816 research outputs found

    Robustness in Coreference Resolution

    Get PDF
    Coreference resolution is the task of determining different expressions of a text that refer to the same entity. The resolution of coreferring expressions is an essential step for automatic interpretation of the text. While coreference information is beneficial for various NLP tasks like summarization, question answering, and information extraction, state-of-the-art coreference resolvers are barely used in any of these tasks. The problem is the lack of robustness in coreference resolution systems. A coreference resolver that gets higher scores on the standard evaluation set does not necessarily perform better than the others on a new test set. In this thesis, we introduce robustness in coreference resolution by (1) introducing a reliable evaluation framework for recognizing robust improvements, and (2) proposing a solution that results in robust coreference resolvers. As the first step of setting up the evaluation framework, we introduce a reliable evaluation metric, called LEA, that overcomes the drawbacks of the existing metrics. We analyze LEA based on various types of errors in coreference outputs and show that it results in reliable scores. In addition to an evaluation metric, we also introduce an evaluation setting in which we disentangle coreference evaluations from parsing complexities. Coreference resolution is affected by parsing complexities for detecting the boundaries of expressions that have complex syntactic structures. We reduce the effect of parsing errors in coreference evaluation by automatically extracting a minimum span for each expression. We then emphasize the importance of out-of-domain evaluations and generalization in coreference resolution and discuss the reasons behind the poor generalization of state-of-the-art coreference resolvers. Finally, we show that enhancing state-of-the-art coreference resolvers with linguistic features is a promising approach for making coreference resolvers robust across domains. The incorporation of linguistic features with all their values does not improve the performance. However, we introduce an efficient pattern mining approach, called EPM, that mines all feature-value combinations that are discriminative for coreference relations. We then only incorporate feature-values that are discriminative for coreference relations. By employing EPM feature-values, performance improves significantly across various domains

    Large-Scale Pattern-Based Information Extraction from the World Wide Web

    Get PDF
    Extracting information from text is the task of obtaining structured, machine-processable facts from information that is mentioned in an unstructured manner. It thus allows systems to automatically aggregate information for further analysis, efficient retrieval, automatic validation, or appropriate visualization. This work explores the potential of using textual patterns for Information Extraction from the World Wide Web

    Non-acted multi-view audio-visual dyadic interactions. Project non-verbal emotion recognition in dyadic scenarios and speaker segmentation

    Get PDF
    Treballs finals del Màster de Fonaments de Ciència de Dades, Facultat de matemàtiques, Universitat de Barcelona, Any: 2019, Tutor: Sergio Escalera Guerrero i Cristina Palmero[en] In particular, this Master Thesis is focused on the development of baseline Emotion Recognition System in a dyadic environment using raw and handcraft audio features and cropped faces from the videos. This system is analyzed at frame and utterance level without temporal information. As well, a baseline Speaker Segmenta- tion System has been developed to facilitate the annotation task. For this reason, an exhaustive study of the state-of-the-art on emotion recognition and speaker segmentation techniques has been conducted, paying particular attention on Deep Learning techniques for emotion recognition and clustering for speaker aegmentation. While studying the state-of-the-art from the theoretical point of view, a dataset consisting of videos of sessions of dyadic interactions between individuals in different scenarios has been recorded. Different attributes were captured and labelled from these videos: body pose, hand pose, emotion, age, gender, etc. Once the ar- chitectures for emotion recognition have been trained with other dataset, a proof of concept is done with this new database in order to extract conclusions. In addition, this database can help future systems to achieve better results. A large number of experiments with audio and video are performed to create the emotion recognition system. The IEMOCAP database is used to perform the training and evaluation experiments of the emotion recognition system. Once the audio and video are trained separately with two different architectures, a fusion of both methods is done. In this work, the importance of preprocessing data (face detection, windows analysis length, handcrafted features, etc.) and choosing the correct parameters for the architectures (network depth, fusion, etc.) has been demonstrated and studied. On the other hand, the experiments for the speaker segmentation system are performed with a piece of audio from IEMOCAP database. In this work, the prerprocessing steps, the problems of an unsupervised system such as clustering and the feature representation are studied and discussed. Finally, the conclusions drawn throughout this work are exposed, as well as the possible lines of future work including new systems for emotion recognition and the experiments with the database recorded in this work

    Duration modeling with semi-Markov Conditional Random Fields for keyphrase extraction

    Full text link
    Existing methods for keyphrase extraction need preprocessing to generate candidate phrase or post-processing to transform keyword into keyphrase. In this paper, we propose a novel approach called duration modeling with semi-Markov Conditional Random Fields (DM-SMCRFs) for keyphrase extraction. First of all, based on the property of semi-Markov chain, DM-SMCRFs can encode segment-level features and sequentially classify the phrase in the sentence as keyphrase or non-keyphrase. Second, by assuming the independence between state transition and state duration, DM-SMCRFs model the distribution of duration (length) of keyphrases to further explore state duration information, which can help identify the size of keyphrase. Based on the convexity of parametric duration feature derived from duration distribution, a constrained Viterbi algorithm is derived to improve the performance of decoding in DM-SMCRFs. We thoroughly evaluate the performance of DM-SMCRFs on the datasets from various domains. The experimental results demonstrate the effectiveness of proposed model
    • …
    corecore