45,839 research outputs found

    Interpreting Embedding Models of Knowledge Bases: A Pedagogical Approach

    Full text link
    Knowledge bases are employed in a variety of applications from natural language processing to semantic web search; alas, in practice their usefulness is hurt by their incompleteness. Embedding models attain state-of-the-art accuracy in knowledge base completion, but their predictions are notoriously hard to interpret. In this paper, we adapt "pedagogical approaches" (from the literature on neural networks) so as to interpret embedding models by extracting weighted Horn rules from them. We show how pedagogical approaches have to be adapted to take upon the large-scale relational aspects of knowledge bases and show experimentally their strengths and weaknesses.Comment: presented at 2018 ICML Workshop on Human Interpretability in Machine Learning (WHI 2018), Stockholm, Swede

    Enriching Knowledge Bases with Counting Quantifiers

    Full text link
    Information extraction traditionally focuses on extracting relations between identifiable entities, such as . Yet, texts often also contain Counting information, stating that a subject is in a specific relation with a number of objects, without mentioning the objects themselves, for example, "California is divided into 58 counties". Such counting quantifiers can help in a variety of tasks such as query answering or knowledge base curation, but are neglected by prior work. This paper develops the first full-fledged system for extracting counting information from text, called CINEX. We employ distant supervision using fact counts from a knowledge base as training seeds, and develop novel techniques for dealing with several challenges: (i) non-maximal training seeds due to the incompleteness of knowledge bases, (ii) sparse and skewed observations in text sources, and (iii) high diversity of linguistic patterns. Experiments with five human-evaluated relations show that CINEX can achieve 60% average precision for extracting counting information. In a large-scale experiment, we demonstrate the potential for knowledge base enrichment by applying CINEX to 2,474 frequent relations in Wikidata. CINEX can assert the existence of 2.5M facts for 110 distinct relations, which is 28% more than the existing Wikidata facts for these relations.Comment: 16 pages, The 17th International Semantic Web Conference (ISWC 2018

    Exploiting semantic annotations for open information extraction: an experience in the biomedical domain

    Get PDF
    The increasing amount of unstructured text published on the Web is demanding new tools and methods to automatically process and extract relevant information. Traditional information extraction has focused on harvesting domain-specific, pre-specified relations, which usually requires manual labor and heavy machinery; especially in the biomedical domain, the main efforts have been directed toward the recognition of well-defined entities such as genes or proteins, which constitutes the basis for extracting the relationships between the recognized entities. The intrinsic features and scale of the Web demand new approaches able to cope with the diversity of documents, where the number of relations is unbounded and not known in advance. This paper presents a scalable method for the extraction of domain-independent relations from text that exploits the knowledge in the semantic annotations. The method is not geared to any specific domain (e.g., protein–protein interactions and drug–drug interactions) and does not require any manual input or deep processing. Moreover, the method uses the extracted relations to compute groups of abstract semantic relations characterized by their signature types and synonymous relation strings. This constitutes a valuable source of knowledge when constructing formal knowledge bases, as we enable seamless integration of the extracted relations with the available knowledge resources through the process of semantic annotation. The proposed approach has successfully been applied to a large text collection in the biomedical domain and the results are very encouraging.The work was supported by the CICYT project TIN2011-24147 from the Spanish Ministry of Economy and Competitiveness (MINECO)

    Automatic extraction of facts, relations, and entities for web-scale knowledge base population

    Get PDF
    Equipping machines with knowledge, through the construction of machinereadable knowledge bases, presents a key asset for semantic search, machine translation, question answering, and other formidable challenges in artificial intelligence. However, human knowledge predominantly resides in books and other natural language text forms. This means that knowledge bases must be extracted and synthesized from natural language text. When the source of text is the Web, extraction methods must cope with ambiguity, noise, scale, and updates. The goal of this dissertation is to develop knowledge base population methods that address the afore mentioned characteristics of Web text. The dissertation makes three contributions. The first contribution is a method for mining high-quality facts at scale, through distributed constraint reasoning and a pattern representation model that is robust against noisy patterns. The second contribution is a method for mining a large comprehensive collection of relation types beyond those commonly found in existing knowledge bases. The third contribution is a method for extracting facts from dynamic Web sources such as news articles and social media where one of the key challenges is the constant emergence of new entities. All methods have been evaluated through experiments involving Web-scale text collections.Maschinenlesbare Wissensbasen sind ein zentraler Baustein fĂŒr semantische Suche, maschinelles Übersetzen, automatisches Beantworten von Fragen und andere komplexe Fragestellungen der KĂŒnstlichen Intelligenz. Allerdings findet man menschliches Wissen bis dato ĂŒberwiegend in BĂŒchern und anderen natĂŒrlichsprachigen Texten. Das hat zur Folge, dass Wissensbasen durch automatische Extraktion aus Texten erstellt werden mĂŒssen. Bei Texten aus dem Web mĂŒssen Extraktionsmethoden mit einem hohen Maß an Mehrdeutigkeit und Rauschen sowie mit sehr großen Datenvolumina und hĂ€ufiger Aktualisierung zurechtkommen. Das Ziel dieser Dissertation ist, Methoden zu entwickeln, die die automatische Erstellung von Wissensbasen unter den zuvor genannten UnwĂ€gbarkeiten von Texten aus dem Web ermöglichen. Die Dissertation leistet dazu drei BeitrĂ€ge. Der erste Beitrag ist ein skalierbar verteiltes Verfahren, das die effiziente Extraktion hochwertiger Fakten unterstĂŒtzt, indem logische Inferenzen mit robuster Textmustererkennung kombiniert werden. Der zweite Beitrag der Arbeit ist eine Methodik zur automatischen Konstruktion einer umfassenden Sammlung typisierter Relationen, die weit ĂŒber die in existierenden Wissensbasen bekannten Relationen hinausgeht. Der dritte Beitrag ist ein neuartiges Verfahren zur Extraktion von Fakten aus dynamischen Webinhalten wie Nachrichtenartikeln und sozialen Medien. Insbesondere werden Lösungen vorgestellt zur Erkennung und Registrierung neuer EntitĂ€ten, die bislang in keiner Wissenbasis enthalten sind. Alle Verfahren wurden durch umfassende Experimente auf großen Text und Webkorpora evaluiert

    Discovering Implicational Knowledge in Wikidata

    Full text link
    Knowledge graphs have recently become the state-of-the-art tool for representing the diverse and complex knowledge of the world. Examples include the proprietary knowledge graphs of companies such as Google, Facebook, IBM, or Microsoft, but also freely available ones such as YAGO, DBpedia, and Wikidata. A distinguishing feature of Wikidata is that the knowledge is collaboratively edited and curated. While this greatly enhances the scope of Wikidata, it also makes it impossible for a single individual to grasp complex connections between properties or understand the global impact of edits in the graph. We apply Formal Concept Analysis to efficiently identify comprehensible implications that are implicitly present in the data. Although the complex structure of data modelling in Wikidata is not amenable to a direct approach, we overcome this limitation by extracting contextual representations of parts of Wikidata in a systematic fashion. We demonstrate the practical feasibility of our approach through several experiments and show that the results may lead to the discovery of interesting implicational knowledge. Besides providing a method for obtaining large real-world data sets for FCA, we sketch potential applications in offering semantic assistance for editing and curating Wikidata

    Advanced Knowledge Technologies at the Midterm: Tools and Methods for the Semantic Web

    Get PDF
    The University of Edinburgh and research sponsors are authorised to reproduce and distribute reprints and on-line copies for their purposes notwithstanding any copyright annotation hereon. The views and conclusions contained herein are the author’s and shouldn’t be interpreted as necessarily representing the official policies or endorsements, either expressed or implied, of other parties.In a celebrated essay on the new electronic media, Marshall McLuhan wrote in 1962:Our private senses are not closed systems but are endlessly translated into each other in that experience which we call consciousness. Our extended senses, tools, technologies, through the ages, have been closed systems incapable of interplay or collective awareness. Now, in the electric age, the very instantaneous nature of co-existence among our technological instruments has created a crisis quite new in human history. Our extended faculties and senses now constitute a single field of experience which demands that they become collectively conscious. Our technologies, like our private senses, now demand an interplay and ratio that makes rational co-existence possible. As long as our technologies were as slow as the wheel or the alphabet or money, the fact that they were separate, closed systems was socially and psychically supportable. This is not true now when sight and sound and movement are simultaneous and global in extent. (McLuhan 1962, p.5, emphasis in original)Over forty years later, the seamless interplay that McLuhan demanded between our technologies is still barely visible. McLuhan’s predictions of the spread, and increased importance, of electronic media have of course been borne out, and the worlds of business, science and knowledge storage and transfer have been revolutionised. Yet the integration of electronic systems as open systems remains in its infancy.Advanced Knowledge Technologies (AKT) aims to address this problem, to create a view of knowledge and its management across its lifecycle, to research and create the services and technologies that such unification will require. Half way through its sixyear span, the results are beginning to come through, and this paper will explore some of the services, technologies and methodologies that have been developed. We hope to give a sense in this paper of the potential for the next three years, to discuss the insights and lessons learnt in the first phase of the project, to articulate the challenges and issues that remain.The WWW provided the original context that made the AKT approach to knowledge management (KM) possible. AKT was initially proposed in 1999, it brought together an interdisciplinary consortium with the technological breadth and complementarity to create the conditions for a unified approach to knowledge across its lifecycle. The combination of this expertise, and the time and space afforded the consortium by the IRC structure, suggested the opportunity for a concerted effort to develop an approach to advanced knowledge technologies, based on the WWW as a basic infrastructure.The technological context of AKT altered for the better in the short period between the development of the proposal and the beginning of the project itself with the development of the semantic web (SW), which foresaw much more intelligent manipulation and querying of knowledge. The opportunities that the SW provided for e.g., more intelligent retrieval, put AKT in the centre of information technology innovation and knowledge management services; the AKT skill set would clearly be central for the exploitation of those opportunities.The SW, as an extension of the WWW, provides an interesting set of constraints to the knowledge management services AKT tries to provide. As a medium for the semantically-informed coordination of information, it has suggested a number of ways in which the objectives of AKT can be achieved, most obviously through the provision of knowledge management services delivered over the web as opposed to the creation and provision of technologies to manage knowledge.AKT is working on the assumption that many web services will be developed and provided for users. The KM problem in the near future will be one of deciding which services are needed and of coordinating them. Many of these services will be largely or entirely legacies of the WWW, and so the capabilities of the services will vary. As well as providing useful KM services in their own right, AKT will be aiming to exploit this opportunity, by reasoning over services, brokering between them, and providing essential meta-services for SW knowledge service management.Ontologies will be a crucial tool for the SW. The AKT consortium brings a lot of expertise on ontologies together, and ontologies were always going to be a key part of the strategy. All kinds of knowledge sharing and transfer activities will be mediated by ontologies, and ontology management will be an important enabling task. Different applications will need to cope with inconsistent ontologies, or with the problems that will follow the automatic creation of ontologies (e.g. merging of pre-existing ontologies to create a third). Ontology mapping, and the elimination of conflicts of reference, will be important tasks. All of these issues are discussed along with our proposed technologies.Similarly, specifications of tasks will be used for the deployment of knowledge services over the SW, but in general it cannot be expected that in the medium term there will be standards for task (or service) specifications. The brokering metaservices that are envisaged will have to deal with this heterogeneity.The emerging picture of the SW is one of great opportunity but it will not be a wellordered, certain or consistent environment. It will comprise many repositories of legacy data, outdated and inconsistent stores, and requirements for common understandings across divergent formalisms. There is clearly a role for standards to play to bring much of this context together; AKT is playing a significant role in these efforts. But standards take time to emerge, they take political power to enforce, and they have been known to stifle innovation (in the short term). AKT is keen to understand the balance between principled inference and statistical processing of web content. Logical inference on the Web is tough. Complex queries using traditional AI inference methods bring most distributed computer systems to their knees. Do we set up semantically well-behaved areas of the Web? Is any part of the Web in which semantic hygiene prevails interesting enough to reason in? These and many other questions need to be addressed if we are to provide effective knowledge technologies for our content on the web

    Harvesting Entities from the Web Using Unique Identifiers -- IBEX

    Full text link
    In this paper we study the prevalence of unique entity identifiers on the Web. These are, e.g., ISBNs (for books), GTINs (for commercial products), DOIs (for documents), email addresses, and others. We show how these identifiers can be harvested systematically from Web pages, and how they can be associated with human-readable names for the entities at large scale. Starting with a simple extraction of identifiers and names from Web pages, we show how we can use the properties of unique identifiers to filter out noise and clean up the extraction result on the entire corpus. The end result is a database of millions of uniquely identified entities of different types, with an accuracy of 73--96% and a very high coverage compared to existing knowledge bases. We use this database to compute novel statistics on the presence of products, people, and other entities on the Web.Comment: 30 pages, 5 figures, 9 tables. Complete technical report for A. Talaika, J. A. Biega, A. Amarilli, and F. M. Suchanek. IBEX: Harvesting Entities from the Web Using Unique Identifiers. WebDB workshop, 201
    • 

    corecore