from the pixels to the line. To achieve
this, the text line is rotated with different angles until the minimum is
found.

Single String Orientation Detection The Single String Orientation De-
tection (SSOD) method proposed by Chiang and Knoblock [CK15] is based
on the RLSA method [Naj04] which is used for skew correction of docu-
ments with multiple lines of text. Their method assesses different orien-
tation candidates from 0 to 179 degree by rotating the text elements and
applying morphological operations on the regions. The morphological
closing operator (see Appendix B) is used with a structure-element that has
the width of the average character size to merge the character in horizontal
direction into a single object. Next, the morphological erosion operator
is used to prune pixels of the object that have background pixel in their
neighborhood which is defined via a distance threshold that is computed
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from the maximal string length. The orientation with the largest pixel area
remaining after applying both operators is chosen as the orientation.

(a) A text line element with
its center of masses high-
lighted. (b) The text line element transformed into Hough space.

Figure 3.7. The center of mass of a text line are transformed into Hough space.

Hough-based Orientation Estimation Other researchers [BS15b; DWN+18]
have used a method to calculate the orientation based on the Hough trans-
form [DH72]. The Hough transform was originally used to detect lines in
images by transforming data points into a parameter space. Lines in an
image are represented as points in the parameter space while points in an
image are represented as sinusoidal curves in the parameter space. For line
detection, the (r, θ) parameter space is used where r = x cos(θ) + y sin(θ)
is the distance from the origin and θ is the angle between the x-axis and a
line that is orthogonal to a line in the image and connects it to the origin
of the image. The maxima in the Hough parameter space refer to the
most likely parameter sets for lines in the image. Here, the center of mass
coordinates of the character regions of a text line are transformed into
the Hough parameter space to find the maximal value which represents
the main orientation (see Figure 3.7). The Hough space computation is
limited to a 180 degree interval since text lines can have only an orientation
between -90 and +90 degree.

Optical Character Recognition

Standard Optical Character Recognition engines can be used to extract the
text from the preprocessed subimages of single, horizontal text lines. Two
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Table 3.1. Page Segmentation Modes of Tesseract.

0 Orientation and script detection (OSD) only.
1 Automatic page segmentation with OSD.
2 Automatic page segmentation, but no OSD, or OCR.
3 Fully automatic page segmentation, but no OSD.
4 Assume a single column of text of variable sizes.
5 Assume a single uniform block of vertically aligned text.
6 Assume a single uniform block of text.
7 Treat the image as a single text line.
8 Treat the image as a single word.
9 Treat the image as a single word in a circle.
10 Treat the image as a single character.
11 Sparse text. Find as much text as possible in no particular order.
12 Sparse text with OSD.
13 Raw line. Treat the image as a single text line, bypassing hacks

that are Tesseract-specific.

open-source OCR engines - Tesseract [Smi07] and Ocropy1 - are used in this
thesis as they are freely available and frequently updated. The commercial
OCR engine ABBYY FineReader is selected for comparison.

Tesseract The OCR engine Tesseract provides pretrained models for dif-
ferent languages. In this thesis, the pretrained model for the English
language is used without any adjustments, as the focus of this thesis is
not to improve OCR of a specific engine. Tesseracts also offers some layout
analysis capabilities for removing graphic elements and conducting text
line detection. However, Tesseract is designed for analyzing document
images which are fundamentally different from scientific figures. Thus,
the layout analysis of Tesseract is deactivated in the experiments to follow.
Tesseract has fourteen so called Page Segmentation Modes2 (see Table 3.1)
which influence the recognition accuracy of Tesseract. In this thesis, since

1https://github.com/tmbdev/ocropy, last access: November, 2018
2Source: https://tesseract-ocr.github.io/tessdoc/ImproveQuality#page-segmentation-method,

last access: October, 2020
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it provided the best results, the Tesseracts Page Segmentation Mode is set
to ’Single Textblock’ to cover as many input types as possible.

Ocropy Ocropy is a collection of open source tools for document analysis
and Optical Character Recognition. It is designed for character recognition
from full-page documents like Tesseract. However, Ocropy has several
integrated constraints on parameters like minimum for image width and
minimum for image height, in order to assure good results. Like Tesser-
act, the OCR engine Ocropy provides a pretrained model for the English
language which is used in the experiments.

ABBYY The ABBYY FineReader is a widely used commercial Optical
Character Recognition engine. Similar to Tesseract, ABBYY FineReader
is able to recognize several languages, but only the English language
model is used here. A time-limited, free-of-charge developer license for
the ABBYY FineReader 11 was provided by ABBYY for the experiments.

Postprocessing

As recognition errors can happen, it can make sense to apply postpro-
cessing on the output of the OCR engines. In the following, three post-
processing methods are presented that do not make assumptions about
the text and do not need external knowledge.

Character Filtering A common indicator for recognition problems is the
presence of many ”dirty” symbols, i. e., special characters. One method is
to simply remove all special characters, i. e., all characters that are not a
white space, numbers, or characters from a-z or A-Z, from the recognized
strings and evaluate only the remaining characters. This approach makes
sense as recognition errors often result in special characters and removing
only those should improve the results while only losing a handful of
correct characters.

String Filtering A simplified version of the method that Sas and Zol-
nierek [SZ13] proposed is considered as well. It completely removes text
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lines if they contain too many special characters given a certain threshold.
Thus, strings containing few special characters are kept while strings with
many special characters, which are most likely noise, are removed.

Quantitative Assessment Chiang and Knoblock [CK15] proposed a method
that uses the number of components NCC that went into the OCR process
and the number of recognized components NRC as well as the number of
suspicious components NSC to calculate a recognition confidence:

RC =
NRC� NSC

NCC
(3.2.14)

Text lines with a recognition confidence below 50% are discarded. However,
since not all OCR engine provide the number of suspicious characters, an
adapted version is used that only relies on NCC and NRC. Chiang and
Knoblock also ignored the number of suspicious characters for longer text
lines.

3.3 Configurations of the Text Extraction Pipeline

Given the different methods described in the prior section, one can com-
bine them in various ways to create so-called pipeline configurations.

3.3.1 Unsupervised Pipeline Configurations

For the unsupervised approach, some methods are restricted in how
they can be combined as illustrated in Figure 3.8. Still, more than 24,000
configuration of the general pipeline (see Section 3.1) are possible given
the methods defined in Section 3.2 (excluding the supervised methods).

Given color images of scientific figures as input, one could build the
following, exemplary, unsupervised configuration to extract text from
these figures: First, one needs to select some preprocessing methods to
convert the color images into binary images. For example, one can select
the RGB to Grey conversion and binarization with Otsu for this step of the
pipeline. Next, one could choose the Connected Component Labeling for
region extraction and then apply the morphological grouping to create
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text lines from those regions. As preprocessing for the text recognition, a
calculation method like the Hough-based method is needed to estimate
the orientation of each text line. With this information, the text lines can be
rotated into horizontal orientation for text recognition. And thus, finally,
one could use the Tesseract Optical Character Recognition engine to extract
the text. Figure 3.9 shows this configuration.

Figure 3.8. An overview of the different possibilities to combine the methods of
the unsupervised text extraction pipeline into configurations.

Figure 3.9. One possible configuration of the unsupervised text extraction pipeline.

The specific configurations that are used in the experiments are de-
scribed in the respective experiment chapters.

3.3.2 Supervised Pipeline Configurations

For the supervised approach, the pipeline steps were reduced to two
steps by aggregating the region extraction and text identification step into
one text extraction step which will be performed by the complex neural
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network approach, which consists of multiple individual neural networks.
Figure 3.10 shows this configuration which was build and evaluated by
Morten Jessen [JBS19].

Figure 3.10. The supervised text extraction pipeline.

For the supervised approach, only the architecture of the first neural
network and the hyperparameter are being optimized. The details can be
found in the experiment description in Chapter 8. The only other variable
is the pretraining of the model and augmentations of the training data and
these details can be found in the experiment description in Chapter 8 as
well.
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Chapter 4

Experimental Apparatus for the
Evaluation of the Modular Text

Extraction Pipeline

In this chapter, the basis for all the following experiments are described.
This includes the datasets that are used as well as the evaluation measure-
ments.

4.1 Datasets

This section presents and describes the datasets that were used in the
experiments for evaluating the text extraction from scientific figures. First,
in Section 4.1.1, the datasets that already existed are presented. Second, in
Section 4.1.2, the manually created datasets and the process of how they
were created are described.

4.1.1 Existing Datasets

The following existing datasets have been used in the experiments of this
thesis. The first two datasets contain scientific images, while the latter two
are natural images with scene text which have been used to pretrain the
supervised models.
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CHIME

The Chart Image Dataset1 was created by members of the research group
of Prof. Chew Lim Tan (retired since June 2016) of the National University
of Singapore and consists of two sets of figures.

CHIME-R The first dataset consists of 115 real images that were collected
on the Internet or scanned from paper and is named CHIME-R in the
remainder of this thesis. The majority of the figures (75) are bar charts.
The remaining figures are pie charts (25) and line graphs (15). The gold
standard for the figures in the CHIME-R dataset was created by Yang
Li [YHT06]. Figure 4.1 shows a few example images of the CHIME-R
dataset. All text elements are annotated with their position and content
but not with an orientation.

CHIME-S The second dataset, which is named CHIME-S, consists of 85
synthetically generated images. This set mainly consists of line graphs (45)
and pie charts (35) and has only five bar charts. The gold standard was
created by Zhao Jiuzhou [Jiu06]. Figure 4.2 shows a few example images
of the CHIME-S dataset. Similar to the CHIME-R dataset, all text elements
are annotated with their position and content but not with an orientation.

DeTEXT

The DeTEXT dataset [YYP+15] consisted of 500 human-annotated, biomed-
ical figures. However, the original dataset does not seem to be available
anymore. But it was used as part of the ICDAR Robust Reading Challenge
2017 [YYY+17] from which a subset of 192 biomedical figures is available
which are used here. The dataset consists of the usual variety of figure
types, i. e., bar charts, pie charts, scatter plots. In addition it contains medi-
cal figures (real-life diagrams and abstracted diagrams) as well as figures
which contain subfigures with various figure types. Figure 4.3 shows a
few examples.

1https://www.comp.nus.edu.sg/~tancl/ChartImageDataset.htm, last access: September, 2017 (The
website is nowadays unavailable after the retirement of Prof. Chew Lim Tan)
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Figure 4.1. Four example figures from the CHIME-R dataset.

Only text elements which have at least one word with a length of mini-
mum two characters are annotated, e. g., single characters are not included.
For all text elements, the location, ground truth text and orientation is
given.

MS-COCO-Text

One of the datasets that is used for pretraining the supervised neural
network approach is the MS-COCO-Text dataset in Version 1.3 [VMN+16].
The MS-COCO-Text dataset is a subset of the MS-COCO dataset which
consists of natural images. The subset of 63,686 images is annotated with
145,000 text annotations. For pretraining, a subset of 17,237 images with
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Figure 4.2. Four example figures from the CHIME-S dataset.

English, machine-written text annotations were used. Figure 4.4 shows a
few examples.

Total-Text-Dataset

The Total-Text-Dataset [CC17] is the other dataset that is used for pre-
training the supervised neural network approaches. It is similar to the
MS-COCO-Text dataset as it contains natural images with text annotations
as well. The 1,555 images have in total 11,460 text annotations which can
be rotated or curved. Figure 4.5 shows a few examples.
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Figure 4.3. Four example figures from the DeTEXT dataset.

4.1.2 New Datasets

The Chart Image datasets do not contain any information about the orien-
tation of text elements even though a considerable amount of text elements
in scientific figures can be rotated. Thus, two datasets were manually
created to be able to evaluate more accurately the text extraction from
scientific figures which may contain rotated text elements. Next, the tool
and process that were used to annotate the text elements in the figures of
the new datasets are described. This section concludes with the description
of the two new datasets - Economics and DeGruyter.
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Figure 4.4. Four example figures from the MS-COCO-Text dataset.

Process of Dataset Creation

A self-created web-based tool was used to manually annotate the text
elements in the scientific figures. Figure 4.6 shows the annotation tool.
Every scientific figure is shown to the annotator at its original size. The
annotator is then asked to annotate all text elements inside the figure. A
text element is defined as sequence of alphanumerical characters (from
a standard English keyboard set) which are on a line and not divided
by more than approximately three blank-spaces on that line. First, the
rectangular bounding box needs to be aligned with the text element, i. e.,
the baseline needs to be rotated such that it fits the text element. Second,
the bounding box needs to be resized so that it is the minimal enclosing
bounding box. Third, the text of the element needs to be typed into the
system as it is, including for example any kind of typographical error
that might appear in the figures. Finally, the orientation of the bounding
box is calculated automatically. The tool stores for each text element the
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Figure 4.5. Four example figures from the Total-Text-Dataset.

information about its position, dimension, orientation and its content
(text).
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Figure 4.6. These six images were used to explain the interface of the annotation
tool to the users.

Economics

This dataset is created from a corpus of scientific open access documents
that were collected from the EconBiz portal2 for scientific economics

2https://www.econbiz.de,lastaccess:December,2018
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documents. The collected corpus consists of about 147,000 open access
documents (PDFs) which are presumably written in English according to
an applied language detection. From these 147,000 documents 111 million
uncompressed images were extracted using the pdfimages command of
xpdf-utils on unix systems. From this set of 111 million images, 200,000
candidate images for scientific figures were extracted by applying aggres-
sive thresholds: All images that have a width or height below 500 pixels
were discarded as optical character recognition has problems on small(er)
images. Additionally, images with a width or height above 2000 pixels
were discarded as well as these are not individual graphics but rather scans
of entire pages. From the candidate set, images were randomly picked and
- one at a time - presented to a human assessor to confirm/reject it based
on whether it is a scientific figure or not. A broad definition was used for
scientific figures, i. e., any image that could be classified as some kind of
numerical or categorical information visualization was considered to be a
scientific figure. Scans of the front page (or any other page), photos of the
authors, other natural images or purely stylistic elements were excluded
as well as figure which included non-English text. The random selection
resulted in a set of 121 scientific figures for which a gold standard was
manually created using the tool described above. The selected subset of
121 figures resembles a wide variety of scientific figures from bar charts to
maps. Figure 4.7 shows a few example images.

DeGruyter

The other dataset is composed of scientific figures from scholarly books
that were separately made accessible by DeGruyter3 under an open-access
creative commons license. Figures from books in multiple languages were
available from which ten books with figures in English were selected.
Most of the selected books are from the chemistry domain. From this
set of figures with English text, 120 figures were randomly selected and
annotated with the tool described above, the same tool that has been used
to annotate the Economics dataset. Figure 4.8 shows a few examples.

3https://www.degruyter.com/, last access: December, 2018
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Figure 4.7. Four example figures from the Economics dataset.

4.1.3 Summary

Table 4.1 highlights some statistics about the main datasets containing
scientific figures that were used in the experiments. This allows a compar-
ison of the datasets and shows the differences between them. Both, the
CHIME-R and CHIME-S datasets contain figures with an on average lower
resolution than the Economics and DeGruyter datasets, which are almost
equal. With respect to the average number of characters, words and text
elements in a figure, the distribution of Economics and DeGruyter are
similar, with about twice as many as the CHIME datasets which are similar
to each other as well. In the experiments with the supervised approaches,
also the DeTEXT dataset was used which has similar characteristics to the
Economics and DeGruyter dataset.
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Figure 4.8. Four example figures from the DeGruyter dataset.

4.2 Evaluation Measurements

The text extraction pipeline in Section 3.1 consists of three main steps.
The first step outputs a set of region, the second step outputs a set of
text elements and the third and final step extends the text elements with
the text recognized from the text elements. Evaluations on two different
levels are conducted: An evaluation of the text element bounding boxes
generation from the text detection step and an evaluation of the text
recognition on word/text element level. Please note that an evaluation
of the region detection or the text recognition on character level is not
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Table 4.1. Number of figures, average figure width and height and average number
of text elements (TE), words and characters (Chars) per figure.

Dataset # Figures Width Height # TE # Words # Chars
Economics 121 982 681 25 35 151
DeGruyter 120 959 619 24 34 149
CHIME-R 115 714 454 14 18 69
CHIME-S 85 440 320 12 18 76
Total 441 801 535 19 27 114

possible due to insufficient test datasets, i. e., there are no datasets with
the information needed for such evaluations.

The gold standard that is used for evaluation is constructed as follows:
The gold standard consists of text elements which represent single lines of
text taken from a scientific figure. Each text line consists of one or multiple
words which are separated by blank space. Each word may consist of any
combination of characters and numbers. Every text line is defined by a
specific position, size and orientation. The pipeline configurations output
text elements with the same attributes. Section 4.2.1 describes the methods
for evaluating the text detection and Section 4.2.2 describes the methods
for evaluating the text recognition.

4.2.1 Text Detection

The evaluation of the text detection is conducted by matching elements
from the gold standard and the pipeline output via their bounding boxes.
For each bounding box in the gold standard, the Intersection-over-Union
(IoU) - also known as Jaccard Index [Jac12] - on the pixel-level is computed
with all bounding boxes that were extracted by the pipeline.

ao =
area(Be X Bgt)

area(Be Y Bgt)
(4.2.1)

Two bounding boxes are matched if the IoU between the bounding boxes
is larger than a pre-defined threshold. This reduces the error introduced
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Figure 4.9. Definition of True Positives, False Positives and False Negatives after
the text element matching process. Blue elements are from the gold standard. Red
elements are generated by the pipeline.

through elements which are an incorrect match or only partially matches
and only have a small overlap with the gold standard.

The first output to evaluate is the detection of the text element, i. e.,
whether all text element bounding boxes were determined correctly. The
evaluation of the detection of text line elements is conducted on a macro
(element) and micro (pixel) level. For this evaluation, an empirical test
of different IoU thresholds ranging from 5% up to 30% showed that on
average a threshold of 10% gives the best results regarding finding correct
matches (True Positives) and avoiding incorrect matches (False Positives). It
is noteworthy that multiple text elements from the pipeline may exceed the
IoU threshold. Thus, a gold standard element can have multiple matching
elements and a text element from the pipeline can be assigned to multiple
elements from the gold standard if it fulfills the matching constraint for
each match.

On the macro level, the evaluation focuses on whether all elements
in the gold standard have a matching element in the output of the text
extraction pipeline. Figure 4.9 illustrates this measure. If at least one match

61



4. Experimental Apparatus for the Evaluation of the Modular Text
Extraction Pipeline

is found, given the constraints outlined above, for an element from the
gold standard, it counts as a True Positives, regardless of size, orientation
and content. If no match was found, it is considered as a False Negatives. A
False Positives is an element from the pipeline output which has no match.
Given the True Positives and False Positives/False Negatives, it is possible
to compute Precision (P), Recall (R) and F1-Measure (see Appendix B) for
assessing the text location detection on the macro level. Additionally, the
ER which is the number of elements recognized by the pipeline divided
by the number of elements in the gold standard and the MER which is
the number of matched items from the pipeline divided by the number
of elements of the gold standard are computed. These ratios give an idea
about how greedy a configuration is at generating elements and whether
gold standard elements get matched by multiple elements.

For the micro level evaluation, the True Positives elements are further
analyzed by calculating the text element coverage. For each gold standard
text element, the pixel-wise overlap is taken into account and Precision,
Recall and the harmonic F1-Measure are calculated for its mappings. The
True Positives in this case are the overlapping pixel and the False Positives
are those pixel from the text elements from the pipeline which are outside
the gold standard element. The False Negatives are the pixels of the gold
standard element which were not covered by a text element from the
pipeline. These values are averaged over all gold standard text elements in
a figure.

In the optimization of the supervised approach, a slightly different
metric is used, the Average Precision (AP), which has been used in different
challenges when evaluating supervised approaches [EVW+10; YYY+17].

For each detected bounding box, the IoU is calculated using Equa-
tion 4.2.1, but with different thresholds than those used with the macro
and micro level measures above. Commonly used thresholds are 50%
and 75% (in comparison to the 10% used above). In addition, if multiple
predicted bounding boxes match the same ground truth element then only
the bounding box with the highest confidence score is considered a True
Positives and all other matches for that ground truth element are marked
as False Positives. This stands in contrast to the assumption made for
the macro and micro measures described above which allowed multiple
matches. Given the True Positives, True Negatives, False Positives and
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False Negatives, one can calculate Precision and Recall as mentioned above
while considering the confidence scores. And from those one can compute
the Average Precision using the following equation:

AP =
1
11 ∑

rP{0,0.1,...,1}
pinterp(r) (4.2.2)

With the precision interpolated at each Recall level r by taking the maxi-
mum Precision: pinterp(r) = maxr̃:r̃¥r p(r̃) (4.2.3)

where p(r̃) is the measured Precision at Recall r̃.

4.2.2 Text Recognition

The text recognition, which is conducted in the third and final step of the
pipeline, is evaluated on a macro(figure)- and micro(element)-level as well.
However, an evaluation on character/pixel-level is not possible since that
information is missing in the gold standard.

The Levenshtein Distance (LD) [Lev66] (see also Appendix B) is used
to evaluate the text recognition on both the macro(figure)-level and the
micro(element)-level. On the macro-level, for each figure, all characters
from the text elements of the gold standard are combined into one string.
Likewise, a string for the text elements extracted by the pipeline is created.
The characters in both strings are sorted alphabetically and the Levenshtein
Distance is computed for both strings. This approximates the overall
number of operations needed to match these strings without considering
the position of the individual characters. This measure is denoted as macro
Levenshtein Distance (macro-LD/ωLD) in the remainder of this thesis. Since
this macro Levenshtein Distance depends on the number of characters
inside a figure, a second macro-level measure, the OPC score, is computed
by dividing the Levenshtein Distance by the number of characters in the
gold standard. This normalizes the macro Levenshtein Distance and makes
it comparable across scientific figures with different amounts of characters.
On the micro level, the Levenshtein Distance can be applied as well. The
Levenshtein Distance is calculated for each gold standard element and
the average over all gold standard elements is reported for the whole
figure. Since multiple text elements from the pipeline can be matched to
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a gold standard text line, it is necessary to combine their textual content
into one string. These extracted elements are combined using the position
information of the bounding boxes. All elements are rotated according to
their orientation and then are combined by starting at the top left element
and ending with the bottom right element. The textual content of the
elements is concatenated in that order and the resulting string is compared
with the gold standard text using the Levenshtein Distance. If no match is
found for a gold standard element or an element from the text extraction
pipeline than the length of associated text is added to the calculation of the
average Levenshtein Distance. This measure is called micro Levenshtein
Distance (micro-LD/µLD) in the remainder of this thesis.

One drawback of the Levenshtein Distance is that is does not take
the order of the characters into account. Another option for evaluating
the text recognition is a n-grams based evaluation which can also be
done on the micro(word) or macro(figure) level and takes the order of
characters into account up to a certain degree. For the latter, all n-grams
in a figure are collected into one set instead of comparing the n-gram
sets between matching elements. On the n-grams, the standard evaluation
metrics Precision (P), Recall (R) and F1-Measure (F1) can be defined as
follows:

P =
|ExtrX Rel|
|Extr|

, R =
|ExtrX Rel|

|Rel|
, F =

2 � P � R
P + R

Extr refers to the n-grams as they are computed from text elements that
are extracted from a figure. Rel refers to the relevant n-grams from the
gold standard. Both Extr and Rel are multisets, so its necessary to adjust
the definitions of P and R. Multisets can appear insofar as the same n-
gram can appear multiple times in both the extractions result from the
pipeline as well as the gold standard. To properly account for the number
of occurrences of an n-gram in Extr or Rel, a counter function CA(x) :=
|{x|x P A}| (as an extension of a set indicator function) over a multiset A
is defined. For an intersection of multisets A and B, the counter function
is defined as follows:

CAXB(x) := min{CA(x), CB(x)} (4.2.4)
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Based on CAXB(x), the following definitions of Precision and Recall for
multisets can be used:

P =
∑xPExtrYRel CExtrXRel(x)

∑xPExtr CExtr(x)
(4.2.5)

R =
∑xPExtrYRel CExtrXRel(x)

∑xPRel CRel(x)
(4.2.6)

In addition, it can happen that one of the sets Extr and Rel is empty. This
refers to the situation when no text element got extracted where it should
have been, i. e., Extr = H and Rel � H. In this case, the definition of
P := 0 and R := 0 (false negative) is used following Groot et al. [GHT00].
In the other case where some text element got extracted but there is no
match in the gold standard, i. e., Extr � H and Rel = H, the definition
P := 0 and R := 1 (false positive) is used. Since scientific figures often
contain sparse and short text as well as short numbers, only n-grams of
length 1, 2 and 3 are evaluated.
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Chapter 5

Experiment I: Baseline
Comparison with Optical

Character Recognition Engines

In this experiment, comparisons between popular Optical Character Recog-
nition engines and the proposed unsupervised text extraction pipeline
are made to answer the first research question RQ1 - ”How good are two
common, open-source document Optical Character Recognition (OCR)
engines at extracting text from scientific figures?”. In its core, text extrac-
tion from scientific figures is an OCR problem. Thus, it is interesting to see
how well OCR engines can handle scientific figures even though they are
designed for text extraction from document images which have different
characteristics. While in document images text is usually well separated
from graphical elements, they are often mixed up in scientific figures. With
this experiment, the goal is to get a better understanding of the capabilities
of OCR engines to identify open challenges with regard to scientific figures.

5.1 Procedure

Here, two OCR engines are analyzed and compared with the unsupervised
text extraction pipeline of this thesis. First, a comparison with the open-
source Optical Character Recognition engine Tesseract is made. Second, a
comparison with the commercial ABBYY FineReader is conducted. Both
experiment procedures are described below.
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Open-Source OCR Engine: Tesseract The Tesseract OCR engine [Smi07]
is a well known and widely used [SZ13; BS15b; MV11; SKC+11] open-
source solution for text recognition. Tesseract was originally designed for
text extraction from scanned document images, but, due to its accessibility
as an open-source tool, it has been used in other contexts as well. To assess
the capabilities of Tesseract for text extraction from scientific figures, a
comparison with the unsupervised pipeline has been conducted [BS15b].
Tesseract is used in its default mode, i. e., including layout analysis over
the entire figure. Tesseract supports a rotation margin of �15° [Smi95]. In
addition, it can detect text rotated at �90°. It is noteworthy that Tesseract
was not specifically trained for recognizing text in scientific figures and
instead the provided default English language model was used.

In total, three extraction approaches are compared to each other, two
based on Tesseract and one unsupervised pipeline configuration. The first
Tesseract-based approach T1 just applies Tesseract as it is. The second
Tesseract-based approach T2 executes multiple runs of Tesseract over
the figure at different rotation angles of 0°, �45° and �90°. The results
from the different orientations are merged and in case of overlaps the
element with the greatest width is taken. The pipeline configuration P1
has been developed as a contribution of this thesis and has been published
prior [BS15b]. It starts with its adaptive Otsu binarization and Connected
Component Labeling for region extraction, followed by heuristic filters
and DBSCAN for clustering into text elements. These are further subdivided
into individual lines with angle-based Minimum Spanning Tree clustering
and the orientation for each text line is estimated with the Hough-based
method. The text of each line is recognized with Tesseract.

All three approaches are evaluated on the Economics dataset against
the gold standard using the n-gram based text recognition evaluation
described in Section 4.2.2.

Commercial OCR Engine: ABBYY FineReader The ABBYY FineReader
Optical Character Recognition engine is a commercial OCR engine which
has been used by multiple researchers [JRW+07; CK15]. In this experiment,
the ABBYY FineReader A1 is compared with two unsupervised pipeline
configurations P2-O and P2-T. Both unsupervised pipeline configurations
apply adaptive Otsu binarization, Connected Component Labeling, Heuris-
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tic filters, DBSCAN, angle-based MST clustering and orientation estimation
with the Single String Orientation Detection algorithm. They differ with
respect to the OCR engine that is used, i. e., Tesseract or Ocropy.

Modified versions of the Economics and DeGruyter datasets are used
to assess the capabilities of the ABBYY FineReader in comparison with
the pipeline. Since the extraction of arbitrarily rotated text is the most
challenging aspect for common OCR engines and since ABBYY FineReader
has a smaller rotation tolerance than Tesseract, both datasets are duplicated
and modified. One subset of each datasets contains only the horizontal
text and the other version contains only rotated text. The information from
the gold standard is used to either remove horizontal text which is defined
as text with an orientation angle between �2 and 2 degrees or to remove
rotated text which is all the text lines which have an orientation outside the
range of �2 to 2 degrees. The F1-Measure on macro- and micro-level for
text detection as well as the macro- and micro-level Levenshtein Distance
are used to compare the approaches.

5.2 Results

In this section, the results for the comparison with the optical character
recognition engines Tesseract and ABBYY FineReader are presented.

Open-Source OCR Engine: Tesseract This section presents the results
of the evaluation of the Tesseract OCR engine in comparison with the
unsupervised text extraction pipeline. First, descriptive statistics of the
gold standard and the extraction results of the Economics datasets are
presented. Subsequently, the evaluation results in terms of Precision, Recall
and F1-Measure for figure and word-level evaluation of the Tesseract
approaches and the P1 pipeline configuration.

Table 5.1 presents the average numbers and standard deviation (in
brackets) with regard to n-grams, words and word length for both Tesser-
act based approaches (T1/T2), the unsupervised text extraction pipeline
configuration (P1) and the gold standard (GS). Table 5.1 shows that the P1
detects at least 1.5 as many n-grams and words as T1 and about 20% some
more than T2. Compared with the gold standard, P1 extracts about 10%
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more n-grams and words. In addition T1, T2 and P1 extract words shorter
than the gold standard. Overall, high standard deviations can be observed
in the extraction results as well as the gold standard.

Table 5.1. Average number of n-grams, average number of words and average
word length for GS, P1, T1 and T2 on the Economics dataset

unigrams bigrams trigrams words length

GS 150.65 115.93 84.95 35.46 4.22
(122.28) (103.09) (85.61) (22.24) (1.48)

P1 177.21 127.34 89.34 50.07 3.63
(128.21) (100.51) (79.35) (31.95) (2.69)

T1 106.30 80.17 60.79 25.21 4.15
(87.71) (69.12) (54.54) (22.12) (2.25)

T2 135.08 100.20 75.08 35.25 4.08
(125.56) (98.20) (78.10) (33.94) (1.95)

The mean Precision, Recall and F1-Measure for the micro-level n-grams
evaluation in Table 5.2 (standard deviation in brackets) show a relative
improvement of about 30% on average for P1 compared with T1. While the
F1-Measure of P1 for unigram, bigrams and trigrams is at minimum 0.47,
T1 achieves only a maximum of 0.42. The improvement was verified using
significance tests, i. e., it was checked whether the two distributions ob-
tained from T1/T2 and P1 significantly differ. Table 5.2 reports the results
for the second approach based on Tesseract (T2). Comparing the results
for P1 and T2 shows a similar difference, but for Recall over unigrams and
F1-Measure over trigrams the improvement is smaller. Here, all differences
are significant except for the Recall and F1-Measure over trigrams. Finally,
one can observe high standard deviations for all measures. For details on
the significance tests please refer to Böschen and Scherp [BS15b].

Table 5.3 contains the results for the evaluation on the macro-level (fig-
ure). While having on average higher values for all measures in both com-
parisons, the relative improvement for Precision, Recall and F1-Measure
compared with the micro-level evaluation decreases. The significance of
the results is only given for Recall and F1-Measure, but not for Precision.
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Table 5.2. Mean micro Precision, micro Recall, micro F1-Measure for T1, T2 and P1

µPrecision µRecall µF1-Measure

P1
unigram .50 (0.41) .68 (0.36) .47 (0.39)
bigram .58 (0.39) .54 (0.38) .54 (0.34)
trigram .52 (0.39) .48 (0.37) .49 (0.37)

T1
unigram .37 (0.36) .48 (0.36) .36 (0.35)
bigram .42 (0.33) .42 (0.34) .42 (0.33)
trigram .42 (0.31) .42 (0.31) .36 (0.33)

T2
unigram .37 (0.37) .51 (0.38) .36 (0.36)
bigram .42 (0.34) .42 (0.35) .42 (0.34)
trigram .42 (0.32) .42 (0.32) .42 (0.32)

Table 5.3. Mean macro Precision, macro Recall, macro F1-Measure for T1/T2/P1

ωPrecision ωRecall ωF1-Measure

P1
unigram .67 (0.23) .79 (0.20) .71 (0.21)
bigram .60 (0.27) .67 (0.25) .62 (0.25)
trigram .57 (0.29) .60 (0.29) .57 (0.28)

T1
unigram .67 (0.29) .54 (0.31) .58 (0.30)
bigram .60 (0.33) .50 (0.33) .53 (0.32)
trigram .55 (0.35) .48 (0.34) .49 (0.34)

T2
unigram .65 (0.25) .59 (0.29) .60 (0.26)
bigram .57 (0.31) .52 (0.31) .53 (0.30)
trigram .51 (0.33) .50 (0.34) .49 (0.32)

Commercial OCR Engine: ABBYY FineReader Two separated evalua-
tions were conducted as described in Section 5.1. Table 5.4 shows the
detailed results of the experiments on horizontal text as well as non-
horizontal text for both the ABBYY FineReader configuration A1 and the
unsupervised pipeline configurations P2-T and P2-O. The results show
that the ABBYY FineReader OCR engine can extract horizontal text very
well. The configuration A1 achieves the best ωF1 score of 0.75 and the
second best µF1 score of 0.63 which is only a little behind the best score of
0.64 for the configuration P2-T for text detection. With respect to the text
recognition, configuration A1 outperforms the unsupervised pipeline con-
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figurations on horizontal text elements by a large margin with a µLD score
of 2.02, a ωLD score of 44.86 and an OPC score of 0.28. However, graphic
elements and rotated text are problematic and are falsely recognized. Thus,
for the rotated text, the modified linear pipeline configuration P2 achieves
better results. For text detection on rotated text, it outperforms the ABBYY
OCR engine by roughly 50%. For text recognition, however, the results are
quite similar.

Table 5.4. Macro F1-Measure (ωF1), micro F1-Measure (µF1), Average micro Leven-
shtein Distance (µLD), Average macro Levenshtein Distance (ωLD) and Operations
Per Character (OPC) for standalone ABBYY FineReader A1 and the configuration
P2-T/O using Tesseract as well as Ocropy as OCR engine.

Config. ωF1(SD) µF1(SD) µLD(SD) ωLD OPC
only horizontal text

A1 0.75 (0.20) 0.63 (0.16) 2.02 (2.61) 44.86 0.28
P2-T 0.70 (0.20) 0.64 (0.12) 4.03 (3.21) 70.26 0.51
P2-O 0.68 (0.21) 0.55 (0.18) 3.28 (3.18) 69.57 0.49

only rotated text
A1 0.27 (0.21) 0.33 (0.15) 12.59 (9.43) 84.97 1.58
P2-T 0.49 (0.29) 0.64 (0.21) 17.46 (14.74) 82.01 1.76
P2-O 0.47 (0.28) 0.40 (0.22) 11.75 (9.84) 72.51 1.03
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Chapter 6

Experiment II: Comparison of
Unsupervised Approaches from

the Related Work

This experiment conducts a thorough evaluation of unsupervised pipeline
configurations motivated by the approaches that were identified from
the related work to address the second research question RQ2 - ”Which
unsupervised approach is the state-of-the-art, measured by the accuracy
of the text localization and recognition quality, in extracting text from
scientific figures?”. First, the unsupervised pipeline configurations from
the related work are described. Second, the experiment procedure is
explained. Third, the results of the experiment are presented.

6.1 Pipeline Configurations

Seven pipeline configurations are derived from the related work. As some
of the approaches rely on substeps with supervised methods or manual in-
teraction, certain modifications had to be made to keep the configurations
unsupervised and automated. The configurations are described in detail
below. Each linear configuration inspired by the literature has an alphanu-
merical identifier (e. g., L1). For a better distinguishability, the identifier is
extend where needed with the name of the first author whose paper was
the main inspiration for that specific configuration (e. g., L1[Huang]).

The first configuration L1[Huang] is based on the work of Huang et
al. [HTL03; HTL05]. First, regions are extracted with Connected Compo-
nent Labeling. As no binarization was specified, binarization using Otsu’s
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method was chosen to prepare the input for the Connected Component
Labeling algorithm. Heuristic filters are applied to separate graphic and
text element and then the text regions are grouped using the Gravity
method. Different orientations are ignored and all text is assumed to be
horizontal as the original did not have such a component. Finally, the
grouped regions are processed with Tesseract, since no specific OCR engine
was mentioned in their papers, and no postprocessing is used.

Based on the work of Jayant et al. [JRW+07], the second configura-
tion L2[Jayant] was created. Jayant et al. trained a supervised system to
recognize text. Thus, as a replacement, binarization with Otsu’s method
and Connected Component Labeling is selected. Subsequently, the regions
are clustered with a Minimum Spanning Tree and the orientation is approx-
imated by minimizing the Perpendicular Squared Distance. The original
work mentions commercial OCR engines like Omnipage1 for text recogni-
tion, but since the focus of this research is not primarily on comparing
existing OCR engines, Tesseract was used to achieve a better comparability.
Their proposed manual postprocessing and correction is omitted to keep
the pipeline automated.

The third configuration L3[Xu] is motivated by the work of Xu and
Krauthammer on text detection in biomedical images [XK10]. They did not
specify which binarization algorithm they use, therefore Otsu binarization
is selected for this configuration. Next, the edge image is computed from
the binary image and the pivoting region extraction is applied to extract
all text regions. Their proposed approach ends here. However, to complete
this configuration and make it comparable to the other configurations,
the following methods are used: The regions are filtered using heuristics
and grouped into lines using DBSCAN and angle-based MST clustering. The
orientation of each line is estimated via the Hough-based method and
the text of each line candidate is recognize with the Tesseract OCR engine
without postprocessing.

The fourth configuration L4[Sas] is inspired by the work of Sas and
Zolnierek [SZ13]. The configuration starts with a binarization using Otsu’s
method. Next, regions are extracted with Connected Component Label-
ing. Subsequently, heuristic filtering similar to the original approach is

1https://www.nuance.com/print-capture-and-pdf-solutions/optical-character-recognition/

omnipage.html last visited: December 2018
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applied to filter graphical elements. Sas and Zolnierek’s approach relies
on a supervised decision tree which is replaced by the unsupervised line
generation with a Minimum Spanning Tree. This configuration does not
use any method for orientation estimation since the original work by Sas
and Zolnierek does not have such a feature. Tesseract is used for text
recognition since it was also used in the original paper. In the postprocess-
ing step, all strings that contain too many special characters are removed
which they similarly used in their work.

The fifth configuration L5[Chiang] is a modified version of the su-
pervised approach for text extraction that was proposed by Chiang and
Knoblock [CK15]. Different from the previous configurations, this config-
uration uses color quantization to generate multiple binary images. The
suggested approach relies on manual training data for identifying text
color and text region extraction, which is replaced by Connected Compo-
nent Labeling on each binary image in this configuration. Subsequently,
heuristic filtering and morphological clustering is applied on the regions
to identify text line candidates. The orientation of each text line candidate
is estimated with the Single String Orientation Detection method. Chiang
and Knoblock used a commercial OCR engine which, in this configura-
tion, is replaced by the Tesseract OCR engine for comparability. Finally,
quantitative postprocessing is applied to the recognized text elements.

The sixth configuration L6[Fraz] is vaguely inspired by the approach
of Fraz et al. [FSE15] for scene text detection and recognition. It starts
with color quantization followed by Connected Component Labeling. The
original approach uses a supervised Support Vector Machine to form
words, which had to be replaced with unsupervised methods from the
methods set. The extracted regions are filtered and DBSCAN is applied,
followed by a MST clustering into text lines. The orientation of the text lines
is calculated using the Hough method and the text is recognized using
Tesseract. No postprocessing is applied.

The seventh configuration L7[Böschen] has been developed as a contribu-
tion of this thesis and has been published prior [BS15b]. The configuration
starts with its adaptive Otsu binarization and Connected Component
Labeling for region extraction. The extracted regions are filtered with
heuristics and the remaining regions are clustered with DBSCAN into text
elements. The text elements are further subdivided into text line candi-
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dates by the angle-based MST clustering. The orientation for each text line
candidate is estimated with the Hough-based method. Finally, Tesseract is
used to recognize the text. No postprocessing is applied.

6.2 Procedure

Four datasets (Economics, DeGruyter, CHIME-R, CHIME-S) are used when
comparing the different approaches. Each of the seven configurations is
used to process every figure from all four datasets. The configurations
are compared with respect to their text detection quality with the macro-
and micro-level Precision, Recall and F1-Measure as well as the Element
Ratio (ER) and Matched Element Ratio (MER). Their text recognition quality
is evaluated with the macro- and micro-level Levenshtein Distance and
the Operations Per Character (OPC) score. For reasons of simplicity, only
the average values over all datasets for all configurations as well as for
each dataset separately are reported and no individual results per figure.
First, the average micro Precision, micro Recall and micro F1-Measure are
computed over the elements of each figure. Second, the macro and micro
level results for Precision, Recall and F1-Measure in terms of mean and
standard deviation are computed over all individual results per figure. The
micro Levenshtein Distance is reported as the average of the mean values
per figure and the average standard deviation. The macro Levenshtein
Distance is defined by the mean and standard deviation over all figures
and the normalized OPC score.
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Table 6.1. Macro Precision (ωP), macro Recall (ωR), macro F1-Measure (ωF1),
Element Ratio (ER) and Matched Element Ratio (MER). Results are averaged over
all datasets for the configurations.

Config. ωP ωR ωF1 (SD) ER MER
L1 0.61 0.43 0.48 (0.28) 0.77 0.57
L2 0.59 0.45 0.49 (0.28) 0.83 0.51
L3 0.73 0.35 0.45 (0.26) 0.43 0.39
L4 0.63 0.47 0.54 (0.23) 0.80 0.59
L5 0.52 0.50 0.53 (0.23) 1.37 0.60
L6 0.55 0.51 0.54 (0.25) 1.44 0.72
L7 0.66 0.55 0.58 (0.25) 1.04 0.69

6.3 Results

This section presents the results for the configurations of the comparison
of unsupervised approaches from the related work with respect to text
localization and text recognition. The macro text detection results for the
configurations computed over all datasets are reported in Table 6.1. The
best macro F1-Measure is achieved by configuration L7[Böschen] with a
value of 0.58. The worst macro F1-Measure of 0.45 is achieved by con-
figuration L3[Xu]. Looking at each dataset separately as documented in
Table 6.2, one can see that configuration L7[Böschen] works best for the
DeGruyter (0.70) and CHIME-R (0.63) datasets while L4[Sas] has the best
result for the CHIME-S (0.55) and Economics (0.57) datasets. The configu-
ration L3[Xu] has the worst macro F1-Measure for all four datasets. The
micro text detection results in Table 6.3 shows the best micro Precision
of 0.79 for L1[Huang], the best micro Recall of 0.59 for L4[Sas] and the
best micro F1-Measure of 0.57 for L1[Huang]. The configuration L3[Xu]
has again the worst average micro F1-Measure. The individual results per
dataset for all configurations are shown in Table 6.4. The best result for the
Economics dataset is by L1[Huang] with 0.48. For the DeGruyter dataset
L6[Fraz] and L7[Böschen] have the same micro F1-Measure of 0.62 but the
latter has a slightly lower standard deviation. On CHIME-R, L1[Huang]
achieves the best micro F1-Measure of 0.66 and on CHIME-S L4[Sas] comes
out on top with a micro F1-Measure of 0.55.
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Table 6.2. Average macro F1-Measure and Standard Deviation per configuration
for the individual datasets Economics, DeGruyter, CHIME-R and CHIME-S.

Config. Economics DeGruyter CHIME-R CHIME-S
L1 0.45(0.29) 0.55(0.30) 0.50(0.25) 0.34(0.26)
L2 0.47(0.29) 0.50(0.27) 0.52(0.26) 0.33(0.22)
L3 0.38(0.24) 0.50(0.24) 0.48(0.26) 0.29(0.18)
L4 0.57(0.25) 0.51(0.24) 0.53(0.21) 0.55(0.23)
L5 0.53(0.22) 0.54(0.21) 0.56(0.24) 0.49(0.25)
L6 0.48(0.26) 0.62(0.21) 0.58(0.24) 0.41(0.21)
L7 0.55(0.25) 0.70(0.18) 0.63(0.23) 0.43(0.25)

Table 6.3. Micro Precision (µP), micro Recall (µR) and micro F1-Measure (µF1).
Results are averaged over all datasets for the configurations.

Config. µP µR µF1 (SD)
L1 0.79 0.54 0.57 (0.20)
L2 0.41 0.32 0.32 (0.21)
L3 0.33 0.34 0.30 (0.22)
L4 0.52 0.59 0.47 (0.21)
L5 0.53 0.41 0.42 (0.21)
L6 0.65 0.54 0.54 (0.23)
L7 0.60 0.49 0.50 (0.24)

Table 6.4. Average micro F1-Measure and Standard Deviation per configuration
for the individual datasets Economics, DeGruyter, CHIME-R and CHIME-S.

Config. Economics DeGruyter CHIME-R CHIME-S
L1 0.48(0.17) 0.58(0.22) 0.66(0.18) 0.47(0.22)
L2 0.28(0.19) 0.33(0.20) 0.41(0.22) 0.21(0.19)
L3 0.23(0.17) 0.34(0.21) 0.37(0.26) 0.16(0.11)
L4 0.42(0.18) 0.44(0.23) 0.49(0.21) 0.55(0.20)
L5 0.37(0.19) 0.48(0.20) 0.45(0.22) 0.35(0.23)
L6 0.42(0.21) 0.62(0.15) 0.62(0.25) 0.45(0.25)
L7 0.40(0.20) 0.62(0.14) 0.60(0.26) 0.31(0.21)
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The text recognition results are presented in Table 6.5 and the individ-
ual results per dataset for all configurations are presented in Table 6.6.
The best results are obtained with L7[Böschen] with 0.67 Operations Per
Character, an average micro Levenshtein Distance of 6.23 and an average
macro Levenshtein Distance of 108.81. Only configuration L5[Chiang] has
a slightly better average micro Levenshtein Distance (6.07).

Table 6.5. Average micro Levenshtein Distance (µLD) and macro Levenshtein
Distance (ωLD) and Operations Per Character (OPC) over all datasets for the
configurations using Tesseract.

Config. µLD(SD) ωLD(SD) OPC
L1 6.65 (5.41) 126.35 (138.95) 0.71
L2 7.92 (5.56) 150.25 (140.59) 1.13
L3 7.06 (5.41) 125.45 (134.88) 0.74
L4 6.67 (4.82) 122.28 (141.03) 0.70
L5 6.07 (5.08) 120.12 (125.87) 0.71
L6 6.72 (6.02) 135.64 (201.31) 0.85
L7 6.23 (4.93) 108.81 (108.53) 0.67

Table 6.6. Average micro Levenshtein Distance and Standard Deviation per configu-
ration for the individual datasets Economics, DeGruyter, CHIME-R and CHIME-S.

Config. Economics DeGruyter CHIME-R CHIME-S
L1 5.69(3.33) 5.69(3.74) 6.75(6.95) 7.94(6.13)
L2 7.15(3.62) 7.97(3.85) 7.94(7.25) 8.36(6.34)
L3 6.27(3.46) 6.46(3.56) 6.99(7.14) 7.88(6.09)
L4 6.00(3.24) 6.13(3.25) 7.10(6.25) 7.29(5.64)
L5 5.27(3.11) 4.96(2.78) 6.65(7.21) 6.74(5.30)
L6 5.74(3.34) 6.53(5.87) 6.81(7.76) 7.26(5.55)
L7 5.42(3.06) 4.88(2.58) 6.51(6.85) 7.21(5.34)
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Chapter 7

Experiment III: Optimization of
the Unsupervised Approach

This chapter presents a more in-depth analysis of the unsupervised meth-
ods that were extracted from the related work to answer the third research
question RQ3 - ”Can a new, unsupervised approach combining existing
and new methods improve on the text location and extraction quality?”
to optimize the unsupervised approach. Based on the results of the previ-
ous experiment, a systematic comparison of the different unsupervised
methods for the different steps of the pipeline is conducted to find the
overall best unsupervised configuration. First, the new, unsupervised
pipeline configurations are described. Second, the experiment procedure
is explained. Third, the results of the experiment are presented.

7.1 Pipeline Configurations

The seventh configuration L7[Böschen] that was motivated from the related
work has shown the on average best results in the previous experiment
(see Chapter 6). The configuration starts with adaptive Otsu binarization
and Connected Component Labeling for region extraction. The extracted
regions are filtered with heuristics and the remaining regions are clustered
with DBSCAN into text elements. The text elements are further subdivided
into text line candidates by the angle-based Minimum Spanning Tree clus-
tering. The orientation for each text line candidate is estimated with the
Hough-based method. Finally, Tesseract is used to recognize the text. How-
ever, some of the other configurations showed competitive results. Thus,
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in this experiment, the configuration L7[Böschen] is selectively modified to
determine whether it can be further improved.

The systematic modifications are organized along the steps of the
general pipeline in Figure 3.8. Each of the systematic configurations has
an alphanumeric identifier (e. g., M01). The identifier is extended with an
abbreviation of the main change with respect to the base configuration L7,
if needed. In all configurations, both open source OCR engines (Tesseract
and Ocropy) and the commercial ABBYY FineReader OCR engine are used
to generate the results. The last character of the identifier of a configuration
clarifies which OCR engine is used. Since the base configuration L7[Böschen]
uses only Tesseract, it is also assessed with the other two OCR engines:
Ocropy and ABBYY FineReader.

The following configurations are evaluated in this experiment. They
differ from the base configuration L7[Böschen] with respect to only one
module of the text extraction pipeline:

� Configuration M01[NIBLACK]-T/O/A uses Niblack instead of adaptive
Otsu for binarization.

� Configuration M02[OTSU]-T/O/A uses standard Otsu for binarization.

� Configuration M03[PIVOT]-T/O/A exchanges the binarization algorithm
and Connected Component Labeling with color quantization and the
pivoting region extraction.

� Configuration M04[NOFILTER]-T/O/A differs from the base configura-
tion by not applying the optional heuristic filtering method.

� Configuration M05[GRAVITY]-T/O/A uses the Gravity Grouping instead
of DBSCAN and the angle-based MST clustering.

� Configuration M06[MST]-T/O/A applies only the (normal) Minimum
Spanning Tree clustering to cluster regions and create text lines.

� Configuration M07[MORPH]-T/O/A uses the morphological text line
generation.

� Configuration M08[PSD]-T/O/A uses the Perpendicular Squared Dis-
tance based method for orientation estimation.
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� Configuration M09[SSOD]-T/O/A uses the Single String Orientation
Detection method to estimate the orientation.

� Configuration M10[CHAR]-T/O/A uses the special character filtering for
post-processing.

� Configuration M11[STR]-T/O/A uses the string filter for post-processing.

� Configuration M12[QUANT]-T/O/A uses the quantitative assessment
method for post-processing.

� Configuration L7-O uses the Ocropy OCR engine.

� Configuration L7-A uses the ABBYY FineReader OCR engine.

One of the main challenges is the extraction of rotated text from sci-
entific figures. Common OCR engines are only good at recognizing hor-
izontally aligned text. Thus, in addition to the pipeline configurations
described above, two so called two-pass configurations were created. They
are called two-pass configurations because they first extract horizontal text
with an OCR engine and in a second pass with the proposed text extraction
pipeline extract the rotated text.

The ABBYY FineReader OCR engine was chosen for the first pass as
it is a commercial OCR engine and provides the best results in a direct
comparison with the open source engines Tesseract and Ocropy. After
extracting the horizontal text, the figure is manipulated by filling the
corresponding bounding box of the text area with the color white. In the
second pass, the best linear configuration M09[SSOD]-O is applied on
the manipulated figure to extract the remaining (rotated) text. However,
a decision has to be made about the output of ABBYY FineReader in
the first step, i. e., which recognized text elements are acceptable since it
may also falsely recognize non-horizontal text and graphic elements. The
ABBYY FineReader SDK1 provides a confidence value per word which can
be used to make a decision about the quality of the recognition. According
to the provided documentation, it is calculated using different bonuses
(e. g., if the word was recognized from a dictionary) and penalties (e. g. bad
recognition quality). No supplementary dictionary or word model was

1https://www.abbyy.com/en-us/ocr-sdk/, last access: September, 2017
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used for calculating these values as scientific figures contain a large variety
of abbreviations and numbers. ABBYY FineReader offers two options
for calculating the confidence and the accurate calculation was chosen
over the fast calculation because the performance of the pipeline is not
in the focus of this thesis, but the quality of the result. Since recognized
lines of text can contain multiple words, it is necessary to aggregate the
word-confidence values to decide whether to accept a text line or not. Two
options for aggregation were tested as separate configurations: The first
configuration takes the average confidence value of all words of a line. The
second configuration takes the minimum confidence value of all words of
a line. If the aggregated confidence value exceeds a predefined threshold,
the recognized output gets accepted and is removed from the figure. Thus,
the second configuration generally extracts fewer text lines in the first
pass.

For standard document pages, the confidence values are in the range
from 0 to about 100 as can be seen in Figure 7.1. In contrast, the confidence
values of the text elements recognized in figures can also be negative.
Investigations of the produced confidence values suggest to use a threshold
of zero for both text line confidence values since one can observe that short
words and numbers have low confidence values close to zero assigned
to them even though they were correctly recognized. Non-horizontal
text or certain graphic elements (e. g., dashed lines) have larger negative
confidence values whereas correctly recognized larger text elements mostly
result in high positive values.

Therefore, two configurations N1[0AVG] and N2[0MIN] were created to
test the two pass approach with both options for evaluating the confidence
score of a text line given a confidence threshold of zero.

7.2 Procedure

In order to evaluate the impact of the individual methods, all the configu-
rations described in Section 7.1 are evaluated on the same four datasets
(Economics, DeGruyter, CHIME-R, CHIME-S) that were used in the previ-
ous experiment. The same measures as in the previous experiment (see
Chapter 6) are used as well to evaluate the text detection and text recog-
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Figure 7.1. Comparison of the confidence values of words from scientific figures
and words from a text document

nition, i. e., macro- and micro-level Precision, Recall and F1-Measure, the
ER and MER, the macro- and micro-level Levenshtein Distance and the
Operations Per Character (OPC) score (see Section 4.2 for a description of
the different measures).

7.3 Results

For the systematic comparison of unsupervised methods, Table 7.1 shows
the macro text detection results and Table 7.2 shows the micro text detec-
tion results. The best macro text detection F1-Measure of 0.67 is achieved
by M09[SSOD], which is also supported by the micro text detection results
in Table 7.2 with the highest F1-Measure of 0.65. The separate evaluation
of each dataset in Table 7.3 confirms as well that M09[SSOD] works best
for Economics, CHIME-R and CHIME-S with macro F1-Measure of 0.68,
0.66 and 0.63. The best result for DeGruyter is 0.73 by M07[MORPH]
with M09[SSOD] having the second best F1-Measure of 0.71. The best
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micro results for Economics (0.56), DeGruyter (0.67), CHIME-R (0.71) and
CHIME-S (0.66) are all achieved by M09[SSOD], as shown in Table 7.4.
Table 7.5 shows the text recognition results using Tesseract, Table 7.6 shows
the text recognition results using Ocropy and Table 7.7 shows the results
using ABBYY FineReader OCR. Configuration M09[SSOD]-O produces the
best text recognition results with an average micro Levenshtein Distance
of 4.71 and an OPC of 0.53. In addition, configuration M09[SSOD]-O shows
the best results of 95.49 for the average macro Levenshtein Distance. Com-
paring the different configurations shows that the only major improvement
is achieved by M09[SSOD]. The results for ABBYY FineReader vary in
a range between the results of Tesseract and Ocropy and do not show
a better result than M09[SSOD] with Tesseract/Ocropy. Comparing the
performance of the three Optical Character Recognition engines and dif-
ferent configurations on each dataset individually (see Table 7.8, Table 7.9
and Table 7.10), the best micro Levenshtein Distance is also achieved by
configuration M09[SSOD]-O with values between 3.51 and 5.80.

Table 7.1. Macro Precision (ωP), macro Recall (ωR), macro F1-Measure (ωF1),
Element Ratio (ER) and Matched Element Ratio (MER). Results are averaged over
all datasets.

Config. ωP ωR ωF1 (SD) ER MER
L7 0.66 0.55 0.58 (0.25) 1.04 0.69
M01 0.64 0.52 0.57 (0.25) 0.96 0.64
M02 0.67 0.40 0.49 (0.26) 0.74 0.53
M03 0.61 0.44 0.48 (0.25) 0.96 0.75
M04 0.60 0.46 0.51 (0.23) 0.86 0.52
M05 0.62 0.50 0.55 (0.27) 0.90 0.64
M06 0.61 0.54 0.59 (0.25) 1.19 0.74
M07 0.67 0.55 0.62 (0.23) 1.08 0.65
M08 0.62 0.53 0.57 (0.24) 1.01 0.66
M09 0.67 0.63 0.67 (0.22) 1.27 0.88
M10 0.69 0.54 0.59 (0.25) 0.97 0.70
M11 0.67 0.55 0.60 (0.25) 1.01 0.69
M12 0.66 0.38 0.48 (0.25) 0.60 0.43
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Table 7.2. Micro Precision (µP), Recall (µR) and F1-Measure (µF1). Results are
averaged over all datasets.

Config. µP µR µF1 (SD)
L7 0.60 0.49 0.50 (0.24)
M01 0.59 0.44 0.47 (0.24)
M02 0.46 0.40 0.38 (0.26)
M03 0.41 0.57 0.42 (0.23)
M04 0.59 0.54 0.50 (0.21)
M05 0.76 0.54 0.57 (0.20)
M06 0.57 0.47 0.47 (0.24)
M07 0.60 0.47 0.48 (0.22)
M08 0.49 0.40 0.41 (0.20)
M09 0.77 0.63 0.65 (0.17)
M10 0.59 0.49 0.49 (0.24)
M11 0.59 0.49 0.49 (0.24)
M12 0.39 0.29 0.31 (0.21)

Table 7.3. Average macro F1-Measure and Standard Deviation per configuration
for the individual datasets Economics, DeGruyter, CHIME-R and CHIME-S.

Config. Economics DeGruyter CHIME-R CHIME-S
L7 0.55(0.25) 0.70(0.18) 0.63(0.23) 0.43(0.25)
M01 0.54(0.26) 0.65(0.20) 0.61(0.24) 0.42(0.26)
M02 0.46(0.28) 0.51(0.28) 0.52(0.24) 0.43(0.25)
M03 0.42(0.23) 0.53(0.23) 0.49(0.27) 0.36(0.22)
M04 0.46(0.22) 0.59(0.19) 0.53(0.22) 0.37(0.25)
M05 0.48(0.29) 0.64(0.22) 0.58(0.27) 0.33(0.28)
M06 0.55(0.25) 0.70(0.21) 0.62(0.22) 0.40(0.24)
M07 0.62(0.24) 0.73(0.17) 0.63(0.22) 0.47(0.25)
M08 0.57(0.24) 0.64(0.20) 0.59(0.24) 0.39(0.27)
M09 0.68(0.21) 0.71(0.18) 0.66(0.23) 0.63(0.26)
M10 0.55(0.25) 0.71(0.17) 0.62(0.23) 0.43(0.26)
M11 0.55(0.26) 0.71(0.17) 0.64(0.23) 0.43(0.25)
M12 0.38(0.24) 0.57(0.21) 0.50(0.21) 0.36(0.25)

87



7. Experiment III: Optimization of the Unsupervised Approach

Table 7.4. Average micro F1-Measure and Standard Deviation per configuration
for the individual datasets Economics, DeGruyter, CHIME-R and CHIME-S.

Config. Economics DeGruyter CHIME-R CHIME-S
L7 0.40(0.20) 0.62(0.14) 0.60(0.26) 0.31(0.21)
M01 0.36(0.21) 0.58(0.16) 0.58(0.26) 0.27(0.17)
M02 0.32(0.24) 0.46(0.28) 0.42(0.25) 0.31(0.21)
M03 0.43(0.22) 0.45(0.23) 0.43(0.26) 0.33(0.22)
M04 0.40(0.17) 0.56(0.16) 0.60(0.22) 0.35(0.23)
M05 0.46(0.19) 0.58(0.16) 0.69(0.19) 0.45(0.23)
M06 0.36(0.20) 0.60(0.16) 0.59(0.25) 0.24(0.18)
M07 0.39(0.19) 0.62(0.14) 0.56(0.22) 0.30(0.17)
M08 0.37(0.17) 0.47(0.14) 0.48(0.21) 0.20(0.20)
M09 0.56(0.14) 0.67(0.11) 0.71(0.21) 0.66(0.20)
M10 0.39(0.20) 0.62(0.15) 0.60(0.26) 0.30(0.20)
M11 0.39(0.20) 0.61(0.15) 0.59(0.26) 0.31(0.21)
M12 0.21(0.16) 0.41(0.20) 0.36(0.22) 0.19(0.17)

Table 7.5. Average micro Levenshtein Distance (µLD) and macro Levenshtein
Distance (ωLD) and Operations Per Character (OPC) over all datasets for the
systematic configurations using Tesseract.

Config. µLD(SD) ωLD(SD) OPC
L7-T 6.23 (4.93) 108.81 (108.53) 0.67
M01-T 6.27 (4.95) 117.58 (124.23) 0.69
M02-T 6.55 (5.06) 131.58 (142.74) 0.75
M03-T 8.31 (6.14) 154.54 (168.10) 1.09
M04-T 6.55 (4.94) 111.30 (105.13) 0.75
M05-T 6.68 (5.65) 108.86 (102.93) 0.66
M06-T 6.30 (5.29) 115.43 (113.79) 0.69
M07-T 6.15 (5.12) 104.61 (105.97) 0.63
M08-T 8.30 (5.59) 147.91 (129.55) 1.04
M09-T 5.47 (4.39) 96.29 (99.44) 0.58
M10-T 5.96 (4.88) 105.50 (107.16) 0.61
M11-T 6.20 (4.90) 108.06 (109.38) 0.64
M12-T 6.07 (5.03) 120.78 (122.44) 0.67
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Table 7.6. Average micro Levenshtein Distance (µLD) and macro Levenshtein
Distance (ωLD) and Operations Per Character (OPC) over all datasets for the
systematic configurations using Ocropy.

Config. µLD(SD) ωLD(SD) OPC
L7-O 5.47 (4.98) 108.55 (106.64) 0.64
M01-O 5.70 (5.09) 117.46 (128.73) 0.66
M02-O 6.16 (5.21) 131.39 (143.16) 0.73
M03-O 7.06 (5.62) 136.40 (132.05) 0.82
M04-O 6.29 (5.50) 120.71 (109.18) 0.76
M05-O 6.22 (5.75) 130.21 (127.87) 0.69
M06-O 5.85 (5.34) 110.74 (107.23) 0.67
M07-O 5.52 (5.10) 106.71 (104.05) 0.64
M08-O 7.23 (5.60) 135.21 (122.48) 0.85
M09-O 4.71 (4.66) 95.49 (94.80) 0.53
M10-O 5.46 (5.00) 109.07 (104.57) 0.63
M11-O 5.45 (4.96) 106.38 (103.29) 0.63
M12-O 5.79 (4.97) 126.92 (124.06) 0.71

Table 7.7. Average micro Levenshtein Distance (µLD) and macro Levenshtein
Distance (ωLD) and Operations Per Character (OPC) over all datasets for the
systematic configurations with ABBYY FineReader.

Config. µLD(SD) ω(SD) OPC
L7-A 6.08 (4.94) 119.47 (109.53) 0.76
M01-A 6.28 (5.12) 124.91 (125.83) 0.78
M02-A 6.54 (4.94) 137.37 (141.49) 0.85
M04-A 6.19 (4.91) 129.07 (125.91) 0.86
M05-A 6.75 (5.74) 105.06 (86.48) 0.64
M06-A 6.22 (5.25) 123.97 (111.51) 0.78
M07-A 6.06 (5.04) 111.50 (94.13) 0.75
M08-A 8.45 (5.94) 156.56 (132.74) 1.08
M09-A 5.08 (4.32) 107.18 (106.71) 0.63
M10-A 5.19 (4.69) 95.39 (94.47) 0.53
M11-A 6.05 (4.91) 119.67 (107.84) 0.73
M12-A 6.58 (5.06) 142.36 (134.57) 0.80
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Table 7.8. Average micro Levenshtein Distance and Standard Deviation per config-
uration for the individual datasets Economics, DeGruyter, CHIME-R and CHIME-S
using Tesseract.

Config. Economics DeGruyter CHIME-R CHIME-S
L7-T 5.42(3.06) 4.88(2.58) 6.51(6.85) 7.21(5.34)
M01-T 5.47(3.12) 5.30(2.78) 6.42(6.85) 7.22(5.42)
M02-T 5.74(3.20) 5.76(3.05) 6.72(6.72) 7.51(5.71)
M03-T 7.13(4.13) 8.44(4.88) 8.50(7.88) 8.68(6.49)
M04-T 5.78(3.33) 5.83(3.11) 6.64(6.29) 7.63(5.72)
M05-T 5.77(3.43) 5.49(3.79) 6.63(7.46) 8.34(6.27)
M06-T 5.57(3.07) 4.95(2.75) 6.72(7.27) 7.51(6.08)
M07-T 5.17(3.16) 4.92(3.34) 6.66(6.68) 7.53(5.62)
M08-T 7.56(3.95) 8.82(3.84) 8.15(7.25) 8.49(6.47)
M09-T 4.90(3.01) 4.55(2.55) 5.76(6.01) 6.27(4.97)
M10-T 5.13(3.03) 4.77(2.33) 6.06(6.71) 7.29(5.43)
M11-T 5.39(3.02) 4.83(2.44) 6.53(6.87) 7.24(5.37)
M12-T 5.47(3.13) 4.96(2.63) 6.31(6.91) 7.43(5.70)

Table 7.9. Average micro Levenshtein Distance and Standard Deviation per config-
uration for the individual datasets Economics, DeGruyter, CHIME-R and CHIME-S
using Ocropy.

Config. Economics DeGruyter CHIME-R CHIME-S
L7-O 4.80(2.93) 4.07(2.26) 5.96(6.97) 7.20(5.66)
M01-O 4.81(2.86) 4.47(2.83) 5.94(7.00) 7.47(5.71)
M02-O 5.16(3.10) 5.21(3.23) 6.54(6.89) 7.35(5.89)
M03-O 6.18(3.33) 6.29(3.04) 7.19(7.72) 8.51(6.27)
M04-O 5.30(2.94) 5.02(2.58) 6.91(7.83) 7.78(6.22)
M05-O 5.28(3.27) 4.71(2.92) 6.31(7.83) 8.14(6.29)
M06-O 4.98(3.00) 4.45(2.42) 6.09(7.35) 7.73(6.10)
M07-O 4.56(2.89) 3.82(2.24) 6.13(7.01) 7.33(5.60)
M08-O 6.34(3.29) 6.71(3.44) 7.36(7.81) 8.22(6.44)
M09-O 3.86(2.82) 3.51(2.00) 5.08(6.32) 5.80(5.50)
M10-O 4.73(2.93) 4.28(2.23) 5.73(6.82) 7.19(5.63)
M11-O 4.75(2.89) 4.08(2.27) 5.79(6.87) 7.16(5.61)
M12-O 5.20(2.99) 4.64(2.77) 5.95(6.59) 7.57(6.05)
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Table 7.10. Average micro Levenshtein Distance and Standard Deviation per config-
uration for the individual datasets Economics, DeGruyter, CHIME-R and CHIME-S
using ABBYY FineReader.

Config. Economics DeGruyter CHIME-R CHIME-S
L7-A 5.44(3.08) 4.79(2.73) 6.19(6.71) 7.45(5.52)
M01-A 5.73(3.50) 5.09(3.03) 6.39(6.89) 7.28(5.57)
M02-A 5.89(3.48) 5.70(3.19) 6.86(6.46) 7.31(5.71)
M04-A 5.66(3.24) 5.31(3.08) 6.30(6.52) 7.36(5.69)
M05-A 5.99(3.48) 5.37(3.52) 6.78(7.76) 8.31(6.35)
M06-A 5.72(3.11) 4.77(2.44) 6.49(7.24) 7.93(6.22)
M07-A 5.10(2.96) 4.57(2.90) 6.36(6.53) 7.66(5.82)
M08-A 7.80(3.98) 8.47(3.93) 8.10(7.95) 9.34(6.73)
M09-A 4.76(3.03) 4.30(2.30) 5.38(5.82) 5.09(4.68)
M10-A 4.71(2.96) 4.00(2.34) 5.36(6.63) 6.57(5.19)
M11-A 5.43(3.07) 4.75(2.68) 6.12(6.64) 7.43(5.49)
M12-A 5.83(3.07) 5.77(2.69) 6.87(7.26) 7.85(5.96)

The results for both two-pass configurations N1[0AVG] and N2[0MIN]
show an improvement over the best linear configuration M09[SSOD].
Regarding the macro F1-Measure both two-pass configurations improved
the previous best results by 0.02. The text recognition quality clearly
improved with respect to the average macro LD, the average micro LD

and the Operations Per Character score. When comparing both two-pass
configurations, configuration N2[0MIN] achieved the overall best results.
Table 7.11 lists the detailed results of the two-pass configurations compared
with the one-pass pipeline configuration M09[SSOD].

Table 7.11. Macro F1-Measure (ωF1), Micro F1-Measure (µF1), Average Micro
Levenshtein Distance (µLD), Average Macro Levenshtein Distance (ωLD) and
Operations Per Character (OPC) for the configurations M09[SSOD], N1[0AVG]
and N2[0MIN].

Config. ωF1(SD) µF1(SD) µLD(SD) ωLD OPC
M09[SSOD]-T 0.67 (0.22) 0.65 (0.17) 5.47 (4.39) 96.29 0.58
M09[SSOD]-O 0.64 (0.21) 0.55 (0.20) 4.71 (4.66) 95.49 0.53
M09[SSOD]-A 0.67 (0.21) 0.65 (0.17) 5.08 (4.32) 107.18 0.63
N1[0AVG] 0.69 (0.20) 0.65 (0.16) 3.89 (4.64) 83.09 0.36
N2[0MIN] 0.69 (0.20) 0.64 (0.16) 3.59 (4.26) 77.74 0.35
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Chapter 8

Experiment IV: Optimization of
the Supervised Approach

The content of this chapter presents the results of a comparisons of differ-
ent variations of the supervised approach. The comparison was conducted
by Morten Jessen in his master thesis who was supervised by the author
of this thesis. Part of this work was published at DocEng’19 [JBS19]. In
this experiment, to optimize the supervised approach, different sets of
hyper-parameters for a neural network-based approach are evaluated as
well as different datasets for pretraining the neural network and training
data augmentation methods. The learning rate for the neural network was
fixed to 0.0075 for all experiments and executed 250,000 training iterations
per model. Section 8.1 presents the hyperparameter optimization experi-
ments and results. Section 8.2 presents the pretraining experiments and
results. Section 8.3 presents the training data augmentation experiments
and results.

8.1 Hyperparameter Optimization

The first step of the supervised approach is a Residual Neural Network
which can be configured in multiple ways. The following parameter sets
for the Residual Neural Network were evaluated:

� Model (ResNet or ResNeXt)

� Number of input layers (50 or 101)

� Width of the input image (800, 750, 700, 600 pixel)
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� Only ResNeXt: cardinality and bottleneck width (32/8 or 64/4)

Please note that the input image width was limited by the GPU memory
restrictions. Table 8.1 shows the results for the differently parameterized
configurations. The best result for each metric is highlighted.

Table 8.1. Comparison of the AP50 and AP75 measures for different Hyperparame-
ters (architecture, layer (l), cardinality (c), bottleneck width (b) and image width
(w)).

Architecture l c b w AP50 AP75
ResNet 50 - - 600px 89.81% 54.11%
ResNet 50 - - 800px 91.79% 54.65%
ResNet 101 - - 600px 90.19% 52.58%
ResNet 101 - - 700px 91.58% 58.51%
ResNeXt 50 32 8 600px 88.11% 48.02%
ResNeXt 50 32 8 750px 89.44% 53.14%
ResNeXt 50 64 4 600px 87.86% 49.16%
ResNeXt 50 64 4 750px 89.38% 53.66%
ResNeXt 101 32 8 600px 88.60% 50.41%
ResNeXt 101 64 4 600px 88.84% 51.05%

The best result, when considering the AP75 measure, is achieved with
ResNet with 101 layers and an input image width of 700px. This configura-
tion is used for the following experiments.

8.2 Pretraining of the Supervised Model

Pretraining a neural network can improve the performance. However, not
enough training data is available for text extraction from scientific figures.
Thus, pretraining with two datasets for text extraction from natural images
is evaluated. The model was separately pretrained with the MS-COCO-
Text dataset and the Total-Text-Dataset (TTD). Table 8.2 shows the impact
of the pretraining on the performance of the model.

The model with pretraining on MS-COCO-Text performs best by achiev-
ing an AP50 of 95.21% and an AP75 of 76.33%.
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Table 8.2. Comparison of the AP50 and AP75 measures for ResNet101 with and
without pretraining.

Pretraining none on TTD on COCO-Text
AP50 91.35% 94.49% 95.21%
AP75 63.49% 75.51% 76.33%

8.3 Augmentation of Training Data

Besides pretraining the model, another method for improving the training
of the supervised model was considered. Because real training data is
scarce, methods for artificially extending the training dataset were evalu-
ated.

The following methods were applied to each training image to artifi-
cially increase the size of the training dataset:

� Rotation (90°, 180°, 270°)

� Scaling

� Flipping/Mirroring

� Translation

� Adding Noise

Table 8.3 shows the result of the comparison with and without training
data augmentation.

Table 8.3. Comparison of the AP50 and AP75 measures for ResNet101 with and
without training data augmentation.

Augmentation no yes
AP50 90.34% 92.88%
AP75 53.02% 67.57%

The model with artificially augmented training data clearly outper-
forms the model with the regular training data.
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Chapter 9

Experiment V: Best Unsupervised
Approach vs Best Supervised

Approach

In the four previously presented experiments, optimizations have been
conducted to identify the best unsupervised approach as well as the best
supervised approach, in preparation for answering the last research ques-
tion RQ4 - ”How does the best unsupervised approach compare with a
supervised approach which is trained on a small dataset?”. In this exper-
iment, the best unsupervised configuration of the text extraction pipeline
is compared with the best supervised approach, a neural network based
text detection. The latter was developed in the course of a master thesis by
Morten Jessen who was supervised by the author of this thesis. The core
results of Morten Jessen’s master thesis were published at the ACM Docu-
ment Engineering Symposium [JBS19]. First, the pipeline configurations
are described. Second, the experiment procedure is explained. Third, the
results of the experiment are presented.

9.1 Pipeline Configurations

The developed neural network approach NeuralNet consists of a Faster R-CNN

like architecture that uses a Residual Neural Network with 101 layers for
the detection of text elements in scientific figures. The approach addresses
the lack of training data by pretraining the architecture with the MS-COCO
Text dataset [LMB+14] and artificially extending the scientific figure train-
ing datasets by creating augmented versions of the figures in the dataset.
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Approach

After locating the text, Tesseract is used to recognize the text. Text at differ-
ent orientations is addressed by brute-force rotating the elements before
recognizing it with Tesseract and selecting the output with the highest
confidence score.

The best unsupervised configuration N2[0MIN]-O is chosen for the
comparison. This configuration first extracts horizontal text with the AB-
BYY FineReader before applying the unsupervised text extraction pipeline
consisting of adaptive Otsu binarization, Connected Component Labeling,
Heuristic filters, DBSCAN, angle-based Minimum Spanning Tree cluster-
ing, orientation estimation with the Single String Orientation Detection
algorithm and Ocropy to extract the rotated text.

9.2 Procedure

The supervised neural network approach NeuralNet is compared with the
configuration N2[0MIN]-O of the unsupervised text extraction pipeline
with respect to the macro-level Precision (ωP), Recall (ωR) and F1-Measure
(ωF1) for text detection and the macro-level Levenshtein Distance (ωLD)
and micro-level Levenshtein Distance (µLD) over four datasets (CHIME-R,
CHIME-S, Economics, DeGruyter). However, since the neural network
requires training data, the results for the neural network approach are the
average of a 5-fold cross validation while the results for the unsupervised
approach are calculated on the full datasets once.

Table 9.1. Comparison of the result of the 5-fold cross-validation of the supervised
approach NeuralNet with the result of the unsupervised approach N2[0MIN]-O
for the measures macro Precision, macro Recall and macro F1-Measure as well as
macro Levenshtein Distance (ωLD) and micro Levenshtein Distance (µLD).

NeuralNet N2[0MIN]-O
ωPrecision 0.86 0.67
ωRecall 0.83 0.63
ωF1-Measure 0.87 0.69
ωLD 39.11 77.74
µLD 2.44 3.59
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9.3 Results

Table 9.1 shows the results of the supervised approach NeuralNet in com-
parison with the unsupervised approach N2[0MIN]-O. The results show
that the neural network approach surpasses the unsupervised pipeline by
a large margin. While the best pipeline configuration N2[0MIN]-O only
achieves a ωF1 score of 0.69, the neural network approach manages to
achieves a ωF1 score of 0.87 which is an increase of about 30% for the
text detection. Even though the text recognition of the neural network
approach is based on a brute-force methodology, also the text recognition
quality improves by reducing the macro Levenshtein Distance ωLD from
77.74 down to 39.1 and the micro Levenshtein Distance µLD from 3.59
down to 2.44.
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Chapter 10

Discussion

This chapter concludes the evaluation of the different text extraction
approaches by discussing the main results, identifying threats to the
validity of the results and analyzing the limitations of the conducted
research. First, the main results of the five experiments are discussed
in Section 10.1. Next, possible limitations to the conducted research are
analyzed in Section 10.2. Finally, in Section 10.3, possible threats to the
validity of the results are identified.

10.1 Main Results

The first experiment in Chapter 5 shows that open-source as well as
commercial Optical Character Recognition engines have problems with
recognizing rotated text from scientific figures. They are able to extract
horizontal text and occasionally text which is rotated by 90 degree as these
are the kind of text which are appear in scanned document images. The
experiment further shows that a simple unsupervised approach can extract
rotated text better than these Optical Character Recognition engine. How-
ever, since this unsupervised is not as well optimized as the OCR engines
which were tuned for many years, the overall quality of the recognition
result, including horizontal text, is not as good. While the unsupervised
approach finds more text appearances in the scientific figures, the result is
not clean from noise.

In the second experiment in Chapter 6, a comparison of the different,
unsupervised, linear configurations of the pipeline that are inspired by
approaches from the literature were conducted. The results show that the
pipeline configuration L7[Böschen], which was proposed by the author
of this thesis, achieves the on average best results on all four datasets
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(CHIME-R, CHIME-S, Economics and DeGruyter), taking all measures
into account. The most probable reason is that the pipeline does not make
many assumptions about the figures, e. g., figure type, font or color. Thus,
performing better on the heterogeneous datasets which differ from the
datasets on which the approaches in the literature were tested. However,
other approaches are competitive with respect to certain measures, thus,
a systematic analysis of the different methods has been conducted by
modifying the configuration L7[Böschen].

The third experiment in Chapter 7 presents the results for the individ-
ual pipeline steps based on the systematically modified linear configura-
tions.

The first part of the pipeline is the extraction of regions which includes
binarization and region extraction. When comparing the configurations
that test the different binarization methods, one can observe that the
adaptive binarization works best because it better adapts to local color
variations in a figure. The standard Otsu’s method only estimates one
global threshold which is often insufficient for scientific figures which
can contain multiple colors and grey levels for text as well as graphical
elements and the background. Niblack’s method also seems to have prob-
lems and works best when fewer color variations are present, i. e., it is
more suited for document images. The non-competitive results for the
pivoting algorithm for region extraction can be explained with the larger
regions and the possibility that a region can be a mixture of text and
graphic elements due to the only horizontal and vertical subdivision. Thus,
Connected Component Labeling is the obvious choice.

The second step of the pipeline is the identification of text elements
and the construction of text lines. Only one method, the morphological
clustering method in configuration M07[MORPH] shows slightly better
results than the base configuration L7[Böschen] which relies on a combina-
tion of DBSCAN and Minimum Spanning Tree clustering. The gain could be
explained by the data on which the algorithms work. While DBSCAN and
the Minimum Spanning Tree approach work on the centers of the character
regions, which is an approximative representation, the morphological clus-
tering method processes the character regions on pixel-level, thus having
all the detailed information. However, the processing on pixel-level comes
with the drawback of a large increase in processing time and memory
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consumption which was observed during the experiments (e. g., additional
experiments with new configurations that use the morphological clustering
did not finish at all). The gravity grouping based approach M05[GRAVITY]
and the pure Minimum Spanning Tree based approach M06[MST] could
not compete with the previously mentioned configurations, probably due
to the inability to distinguish between text elements and graphic elements
of similar characteristics.

The third and last step of the pipeline comprises all the necessities for
text recognition. One important preprocessing step is the estimation of
the orientation of a text line such that it can be rotated into horizontal
alignment for correct recognition. When comparing the different orienta-
tion calculation methods, again, the pixel-based Single String Orientation
Detection M09[SSOD] works best while the orientation estimation via
Hough in the base configuration L7[Böschen] works only on the centers of
mass of the character regions. However, the differences are minimal and
an in-depth analysis of each text region would be needed to identify the
advantages/disadvantages of the different methods which is out of scope
of this thesis.

When comparing the three different Optical Character Recognition
engines, Ocropy generally produces better results than Tesseract and the
commercial ABBYY FineReader is some where in the middle. Ocropy
seems to be more conservative than Tesseract, having built in much more
restrictions about what input to accept and when to execute the OCR pro-
cess, i. e., less noise gets processed. Furthermore, each OCR engine comes
with its own English language model and, since the development of a new
language model or Optical Character Recognition engine was not a goal
of this thesis, no evaluation of the influence of different language models
was conducted. Since all three Optical Character Recognition engines have
similar results, including the commercial OCR engine ABBYY FineReader,
one may draw the conclusion, that the Optical Character Recognition
step does not have that much influence on the overall performance of the
text extraction pipeline. This means that in the region extraction, region
classification, text line detection or orientation estimation steps important
information is lost so that the OCR engines are not able to produce better
recognition results from the given input. The methods for postprocessing
do not improve the results at all. One reason might be the simplicity of
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the methods. The other reason might be that the later steps of the pipeline
have less and less influence on the overall results.

The overall best results for the linear configurations in the third exper-
iment were achieved by the configuration M09[SSOD]-O. The two-pass
configurations improve on this results by using the ABBYY FineReader
as a first step to detect horizontal text and then applying the linear con-
figuration M09[SSOD] to recognize rotated text. However, one difficulty
is the choice of an appropriate decision criterion to accept the output
of ABBYY FineReader in the first step. Using the minimum confidence
value as criteria produced higher quality regarding the macro and micro
Levenshtein Distances. Interestingly, the results regarding the macro and
micro F1-Measures for text detection were not improved compared with
the configuration using the average confidence value. This means that less
output was accepted and removed from the figure but not more text was
correctly recognized. One explanation might be that the linear configura-
tion was not able to perform better on text which contained words with
low confidence values. This might be due to bad image quality or char-
acters/symbols that are unknown to the OCR engines and thus cannot be
recognized. Another possible reason, which was not investigated further,
is the modification of the image before applying the linear pipeline, which
could have introduced additional noise since only the color white is used
to erase the text that was already extracted.

One of the core motivations for building an unsupervised text extrac-
tion pipeline was the lack of data for training a supervised approach.
However, due to the improvement with neural networks in recent years, it
was possible to build a supervised approach that can handle limited train-
ing data. The fourth experiment in Chapter 8 presented and optimized a
neural-network-based supervised approach for text detection from scien-
tific figures. Optimizing the neural network showed that by using datasets
from other domains (i. e., scene text detection) and by increasing the size
of the set of scientific figures by creating modified copies of the original
dataset, it is possible to train a neural network sufficiently enough such
that it achieves promising results. It seems that the network is capable of
recognizing features which characterize text in these scene text images
which help to lay the foundation for the separation of graphical elements
and text in scientific figures. The variation of text introduced to the artifi-
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cial creation of modified images in the training dataset seems to work as
well, to generalize the features that characterize text.

The fifth experiment in Chapter 9 made the comparison between the
unsupervised approach and the supervised approach. The comparison
highlighted that the supervised approach is capable of surpassing the
unsupervised approach even though it has only limited training data
available. However, the text detection result is still not perfect and to create
the best possible approach, it would probably be necessary to create a
gold standard with pixel level knowledge about characters which could be
used to train a neural network, similar to the DarkNet [Red16] approach
for natural images, because more and more detailed training data usually
improves the performance of neural networks.

10.2 Limitations

There are certain limitations to both, supervised and unsupervised, ap-
proaches.

One of the major limitations of the evaluation of the proposed un-
supervised pipeline, which is at the same time one of the strengths of
the pipeline, is the flexibility of the pipeline. The module-based pipeline
with its various options per step makes it in theory adaptable to different
settings, however, at the same time it is impossible to test all possible
configurations for all the possible different settings in reasonable time.
Thus, one might only find a locally optimal solution and not the overall
best solution. Even though the pipeline already offers a variety of methods,
there are further methods that could be integrated. However, as already
mentioned, the number of combinations is already quite high, so only the
most promising and diverse methods were integrated.

Another limitation is that the pipeline is programmed in Java 8. Since
Java code is executing inside the Java Virtual Machine, it is in generally
slower than native code and makes it harder to assess the performance of
individual parts of a Java program. Furthermore, the memory use of Java
is way higher than with native code generated from other languages like
C++. In addition, the garbage collector makes it difficult to properly assess
and predict the memory consumption of a certain part of a Java program.
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Thus, a performance evaluation of the proposed pipeline was omitted as
the results were inconclusive. In addition, some configurations failed due
to out-of-memory errors or never finished after weeks of execution which
probably would not have happened with a more efficient implementation.

For the supervised approach, a brief analysis of the generalization
capabilities showed that there is a decrease in the detection quality if
unknown figure types are introduced. Thus, it would be necessary to train
this neural network approach on as many figure types as possible to get
the best performance. However, these datasets do not exist for all domains
and their creation is expensive. Therefore, the results are still influenced
by the lack of training data. In addition, the performance on the DeTEXT
dataset is worse with pretraining on COCO-Text than without pretraining.
The most likely reason here is that DeTEXT contains figure that contain
subfigures which are very similar to the natural images of the COCO-Text
dataset. Thus, in the pretraining, the network probably also learns features
of the natural images and not only the text which lead to false detection
on the natural image like subfigures of the DeTEXT dataset.

In addition, the experiments with the supervised approach were limited
by the GPU memory of the infrastructure at hand. However, the limitation
to an image width of 600px to 800px differs not so much from the average
width of an image in the scientific datasets.

10.3 Threats to Validity

The proposed text extraction pipeline introduces a lot of flexibility and
variables. Thus, one may question the validity of the presented results.

First, regarding the evaluation in general, one might argue that the
dataset is too small to make general statements about the effectiveness of
the proposes unsupervised pipeline. The collection of the gold-standard for
a larger dataset via crowd sourcing had been planned, but after Amazon
Mechanical Turk was limited to US-only, no suitable crowd sourcing
platform remained where such a data collection would have been possible.
Thus, one can only make the assumption that the semi-random selection
of figures from DeGruyter and EconBiz documents is enough to show the
generalization capabilities of the proposed approaches. Furthermore, the
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gold-standard has only a text-line level granularity, i. e., the evaluation can
not fully assess the text recognition quality as strings are compared to each
other and not individual characters. The creation of such a character-level
gold-standard from real world figures would require exponentially more
time and thus is unfeasible. In addition, the matching of text elements for
comparison assumes that, if multiple elements are matched, they are all
correct matches and that the recognized string just got subdivided. Thus,
relying on the empirically estimated Intersection-over-Union threshold
of 10%. However, it is impossible to optimize this threshold for the large
variety of figures and therefore the empirically determined threshold needs
to be sufficient. Finally, the reporting of the measures as averages over the
figures of a dataset or all datasets does not account for the heterogeneous
nature of the figures (given the high standard deviations), i. e., reporting
per figure type could allow for more insights. However, also due to the
heterogeneity, it is difficult to classify the figures into different types. Thus,
the reporting of the averages is a valid choice to present the results.

Second, one might argue that the comparison of the different meth-
ods is flawed. The different methods taken from the literature had to
be reimplemented as no implementations were available and all of the
methods had to be integrated into one pipeline. The reimplementation was
conducted by following the instructions given in the papers as closely as
possible. Thus, the presented results should be (almost) identical as if the
original implementation was used. When reimplementing the Single String
Orientation Detection (SSOD), a default solution had to be implemented for
the case when the algorithm can’t find a proper orientation. The horizontal
orientation of zero degree was selected as the default case. During recent
experiments, the observation was made that the SSOD implementation
often defaults to the horizontal orientation which could be the reason for
the small improvement of the configuration M09[SSOD] over the original
pipeline L7[Böschen] as the majority of text elements is of horizontal orien-
tation. In addition, a couple of hyperparameters are used in the pipeline
for which proper values had to be selected. Most of those values were
chosen based on small empirical evaluations. Therefore, deliberately, more
generic values were chosen to keep the generalization capabilities of the
pipeline and not to optimize too much for the given datasets. This includes
also the filter thresholds for graphical elements and the assumption that
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only text remains after generating text line elements. Here, on purpose, the
thresholds were selected such that no text is lost even if that means that
some graphical elements might make it to the text recognition step. Finally,
for the same reason of not losing too much generalization capabilities,
no language models were trained for the Optical Character Recognition
engines, as for once, the figures in the datasets are quite heterogeneous
and one may interchange the OCR engine or its language model at anytime.

Please note that also Google seems to has solved the problem with their
Google Cloud Vision API which was used by Madan et al. [MBT+18] for
text extraction from scientific figures even though the Google Cloud Vision
API was designed for analyzing natural images. However, no papers could
be found that describe the methods behind the Google Cloud Vision API
and thus further investigations are needed to assess whether they are actu-
ally capable of extracting text from any kind of scientific figures. (A first,
brief assessment of the Google Cloud Vision API showed that it only had
problems with characters that were merged with graphical components.)
In addition, Google has a much larger database at hand which most likely
gives them an advantage when training supervised approaches which in
other context just do not exist. Furthermore, due to privacy reasons, one
might not want to give ones data into the hand of Google for processing,
in certain situations. Thus, the text extraction pipeline that was proposed
here could be an alternative that can be deployed locally.
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Chapter 11

Conclusion and Outlook

This thesis gave an extensive overview of the field of text extraction from
scientific figures. Five experiments were conducted to answer the research
questions about what is the best approach for text extraction from scientific
figures. The first experiment addressed the first research question RQ1
and assessed the performance of common Optical Character Recognition
tools for the task of text extraction from scientific figures. The second and
third experiments gave answers to the research questions RQ2 and RQ3
about which unsupervised approach has the best results. In the fourth
experiment the supervised approach was optimized. The final, fifth exper-
iment made a comparison between the best supervised approach and the
best unsupervised approach to answer the fourth research question RQ4
on what is the overall best approach. The rest of this chapter summarizes
the contributions of this thesis and gives and outlook for future work.

11.1 Summary of the Contributions

First, an extensive and thorough analysis of the related work in text
extraction from scientific figures was conducted. Different, previously
independent but related research areas were identified and set into com-
parison. From that analysis the conclusion was drawn that the approaches
proposed so far do not have sufficient support for rotated text which is
about 20-25% of the content of a scientific figure on average in the datasets
used in this thesis. To address the lacking capability in handling rotating
text, an unsupervised approach for text extraction from scientific figures
was proposed. Based on the analysis of the related work, a generic pipeline
for text extraction from scientific figures was constructed. The pipeline
consists of three major parts which are common for most unsupervised
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approaches: region extraction, region grouping/classification and Optical
Character Recognition. For each of the three parts, various methods were
implemented that are inspired by the related work. Given its modular
design, new methods could easily be integrated.

Second, to evaluate the pipeline and the various methods, two datasets
were created. This was needed, since existing datasets lacked information
about the rotation of text elements or did not have any rotated text. There-
fore, two datasets of scientific figures with rotated text were manually
annotated to create datasets that can be used to evaluate the extraction of
rotated text. One set of scientific figures was taken from publications from
the economics domain. The other set of figures came from scholarly books
mostly from the chemistry domain. For both set of figure manually anno-
tations of all text elements inside these figures including their orientation
were created.

Third, an extensive evaluation of the different methods of the generic
pipeline has been conducted to identify the best unsupervised approach
for text extraction from scientific figures. The results showed that a slightly
modified version of the originally proposed unsupervised approach pro-
duces the best results. However, the results also clearly still show room
for improvements. Finally, a supervised approach was optimized which
can work with a limited amount of training data. The comparison of the
unsupervised approach with the supervised approach showed superior
results with the supervised approach.

11.2 Future Work

One major insight, gained from the experiments conducted in this thesis,
is the necessity for high quality datasets with gold standard information
of the application domain regardless of whether one wants to find the
optimal configuration of the unsupervised text extraction pipeline or train
a supervised approach. So far, text extraction approaches were only tested
on a small, limited number of domains. Thus, to develop a approach that
works on scientific figures of any domain, it will be necessary to create
new training datasets and/or tools to build these datasets on a large scale.
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Furthermore, for an application in real-world scenarios, it is needed to
optimize the performance of the proposed approaches. While the super-
vised approaches have a long training time, the unsupervised approaches
have an in comparison longer execution time per figure. Thus, it would be
necessary to evaluate which kind of approach is feasible in what kind of
real-world application.

A fast and easy to deploy text extraction tool, together with a tool for
dataset annotation, would allow for local deployment at companies and
institutions, making one independent of services like the Google Cloud
Vision API. One possible future extension would be to combine the text
extraction pipeline and the annotation tool into one solution and thus
allowing to fine-tune the pipeline while creating additional gold standard
examples.

A second direction for future work is the integration of the text extrac-
tion into discovery systems which was outlined in the beginning of this
thesis when motivating the text extraction from scientific figures. Initial
experiments demonstrated (see Appendix A) that using text extracted from
scientific figures of publications can be beneficial as this text often does
not occur in the publication itself. It enables new and interesting access to
scientific content, but it heavily depends on a good text extraction quality.
The prototypical implementation shown in the Appendix is a first step,
but to find the best integration into an existing platform is still an open
research topic. The ultimate goal would be a pipeline which automatically
indexes a publication when it is submitted and which performs a figure
extraction from the publication, figure analysis and indexing while doing
so.
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Appendix A

SciFiS - A Prototype for Scientific
Figure Search

In the literature, text extraction from (scientific) figures has been used to
address various problems like reconstructing the original data a figure is
based on [HT07; KBM+08; MV11; SKC+11; GZB12; CRM+17], creating a
summary of the content of a figure [ECZ11; CSM+12] or translating figures
into Braille [JRW+07; Tak09], to name a few. One alternative application
scenario is to enhance the search for scientific content. Enhancing the
search for scientific content, can be achieved in various ways.

In this section, the focus is on enhancing the search by extracting text
from scientific figures and including it into the retrieval process. First, a
motivation for this application scenario is discussed and existing related
approaches from the literature are presented. Second, the actual prototype
is outlined with its architecture, the underlying data (model) and a brief
evaluation. Finally, a conclusion is drawn and options for improvement
are highlighted.

A.1 Motivation

Most search engines like Google, Yahoo or Bing, are text-based or meta-
data-based search engines. Even though they offer image search capabil-
ities, all their functionality relies on the surrounding text of an image.
The same holds true for specialized search engines that address specific
problems like scientific documents of a certain domain like Medicine (e. g.,
PubMed1 or Bio-Text[HDG+07]) even though some of them at least incorpo-

1https://pubmed.ncbi.nlm.nih.gov/, last accessed: September 2020
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rate some sort of visual features (e. g., Medical Image Retrieval [KSD+17]).
However, indexing scientific figures which are part of scientific docu-
ments can pose challenges. Nevertheless, these figures hold important
information that is often not repeated in the rest of the document [CED06].

In the literature, different approaches have been proposed to utilize
the extracted text from figures for information retrieval. In the biomedical
domain, one can use the Yale Image Finder [XMK08; KLK12]2 while for
chemistry, the research group of Lee Giles developed Chemseer [CTM+13;
CG15]. Both approaches focus on the specificity of figures in their respec-
tive domain and apply restrictive filters on the extraction results to achieve
a high precision in retrieval. DiagramFlyer [CCA15] is a more general
approach. It extracts the text of the figure from the PDF itself, i. e., it does
not analyze bitmaps but vector graphics where no text extraction from an
image is needed. However, only a small fraction of figures are stored as
vector graphics in documents.

In the next section, a prototype is described that uses extracted text
from scientific figures to build a search engine on figures which are linked
with their publication from the economics domain. Please note that the
development, implementation and evaluation of the SciFiS prototype was
conducted by Eike Lurz as part of his masters thesis who was supervised
by the author of this thesis. Thus, due to the complexity given by the
heterogeneity of figures in the economics domain, methodologies that rely
on user query analysis and content mapping like the one proposed by Li
et al. [LCF+14b] could not be applied.

A.2 Prototypical Implementation

With the SciFiS prototype (short for Scientific Figure Search), a search en-
gine for scientific figures in the economics domain is proposed. Figure A.1
shows the prototype with an exemplary query result. First, a brief explana-
tion of the data model and the data available in the prototype is presented
before the software architecture of the prototype is described. Finally, an
initial evaluation of the prototype is conducted.

2http://sprout038.sprout.yale.edu/imagefinder/, last accessed: December 2018
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Figure A.1. SciFiS search interface with two results for the search term "China"
which is also highlighted in the figures.
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A.2.1 Data

The dataset for the prototype was created by applying the best linear
configuration M09[SSOD]-O to extract the text from more than 5,000
scientific figures. These figures were randomly extracted and selected from
the Economics open access document corpora. The same corpora from
which the Economics dataset of 121 figures was extracted that was used
for evaluating the text extraction pipeline (see Section 4.1). This manually
annotated set of 121 figures is later used in the evaluation as well.

Even though Li et al. [LCF+14b] came to the conclusion that the bag-
of-words approach is not sufficient, there is no other option than the
bag-of-words model for the SciFiS prototype due to the heterogeneity of the
figures in the economics domain. Additionally, the proposed unsupervised
text extraction pipeline only provides the raw text, i. e., no structural
information is given.

Thus, as an alternative, not only the text extracted from the figures
is indexed but the metadata of the paper from which the figures were
taken as well. The following information is indexed: For each figure, the
title, year, authors, journal, abstract and keywords of the enclosing paper
are indexed as well as the content of the figure which is subdivided into
several text elements. For each text element, the textual content is indexed
and the position and orientation of the surrounding bounding box is
stored. Two analyzers are implemented to index the textual content. The
standard analyzer consists of the standard token filter, the lower case token
filter and the stop token filter. In contrast, the custom analyzer does not
filter stop tokens but builds n-grams from the tokens for a higher coverage.

A.2.2 Architecture

The SciFiS prototype consists of three components: the backend, the mid-
dleware and the frontend.

The backend of the SciFiS prototype is an Elasticsearch3 instance. To
keep it simple, no replicas and only two shards are used. The text extracted
from the figures are indexed with the standard analyzer as well as the
custom analyzer. The metadata is indexed as well.

3https://www.elastic.co/
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A REST API forms the middleware that wraps the API of the backend
and connects the backend with the frontend. This middleware offers the
possibility of adding other services on top to query the data or to run
multiple frontend instances.

The frontend is realized as a website and looks at a first glance similar
to other search engines. However, as it is a research prototype, it offers a set
of advanced options for querying specific data fields with different search
modes as can be seen in Figure A.1. In total, seven different information
retrieval models, four different query modes and seven different fields
are in the selection pool. SciFiS allows to search in the text of a figure
itself, as well as the metadata of the corresponding document. The result
is an ordered list based on relevance where each entry corresponds to
a relevant figure. Each figure is presented together with its extracted
text as well as the metadata of the paper from which the figure was
extracted. In addition, if the query text was found inside the figure’s text,
the corresponding bounding boxes inside the figure are highlighted for an
easier assessment of the relevance by the user.

A.2.3 Evaluation

Building a search engine on the extracted text from scientific figures is
challenging, since text in figures is often short, contains abbreviations and
has lots of numbers. Furthermore, the unsupervised text extraction is not
perfect as can be seen from the results presented in Chapter 7. Thus, the
search engine also needs to handle flawed text. To find the best option,
all seven different retrieval models, i. e., TF-IDF, BM25, Divergence from
Randomness, Divergence from Independence, as well as language models
are compared in combination with the standard analyzer. The evaluation
showed only very small differences for NDCG@5 (see Appendix B for an
explanation of NDCG) between the models. Under normal circumstances,
tokenization and lemmatization would be used to optimize the retrieval
performance. However, this leads to problems with numbers, short words
and abbreviations. Thus, for comparison, n-grams with an empirically
determined length of 3-5 were used for indexing by the custom analyzer.
However, the comparison of the retrieval on the extracted text and the
manually annotated text showed that recognition errors have the biggest
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impact on the retrieval performance and the use of n-grams could not
counterbalance it.

A.3 Summary

The SciFiS prototype is a first step towards an enhanced retrieval of scientific
content. Having access to the content of the figure enables new ways of
accessing scientific documents. However, for a user-friendly effectiveness,
the extraction quality of the text needs to improve. Using new technologies,
like the proposed supervised extraction pipeline (see Chapter 9) or maybe
the Google Cloud Vision API could make the approach feasible.
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Appendix B

Basics

B.1 Methods and Algorithms

In this section, methods and algorithms are described in more detail
which are either only briefly described in the thesis or assumed to be
known. In the following, various methods and algorithms are presented
in alphabetical order.

B.1.1 Conditional Dilation Algorithm

The CDA was proposed by Chiang and Knoblock [CK15]. It takes a binary
image with connected components (foreground pixels) representing char-
acters as input. The goal of the algorithm is to merge characters into text
strings. The algorithm executes multiple iterations to merge the characters
by expanding them. Before the first iteration, all connected components
are marked as expandable. In every iteration the algorithm performs two
passes over the image. In the first pass, every background pixel is tested for
being an expansion candidate. A background pixel has to comply to four
conditions to be an expansion candidate. The first condition is the character
connectivity condition which means that a background pixel needs to be a
neighbor of a foreground pixel of at least one and at most two different
connected components. The second condition is the character size condition
which enforces that characters that get merged through this background
pixel need to be of similar size. They define the threshold such that two
characters should differ in size at most by factor two. The third condition
is the character expandability condition which checks that at least one of
the connected components to which the background pixel is connected
can still be expanded. A connected component is only expandable if it is
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connected to less than two other connected component, i. e., as soon as it is
connected with two other connected components then it is not expandable
anymore. The fourth condition is the string curvature condition which limits
the curvature of three or more connected components.

In the second pass, every expansion candidate is checked to find
those that should converted to foreground. This is needed since not all
expansion candidates are known during the first pass. Thus, to avoid
merging connected components which violate the four conditions, the
expansion candidates need to be checked in the second pass.

The output is an image with the into text strings expanded characters.

B.1.2 (Convolutional) Neural Network

An artificial neural network is a supervised machine learning approach
which aims at mimicking the neurons in a biological brain. A neural net-
work consists of layers of nodes which are interconnected. The connections
are called edges and have usually a weight assigned to them. A so-called
activation function takes the weighted sum of the incoming edges as input
and calculates the output of the node. Different activation functions, linear
and nonlinear, are possible. The weights of the edges are learned for a
specific task during the training phase. The nodes are often ordered in
layers and edges exist primarily between layers. The first layer is called
the input layer while the last layer is called the output layer. Figure B.1
shows a simple feedforward neural network.

The neural network in Figure B.1 is called a feedforward neural network
because the nodes do not from a cycle. A feedforward neural network with
three or more layers is also called a multilayer perceptron. The training of
a multilayer perceptron, i. e., the learning of the weights, is usually done
through backpropagation. Multilayer perceptron are often fully connected,
i. e., a node is connected to all nodes of the next layer and so on. However,
this makes them prone to overfitting.

A convolutional neural network is a special kind of multilayer per-
ceptron. Classic multilayer perceptron have a flat input vector. However,
when analyzing images, a flat input vector is not a good choice as it loses
spatial information. The CNN has its name from the convolutional layers
which use a kernel to reduce the dimensionality while keeping spatial
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Figure B.1. An simple neural network with three layers (Source: Wikipedia Public
Domain).

information. A layer of a Convolutional Neural Network usually consists
of a convolutional layer and a pooling layer. Multiple of these layers can
be stacked on top of each other. The output of the last pooling layer is
flattened and is fed for example to a regular fully-connected feedforward
neural network for classification.
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B.1.3 Density-Based Spatial Clustering of Applications with
Noise

The DBSCAN algorithm [EKS+96] is a special kind of clustering. As the
name suggests, it a density-based clustering which also has a concept of
outliers. In contrast to k-Means clustering, it does not need to know the
number of cluster beforehand. DBSCAN has two parameters: The minimum
number of points minPts a point needs to have - including itself - in its
neighborhood, such that it can be a so called core point of a cluster. The
other parameter is the epsilon parameter ε which defines the size of the
neighborhood. The algorithm itself iterates over all datapoints once and
checks whether a datapoint is a core point. It starts with a datapoint which
has not been classified yet. If it is a core point, based on the ε and minPts
parameter, then a new cluster is created an all points in the ε-neighborhood
are added to the cluster and for each data point the check for being a core
point is performed as well to grow the cluster. Once a cluster is completed
that way, the next unclassified datapoint is analyzed. Datapoints that are
not classified as core points and are not in the ε-neighborhood of a core
point are classified as noise.

The advantages of DBSCAN are:

� The number of clusters does not need to be known beforehand

� The clusters can be arbitrarily shaped

� It has notion of noise

However, the algorithm has also some disadvantages:

� DBSCAN is not entirely deterministic, i. e., depending on the order, the
datapoints are processed in, the result can vary. Some border points
might be assigned to a different cluster, if they are in the range of two
clusters. Or a border point can get classified as noise if the algorithm
tries to start a cluster with it.

� In high dimensional feature spaces, a well selected distance function is
needed, because DBSCAN is threatened by the curse of dimensionality.

� If the data as large differences in density, then it can be difficult to find
appropriate parameter values for ε and minPts.
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B.1.4 Faster R-CNN

Faster R-CNN [RHG+15] is an improved version of Fast R-CNN [Gir15], an
object detection system for locating and classifying objects in an image.
They first create region proposals which are classified in a second step.

Object detection systems prior to Fast R-CNN consisted of multiple com-
ponents, for example a Convolutional Neural Network, a Support Vector
Machine and a bounding box regressor in the R-CNN system [GDD+14],
each of which could only be trained separately. Fast R-CNN solved these
performance issues by building one system that could be trained end-
to-end. Figure B.2 shows the architecture of Fast R-CNN. First, the image
is processed with a Convolutional Neural Network to create a feature
map. Second, for each region proposoal, the corresponding part of the
feature map is extracted. These so called region proposal feature maps
are resized with a pooling layer to a fixed size (see Section B.1.10). The
fixed size feature map for each region is flattened into a vector which is
the input to two fully connected neural networks for softmax classification
and bounding box regression.

Figure B.2. The architecture of the Fast R-CNN object detection system. [Gir15]

Fast R-CNN is multiple times faster than a simple R-CNN. However, when
assessing the performance of Fast R-CNN, the generation of region pro-
posals was excluded which is in comparison an expensive step that was
performed by the CPU. Faster R-CNN addresses this problem by adding a
Region Proposal Network (RPN) into the Fast R-CNN architecture. The input
image gets resized to a fix size and is fed to a CNN which is the backbone
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for both, the RPN and the classifier, and generates feature maps for both
tasks. Thus, the computation is performed on the GPU as well. Please note
that not all layers of the convolutional networks are used for both tasks,
i. e., the number of shared layers is limited. Figure B.3 shows this combined
architecture.

Figure B.3. The Faster R-CNN Object Detection Network [RHG+15].

This combined architecture enables training the RPN by backpropaga-
tion and stochastic gradient descent. Alternating training is used, i. e., the
network is alternately trained with both tasks.
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B.1.5 K-Means

A very popular clustering algorithms is the k-Means algorithm [Llo82]. It
separates the data into k spherical-shaped clusters which are represented
by cluster means through minimizing the within-cluster variances. Given
the datapoints and an initial set of k means, the algorithm executes two
alternating steps until the means converge. In the first step, the assignment
step, each datapoint is assigned to the nearest mean. In the second step,
the update step, each mean is recalculated using the assigned datapoints.
Figure B.4 shows an exemplary execution of the k-Means algorithm.

(a) A set of datapoints (black) and three initial cluster means (red, blue and purple).

(b) The datapoints assigned to the nearest
cluster means (visualized by color) in the
first iteration.

(c) The datapoints with the recalculated clus-
ter means after the first iteration.

(d) The datapoints assigned to the nearest
cluster means (visualized by color) in the
second iteration.

(e) The datapoints with the recalculated clus-
ter means after the second iteration. The al-
gorithm terminates here.

Figure B.4. Example of the k-Means algorithm on an example dataset. The algo-
rithm terminates after two iterations (no change in the cluster means).
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B.1.6 Mean-Shift

The Mean Shift algorithm [CM02] is a feature-space analysis method. The
algorithm locates the maxima of a density function from a sample set
of datapoints. It starts with an initial estimate of the mean x. A kernel
function K(xi � x) = e�c||xi�x||2 , here for example the Gaussian kernel
function, is used to calculate the mean using Equation B.1.1.

m(x) =
∑xiPN(x) K(xi � x)xi

∑xiPN(x) K(xi � x)
(B.1.1)

N(x) is a set of points which represent the neighborhood of x and for
which K(xi) � 0. The mean shift is the difference m(x)� x. This calculation
is repeated by setting x Ð m(x) until m(x) converges. This is done for
all datapoints which should all converge to the maxima in the dataset.
Figure B.5 shows an application of mean shift for color reduction.

(a) The input to the Mean
Shift algorithm: A color im-
age.

(b) The color values of
all pixels in the RGB color
space.

(c) The color values in the
RGB color space after some
iterations of the mean shift
algorithm.

(d) The color values in the
RGB color space after some
more iterations of the mean
shift algorithm.

(e) The final set of color val-
ues which converged to the
means of the color values.

(f) The input image where
each pixels color is replaced
by the associated mean
color.

Figure B.5. Color space reduction of an image using Mean Shift.
Source: https://spin.atomicobject.com/2015/05/26/mean-shift-clustering/
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B.1.7 Median-Cut

The Media-Cut algorithm [Hec82] is a sorting algorithm for n-dimensional
data and is often used for color quantization. Given a color image as
input, it aims at generating a set of representative colors where each
representative color represents an equal amount of pixel in the image. The
algorithm first calculates the minimal enclosing bounding box in the color
space which contains all colors of the image. Next, the algorithm sorts
the colors by variance and splits the bounding box in two boxes at the
median of the sorted colors. This process is repeated until the desired
number of colors is reached, represented through a bounding box. For
each bounding box, the median color is calculated which is then used to
replace the original color in the image.

B.1.8 Morphological Operations

Different morphological operations exist that work on the pixels of an
image. The two base operations are dilation and erosion. The dilation
operation adds all background pixel to the foreground which have a fore-
ground pixel as a neighbor. The erosion operation removes all foreground
pixel which have a background pixel as a neighbor. The neighborhood of
a pixel can be defined with an arbitrary structural element and can have
a radius greater than 1. Figure B.6 shows the application of the erosion
operator and dilation operator using the 4-pixel-neighborhood.

From these two operations, other operations can be derived. The closing
operation first executes a dilation followed up by an erosion. This closes
small holes in structures. The open operation applies an erosion operation
followed by a dilation operation and thus removes small noise elements.
Figure B.7 shows the application of the close operator and open operator
using the 4-neighborhood.
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(a) Example of a simple binary image. Foreground pixel are black
while background pixel are white.

(b) The result after applying the morphological erosion operator
using the 4-pixel-neighborhood.

(c) The result after applying the morphological dilation operator
using the 4-pixel-neighborhood.

Figure B.6. Examples for the erosion operator and dilation operator using 4-pixel-
neighborhood.
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(a) Example of a simple binary image. Foreground pixel are black
while background pixel are white.

(b) The result after applying the morphological close operator
using the 4-pixel-neighborhood.

(c) The result after applying the morphological open operator
using the 4-pixel-neighborhood.

Figure B.7. Examples for the close operator and open operator using 4-pixel-
neighborhood.
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B.1.9 Minimum Spanning Tree Clustering

The Minimum Spanning Tree (MST) clustering is a clustering algorithm
with a lot of flexibility. Like other clustering algorithms, it makes the
assumption that datapoints which are close together in the feature space
probably belong to the same cluster. Therefore, it first computes a Mini-
mum Spanning Tree on the datapoints. Figure B.8 illustrates such a Mini-
mum Spanning Tree, however often more than one Minimum Spanning
Tree is possible.

Figure B.8. An example of a Minimum Spanning Tree build on top a set of
datapoints.

Once the MST is built, one needs to decide how to split it into clusters.
The algorithm is quite flexible in how to determine this and different
versions of the algorithm exist. Common criteria to split the minimum
spanning tree are:

� Remove the n longest edges to create n + 1 clusters

� Remove all edges which are inconsistent, i. e., which differ a lot from
the local edge length connected to a node

� Given a common feature for most edges in the minimum spanning tree,
for example orientation, remove all edges which differ a lot from it

Figure B.9 shows the removal of the longest edges to create three clusters.
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Figure B.9. An example of a MST build on top a set of datapoints with the longest
edges marked for removal.

B.1.10 Region of Interest Align/Pool

When a Region Proposal Network proposes bounding boxes of interesting
candidates, these bounding boxes are defined by coordinates based on the
size of the original image. However, to get the Region of Interests (RoIs),
it is needed to crop from the feature map which size was decreased via
convolutions. Two common options to solve this problem are Region of
Interest Align (RoI Align) and Region of Interest Pool (RoI Pool).

RoI Pool divides each coordinate by k, the factor the feature map was
scaled down with, to create a RoI in the feature map. However, these
Region of Interest can have different sizes and it is necessary to convert
them to the same fixed size for further processing. This is were the pooling
comes into play. Given the new coordinates for the feature map and using
quantization, a max pooling is applied to create the final, fixed size region
of interest. However, due to quantization, data can be lost, if the width
and height can be mapped without loss. Figure B.10 illustrates the RoI Pool

approach.
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Figure B.10. A region proposal on a 10� 15 feature map which is mapped to a
3� 3 RoI Pooling output.

RoI Align is an alternative to RoI Pool without the need for quantization.
Instead the original Region of Interest is divided into 9 equal-sized boxes
and bilinear interpolation is used to calculate the value for each box. For
each box, four sampling points are created by diving the width and height
of the box by 3. These sampling points are then used for the bilinear
interpolation. Figure B.11 illustrates this process.

Figure B.11. A region proposal on a 10� 15 feature map which is mapped to a
3� 3 output by using RoI Align which uses four sample points per box for bilinear
interpolation.
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B.2 Evaluation Measures

In this section, evaluation measurements that are used in the thesis are
described in more detail.

B.2.1 Levenshtein Distance

The Levenshtein Distance [Lev66] is a string metric which measures the
minimum number of operations between two strings. The set of operations
includes insertions, deletions and substitutions. Given two strings x and y
is given by levx,y(|x|, |y|) where |x| is the length of string x and |y| is the
length of string y. The function levx,y(a, b) is the distance between the first
a characters of x and the first b characters of y and is defined as follows:

levx,y(a, b) =


max(a, b) if min(a, b) = 0,

min


levx,y(a� 1, b) + 1
levx,y(a, b� 1) + 1
levx,y(a� 1, b� 1) + 1(xa�yb)

otherwise.

(B.2.1)
With 1(xa�yb)

being the indicator function which equals to 0 if xa = yb and
otherwise is 1. The min-clause represents the cases, from top to bottom,
deletion, insertion and match/mismatch.

For example, the Levenshtein distance between house and mouse is 1
as only one substitution is needed. In contrast, the Levenshtein distance
between mouse and cat is 5 as three substitutions and two deletions are
necessary to convert mouse to cat.

B.2.2 Normalized Discounted Cumulative Gain

Normalized Discounted Cumulative Gain (NDCG) is a measure for ranking
quality which is often used when evaluating search engines. To understand
NDCG, it is needed to first look at the Cumulative Gain (CG) and Discounted
Cumulative Gain (DCG).
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Given a ranked list of results with a graded relevance scores, the
Cumulative Gain at a position p in the list can be computed using the
Equation B.2.2.

CGp =
p

∑
i=1

reli (B.2.2)

The Cumulative Gain is the sum of all graded relevance scores from the
top of the list to position p. The problem with CG is that given a fixed p
the order of the relevant items does not matter as the sum stays the same.

The Discounted Cumulative Gain addresses this problem by penalizing
highly relevant items at low positions. Equation B.2.3 shows the calculation
for DCG.

DCGp =
p

∑
i=1

2reli � 1
log2(i + 1)

(B.2.3)

However, DCG has problems when different queries return lists of
varying length. Normalized Discounted Cumulative Gain solves this by
calculating the Ideal Discounted Cumulative Gain (IDCG) for a position p
and uses this to normalize it according to Equation B.2.4.

nDCGp =
DCGp

IDCGp
(B.2.4)

The result is always in the range of 0 to 1 (perfect score).

B.2.3 Precision, Recall and F1-Measure

Precision (P), Recall (R) and F1-Measure (F1) are common measures to
evaluate results from experiments in pattern recognition, information
retrieval or classification. Precision sets the correctly detected items in
relation to all detected items. Recall sets the correctly detected items in
relation to all relevant items. They are usually defined using the notion
of True Positives (TP), False Positives (FP), False Negatives (FN) and True
Negatives (TN). Equation B.2.5 and Equation B.2.6 show the definitions of
Precision and Recall using these terms.

P =
TP

TP + FP
(B.2.5)

R =
TP

TP + FN
(B.2.6)
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It is easy to optimize for one or the other, but in general one prefers to have
both, a high Precision and a high Recall. Thus, the harmonic F1-Measure
is often used to calculate a combined measure. Equation B.2.7 shows the
definition of the F1-Measure.

F1 = 2 �
P � R

P + R
(B.2.7)
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