80 research outputs found

    Visualization of Documents and Concepts in Neuroinformatics with the 3D-SE Viewer

    Get PDF
    A new interactive visualization tool is proposed for mining text data from various fields of neuroscience. Applications to several text datasets are presented to demonstrate the capability of the proposed interactive tool to visualize complex relationships between pairs of lexical entities (with some semantic contents) such as terms, keywords, posters, or papers' abstracts. Implemented as a Java applet, this tool is based on the spherical embedding (SE) algorithm, which was designed for the visualization of bipartite graphs. Items such as words and documents are linked on the basis of occurrence relationships, which can be represented in a bipartite graph. These items are visualized by embedding the vertices of the bipartite graph on spheres in a three-dimensional (3-D) space. The main advantage of the proposed visualization tool is that 3-D layouts can convey more information than planar or linear displays of items or graphs. Different kinds of information extracted from texts, such as keywords, indexing terms, or topics are visualized, allowing interactive browsing of various fields of research featured by keywords, topics, or research teams. A typical use of the 3D-SE viewer is quick browsing of topics displayed on a sphere, then selecting one or several item(s) displays links to related terms on another sphere representing, e.g., documents or abstracts, and provides direct online access to the document source in a database, such as the Visiome Platform or the SfN Annual Meeting. Developed as a Java applet, it operates as a tool on top of existing resources

    NeuroBridge: a prototype platform for discovery of the long-tail neuroimaging data

    Get PDF
    Introduction Open science initiatives have enabled sharing of large amounts of already collected data. However, significant gaps remain regarding how to find appropriate data, including underutilized data that exist in the long tail of science. We demonstrate the NeuroBridge prototype and its ability to search PubMed Central full-text papers for information relevant to neuroimaging data collected from schizophrenia and addiction studies. Methods The NeuroBridge architecture contained the following components: (1) Extensible ontology for modeling study metadata: subject population, imaging techniques, and relevant behavioral, cognitive, or clinical data. Details are described in the companion paper in this special issue; (2) A natural-language based document processor that leveraged pre-trained deep-learning models on a small-sample document corpus to establish efficient representations for each article as a collection of machine-recognized ontological terms; (3) Integrated search using ontology-driven similarity to query PubMed Central and NeuroQuery, which provides fMRI activation maps along with PubMed source articles. Results The NeuroBridge prototype contains a corpus of 356 papers from 2018 to 2021 describing schizophrenia and addiction neuroimaging studies, of which 186 were annotated with the NeuroBridge ontology. The search portal on the NeuroBridge website https://neurobridges.org/ provides an interactive Query Builder, where the user builds queries by selecting NeuroBridge ontology terms to preserve the ontology tree structure. For each return entry, links to the PubMed abstract as well as to the PMC full-text article, if available, are presented. For each of the returned articles, we provide a list of clinical assessments described in the Section “Methods” of the article. Articles returned from NeuroQuery based on the same search are also presented. Conclusion The NeuroBridge prototype combines ontology-based search with natural-language text-mining approaches to demonstrate that papers relevant to a user’s research question can be identified. The NeuroBridge prototype takes a first step toward identifying potential neuroimaging data described in full-text papers. Toward the overall goal of discovering “enough data of the right kind,” ongoing work includes validating the document processor with a larger corpus, extending the ontology to include detailed imaging data, and extracting information regarding data availability from the returned publications and incorporating XNAT-based neuroimaging databases to enhance data accessibility

    Semantic Approaches for Knowledge Discovery and Retrieval in Biomedicine

    Get PDF

    Development and use of Ontologies Inside the Neuroscience Information Framework: A Practical Approach

    Get PDF
    An initiative of the NIH Blueprint for neuroscience research, the Neuroscience Information Framework (NIF) project advances neuroscience by enabling discovery and access to public research data and tools worldwide through an open source, semantically enhanced search portal. One of the critical components for the overall NIF system, the NIF Standardized Ontologies (NIFSTD), provides an extensive collection of standard neuroscience concepts along with their synonyms and relationships. The knowledge models defined in the NIFSTD ontologies enable an effective concept-based search over heterogeneous types of web-accessible information entities in NIF’s production system. NIFSTD covers major domains in neuroscience, including diseases, brain anatomy, cell types, sub-cellular anatomy, small molecules, techniques, and resource descriptors. Since the first production release in 2008, NIF has grown significantly in content and functionality, particularly with respect to the ontologies and ontology-based services that drive the NIF system. We present here on the structure, design principles, community engagement, and the current state of NIFSTD ontologies

    Agile in-litero experiments:how can semi-automated information extraction from neuroscientific literature help neuroscience model building?

    Get PDF
    In neuroscience, as in many other scientific domains, the primary form of knowledge dissemination is through published articles in peer-reviewed journals. One challenge for modern neuroinformatics is to design methods to make the knowledge from the tremendous backlog of publications accessible for search, analysis and its integration into computational models. In this thesis, we introduce novel natural language processing (NLP) models and systems to mine the neuroscientific literature. In addition to in vivo, in vitro or in silico experiments, we coin the NLP methods developed in this thesis as in litero experiments, aiming at analyzing and making accessible the extended body of neuroscientific literature. In particular, we focus on two important neuroscientific entities: brain regions and neural cells. An integrated NLP model is designed to automatically extract brain region connectivity statements from very large corpora. This system is applied to a large corpus of 25M PubMed abstracts and 600K full-text articles. Central to this system is the creation of a searchable database of brain region connectivity statements, allowing neuroscientists to gain an overview of all brain regions connected to a given region of interest. More importantly, the database enables researcher to provide feedback on connectivity results and links back to the original article sentence to provide the relevant context. The database is evaluated by neuroanatomists on real connectomics tasks (targets of Nucleus Accumbens) and results in significant effort reduction in comparison to previous manual methods (from 1 week to 2h). Subsequently, we introduce neuroNER to identify, normalize and compare instances of identify neuronsneurons in the scientific literature. Our method relies on identifying and analyzing each of the domain features used to annotate a specific neuron mention, like the morphological term 'basket' or brain region 'hippocampus'. We apply our method to the same corpus of 25M PubMed abstracts and 600K full-text articles and find over 500K unique neuron type mentions. To demonstrate the utility of our approach, we also apply our method towards cross-comparing the NeuroLex and Human Brain Project (HBP) cell type ontologies. By decoupling a neuron mention's identity into its specific compositional features, our method can successfully identify specific neuron types even if they are not explicitly listed within a predefined neuron type lexicon, thus greatly facilitating cross-laboratory studies. In order to build such large databases, several tools and infrastructureslarge-scale NLP were developed: a robust pipeline to preprocess full-text PDF articles, as well as bluima, an NLP processing pipeline specialized on neuroscience to perform text-mining at PubMed scale. During the development of those two NLP systems, we acknowledged the need for novel NLP approaches to rapidly develop custom text mining solutions. This led to the formalization of the agile text miningagile text-mining methodology to improve the communication and collaboration between subject matter experts and text miners. Agile text mining is characterized by short development cycles, frequent tasks redefinition and continuous performance monitoring through integration tests. To support our approach, we developed Sherlok, an NLP framework designed for the development of agile text mining applications

    Exploring Complex Networks with Graph Investigator Research Application

    Get PDF
    This paper describes Graph Investigator, the application intended for analysis of complex networks. A rich set of application functions is briefly described including graph feature generation, comparison, visualization and edition. The program enables to analyze global and local structural properties of networks with the use of various descriptors derived from graph theory. Furthermore, it allows to quantify inter-graph similarity by embedding graph patterns into low-dimensional space or distance measurement based on feature vectors. The set of available graph descriptors includes over eighty statistical and algebraic measures. We present two examples of real-world networks analysis performed with Graph Investigator: comparison of brain vasculature with structurally similar artificial networks and analysis of vertices importance in a macaque cortical connectivity network. The third example describes tracking parameters of artificial vascular network evolving in the process of angiogenesis, modelled with the use of cellular automata

    Semi-automated Ontology Generation for Biocuration and Semantic Search

    Get PDF
    Background: In the life sciences, the amount of literature and experimental data grows at a tremendous rate. In order to effectively access and integrate these data, biomedical ontologies – controlled, hierarchical vocabularies – are being developed. Creating and maintaining such ontologies is a difficult, labour-intensive, manual process. Many computational methods which can support ontology construction have been proposed in the past. However, good, validated systems are largely missing. Motivation: The biocuration community plays a central role in the development of ontologies. Any method that can support their efforts has the potential to have a huge impact in the life sciences. Recently, a number of semantic search engines were created that make use of biomedical ontologies for document retrieval. To transfer the technology to other knowledge domains, suitable ontologies need to be created. One area where ontologies may prove particularly useful is the search for alternative methods to animal testing, an area where comprehensive search is of special interest to determine the availability or unavailability of alternative methods. Results: The Dresden Ontology Generator for Directed Acyclic Graphs (DOG4DAG) developed in this thesis is a system which supports the creation and extension of ontologies by semi-automatically generating terms, definitions, and parent-child relations from text in PubMed, the web, and PDF repositories. The system is seamlessly integrated into OBO-Edit and ProtĂ©gĂ©, two widely used ontology editors in the life sciences. DOG4DAG generates terms by identifying statistically significant noun-phrases in text. For definitions and parent-child relations it employs pattern-based web searches. Each generation step has been systematically evaluated using manually validated benchmarks. The term generation leads to high quality terms also found in manually created ontologies. Definitions can be retrieved for up to 78% of terms, child ancestor relations for up to 54%. No other validated system exists that achieves comparable results. To improve the search for information on alternative methods to animal testing an ontology has been developed that contains 17,151 terms of which 10% were newly created and 90% were re-used from existing resources. This ontology is the core of Go3R, the first semantic search engine in this field. When a user performs a search query with Go3R, the search engine expands this request using the structure and terminology of the ontology. The machine classification employed in Go3R is capable of distinguishing documents related to alternative methods from those which are not with an F-measure of 90% on a manual benchmark. Approximately 200,000 of the 19 million documents listed in PubMed were identified as relevant, either because a specific term was contained or due to the automatic classification. The Go3R search engine is available on-line under www.Go3R.org

    Contextual Analysis of Large-Scale Biomedical Associations for the Elucidation and Prioritization of Genes and their Roles in Complex Disease

    Get PDF
    Vast amounts of biomedical associations are easily accessible in public resources, spanning gene-disease associations, tissue-specific gene expression, gene function and pathway annotations, and many other data types. Despite this mass of data, information most relevant to the study of a particular disease remains loosely coupled and difficult to incorporate into ongoing research. Current public databases are difficult to navigate and do not interoperate well due to the plethora of interfaces and varying biomedical concept identifiers used. Because no coherent display of data within a specific problem domain is available, finding the latent relationships associated with a disease of interest is impractical. This research describes a method for extracting the contextual relationships embedded within associations relevant to a disease of interest. After applying the method to a small test data set, a large-scale integrated association network is constructed for application of a network propagation technique that helps uncover more distant latent relationships. Together these methods are adept at uncovering highly relevant relationships without any a priori knowledge of the disease of interest. The combined contextual search and relevance methods power a tool which makes pertinent biomedical associations easier to find, easier to assimilate into ongoing work, and more prominent than currently available databases. Increasing the accessibility of current information is an important component to understanding high-throughput experimental results and surviving the data deluge
    • 

    corecore