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Automatic segmentation of white matter hyperintensities from brain 
magnetic resonance images in the era of deep learning and big data – A 
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A B S T R A C T   

Background: White matter hyperintensities (WMH), of presumed vascular origin, are visible and quantifiable 
neuroradiological markers of brain parenchymal change. These changes may range from damage secondary to 
inflammation and other neurological conditions, through to healthy ageing. Fully automatic WMH quantification 
methods are promising, but still, traditional semi-automatic methods seem to be preferred in clinical research. 
We systematically reviewed the literature for fully automatic methods developed in the last five years, to assess 
what are considered state-of-the-art techniques, as well as trends in the analysis of WMH of presumed vascular 
origin. 
Method: We registered the systematic review protocol with the International Prospective Register of Systematic 
Reviews (PROSPERO), registration number - CRD42019132200. We conducted the search for fully automatic 
methods developed from 2015 to July 2020 on Medline, Science direct, IEE Explore, and Web of Science. We 
assessed risk of bias and applicability of the studies using QUADAS 2. 
Results: The search yielded 2327 papers after removing 104 duplicates. After screening titles, abstracts and full 
text, 37 were selected for detailed analysis. Of these, 16 proposed a supervised segmentation method, 10 pro
posed an unsupervised segmentation method, and 11 proposed a deep learning segmentation method. Average 
DSC values ranged from 0.538 to 0.91, being the highest value obtained from an unsupervised segmentation 
method. Only four studies validated their method in longitudinal samples, and eight performed an additional 
validation using clinical parameters. Only 8/37 studies made available their methods in public repositories. 
Conclusions: We found no evidence that favours deep learning methods over the more established k-NN, linear 
regression and unsupervised methods in this task. Data and code availability, bias in study design and ground 
truth generation influence the wider validation and applicability of these methods in clinical research.   

1. Introduction 

In 1987, Hachinski, Potter, and Merskey (Hachinski et al., 1987) first 
used the term leukoaraiosis to describe abnormal areas of decreased 
density in subcortical white matter on brain computed tomography (CT) 
scans. Leukoaraiosis has also been referred to as white matter lesions 
(WMLs) (Inzitari, 2003). With increasing use of magnetic resonance 
imaging (MRI) as a diagnostic tool, leukoaraiosis is increasingly referred 
to as white matter hyperintensities (WMH) (Wardlaw et al., 2013). 

Being one of the most studied neuroimaging features given their 
appearance in a large number of pathologies and in normal ageing, the 
term WMH is indistinctively used to refer to abnormal clusters of 
T2-weighted-based hyperintense signal in tissue, usually larger than 3 
mm diameter, which are not artificially induced by the imaging system 
(Wardlaw et al., 2013). WMHs are associated with reduced cognitive 
function, dementia, gait, balance, mobility, and mood disorders (Faze
kas and Wardlaw, 2013; Zheng et al., 2011). WMHs are also frequently 
observed in the asymptomatic aged and associated with common 
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geriatric conditions such as cerebrovascular disease, cardiovascular 
disease, multiple sclerosis, other autoimmune diseases and psychiatric 
disorders such as depressive disorder, bipolar disorder and schizo
phrenia (Kim et al., 2008; Rachmadi et al., 2018). WMH prevalence in 
the general population ranges from 11 to 21% in 64 year olds and in
creases with age to 94 % in 82 year olds (Debette and Markus, 2010). 
One study reported that amongst an elderly population aged 60–90 
years, 90 % have WMH (Hasan et al., 2019). 

Detailed WMH evaluation for number, volume, location, and distri
bution on MRI may provide crucial information on aetiology, prognosis, 
and progression of diseases; accurate quantification may help measure 
treatment effectiveness (Manjón et al., 2018; Qin et al., 2018). WMH 
severity is considered an indirect marker of normal appearing white 
matter integrity and a surrogate marker of small vessel disease (SVD) 
(Maltais et al., 2019; Maniega et al., 2015). Advancing MRI technology 
means several methods have been developed to quantify WMH volumes 
through image segmentation: “a process which typically partitions the 
spatial domain of an image into mutually exclusive subsets called re
gions, each one of which is uniform and homogeneous with respect to 
some property such as tone or texture and whose property value differs 
in some significant way from the property value of each neighbouring 
regions” (Haralick and Shapiro, 1991). However, WMH are not homo
geneous, have ill-defined boundaries and their tone and texture may not 
significantly differ from neighbouring tissues. Biologically, they repre
sent the “tip of the iceberg” of demyelinating, inflammatory processes 
which affect the whole brain: they accompany and sometimes coalesce 
with many neuroradiological features. Essential for digital image seg
mentation is recognition of edges which separate WMH from 

“background”. WMH identification subjectivity and boundary recogni
tion, challenge WMH segmentation, leading to low agreement in studies 
of manual delineation of WMH ground truth segmentations (Akudjedu 
et al., 2018; Despotović et al., 2015; Keller and Roberts, 2009). 

Unlike normal tissues, for which validated fully automatic protocols 
exist and have become standard, WMH segmentation is, albeit mature, 
an active field of research for which a myriad of methodologies are still 
being developed. Clinical research groups usually select a WMH seg
mentation method based on their own capabilities, existing methods’ 
specifications, availability and sustainability of the source code, and 
image acquisition protocols. Then, groups adapt these methods in-house 
and validate them for a specific study protocol. Normal tissue intensities 
follow a normal distribution, but abnormalities do not. In the specific 
case of WMH, signal intensity and spatial distributions vary, displaying 
unique signatures for each disease and cohort. Table 1 summarises some 
WMH signatures in normal ageing, SVD, Alzheimer’s disease (AD), 
multiple sclerosis (MS) and vanishing white matter disease (an auto
somal recessive disorder) (Labauge et al., 2009). In addition to specific 
disease / neurological condition characteristics, WMH appearances vary 
widely in individuals from different disease groups (Fig. 1). 

WMHs arising as a result of infections (e.g. viral, bacterial), can 
overlay those which already exist due to other processes (e.g., normal 
ageing) or comorbidities (e.g., SVD): this poses a challenge for their 
differential identification and segmentation. For example, in COVID-19 
patients, in addition to large vessel strokes, WMHs have been reported 
bilaterally in the thalami, cerebellum and temporal lobes, and also in the 
corpus callosum, along with abnormal T2 signal in the olfactory bulb 
and microbleeds in the thalami (Imaging in COVID-19 complications - 

Table 1 
Neuroradiological signatures of T2 WMHs in normal ageing, SVD, AD, MA and vanishing WMD.   

Normal ageing SVD Alzheimer’s 
disease 

Multiple sclerosis Vanishing white matter 
disease 

Extent From thin peri-ventricular 
lining to confluent deep WM 
regions 

From peri-ventricular with 
few deep WM foci to 
confluent regions 

Thin peri- 
ventricular lining 
with foci in deep 
WM 

From peri-ventricular with few 
deep WM foci to large confluent 
regions (may enclose “pseudo- 
cavities” of low T1 signal, also 
referred as “cavitary lesions” ( 
Ayrignac et al., 2016) 

Large confluent regions 
enclosing “pseudocavities” of 
low T1 signal, also referred as 
“cavitary lesions” (Ayrignac 
et al., 2016) 

Characteristic 
brain regions 

Non-specific. Disseminated 
throughout periventricular & 
deep WM & corpus striatum. 
Gradual progression extending 
from periventricular WM, from 
frontal & parietal regions. 
Rare in temporal lobes, brain 
stem & cerebellum. 

Non-specific. Disseminated 
throughout periventricular & 
deep WM, corpus striatum & 
thalami. 
Rare in cerebellum. 

Non-specific. 
Disseminated 
throughout WM & 
deep GM. 
Rare in 
juxtacortical 
regions. 

Disseminated throughout the 
whole brain, including 
midbrain, brainstem, 
juxtacortical regions, corpus 
callosum & cerebellar 
peduncles. 

Disseminated throughout the 
whole brain. External capsule 
& corpus callosum diffusely 
involved. 

Symmetry 
between brain 
hemispheres 

Symmetric distribution Symmetric distribution Symmetric 
distribution 

Symmetric distribution in 
cerebrum, but not in cerebellum 

Symmetric distribution 

Histogram 
distribution in 
FLAIR MRI 

Tail (from normal WM) fits. 
Extreme Value distributions (e. 
g. Fréchet or Gumbel). 

Tail (from normal WM) fits. 
Extreme Value distributions 
(e.g. Fréchet or Gumbel). 
Laplacian distribution can be 
observed in some cases If/ 
when strokes are considered 
part of the WMHs 

Very skewed 
independent of (i.e. 
separated from) 
that of normal WM. 

Bimodal independent of (i.e. 
separated from) that of normal 
WM (considering cavitation). 

Bimodal independent of (i.e. 
separated from) that of 
normal WM (considering 
cavitation). 

Signatures “Cotton-wool” appearance. “Cotton-wool” appearance 
combined with subtle 
hyperintense large areas, or 
overt & confluent with 
irregular patterns. 

“Cotton-wool” 
appearance. 
Confluent regions 
are uncommon. 

Lesions juxtacortically & in 
corpus callosum, perpendicular 
to ventricular linings (known as 
“Dawson fingers”). 
Predominantly periventricular 
cavitary lesions. Punctate 
asymmetrical posterior fossa 
lesions. 

Diffuse corpus callosum 
involvement. Symmetric 
involvement of cerebellum & 
middle cerebellar peduncles. 
Predominantly anterior 
cavitary lesions. 

Presence of 
other features 

Perivascular spaces (from none 
to mild) & possibly lacunar 
lesions +/-chronic mild 
ischaemic strokes. 

Perivascular spaces, lacunes, 
chronic ischaemic strokes & 
few microbleeds. 

Marked brain 
atrophy & 
hippocampal 
sclerosis. 

n/a n/a 

Borders Not well defined. Not well defined. Better defined than 
in SVD or healthy 
ageing. 

Better defined than in SVD or 
healthy ageing. (Griffanti et al., 
2016) 

Not well defined.  
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ESR Connect, 2020). In these brain regions, typical WMHs are uncom
mon. Symmetric frontal WMH and cortical hyperintensities have been 
reported in other COVID-19 patients with more severe respiratory dis
ease status (MRI Shows Brain Abnormalities in Some COVID-19 Patients, 
2020) along with punctate cortical blooming artefacts. But influence of 
treatment, comorbidities and disease severity make it difficult even for 
neuroradiologists to identify specific disease-related patterns that could 
differentially aid in diagnosis and patient stratification. 

To help select WMH segmentation methods and discuss their appli
cability, other systematic literature reviews have been published, but on 
focused topics specific to diseases, e.g. MS lesion segmentation (Gar
cía-Lorenzo et al., 2013; Lladó et al., 2011, 2012; Miller et al., 1998; 
Mortazavi et al., 2012). Methods which work for MS may only perform 
moderately if applied to individuals with SVD or to the normal elderly 
(Table 1). Caligiuri et al. conducted a systematic review on fully auto
mated methods for segmenting WMH in normal ageing and in patients 
with vascular pathology and risk factors, covering from 1980 to 2014 
(Caligiuri et al., 2015). Two other non-overlapping reviews (Wardlaw 
et al., 2015; Blair et al., 2017) discussed different approaches published 
up to 2016, both for segmenting WMH, and also for assessing other 

neuroimaging markers of SVD. Another study which systematically 
reviewed machine-learning methods which differentiate healthy aging 
from different dementia types (Pellegrini et al., 2018) included studies 
(from 2006 to September 2016) aimed at detecting and segmenting 
WMH in ageing and dementia. The last five years (i.e., since 2015) have 
seen a boost in sample sizes, computational power and the introduction 
/ application of deep learning in clinical research, in parallel with an 
increase in high-quality imaging acquisitions, facilitated by 3 T MRI 
scanners. 

We systematically reviewed the literature from 2015 to 2020 in order 
to assess and overview those fully automatic computational methods 
developed to segment WMH of presumed vascular origin. 

2. Methods 

2.1. Literature search 

This systematic review protocol is registered on the International 
Prospective Register of Systematic Reviews (PROSPERO), registration 
number - CRD42019132200 (2020) to avoid unintended duplication 

Fig. 1. T2-hyperintensties in MS (top row) and sporadic SVD (middle and bottom rows). Top row: Representative axial slice from two MS patients displayed, from 
left to right, in FLAIR, T1-weighted and T2-weighted MRI at 1.5 T, showing pseudocavitated FLAIR hyperintense lesions (enclosed in rectangles). Middle row: From 
left to right, sagittal, coronal and axial views of a FLAIR 3 T MRI scan from a patient with SVD and a high burden of WMH of presumed vascular origin. Bottom row: 
From left to right, sagittal, coronal and axial views of a FLAIR 3 T MRI scan displaying a large confounding image artefact (enclosed in rectangles in coronal and axial 
views) from a patient with SVD with a low burden of WMH of presumed vascular origin. 
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and to aid in transparent reporting. The search was conducted from 
January 2015 to July 2020 on Medline, Science direct, IEE Explore and 
Web of Science. For each database, we developed a search strategy to 
retrieve as many WMH segmentation method articles as possible. We 
identified keywords by expanding the subject components from the re
view question: white matter lesion, white matter hyperintensities, leu
koaraiosis, aging, WMH, segmentation, supervised segmentation, 
unsupervised segmentation, machine learning, deep learning, parcella
tion, artificial neural network, pattern recognition, clustering, classifi
cation, magnetic resonance imaging, MRI. We applied language 
restriction and age limits (45 plus years) for Medline. We summarize 
search strategy details for each database in Appendix 1. We imported all 
articles retrieved into the reference manager Mendeley, and removed all 
duplicates. We then screened abstracts and titles to exclude studies 
outwith the scope of the review. Then we evaluated the full text of the 
remaining articles, applying inclusion and exclusion criteria (explained 
below). We also reviewed references of these articles for possible papers 
missed in the primary search. 

Additionally, the following journals were hand-searched to identify 
articles which presented a method for segmenting WMH in the period 
covered by this review.  

1 Neuroimage – keywords WMH and segmentation from January 2015 
to July 2020: identified 6 articles which matched the search results 
(100 % recall).  

2 NeuroImage Clinical – from January 2015 to July 2020: identified 7 
articles which matched the search results (100 % recall).  

3 Neuroinformatics – keywords WMH and segmentation from January 
2015 to July 2020: identified 2 articles which matched the search 
results (100 % recall). 

2.2. Inclusion and exclusion criteria 

2.2.1. Inclusion criteria  

• Presentation and / or validation of a fully automated method for 
segmenting WMH of presumed vascular origin from human brain MR 
images from January 2015 to July 2020  

• Studies published in English 

2.2.2. Exclusion criteria  

• Animal studies  
• Segmentation methods solely for MS lesions or validated using only 

MS patients  
• New fully automated segmentation methods not described  
• Segmentation method accuracy evaluated on CT images  
• Segmentation of brain regions, brain tumours or other pathologies 

which are not WMH of presumed vascular origin  
• Semi-automated segmentation methods  
• No information on segmentation method similarity metrics used or 

no evaluation against ground truth segmentations  
• Focus on pre-processing or classification of MR images  
• Methods designed for WMH evolution assessment (i.e. longitudinal 

analysis) without cross-sectional validation of their results  
• Insufficient information to replicate or apply the segmentation 

method  
• Studies published only as abstracts  
• Conference proceedings  
• No segmentation method description 

2.3. Assessment of methodological quality 

We evaluated methodological quality for each study using QUADAS 
2: a tool to assess the risk of bias and the applicability of the methods / 
procedures (https://www.bristol.ac.uk/media-library/sites/quadas/mi 

grated/documents/quadas2.pdf). QUADAS 2 contains four domains: 1) 
patient selection; 2) index test; 3) reference test; and 4) flow and timing. 
In our case, index text refers to WMH segmentation method / algorithm. 
Different from the original QUADAS 2 questionnaire, the evaluation of 
the index text consisted in assessing whether or not the reference stan
dard was used in any way by the segmentation method. We completed 
the online form for each of the included studies. If a study were judged 
low in all four domains in relation to bias or applicability from 
answering the specific questions from each domain, then it was 
considered as “low risk of bias”. If a study were judged high or unclear 
for one or more domains, then it was considered as “risk of bias” or as 
having concerns regarding applicability. 

2.4. Data extraction 

From the included papers, we extracted the following data:  

• Title, year of publication, journal name, study design  
• Number of subjects or images, age, gender  
• Patient selection criteria, sample size  
• Type of MRI sequences used (details about the scanner used)  
• Information on imaging features used for investigation  
• Details about pre-processing steps (registration, brain extraction, 

intensity inhomogeneity correction, noise reduction, intensity 
normalization)  

• Method to remove false positives  
• Reference standard(s)  
• Segmentation method details 
• Non-imaging features used for clinical correlation with WMH vol

ume (e.g., cognitive test)  
• Sensitivity, specificity, accuracy, dice similarity index, false negative 

ratio (FNR) and false positive ratio (FPR) of the proposed segmen
tation method  

• Visual rating scale used for validating the segmentation method (if 
any) 

Extracted data were tabulated, synthesized, and evaluated for 
methodological flaws and applicability of the proposed techniques. 

3. Results 

3.1. Search results 

The search yielded 2327 papers after removing 104 duplicate cita
tions. We schematically represent the selection process in Fig. 2; we 
conducted it according to the Preferred Reporting Items for Systematic 
Reviews and Meta-Analyses (PRISMA). 

3.1.1. Exclusions 
We removed 2268 papers after screening titles and abstracts, leaving 

59 for full text screening. We excluded a further 19 for these reasons: 
validated the method using datasets with brain tumours (2); or MS pa
tients only (6); method for segmenting lacunes (1); or perivascular 
spaces (3); or only small T2 hyperintensities (1); full text unavailable 
(1); sample size less than 20 (1); presented a tool for displaying but not 
segmenting WMH (1); modelling WMH distribution (1 study); or only 
quantifying longitudinal change (1). Also, three studies did not propose 
a new segmentation method of WMHs but compared the performance of 
existing machine learning based segmentation methods of WMHs 
(Dadar et al., 2017b; Kuijf et al., 2019; Rachmadi et al., 2017), leaving 
37 studies for full analysis. 

3.2. Studies characteristics 

3.2.1. Individuals analysed 
The 37 studies included analysed imaging data from approximately 
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7000 individuals. The exact number and quantitative breakdown of 
sample characteristics was not possible to ascertain because several 
studies used overlapping publicly available datasets lacking accompa
nying clinical or demographic metadata. One large-scale multicentre 
study involved 2781 subjects from 12 different sites (Schirmer et al., 
2019); two studies analysed more than 500 individuals (Griffanti et al., 
2016 (n = 559); Jiang et al., 2018 (n = 566)); eight studies used small 
relevant samples (i.e., fewer than 30 individuals with WMH of presumed 
vascular origin) (Ding et al., 2020; Rachmadi et al., 2020; Rincón et al., 
2017; Roy et al., 2015; Stone et al., 2016; Van Opbroek et al., 2015a, b; 
Valverde et al., 2017); three additionally used data from MS patients 
(Rachmadi et al., 2020; Van Opbroek et al., 2015a, b). 

3.2.2. Validity of the data extracted 
Fourteen studies validated their results in data provided by Medical 

Image Computing and Computer Assisted Intervention (MICCAI) seg
mentation challenges (Roy et al., 2015; Sudre et al., 2015; Van Obproek 
et al., 2015a, b; Wang et al., 2015; Valverde et al., 2017; Zhan et al., 
2017; Knight et al., 2018; Li et al., 2018; Manjón et al., 2018; Moeskops 
et al., 2018; Sundaresan et al., 2019; Wu et al., 2019b; Liu et al., 2020). 
Nine of them also used additional datasets or patient data from clinics. 
Out of 37, twelve studies reported using data from prospective studies or 
clinics (Atlason et al., 2019; Bowles et al., 2017; Guerrero et al., 2017; 
Hong et al., 2020; Moeskops et al., 2018; Ling et al., 2018; Park et al., 
2018; Qin et al., 2018; Rincón et al., 2017; Roy et al., 2015; Sundaresan 
et al., 2019; Wang et al., 2015). Four studies used data from the Alz
heimer’s Disease Neuroimaging Initiative (ADNI) (Sudre et al., 2017; 
Dadar et al., 2017a; Rachmadi et al., 2018, 2020), of which only two 
declared the subset used (Rachmadi et al., 2018, 2020). Two studies 
recruited patients diagnosed with migraine (Hong et al., 2020; Park 
et al., 2018). We summarize the population characteristics in Table 2. 

3.3. Risk of bias assessment within studies 

We observed four types of bias: spectrum bias, observer bias, veri
fication bias and selection bias (Fig. 3). Observer and data selection 

biases were common. Observer bias, found in 23/37 studies, mainly 
occurred in studies that proposed a supervised segmentation method. 
These “learned” from reference data generated by one or more ob
servers, or used limited overlapping retrospective data. A study that 
reported consensus between observers in the generation of reference 
segmentation data proposed an unsupervised segmentation method 
(Sudre et al., 2015). Data selection bias was also observed in 25/37 
studies. 

Lack of consideration of differences in disease severity (i.e. WMH 
burden in relation to underlying disease/population group) is referred to 
as spectrum bias (Schmidt and Factor, 2013). Eighteen studies did not 
clearly report clinical features and disease characteristics of individuals 
included in terms of WMH severity. Therefore, it was difficult to judge 
whether or not a wider and balanced spectrum of WMH burden was 
present in the sample and, consequently, if the methods were biased 
towards data with higher, medium or small burdens of WMH in a certain 
population group. 

Data inclusion and exclusion criteria were not explained in 22/37 
studies. Of the studies that reported demographic information, five 
recruited healthy controls (Griffanti et al., 2016; Sundaresan et al., 
2019; Damangir et al., 2017; Rincón et al., 2017; Ding et al., 2020). One 
study stated that the data selection and manipulation were blinded to 
clinical information (i.e., avoided clinical review bias) (Dadar et al., 
2017a). One study reported having selected the cases randomly (Atlason 
et al., 2019). 

The magnet strength of the scanner used to acquire the data pro
cessed was reported in 35/37 studies (see Table 2). Twelve studies used 
data only acquired at 1.5 T, and twelve used data only acquired at 3 T. 
11/37 studies used data acquired at both 1.5 T and 3 T (see Table 2). 

We observed differential verification bias in 17 studies. These studies 
used different reference standards to verify segmentation methods’ 
performances; i.e., more than one reviewer was involved in manual 
WMH delineation of different datasets, or each dataset was delineated 
by a different person using different strategies, without stating the de
gree of inter-observer reliability or whether or not the final reference 
segmentation was agreed between the observers involved. Only 8/37 

Fig. 2. PRISMA Flow diagram of the systematic literature search.  
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Table 2 
Sample characteristics, type of segmentation algorithm proposed and average spatial agreement with reference segmentations in the relevant dataset used, from the 37 
studies reviewed. Studies appear in alphabetical order of the first author’s surname by year of publication.  

STUDY / CODE 
REPOSITORY 

SAMPLE 
SIZE 

SAMPLE CHARACTERISTICS SEQUEN-CES 
AND FIELD 
STRENGTH 

TYPE OF 
SEGMENTA- 
TION 

AVERAGE SPATIAL 
AGREEMENT WITH 
REFERENCE SEGMENTATION 

Roy et al. (2015) 24 
Additio-nal eval. 
in data from n =
20 

Selected from a larger cohort of elderly subjects with 
hypertension based on the burden of WMH. Further 
evaluation in data from 20 MS patients from the 
MICCAI MS Segmentation Challenge II 2008 
(https://www.nitrc.org/projects/msseg) 

T1W, FLAIR / 1.5 
T 

Supervised DSC 0.60− 0.76 
In MS patients: DSC 0.42, TPR 
0.55, PPV 0.38 

Sudre et al. (2015) Not especi-fied Simulated data from the BrainWeb project (Kwan 
et al., 1999), MS patient data from https://www. 
nitrc.org/projects/msseg and data with age-related 
WMH from the MICCAI BrainS challenge 

T1W, FLAIR / 1.5 
T 

Unsupervi-sed DSC 0.46, FPR 0.1, TPR 0.38, 
FNR 0.62 

Van Opbroek et al. 
(2015a) 

40 20 healthy elderly subjects from the Rotterdam scan 
study 
and 20 MS patients from https://www.nitrc.org/ 
projects/msseg 

T1W, T2W/PD, 
FLAIR / 1.5 T 

Supervised Total accuracy score 78 %, TPR 
42.3 & 52.7 %, FPR 73.2 & 70.0 
% 

Van Opbroek et al. 
(2015b) 

40 20 healthy elderly subjects from the Rotterdam scan 
study 
and 20 MS patients from https://www.nitrc.org/ 
projects/msseg 

T1W, T2W/PD, 
FLAIR / 1.5 T 

Supervised – 

Wang et al. (2015) 60 + Elderly patients scanned as part of normal patient 
care, aged 61–86 years (mean age 68.2 years), with 
various degrees of vascular white matter 
abnormalities. Further evaluation used data from 10 
MS patients from the MICCAI MS Segmentation 
Challenge II 2008 (https://www.nitrc.org/projects/ 
msseg) 

T1W, T2W, 
FLAIR / 1.5 T & 3 
T 

Unsupervi-sed DSC 0.81− 0.84, 
FPR 0.13− 0.24, 
FNR 0.14− 0.2 
In MS patients: 
TPR 0.38− 0.40, 
PPV 0.36− 0.48 

Zhan et al. (2015) 40 Patient selection process not provided, mean age 
62.2 ± 5.9 years 

T1W, T2W, 
FLAIR /1.5 T 

Unsupervi-sed DSC 0.75, TPF 0.72, FPF 0.46 

(Damangir et al., 2017) 119 Patients from Kings Health Partners-Dementia Case 
Register with AD, MCI, and healthy controls, aged 
76.4 ± 7.4 years, 56 % Females 

T1W, T2W, 
FLAIR, PD / 1.5 T 

Unsupervi-sed DSC 0.85 – 0.91 

Griffanti et al. (2016) 
https://fsl.fmrib.ox.ac. 
uk/fsl/fslwiki 
/BIANCA 

559 Selection criteria not provided. Dataset 1 
(neurodegenerative cohort)- 85 patients 
Dataset 2 (vascular cohort)-MRI data from 474 
consecutive patients 

T1W, FLAIR / 3 T Supervised DSC 0.76, FNR 0.25, FPR 0.22 

Stone et al. (2016) 24 Traumatic brain injured patients aged 28− 58 years 
(mean age 39.6 ± 8.1 years) with isolated traumatic 
lesions in the cerebral white matter, recruited based 
on potential concussive events 

T1W, T2W, 
FLAIR / 3 T 

Supervised Sensitivity 0.68, PPV 0.51 

Bowles et al. (2017) 127 Selection criteria not provided. Heterogeneous 
dataset containing imaging data from three different 
acquisition protocols 

T1W, T2W, 
FLAIR / 1.5 T 

Unsupervi-sed DSC 0.70 

Dadar et al. (2017a) 130 Dataset 1: 80 subjects aged 
70− 90 years old with either normal cognition, MCI 
or AD. 
Dataset 2: 40 cognitively normal subjects at risk of 
AD aged 55− 75 years 
Dataset 3: 10 subjects from ADNI2/GO selected to 
have different WMH burden 

T1W, FLAIR / 1.5 
T & 3 T 

Supervised DSC 0.51− 0.62 

Ghafoorian et al. (2017) 420 Subjects for the RUN DMC study aged between 50 
and 85 years with cerebral SVD on neuroimaging 
(appearance of WMH and/or lacunes) 

T1W, FLAIR / 1.5 
T 

Deep learning DSC 0.78− 0.79 

Rincón et al. (2017) 28 13 patients with cortical and lacunar ischemic 
infarctions, between 40 and 79 years of age, 
mini–mental state examination (MMSE) scores ≥ 23, 
no severe problems of language and visual/auditory 
neglect. 15 MCI patients meeting Petersen criteria. 

T1W, FLAIR / 1.5 
T 

Supervised DSC 0.64 

Sudre et al. (2017) 85 + Two datasets of unspecified size: one from ADNI 
with minimal to none WMH load and other with a 
range of WMH burden. Additional Synthetic data 
derived from a non-specified number of data was 
used. 

T1W, FLAIR / 3 T Unsupervi-sed DSC 0.2 – 0.7 

Valverde et al. (2017) 
http://atc.udg.edu/ 
nic/msseg 

20 MRBrainS public database, selected with varying 
atrophy degrees and WMH loads 

T1W, FLAIR / 3 T Unsupervi-sed TPF 0.7− 0.8 

Zhan et al. (2017) 104 Dataset 1: 50 subjects from ACCORD-MIND mean 
age 62 years 
Dataset2: 54 image datasets from https://www.nitrc 
.org/projects/msseg 

T1W, T2W, PD, 
FLAIR / 1.5 T 

Supervised DSC 0.76, TPR 0.83 

Diniz et al. (2018) 91 Image data from a database with some of the 
volumes containing less than 10 lesions clusters 
while other volumes contains more than 100. 

FLAIR / 
Acquisition 
details not 
provided 

Deep learning Sensitivity 78.79 %, Specificity 
98.77 % 

(continued on next page) 
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Table 2 (continued ) 

STUDY / CODE 
REPOSITORY 

SAMPLE 
SIZE 

SAMPLE CHARACTERISTICS SEQUEN-CES 
AND FIELD 
STRENGTH 

TYPE OF 
SEGMENTA- 
TION 

AVERAGE SPATIAL 
AGREEMENT WITH 
REFERENCE SEGMENTATION 

(Guerrero et al., 2017) 167 Patients with their first clinically evident non- 
disabling lacunar or mild cortical ischemic stroke 

T1W, FLAIR / 1.5 
T 

Deep learning DSC 0.607 

Jiang et al. (2018) 
https://cheba.unsw. 
edu.au/research 
-groups/neuroimaging 
/pipeline 

566 Data from two sources: 1) Sydney Memory and 
Ageing Study (n = 166 aged 70–90 years old 
provided longitudinal data in 3 time points). 
2) Older Australian Twins Study (n = 400 aged 65 
and above). 

T1W, FLAIR / 1.5 
T & 3 T 

Supervised DSC 0.85, Sensitivity 0.91, 
Specificity 0.99 

Knight et al. (2018) 96 From 7 different sources, provided by different WMH 
and MS lesion segmentation challenges (Styner et al., 
2007) 

FLAIR / 1.5 T & 3 
T 

Supervised DSC 0.41− 0.70 

Li et al. (2018) https 
://github.com 
/hongweilibran/wmh 
_ibbmTum 

170 WMH segmentation challenge dataset (https://wmh. 
isi.uu.nl/). 

T1W, FLAIR / 1.5 
T & 3 T 

Deep learning DSC 0.8, Recall 0.84 

Ling et al. (2018) 156 CADASIL patients 18 years old and above. Mutation 
of gene NOTCH3 confirmed. 90 patients with 2D 
FLAIR images were aged 24–74 years, mean age 49 
± 11 years, F:M = 54:36. 
66 patients with 3D FLAIR images were aged 35–81 
years, mean age 57 ± 11 years, F:M = 46:20 

T1W, FLAIR / 1.5 
T & 3 T 

Supervised DSC 0.79 for 2D FLAIR images 
and 0.76 for 3D FLAIR images 

Manjón et al. (2018) 128 + 128 subjects with a wide range of WMH load aged 
38.6–92.1 years (M:F = 60:68) from Australian 
Imaging Biomarkers and Lifestyle (AIBL) study, and 
unspecified data from https://www.nitrc.org/projec 
ts/msseg 

T1W, FLAIR / 1.5 
T & 3 T 

Deep learning DSC 0.78 

Moeskops et al. (2018) 226 Patient data from MRBrainS13 challenge and two 
other datasets: 
patients with type 2 diabetes mellitus, healthy 
controls and 
patients from memory clinic 

T1W, FLAIR / 3 T Deep learning DSC 0.67 

Park et al. (2018) 
https://github.com/by 
park/DEWS 

148 Diagnosis of migraine confirmed by two headache 
specialists mean age 44.4 (SD 12.4) years 

T1W, FLAIR / 3 T Supervised TPR 0.7− 0.91 

Qin et al. (2018) 88 (uses WM 
lesion 3D atlas 
from 277 FLAIR 
images) 

Adults from mid to older ages with WMH without 
confounding radiological evidence of recent or old 
strokes 

T1W, FLAIR / 1.5 
T 

Supervised DSC 0.65− 0.67, Precision 0.68, 
Recall 0.68− 0.69 

Rachmadi et al. (2018) 
https://github.com/ 
deepmedic/deepmedic 

288 ADNI subjects randomly selected. From the 
subsample with ground truth segmentations (n = 20) 
3 were cognitively normal, 12 had early MCI and 5 
had late MCI 

T1W, T2W, 
FLAIR / 3 T 

Deep learning DSC 0.54 

Atlason et al. (2019) 170 AGES-Reykjavik study. Age 66–93 years at first visit, 
and WMH segmentation challenge dataset (htt 
ps://wmh.isi.uu.nl/). 

T1W, T2W, 
FLAIR / 1.5 T & 3 
T 

Unsupervi-sed DSC 0.77, TPR 0.64 in AGES- 
Reykjavik dataset. 
DSC 0.53− 0.67, TPR 0.25− 0.40 
in WMH segmentation 
challenge dataset 

Schirmer et al. (2019) 2783 (WMH 
extracted in 2533) 

Acute ischaemic stroke patients ages 63.28 (SD 
14.70) years, 61 % male, 10.6 % had a prior stroke 

FLAIR / Field 
strength not 
specified 

Deep learning (Provides ICC = 0.84, Pearson r 
= 0.86 with p < 0.001 
(validation only used 144 
images)) 

Sundaresan et al. (2019) 133 Five datasets: 
1) Neurodegenerative cohort (n = 21, age range 
63–86 years, mean age 77.1 ± 5.8 years F:M =
10:11) 
2) Patients that recently experienced a minor non- 
disabling stroke or transient ischemic attack (n = 18, 
(age range 50–91 years, mean age 73.27 ± 12.32 
years, F:M = 7:11) 
3) CADASIL patients (n = 15, age range 33–70 years, 
mean age 53.73 ± 11.31 years, F:M = 11:4) 
4) Healthy controls (n = 19, age range 29–70 years, 
mean age 54.58 ± 11.25 years, F:M = 6:13) 
5) MICCAI WMH segmentation challenge dataset (n 
= 60, selected from 3 different primary cohorts, htt 
ps://wmh.isi.uu.nl/) 

T1W, T2W, 
FLAIR / 1.5 T & 3 
T 

Supervised DSC 0.77 
TPR 0.73 – 0.98 

Wu et al. (2019) 135 Data from BIOCARD study. Subjects 
either cognitively normal (n = 113) or MCI (n = 22), 
based on the (NIA/AA) research diagnostic criteria 

T1W, FLAIR / 3 T Supervised DSC 0.62, FPR 0.35, FNR 0.37 

Wu et al. (2019b) 60 Data from a MICCAI WMH challenge (https://wmh. 
isi.uu.nl/). Demographic data not provided 

T1W, FLAIR / 1.5 
T & 3 T 

Deep learning DSC 0.78, Recall 0.81 

Ding et al. (2020) 20 Participants from ongoing normal ageing study. 
Average age 81.2 (SD 7.15) years. 
70 % Females. 85 % white and 15 % African- 
Americans 

T1W, FLAIR / 3 T Supervised DSC 0.78, FPR 0.009 
PPV 0.85, TPR 0.70 

(continued on next page) 

R. Balakrishnan et al.                                                                                                                                                                                                                          

https://cheba.unsw.edu.au/research-groups/neuroimaging/pipeline
https://cheba.unsw.edu.au/research-groups/neuroimaging/pipeline
https://cheba.unsw.edu.au/research-groups/neuroimaging/pipeline
https://cheba.unsw.edu.au/research-groups/neuroimaging/pipeline
https://github.com/hongweilibran/wmh_ibbmTum
https://github.com/hongweilibran/wmh_ibbmTum
https://github.com/hongweilibran/wmh_ibbmTum
https://github.com/hongweilibran/wmh_ibbmTum
https://wmh.isi.uu.nl/
https://wmh.isi.uu.nl/
https://www.nitrc.org/projects/msseg
https://www.nitrc.org/projects/msseg
https://github.com/bypark/DEWS
https://github.com/bypark/DEWS
https://github.com/deepmedic/deepmedic
https://github.com/deepmedic/deepmedic
https://wmh.isi.uu.nl/
https://wmh.isi.uu.nl/
https://wmh.isi.uu.nl/
https://wmh.isi.uu.nl/
https://wmh.isi.uu.nl/
https://wmh.isi.uu.nl/


Computerized Medical Imaging and Graphics 88 (2021) 101867

8

studies made the code publicly available (Griffanti et al., 2016; Hong 
et al., 2020; Jiang et al., 2018; Li et al., 2018; Park et al., 2018; Rach
madi et al., 2018, 2020; Valverde et al., 2017). One study (Ling et al., 
2018) evaluated different configurations of the method described by 
Griffanti et al. (2016) making recommendations of its use. We present 
risk of bias assessment of the 37 included studies using QUADAS 2 tool 
in Table 3. Out of the 37 studies, only 7 were judged as having low risk of 
bias overall. 

3.4. Pre-processing methods 

All studies which reported ground truth generation details, validated 
the WMH segmentation method with ground truth binary masks, 
generated using the FLAIR MRI sequence. However, only three studies 
reported having used only the FLAIR sequence in their segmentation 
framework (Diniz et al., 2018; Knight et al., 2018; Schirmer et al., 2019). 
Oft the rest (i.e., 34/37) which described using data from different se
quences, 28 used a combination of more than one sequence (i.e., also 
known as “multispectral approach”), generally T1-weighted and FLAIR, 
to generate the final outcome. In general, after MRI acquisition, various 
pre-processing steps were conducted. These were often registration, 
brain extraction, intensity inhomogeneity correction, noise reduction 
and intensity normalisation. Table 4 summarises the publicly available 
tools used in the studies’ pipelines and Table 5 summarises the 
pre-processing steps used by each study. Only one study reported having 
conducted all the above-mentioned pre-processing steps prior to the 
segmentation method (Manjón et al., 2018), and one did not provide any 
information about pre-processing steps performed before segmentation 

(Liu et al., 2020). The latter selected MRI slices from already 
brain-extracted images downloaded from an image data repository, 
without specifying how the slice selection was performed (i.e., by visual 
inspection or automatically). Slice selection excluded 81 slices with 
haemorrhagic stroke and those at the top and bottom of the brain, which 
are more prone to have confounding artefacts. 

Most studies included in the review used linear transformation 
models to co-register the different image sequences from each subject 
data (Fig. 4 (left hand side), Table 5). From the 27/37 studies that 
provided information on the tool used for image registration, ten used 
FSL FLIRT(Jenkinson et al., 2002) (Qin et al., 2018; Griffanti et al., 2016; 
Guerrero et al., 2017; Sundaresan et al., 2019; Damangir et al., 2017; 
Rachmadi et al., 2018, 2020; Ghafoorian et al., 2017; Hong et al., 2020; 
Ding et al., 2020), three used ANTsAdvanced Normalization Tools 
(ANTs), 2020 (Schirmer et al., 2019; Manjón et al., 2018; Stone et al., 
2016), five used SPM(SPM - Documentation, 2020) (Wu et al., 2019a; 
Roy et al., 2015; Jiang et al., 2018; Knight et al., 2018; Valverde et al., 
2017), one study used elastix(Shamonin et al., 2014) (Moeskops et al., 
2018), one study used 3DSlicer(Documentation/4.10/Training - Slicer 
Wiki, 2020) (Rincón et al., 2017), and one study used MIRTK (MIRTK – 
BioMedIA, 2020) (Bowles et al., 2017). The skull stripping method for 
removal of non-brain tissues was reported in 25/37 studies: FSL-BET 
(Jenkinson et al., 2004), ANTsAdvanced Normalization Tools (ANTs), 
2020, OptiBET(Lutkenhoff et al., 2014), Neuron BE, SPM, Freesurfer, 
MONSTR and MRIcro(VisibleHuman, 2021). Intensity inhomogeneity 
correction was reported in 17/37 studies, and it was always performed 
using a well-known tool: N3 (or N4), SPM, FSL-FAST(Zhang et al., 2001) 
or the Nu estimate. N3(Sled et al., 1998) and its newer version N4 

Table 2 (continued ) 

STUDY / CODE 
REPOSITORY 

SAMPLE 
SIZE 

SAMPLE CHARACTERISTICS SEQUEN-CES 
AND FIELD 
STRENGTH 

TYPE OF 
SEGMENTA- 
TION 

AVERAGE SPATIAL 
AGREEMENT WITH 
REFERENCE SEGMENTATION 

Fiford et al. (2020) 60 30 controls and 30 AD patients from ADNI. Mean age 
controls 73.4 (6.2) years 
Mean age AD patients 74.9 years 

T1W, FLAIR / 3 T Unsupervi-sed DSC 0.74 (F/T PR and NR given 
by anatomical regions) 

Hong et al. (2020) 
https://github.com/ 
jisu-hong/deepwmh 

148 Patients with migraine without aura, migraine with 
typical aura, and chronic migraine. Mean age: 44.4 
years, 82 Females 

T1W, FLAIR / 3 T Deep learning TPR 0.87, FDR 0.10 

Liu et al. (2020) 60 Data from WMH segmentation challenge (htt 
ps://wmh.isi.uu.nl/), and SISS challenge 2015. Out 
of 60, 25 cases contained ischemic stroke lesions 

T1W, FLAIR / 1.5 
T & 3 T 

Deep learning DSC 0.829 

Rachmadi et al. (2020) 
https://github.com/ 
febrianrachmadi/lot 
s-iam-gpu 

60 20 subjects from ADNI and 40 MS patients with 
different loads of MS lesions. 

T1W, T2W, 
FLAIR / 3 T 

Unsupervi-sed DSC 0.47− 0.56 
PPV 0.59 
TPR 0.47 

Legend: ADNI: Alzheimer’s Disease Neuroimaging Initiative, AD: Alzheimer’s disease, MCI: Mild Cognitive Impairment, M:F (or F:M): number of Male : number of 
Female (or viceversa) participants, CADASIL: Cerebral autosomal dominant arteriopathy with subcortical infarcts and leuko-encephalopathy, T1W: T1-weighted MRI 
sequence, T2W: T2-weighted MRI sequence, FLAIR: fluid attenuated inversion recovery MRI sequence, PD: proton density MRI sequence, 1.5T/3T: MRI scanner 
magnet strength 1.5 or 3 Teslas, DSC: Dice Similarity Coefficient, TPR: True Positive Rate (equivalent to Recall and Sensitivity), FNR: False Negative Rate, FPR: False 
Positive Rate, TNR: True Negative Rate (equivalent to Specificity), PPV: Positive Predictive Value (equivalent to Precision), WMH: white matter hyperintensities, MS: 
Multiple Sclerosis, ICC: Intra-class Correlation Coeffcient. 

Fig. 3. Types of bias observed in the articles reviewed.  
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Table 3 
Risk of Bias Assessment of the studies reviewed using QUADAS 2 Tool (https://www.bristol.ac.uk/media-library/sites/quadas/migrated/documents/quadas2.pdf). 
Studies appear in alphabetical order of the first author’s surname by year of publication.  

STUDY 

RISK OF BIAS APPLICABILITY 

PATIENT SELEC- 
TION 

INDEX TEST REFERENCE TEST FLOW &TIMING PATIENT 
SELEC-TION 

INDEX TEST REFE-RENCE 
TEST 

Could the 
selection of 
patients have 
introdu-ced bias? 

Could the 
method have 
introdu-ced 
bias? 

Is the ref. 
std. likely to 
be correct? 

Is the ref. std. 
mani-pulated 
blind to the 
index test? 

Did all 
data had 
the same 
ref. std.? 

Were all 
patients 
included? 

The included 
patients match 
the review 
question? 

Are there 
concerns re. 
appli- 
cability? 

Are there 
concerns re. 
reprodu- 
cibility? 

Roy et al. 
(2015) 

Sudre et al. 
(2015) 

Van Opbroek 
et al. 
(2015a) 

Van Opbroek 
et al. 
(2015b) 

Wang et al. 
(2015) 

Zhan et al. 
(2015) 

(Damangir 
et al., 2017) 

Griffanti et al. 
(2016) 

Stone et al. 
(2016) 

Bowles et al. 
(2017) 

Dadar et al. 
(2017a) 

Ghafoorian 
et al. (2017) 

Rincón et al. 
(2017) 

Sudre et al. 
(2017) 

Valverde et al. 
(2017) 

Zhan et al. 
(2017) 

Diniz et al. 
(2018) 

(Guerrero 
et al., 2017) 

Jiang et al. 
(2018) 

Knight et al. 
(2018) 

Li et al. (2018) 

Ling et al. 
(2018) 

Manjón et al. 
(2018) 

Moeskops 
et al. (2016) 

(continued on next page) 
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(Tustison, 2010), were the tools most commonly used for intensity in
homogeneity correction (Stone et al., 2016; Wu et al., 2019a; Bowles 
et al., 2017; Dadar et al., 2017a; Van Opbroek et al., 2015a, b; Damangir 
et al., 2017; Roy et al., 2015; Wang et al., 2015; Zhan et al., 2015, 2017; 
Atlason et al., 2019; Ding et al., 2020). Non-local means (Coupe et al., 
2008)was the only filtering technique used by the two studies that re
ported having included noise removal within their pre-processing steps 
(Manjón et al., 2018; Dadar et al., 2017a). Neither of these two studies 
selectively applied the filtering after analysing the signal. The 23/37 
studies that provided information on intensity normalisation, reported 
the use of either variance / linear scaling or histogram matching, with 
variations in their implementation. 

3.5. Segmentation methods 

From the studies included, 73 % (i.e., 27/37) proposed a supervised 
segmentation method. Of them, 37 % (i.e. 10/27) used deep learning. 
From the 10 studies that proposed an unsupervised segmentation 
method (i.e., 27 % of the total number of studies included), one used 
deep learning (Atlason et al., 2019). In total, eleven studies used Con
volutional Neural Networks (Rachmadi et al., 2018; Li et al., 2018; 
Guerrero et al., 2017; Moeskops et al., 2018; Ghafoorian et al., 2017; 
Hong et al., 2020; Manjón et al., 2018; Wu et al., 2019a; Liu et al., 2020; 
Diniz et al., 2018; Schirmer et al., 2019), four studies proposed a method 
based on k-nearest neighbours (k-NN) (Sundaresan et al., 2019; Jiang 
et al., 2018; Ling et al., 2018; Griffanti et al., 2016), four studies 

proposed regression models (Knight et al., 2018; Dadar et al., 2017a; 
Zhan et al., 2017; Ding et al., 2020), and three studies used Random 
forest (RF) in their proposed algorithms (Stone et al., 2016; Park et al., 
2018; Roy et al., 2015). Two studies proposed a method based on Fuzzy 
C mean algorithm (Zhan et al., 2015; Valverde et al., 2017) and three 
proposed improvements to a Gaussian Mixture Model framework (Sudre 
et al., 2015, 2017; Fiford et al., 2020), both unsupervised methods. We 
summarize the segmentation methods included in the reviewed studies 
in Fig. 4 (right hand side). 

3.5.1. Supervised WMH segmentation methods 

3.5.1.1. k-Nearest neighbours (k-NN). k-NN is a well-established pattern 
recognition method that, for WMH segmentation, compares each voxel’s 
spatial (i.e., location) and intensity features with those extracted from a 
training set, and assigns a probability of being (or not) WMH based on 
the result. This algorithm was first proposed for this task in 2000 
(Warfield et al., 2000), further evaluated in 2004 (Anbeek et al., 2004) 
and improved by additionally using spatial tissue type priors in further 
works (De Boer et al., 2007; Steenwijk et al., 2013). Three of the four 
papers included in this review that use this method (Ling et al., 2018; 
Griffanti et al., 2016; Sundaresan et al., 2019), use the implementation 
Brain Intensity Abnormality Classification Algorithm (BIANCA) of the 
FMRIB Software Library (FSL). BIANCA (Griffanti et al., 2016) is a 
versatile, easy to use, freely available implementation, which offers 

Table 3 (continued ) 

STUDY 

RISK OF BIAS APPLICABILITY 

PATIENT SELEC- 
TION 

INDEX TEST REFERENCE TEST FLOW &TIMING PATIENT 
SELEC-TION 

INDEX TEST REFE-RENCE 
TEST 

Could the 
selection of 
patients have 
introdu-ced bias? 

Could the 
method have 
introdu-ced 
bias? 

Is the ref. 
std. likely to 
be correct? 

Is the ref. std. 
mani-pulated 
blind to the 
index test? 

Did all 
data had 
the same 
ref. std.? 

Were all 
patients 
included? 

The included 
patients match 
the review 
question? 

Are there 
concerns re. 
appli- 
cability? 

Are there 
concerns re. 
reprodu- 
cibility? 

Park et al. 
(2018) 

Qin et al. 
(2018) 

Rachmadi 
et al. (2018) 

Atlason et al. 
(2019) 

Schirmer et al. 
(2019) 

Sundaresan et 
al (2019) 

Wu et al. 
(2019a) 

Wu et al. 
(2019b) 

Ding et al. 
(2020) 

Fiford et al. 
(2020) 

Hong et al. 
(2020) 

Liu et al. 
(2020) 

Rachmadi 
et al. (2020) 

- High - Unclear - Low. 
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different options for input modalities (i.e., only FLAIR or 
multi-sequence), weighting the spatial information, local spatial in
tensity averaging, and for the choice of the number and location of the 
training points. Ling et al. (2018) evaluated BIANCA using: 1) input 
modalities FLAIR alone vs FLAIR and T1-weighted; and 2) applying 
different thresholds to BIANCA’s probabilistic output, and highlighted 
the high number of false positives observed when using the FLAIR 
sequence alone compared to those obtained when the multispectral 
approach is used. Sundaresan et al. (2019) improved BIANCA to 
accommodate variability of sources and automatically optimise the 
thresholding of the lesion probability map by adaptively determining 
local thresholds, instead of adopting a global threshold. For this purpose 
(i.e., calculating and generating the local thresholds), the study presents 
the Locally Adaptive Threshold Estimation (LOCATE) algorithm. 

Jiang et al. (2018) incorporate WMH cluster size as a third feature in 
the k-NN algorithm, and integrate it in a pipeline called UBO detector, 
freely available from https://cheba.unsw.edu.au/research-groups/ne 
uroimaging/pipeline. UBO detector merges registration and normal 
tissue segmentation functions available in two different software li
braries (i.e., SPM the FMRIB Software Library) for pre-processing and 
uses T1-weighted and FLAIR images as input. Although UBO uses a su
pervised algorithm for WMH segmentation, it can prescind from manual 
generated labels for training by taking candidate clusters from the priors 
generated in the pre-processing stage. As the authors recognise, the 
accuracy in segmenting WMH depends on the accuracy of the segmen
tation of candidate WMH clusters obtained from FSL-FAST. 

3.5.1.2. Large margin classifiers. Large margin algorithms maximise the 
margin around the decision boundary of a classifier to reduce the un
certainty in the classification, handling well, high-dimensional data (Wu 
and Liu, 2013). Qin et al. (2018) developed a supervised large margin 
algorithm (SLM) followed by a semi-supervised large margin algorithm 
(SSLM) in a framework that modifies a self-guided labelling procedure, 
namely unsupervised one-class learning (UOCL) (Liu et al., 2014), which 
discovers potential “outliers” in the data, being the WMH. Qin et al. 
(2018) introduced a new term in the objective function of the UOCL that 
maximises the average margin between the hyperintensities (i.e. 
considered outliers) and the decision boundary. The general SLM clas
sifier minimises the objective function using a conjugate gradient 
method to learn from the training set and provides a rough WMH seg
mentation map. The SSLM, then, refines the given labels on the target 
data. 

3.5.1.3. Multi-atlas segmentation. Wu et al. (2019a) presented a frame
work that simultaneously segments the brain and detects WMH. The 
proposed multi atlas-based detection and localization (MADL) frame
work uses a multi-atlas likelihood fusion approach to segment the brain 
tissues and structures, and identify WMH. It uses a multi-atlas library 
generated from 15 FLAIR images with minimal WMH load and atrophy 
ranging from minimal to moderate. The Bayes maximum a posteriori 
estimation generates a maximum posterior probability value for each 
voxel, of belonging to a certain (atlas) label. The WMH are identified as 
voxels with maximum posterior probability values below certain 
threshold empirically determined. 

Table 4 
Publicly available software resources and tools used in the selected studies.  

Software library / Repository Tool Use References / Documentation 

FMRIB software library (FSL) https://fsl.fmrib.ox.ac. 
uk/fsl/fslwiki/ 

Brain Extraction Tool 
(BET) 

Removal of non-brain tissues Smith (2002); 
Jenkinson et al. (2004) 

FMRIB’s Linear Image 
Registration Tool (FLIRT) 

Linear (affine) intra- and inter-modal 
brain image registration 

Jenkinson and Smith (2001) 
Jenkinson et al. (2002) 

FMRIB’s Automated 
Segmentation Tool (FAST) 

Tissue segmentation and correction for 
bias field inhomogeneities Zhang, Brady & Smith (2001) 

Statistic Parametric Mapping (SPM) https://www.fil.ion. 
ucl.ac.uk/spm/software/ 

Set of MATLAB scripts and functions integrated in a graphic interface 
environment that can be used independently 

(SPM - Documentation, 2020) 

Advanced Normalization Tools (ANTs) https://sourc 
eforge.net/projects/advants/v, http://stnava.github. 
io/ANTs/, https://github.com/ANTsX/ANTs 

antsRegistration 
Part of the ANTs suite of image 
registration tools 

(Advanced Normalization Tools (ANTs) - 
SourceForge.net, 2020) 
(http://stnava.github.io/ANTs/) 
(ANTsX/ANTs, 2020)Advanced 
Normalization Tools (ANTs), 2020 

N3, N4 Correction for bias field inhomogeneities 
(Sled et al., 1998)Tustison et al. (2010)( 
Tustison, 2010) 

bric1936 
https://sourceforge.net/projects/bric1936/ 

bricBET (MATLAB 
wrappers to FSL-BET) 

Generation of the intracranial volume 
binary mask from combinations of 
multiple MRI sequences 

https://sourceforge.net/projects/bric 
1936/files/Documentation/ 

3DSlicer 
https://www.slicer.org/ 

Modules for Image registration 
https://www.slicer.org/wiki/Slicer3:Registration 

(Documentation/4.10/Training - Slicer 
Wiki, 2020) 

Medical Image Registration Tool (MIRTK) 
https://biomedia.doc.ic.ac.uk/software/mirtk/ 
https://github.com/BioMedIA/MIRTK 

Image registration (MIRTK – BioMedIA, 2020) 

OptiBET 
https://montilab.psych.ucla.edu/fmri-wiki/optibet/ 

Brain extraction (uses FSL-BET) Lutkenhoff et al. (2014) 

Elastix 
https://en.freedownloadmanager.org/Windows-PC/Elastix-FREE.html 
https://elastix.lumc.nl/download.php 

Image registration Klein et al. (2010); Shamonin et al. (2014) 

Niftyreg 
https://sourceforge.net/projects/niftyreg/ 
https://www.nitrc.org/projects/niftyreg/ 

Image registration Modat et al. (2014) 

MRIcro 
https://www.mccauslandcenter.sc.edu/crnl/mricro 
https://www.nitrc.org/projects/mricron/ 

Brain extraction and delineation of regions 
of interest 

(MRIcro | CRNL, 2020) 
(NITRC: MRIcron: Document Manager: 
Display Document, 2020) 

Freesurfer 
https://surfer.nmr.mgh.harvard.edu/ 

Image segmentation (Anatomical 
segmentation of regions of interest) (FreeSurferWiki - Free Surfer Wiki, 2020) 

Multi-cONtrast brain STRipping (MONSTR) 
https://www.nitrc.org/projects/monstr 

Brain extraction Roy et al. (2017) 

Analysis of Functional NeuroImages (AFNI) 
https://afni.nimh.nih.gov/ 

Space transformation, visualisation, and 
statistical analyses of fMRI data 

https://afni.nimh.nih.gov/pub/dist/ 
doc/htmldoc/index.html 
(Cox, 1996)  
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Table 5 
Pre-processing in the studies involved. Studies appear in alphabetical order of the first author’s surname by year of publication (as per previous tables).  

STUDY REGISTRATION (details reported) BRAIN EXTRACTION INTENSITY 
INHOMOGENEITIES 
CORRECTION 

NOISE REDUCTION INTENSITY NORMALISATION 

Roy et al. 
(2015) 

Rigid-body – uses SPM 8 FSL-BET N3 Information not 
provided 

Histogram matching (Nyúl and 
Udupa, 1999) 

Sudre et al. 
(2015) 

Intra-subject inter-modality co- 
registration, and statistical atlases 
warped to observed data using 
niftyreg 

Performed using STEPS 
(Cardoso et al., 2013) 
followed by non-brain 
tissue mask filling 

Information not provided Information not 
provided 

Intensity rescaling from 0 to 1. 

Van Opbroek 
et al. 
(2015a) 

Information not provided Information not 
provided 

N4 Information not 
provided 

Three normalisation algorithms were 
evaluated: 
1) Range-matching (maps the 4th 
and the 96th percentage of intensity 
within the brain mask to 0 and 1. 
2) Linear intensity adjustment to the 
range [0,1]. 
3) Method 1 followed by mapping of 
every tenth percentile within 0 and 1 
to the mean intensity over all 
(training and target) images 

Van Opbroek 
et al. 
(2015b) 

Information not provided FSL-BET N4 Information not 
provided 

Range-matching procedure that 
scaled the voxels within a mask such 
that the voxels between the 4th and 
96th percentage in intensity are 
mapped between 0 and 1 

Wang et al. 
(2015) 

Information not provided Brain Extraction Tool in 
MRIcro 

N3 Information not 
provided 

Image intensity rescaling from 0 to 
255 

Zhan et al. 
(2015) 

A mutual information-based 
registration method (Viola and 
Wells, 1997) 

FSL-BET N3 Information not 
provided 

Information not provided 

(Damangir 
et al., 2017) 

Intra-subject, rigid, 3-D with mutual 
information - uses FSL FLIRT 

FSL-BET N3 Information not 
provided 

Information not provided 

Griffanti et al. 
(2016) 

Linear, with trilinear interpolation 
(in multisequence evaluation using 
T1-weighted and FLAIR) - uses FSL- 
FLIRT 

Information not 
provided 

Information not provided Information not 
provided 

Used variance scaling 

Stone et al. 
(2016) 

Rigid-body, linear intra-subject, of 
FLAIR, T1- and T2-weighted 
sequences – uses ANTs 

ANTs N4 bias correction Information not 
provided 

Normalized to the intensity range 
0–1. 

Bowles et al. 
(2017) 

Rigid-body, linear, of T1-weighted 
to FLAIR followed by free-form 
deformation between T1-weighted 
image in FLAIR image space and an 
MNI template –uses MIRTK suite 

pincram algorithm 
(uses label propagation 
and group agreement) ( 
Heckemann et al., 
2015) 

N4 algorithm Information not 
provided 

Linear scaling using the mean 
intensity of the healthy (i.e., gray 
and white matter) tissue in the 
cohort (estimated having the value 
of 1000). (Huppertz et al., 2011) 

Dadar et al. 
(2017a) 

Intra-subject, linear rigid body, of 
T2-weighted, PD and FLAIR to T1- 
weighted, then non-linear based on 
intensity correlation coefficient to 
ADNI 150 template 

Information not 
provided 

N3 Automatic multi- 
threaded denoising 
method based on non- 
local means filtering ( 
Manjón et al., 2010) 

Linear intensity scaling using 
histogram matching to a template 
from 150 subjects (50 normal 
controls, 50 MCI and 50 dementia) 
from ADNI database (i.e., ADNI150) 

Ghafoorian 
et al. 
(2017) 

Rigid-body, linear, of T1-weighted 
to FLAIR with trilinear interpolation 
and mutual information 
optimization – uses FSL-FLIRT 

FSL-BET on T1- 
weighted images 

FSL-FAST Information not 
provided 

Normalized per patient to be within 
the range of [0, 1] 

Rincón et al. 
(2017) 

Linear, intra-subject, of T1-weighted 
to FLAIR – uses BRAINSFit from 
3D–Slicer 

White matter tissue and 
ventricles segmented 
using Freesurfer 

SPM 8 Information not 
provided 

Normal white matter modelled for 
Gaussian fit to generate parameters 
for FLAIR intensity normalisation 
using the EzyFit Toolbox (EzyFit 
2.44, 2020) 

Sudre et al. 
(2017) 

Affine, linear, intra-subject, of 
FLAIR to T1-weighted. Non-linear 
(niftyreg) used for generating 
synthetic data. 

Performed, but 
information not 
provided 

Performed, but 
information not provided 

Information not 
provided 

Information not provided 

Valverde 
et al. 
(2017) 

Affine followed by non-linear 
registration of the MNI-ICBM152 
brain template to the native T1- 
weighted space - used niftyreg 
followed by the registration tool in 
SPM12. 

Information not 
provided 

Information not provided Information not 
provided 

Information not provided 

Zhan et al. 
(2017) 

Information not provided FSL-BET on T1- 
weighted images 

N3 bias field correction Information not 
provided 

Linear contrast adjustment to match 
the intensities of the training and 
testing datasets 

Bandeira  
Diniz et al. 
(2018) 

Not applicable (uses only FLAIR 
images) 

Algorithm by Bauer 
et al. (2011) 

Information not provided Information not 
provided 

histogram matching algorithm 

Information not provided 

(continued on next page) 
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Table 5 (continued ) 

STUDY REGISTRATION (details reported) BRAIN EXTRACTION INTENSITY 
INHOMOGENEITIES 
CORRECTION 

NOISE REDUCTION INTENSITY NORMALISATION 

(Guerrero 
et al., 2017) 

T1-weighted registered to FLAIR - 
uses FSL-FLIRT 

Information not 
provided 

Information not 
provided 

Tissue intensities normalised to have 
zero mean and standard deviation of 
one (excluding the background). 

Jiang et al. 
(2018) 

Rigid body, linear, of FLAIR to T1- 
weighted and from T1-weighted 
space to the Diffeomorphic 
Anatomical Registration Through 
Exponentiated (DARTEL) space - 
uses SPM 12 

SPM 12 – used brain 
mask in DARTEL space 
to remove non-brain 
tissues 

FSL-FAST Information not 
provided 

Information not provided 

Knight et al. 
(2018) 

Training images are resampled 
(trilinear) to 1.5 mm isotropic voxel 
resolution in the MNI-ICBM152 
space – uses the Segment tool in SPM 
12 

Segment tool in SPM 12 Segment tool in SPM 12 Information not 
provided 

Information not provided 

Li et al. 
(2018) 

(Retrospective data, intra-subject 
MRI sequences previously co- 
registered) 

(data was already brain 
extracted) 

SPM12 Information not 
provided 

Gaussian intensity normalisation 

Ling et al. 
(2018) 

Linear, of FLAIR to T1-weighted 
space and from T1-weighted to MNI- 
ICBM152 standard space 

FSL-BET Information not provided Information not 
provided 

Variance scaling within FSL- 
BIANCA 

Manjón et al. 
(2018) 

Linear registration to the MNI- 
ICBM152 space –uses ANTs 

SPM12 SPM12 Spatially Adaptive 3D 
Non-local Means Filter 

All brain voxels intensities were 
divided by the median intensity 
within the brain region. Resulting 
intensities were squared to enhance 
image contrast 

Moeskops 
et al. 
(2018) 

Intra-subject, of T1-weighted (with 
and without inversion recovery 
pulse) to FLAIR – uses elastix (Klein 
et al., 2010) 

SPM 12 SPM 12 Information not 
provided 

Information not provided 

Park et al. 
(2018) 

Rigid-body – uses FSL-FLIRT FSL-BET FSL-FAST Information not 
provided 

Information not provided 

Qin et al. 
(2018) 

Rigid-body, linear, of T1-weighted 
and FLAIR - uses FSL-FLIRT 

Information not 
provided 

As per the unified 
segmentation algorithm 
in SPM5 

Information not 
provided 

As per the unified segmentation 
algorithm in SPM5 

Rachmadi 
et al. 
(2018) 

Rigid-body, linear - uses FSL-FLIRT OptiBET Information not provided Information not 
provided 

Histogram matching (Nyúl and 
Udupa, 1999) 

Atlason et al. 
(2019) 

Rigid registration to the MNI- 
ICBM152 template 

skull removal using 
MONSTR 

inhomogeneity correction 
using N4 integrated into 
SegAE 

Information not 
provided 

Information not provided 

Schirmer 
et al. 
(2019) 

Affine – uses ANTs (Neuron-BE) that used a 
2D U-Net convolutional 
neural network 
architecture 

Information not provided Information not 
provided 

Mean-shift algorithm and 
corresponding full width half 
maximum (FWHM) of the peak in the 
intensity histogram of the total brain 
volume 

Sundaresan 
et al. 
(2019) 

Rigid-body, linear – uses FSL FLIRT FSL-BET FSL-FAST Information not 
provided 

Information not provided 

Wu et al. 
(2019a) 

FLAIR to T1-weighted previously 
mapped in MNI-ICBM152 
coordinates - uses SPM (version not 
specified) 

Information not 
provided 

N4 bias correction Information not 
provided 

Histogram matching 

Wu et al. 
(2019b) 

Information not provided 
(Retrospective data, intra-subject 
MRI sequences previously co- 
registered) 

FSL-BET Information not provided Information not 
provided 

Gaussian intensity normalization (z- 
scores) 

Ding et al. 
(2020) 

Linear within-subject co-registration 
of FLAIR and T!W sequences using 
FSL-FLIRT through fslr (Muschelli 
et al., 2019) 

FSL-BET followed by 
erosion of the brain 
mask through fslr ( 
Muschelli et al., 2019) 

N4 Information not 
provided 

z-scores calculated over the entire 
brain-only intensity signal 

Fiford et al., 
2020 

Information not provided skull-stripped and 
atlases obtained from 
label fusion 
GIF framework ( 
Cardoso et al., 2015). 

Method proposed by Van 
Leemput et al (1999) 

Information not 
provided 

Information not provided 

Hong et al. 
(2020) 

Rigid-body linear within-subject co- 
registration of T1W and FLAIR 
sequences 

Information not 
provided 

Information not provided Information not 
provided 

Information not provided 

Liu et al. 
(2020) 

Information not provided Information not 
provided 

Information not provided Information not 
provided 

Information not provided 

Rachmadi 
et al. 
(2020) 

Rigid-body linear within-subject co- 
registration of T1W and FLAIR 
sequences using FSL-FLIRT 

OptiBET and bricBET 
(applied to separate 
datasets) 

Information not provided Information not 
provided 

Information not provided 
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3.5.1.4. Feature filters. Rincón et al. (2017) present an object-based 
segmentation framework, namely amorphous object segmentation in 
2D (AMOS -2D). This method uses a multi-level information approach 
consisting of a hierarchical multi-threshold WMH segmentation fol
lowed by an object-based filter that reduces the number of 
false-positives. After pre-processing T1-weighted and FLAIR images, 
AMOS-2D applies white-matter Gaussian modelling to determine the 
intensity distribution of the WMH. An initial WMH mask is generated 
using multi-threshold segmentation, which combines single grey-scale 
thresholding with a seed-based thresholding. In the latter, the higher 
threshold (i.e. seed) acts as WMH detector and the lower threshold (i.e. 
region) refines the contours. The optimum thresholds are determined 
ad-hoc from the training dataset. The filter that refines the “initial” 
WMH mask is an object-based classifier that uses support vector ma
chine (SVM). The feature vector for this classifier initially consisted of 
178 features, including normalised intensity, others derived from 
applying connected-component analysis, distance to white matter con
tour, distance to white matter skeleton, distance to ventricles, among 
others not specified. The dimensionality of the initial feature vector was 
reduced using correlation-based feature selection. 

Roy et al. (2015) present two filtering approaches: one for generating 
probabilistic regions of interest (i.e. weighted candidate voxels) for the 
segmentation algorithm to operate, and another to post-process the 
classifier’s output. The first are contrast-based global probabilistic maps 
generated from a feature set containing enhanced intensity, anatomical 
and spatial information, and the second is an edge potential function 
based Markov Random Field model, which is used to remove false 
positives and obtain the final output. 

3.5.1.5. Regression models. Dadar et al. (2017a) proposed a multispec
tral linear regression classifier that uses the least-squares parameters 
estimation to segment WMH. It combines intensity and location features 
from FLAIR, T1-, T2- and PD-weighted MRI and manually labelled 
training data, to provide a continuous subject-specific WMH map dis
playing different levels of tissue damage along with a binary 
segmentation. 

Knight et al. (2018) developed a supervised logistic regression 
framework exclusively for FLAIR sequences, called Voxel-Wise Logistic 
Regression. This method modifies the open source Lesion Segmentation 
Tool (LST) LPA by estimating the voxel-wise logistic regression param
eters simultaneously across the image space for facilitating convergence 
during the parameters’ estimation, instead of randomly sampling the 
image space. The logistic model, trained using the standardised FLAIR 

intensity levels of a training set, generates a set of parameters that are 
subsequently smoothed for their use in the lesion prediction for new 
images. 

Zhan et al. (2017) developed a supervised method that integrated the 
multi-sequence and spatial information in a Bayesian framework for WM 
lesion detection from multi sequence MR images. The proposed method 
is based on a three-step approach: 1) multinomial logistic regression is 
employed to learn the conditional probability distributions of WMH and 
brain tissues from training data; 2) spatial information from Markov 
random field priors is merged with multi sequence information in the 
Bayesian framework to improve the accuracy of WMH segmentation; 
and 3) pathology background information is used to reduce false 
positives. 

(Ding et al., 2020) present a supervised segmentation method called 
OASIS-AD. This approach is derived from a previous scheme (i.e., 
OASIS, Sweeney et al., 2013) developed for MS lesion segmentation, 
which uses a logistic regression model involving several imaging mo
dalities to determine the probability of a voxel being WMH or not. This 
model uses as input brain-extracted and normalised image data. The 
enhanced version OASIS-AD additionally erodes the brain-extracted 
binary mask generated in the pre-processing step and refines the prob
ability map obtained from the regression model by applying a nearest 
neighbour feature construction approach that uses FSL-FAST (Zhang 
et al., 2001), followed by a Gaussian filter. 

3.5.1.6. Random Forest (RF). Park et al. (2018) present a machine 
learning based pipeline called DEWS (DEep White–matter hyper
intensity Segmentation framework). The authors segment the normal 
appearing white matter using FSL-FAST and use a combination of 
morphological operations and multi-level thresholding and 
inter-sequence registration to generate a normal white matter space that 
contained only deep WMH clusters in the FLAIR space. Then, a RF 
classifier uses size, texture and multi-parametric intensity statistical 
parameters from deep WMH (from a training set) as features for 
detecting small, superficially located deep WMH. 

Stone et al. (2016) propose a multispectral framework that concat
enates two RF classifiers, which the authors refer as a “two-stages” 
scheme. The first stage uses image intensity, symmetry, tissue segmen
tation voxel-wise probabilities, distance maps and neighbourhood sta
tistics from the training data as features. These are used to produce the 
voxel-wise ‘voting maps’ (i.e. the classification count of each decision 
tree for each tissue label) of the first RF classifier for their use as tissue 
priors in a second multispectral 6-tissue segmentation that additionally 

Legend: T1W: T1-weighted structural magnetic resonance (MRI) sequence, FLAIR: fluid-attenuated inversion recovery structural MRI sequence, MNI-ICBM152 
template: Montreal Neurological Institute – International Consortia for Brain Mapping brain template from 152 healthy young adults that includes both a set of 
coordinates and the associated anatomical labels. 
Note: for list of software tools, please, refer to Table 4. 

Fig. 4. Co-registration procedures involved in the WMH segmentation frameworks (left) and types of WMH segmentation methods covered (right) by the arti
cles reviewed. 
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uses a Markov Random Field as spatial prior. The second stage uses all 
Stage 1 features plus the Stage 1 voting maps and the resulting posterior 
probability images as features for the second RF classifier. The whole 
framework is constructed on Advanced Normalization Tools (ANTs) and 
ANTsR toolkits. Stone et al. (2016) suggested that proposed supervised 
method is suitable for large dataset. However, this method is tested in a 
small sample size. 

Roy et al. (2015) use a set of nine features as input to the RF clas
sifier. The first eight features contain multi-sequence (i.e. from 
T1-weighted and FLAIR) intensity, anatomical and spatial information 
per voxel. These are generated from probability maps of cerebrospinal 
fluid, grey and white matter, and normalised (x,y,z) coordinates in the 
MNI 152 space. The last feature is the global reference points-based 
contrast resulted from the filtering technique referred previously. 

3.5.1.7. Support vector machine (SVM). Van Opbroek et al. (2015a, b) 
evaluate different transfer-learning approaches in linear and non-linear 
SVM classifiers, all consisting of different strategies for weighting the 
feature vector. Both studies use data from different datasets acquired 
under different scanning protocols and conclude that their transfer 
learning strategy (i.e. weighting the feature vector) outperforms the 
conventional SVM using non-weighted features. In Van Opbroek et al. 
(2015a) authors evaluate two feature sets: one of size 6 and other of size 
33. The former uses the intensity and x,y,z voxel coordinates of cere
brospinal fluid, white and grey matter probabilistic segmentations in 
FLAIR and the latter uses the same features but also for T1- and 
T2/PD-weighted, using Gaussian kernels of σ = 0.5, 1 and 2 mm3. In Van 
Opbroek et al. (2015b), the authors add the gradient magnitude and the 
Laplacian of the normalized intensities after convolution with the 
Gaussian kernel at different scales and recommend using always a 
feature vector higher than 10 in size. 

Van Opbroek et al. (2015a) assign weights to each feature of the 
feature vector in a way that the sum of all weights equals the total 
number of training samples, and combine training data with the same 
intensity distribution with data with different distribution in three 
weighting schemes: 1) Weighted SVM; 2) Re-weighted SVM; and 3) 
TransAdaBoost. In (1) lower weights are assigned to misclassified 
training data with different distribution. In (2) the misclassified lower 
weights (i.e. from (1)) are iteratively reduced. TransAdaBoost increases 
the weights of misclassified same-distribution data and reduces those 
from misclassified different-distribution data, but this scheme was the 
worst performer. In the same study authors also evaluate the namely 
“Adaptive SVM” that uses a weighted vector from same-distribution data 
for training and is tested from different-distribution data. 

Van Opbroek et al.(2015b) rather evaluates three different point 
distribution functions (PDFs) dissimilarity measures to generate the 
optimal weights for the Weighted SVM classifier – the winner scheme 
from those evaluated in (2015a)-, which in this case uses a Gaussian 
kernel. The weights are chosen in an unsupervised manner, by mini
mizing the difference between the PDFs of the weighted training images 
and the PDF of the target image. The three PDF dissimilarity measures 
evaluated are: 1) the Kullback–Leibler divergence; 2) the Bhattacharyya 
distance; and 3) the squared Euclidean distance. The optimal weights 
are determined by minimizing these three dissimilarity criteria while 
constraining them to the range [0;1] and that the norm of all the weights 
should be 1, using the interior-reflective Newton method (Coleman and 
Li, 1996). 

3.5.1.8. Neural networks. Moeskops et al. (2018) evaluated the 
3-pathway multi-scale (i.e. patch-wise) convolutional neural network 
(CNN) scheme developed by the same group in 2016 for segmenting 
normal tissues in neonatal and young adults (Moeskops et al., 2016) to 
segment WMH in addition to normal tissues in MRI scans for older in
dividuals / patients. In this occasion, the scheme uses the T1-weighted, 
T2-weighted, FLAIR and T1-weighted inversion recovery (IR) images as 

input. Along with WMH, the scheme segmented normal-appearing white 
matter, cortical grey matter, basal ganglia, thalamus, cerebellum, brain 
stem, lateral ventricular cerebrospinal fluid, and peripheral cerebro
spinal fluid. 

Bandeira Diniz et al. (2018) use Simple Linear Iterative Clustering 
(SLIC) to group pixels based in their location and intensities and 
generate candidates to lesion / non-lesion regions in each FLAIR axial 
slice. Authors design a single-pathway CNN for extracting implicit fea
tures from the “superpixels” of the FLAIR axial slices presented as input 
and classify them in lesion regions or non-lesion regions. The CNN seems 
to have a linear deep architecture, developed ad-hoc for this purpose. 
This approach resulted efficient in heterogeneously sourced data, 
reporting a negligible number of false positives. 

Rachmadi et al. (2018) proposed an adaptation of a dual-pathway 
CNN scheme developed for segmenting brain lesions with considerable 
mass effect (Kamnitsas et al., 2017) to segment WMH. The authors 
introduced a way to integrate spatial information to the CNN scheme for 
WMH segmentation called global spatial information (GSI), and eval
uate the performance of two configurations (i.e. with 8 and 5 convolu
tional layers) using only FLAIR vs. using a combination of T1-weighted 
and FLAIR, and repeated the experiments using a single-pathway CNN 
architecture with and without GSI. Authors recommend the use of GSI in 
a multispectral (i.e. using more than one MRI sequence) dual-pathway 
scheme of the 2D CNN architecture evaluated. 

Manjón et al. (2018) present an ensemble of patch-wise neural 
network classifiers for segmenting WMH on FLAIR images. After a lesion 
candidate ROI selection, a feature vector containing 58 features (voxel 
intensities from 3 × 3 × 3 and 5 × 5 × 5 patches, 3 spatial coordinates 
and one a priori lesion probability) is used by an ensemble of two 
one-hidden layer feedforward multilayer perceptron which performs the 
classification. The study evaluates two ways of configuring this 
ensemble: bagging (Bootstrap aggregating) and boosting. The first 
approach averages the outputs of the two neural network classifiers, 
independently trained on different randomly selected datasets. The 
second approach uses the output from one classifier to improve the next 
one by either iteratively giving more weight in the next classifier, to the 
samples wrongly classified in the first one, or non-randomly selecting (i. 
e. on the training dataset) with higher probability samples wrongly 
classified previously. 

(Guerrero et al., 2017) use the UResNet CNN architecture to segment 
WMH and distinguish them from stroke lesions. This method comprised 
an analysis path that gradually learned low- and high-level features, 
followed by a synthesis path, that gradually combined and up samples 
the low and high-level features into a class likelihood semantic seg
mentation. The authors confirmed that the CNN architecture performed 
well compared to other state of the art algorithms. 

Li et al. (2018) propose a method using a 19-layer deep fully CNN 
scheme. In this method, WMH detected based on 
convolution-deconvolution architecture with long-range connections 
which simultaneously classified each pixel and locates objects of an 
input image. The scheme used ensemble models with random parameter 
initializations and shuffled data for voting the pixel labels in the final 
evaluation, all which conferred good adaptability on multi-scanners and 
protocols and helped reduce overfitting. The authors pointed out that 
FLAIR and T1 sequences provide complementary information to detect 
WMH. 

Schirmer et al. (2019) incorporate a deep learning CNN previously 
proposed by Dalca et al. in 2014 (Dalca, 2014), in a pipeline consisting 
of: 1) brain extraction using only clinical FLAIR images; 2) intensity 
normalisation to accommodate for multi-site heterogeneity; and 3) 
automatic atlas-based segmentation of WMH. 

(Ghafoorian et al., 2017) implement several deep CNN architectures 
which considered multi-scale patches or explicit location features while 
training, to integrate the anatomical location information into the 
network. The authors point out that the CNNs which incorporated 
location information significantly outperformed a conventional 
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segmentation method with hand-crafted features and CNNs that did not 
integrate location information. 

Wu et al. (2019b) modified the U-Net CNN architecture by skipping 
connections between the down- and up-sampling convolutional 
branches of the original model, and named their model Skip Connection 
U-Net (i.e., SC U-Net). SC U-Net additionally connects the outputs of the 
4th, 7th, 10th and 13th layers in the down-sampling convolutional 
branch of the original model to the outputs of the 15th, 18th, 21th and 
24th layers in the up-sampling convolutional branch, and feeds them (i. 
e., the outputs of the 4th, 7th, 10th and 13th layers) to the 16th, 19th, 
22th and 25th layers. Hence the resultant model consists of a shrinking 
part which aims to capture context, a symmetric expansive part that 
gradually combines features to enable a precise localization, and a skip 
connection part that alleviates the vanishing gradient problem and im
proves the speed of the optimization convergence facilitating the 
training. 

Liu et al. (2020) present a multi-scale feature-based CNN model, 
called M2DCNN not only to segment WMH, but also to distinguish them 
from ischemic stroke lesions. M2DCNN contains two symmetric U-sha
ped subnets that produce multi-scale features through the inclusion of 
dense and dilated blocks. The former helps reducing the number of 
training parameters and alleviate the gradient vanishing problem. The 
latter helps enlarging the receptive fields of the convolution blocks 
without reducing the feature map size. M2DCNN uses a loss function 
based on the Dice coefficient. 

Hong et al. (2020) present a deep-learning architecture that con
catenates two U-Net CNN models that use 3 × 3 kernels in their con
volutional layers. The first U-Net consists of four down-sampling and 
four up-sampling convolutional layers, and generates WMH priors from 
brain-extracted co-registered T1W and FLAIR images. These WMH 
candidates, together with the brain-extracted co-registered T1W and 
FLAIR images, are input to the second U-Net, consisting of two 
down-sampling and two up-sampling convolutional layers, which re
duces the false-positives. 

3.5.2. Unsupervised WMH segmentation methods 
Damangir et al. (2017) developed an unsupervised method that 

statistically defined WMH based on the one-tailed Kolmogorov-Smirnov 
test (Gail and Green, 1976). 

Zhan et al. (2015) present an unsupervised WMH segmentation 
method for T1 and FLAIR data. The T1 image is, first, segmented into 
different normal tissues, among which regions of white matter and grey 
matter are combined to provide a region of interest that is subsequently 
mapped to the FLAIR image. Secondly, the authors calculated the z-score 
of the intensities in the ROI and defined a threshold to find the abnor
malities in normal tissues. They then employ a level set method to 
improve the preliminary thresholding-based segmentation results and 
extracted the WMH. The authors pointed out that LGDF energy aided to 
obtain precise segmentation results compared to other level set methods 
that used global intensity information. 

Bowles et al. (2017) propose a method built upon previous work by 
the same authors, which can detect abnormally hyperintense regions on 
FLAIR, disregarding the underlying pathology or location by combining 
image synthesis, Gaussian mixture models and one-class support vector 
machines trained only on healthy tissue. 

Valverde et al. (2017) integrate a partial-volume tissue segmentation 
with WM outlier rejection and filling, combining intensity, probabilistic 
and morphological prior maps in a pipeline consisting of five steps. 
These are: 1) Register three statistical a-priori tissue atlases (CSF, GM 
and WM) and a brain structure atlas to the patient space; 2) Perform 
atlas-based 5-tissue segmentation on the T1-weighted image; 3) Detect 
and refill WM outliers as normal-appearing WM based on the registered 
a-priori and hyper-intense FLAIR maps if available (using the segmen
tation from step 2); 4) Re-estimate (again) the 5-tissue classes; and 5) 
Reassign intermediate volume maps into CSF, GM and WM using both 
neighbour and spatial prior information. 

Wang et al. (2015) model the WMH in FLAIR images as having either 
Gumbel or Fréchet histogram distributions (see Table 1) and compare 
the results of their algorithm with those from applying a trimmed like
lihood estimator. Although results were not accurate for all degrees of 
lesion loads authors recommend the principle, especially using the 
Fréchet distribution, due to its simplicity, for studies of ageing and 
vascular dementia, likely to include subjects with moderate-to-high 
lesion load. 

Atlason et al. (2019) present an autoencoder Segmentation 
Auto-Encoder (SegAE) consisting on a CNN with architecture similar to 
that of U-Net with an additional linear layer and parameter constraints 
to perform linear unmixing. In this model, down- and up-sampling are 
performed with strided convolutions of 3D kernels of size 2 × 2 × 2 and 
skip connections are added between activations of the same spatial 
resolution from the down-sampling to the up-sampling paths. The pure 
tissue, WMH and cerebrospinal fluid masks obtained during the seg
mentation were used as priors for the N4 algorithm. Thus, the b1 in
homogeneities are corrected during the training phase and segmentation 
takes place in presence of inhomogeneity artifacts. 

Rachmadi et al. (2020) present an unsupervised segmentation 
method called Limited One-Time Sampling Irregularity Map (LOTS-IM). 
This method generates an irregularity map (IM) that represents all 
voxels as irregularity values ranging from 0 to 1 with respect to the ones 
considered” normal” based on the original FLAIR texture information. 
The scheme hierarchically samples a limited number of target squared 
patches (i.e., 2D patches of 1 × 1, 2 × 2, 3 × 3 and 4 × 4) from a 
non-overlapping grid of source patches of the same size on each 
brain-extracted FLAIR image slice, assigning an irregularity value to 
each source patch. The final irregularity map is generated by blending 
the hierarchically generated irregularity maps, penalizing the result 
using the original FLAIR intensities, and normalizing the final values 
between 0 and 1. The WMH are obtained by thresholding the irregu
larity map. 

Fiford et al. (2020) examined an unsupervised segmentation method 
Bayesian Model Selection (BaMoS) (Sudre et al., 2015), which models 
the data as a multivariate mixture of Gaussians, further optimized using 
the expectation-maximization algorithm. It uses an initial outlier map 
derived after convergence of the initial Gaussian mixture model to 
enhance sensitivity, as proposed by Sudre et al. (2017). Newly, this 
study incorporates a two-threshold selection of the candidate regions 
and selects the WMH clusters after applying connected component an
alyses twice, considering first 18 neighbourhoods, and then 6 neigh
bourhoods, to avoid discarding regions where artefacts and true WMH 
are present. 

3.6. Additional publications evaluating WMH segmentation methods 

Dadar et al. (2017b) compare the performance of 10 different linear 
and non-linear supervised classification methods segmenting WMH in 
brain scans from 201 subjects from four different datasets. The methods 
evaluated are: Naïve Bayes, Logistic Regression, Linear and Quadratic 
Discriminant Analyses, k-NN, decision trees, RF, AdaBoost, SVM and 
Bagging. Out of these methods, RF was the best performer. 

Kuijf et al. (2019) comparatively evaluate 20 methods presented at 
the 20th International Conference on Medical Image Computing and 
Computer Assisted Intervention (MICCAI) WMH segmentation challenge 
in 2019. All algorithms are trained with 60 image datasets acquired in 3 
different MR scanners, and evaluated on 110 image datasets from 5 MR 
scanners. All image data are composed of T1-weighted and FLAIR 
brain-extracted, bias-corrected and co-registered images from patients 
with various degrees of age-related neurodegeneration and presenting 
different vascular pathologies. However, the WMH volume distribution 
across the dataset is skewed towards low-to-medium WMH burden. 
From the 20 methods evaluated 14 are neural network approaches, four 
involve RF, one uses logistic regression, and one a three-level Gaussian 
mixture model. The evaluation combines the results from five similarity 
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metrics: DSC, a modified Hausdorff distance (95th percentile), absolute 
percentage volume difference, sensitivity (recall), and F1-score for in
dividual lesions. The top-ranked methods use ensembles of neural 
networks 

Rachmadi et al. (2017) compare the performance of two conven
tional machine learning classifiers (i.e. support vector machine (SVM) 
and RF) with the performance of three deep learning algorithms, namely 
the deep Boltzmann machine, convolutional encoder network and a 
CNN dual-pathway architecture developed specifically for brain lesion 
detection, for segmenting WMH on brains displaying only mild or no 
vascular pathology. The results from these five supervised 
machine-learning methods are also compared with the results from the 
unsupervised lesion growth algorithm (LGA) of the Lesion Segmentation 
Tool (LST) publicly available. The evaluation uses FLAIR and 
T1-weighted images from 20 subjects randomly selected from the ADNI 
database (http://adni.loni.usc.edu/), acquired in three consecutive 
years, and for which ground truth WMH segmentations from two 
different analysts were available. Authors adapted (and/or imple
mented) configurations that were reported to give the highest WMH 
segmentation accuracy in previous works. For SVM and RF this study 
evaluates several combinations of feature vectors with lengths ranging 
from 44 to 4000, all reported previously having generated results from 
similar quality. The optimum threshold that defines the boundaries of 
the probabilistic WMH segmentations differed across methods. Differ
ences in methods’ performance depending on the WMH burden 
prompted authors to conclude that deep-learning methods, in general, 
performed better than the two conventional machine learning classifiers 
(i.e. SVM and RF), being the patch-based CNN configuration the best 
approach only for scans with low burden of WMH. 

3.7. Segmentation descriptive quality 

We analyzed the descriptive segmentation method qualities using the 
scale developed by Byrne et al. (2016). The segmentation descriptive 
quality (SDQ) is rated on a three point scale: 1 - indicates description of 
the segmentation method; 2 - indicates explanation of the segmentation 
method, but no description of how each step is applied; and 3 – indicates 
full explanation of how the segmentation method proposed is applied. 
23/37 studies scored 3. 

3.8. Processing time of segmentation methods 

Processing time of machine learning based segmentation methods 
refers to: 1) time taken to load the image; and 2) time taken for appli
cation of automatic segmentation algorithm (Cruz et al., 2017). Only 
9/37 studies reported the processing time of segmentation method (Ling 
et al., 2018; Rachmadi et al., 2018, 2020; Manjón et al., 2018; Dadar 
et al., 2017a; Jiang et al., 2018; Qin et al., 2018; Griffanti et al., 2016; 
Atlason et al., 2019). Out of these nine studies, four reported the time 
consumed by the segmentation per image. It ranged from 0.03 s to 9 s 
per MRI. The method proposed by Qin et al. (2018) consumed consid
erably less time (i.e., 0.03 s per image) compared to the rest. 

3.9. Methods evaluation 

The proposed method was cross validated with leave-one-subject-out 
evaluation in six studies (Stone et al., 2016; Moeskops et al., 2018; Jiang 
et al., 2018; Knight et al., 2018; Li et al., 2018; Wu et al., 2019a). 
Fourteen studies described a method for false positive removal (Sudre 
et al., 2017; Manjón et al., 2018; Stone et al., 2016; Moeskops et al., 
2018; Rincón et al., 2017; Bowles et al., 2017; Li et al., 2018; Ghafoorian 
et al., 2017; Roy et al., 2015; Zhan et al., 2017; Hong et al., 2020; Fiford 
et al., 2020; Rachmadi et al., 2020; Ding et al., 2020). Fazekas visual 
rating scale was used in the validation of the results in nine studies 
(Rachmadi et al., 2018; Qin et al., 2018; Guerrero et al., 2017; Griffanti 
et al., 2016; Ling et al., 2018; Moeskops et al., 2018; Jiang et al., 2018; 

Bowles et al., 2017; Rachmadi et al., 2020). 
Of the 37 studies, 29 studies evaluated the performance of their 

WMH segmentation method using the Dice Similarity Coefficient (DSC) 
among other metrics that measure spatial concordance between the 
results of the method proposed and reference segmentations. Average 
DSC values ranged from 0.538 to 0.91 (Table 2). The unsupervised 
segmentation method proposed by (Damangir et al., 2017) reported the 
highest average DSC value for WMH segmentation (DSC ranging from 
0.85 up to 0.91), followed by the also unsupervised scheme proposed by 
Wang et al. (2015) (DSC ranging from 0.81 to 0.84), and the k-NN 
scheme proposed by Jiang et al. (2018) (UBO detector, DSC 0.85). The 
Bland Altman plot (Martin Bland and Altman, 1986) was used in five 
studies to analyse the volumetric agreement between the method’s 
result and manual segmentation (Qin et al., 2018; Guerrero et al., 2017; 
Ling et al., 2018; Sudre et al., 2015; Fiford et al., 2020). Only four 
studies validated their method in longitudinal samples (Sudre et al., 
2017; Jiang et al., 2018; Rachmadi et al., 2018, 2020), and eight per
formed an additional validation (i.e., to the traditional comparison 
against reference standard measurements) using clinical parameters 
(Guerrero et al., 2017, Jiang et al., 2018; Qin et al., 2018; Rachmadi 
et al., 2018, 2020; Schirmer et al., 2019; Wu et al., 2019a; Fiford et al., 
2020). Comparison with other methods’ performance was done in 29/37 
studies. The reference algorithms for excellence were the Lesion Growth 
Algorithm (LGA) and the Lesion Prediction Algorithm (LPA), both un
supervised methods from the Lesion Segmentation Tool (LST) for SPM 
(https://www.applied-statistics.de/lst.html). 

4. Discussion 

In the five-year period evaluated, 37 studies proposed new, or 
adapted and re-purposed existing approaches, for segmenting WMH of 
presumed vascular origin from brain MRI. Of these, only 10 were un
supervised. Within the last two years, considerable efforts have been put 
into developing deep learning WMH segmentation methods particularly 
based on CNN architectures that have demonstrated success in similar 
tasks. From the supervised algorithms, 37 % used state-of-the-art CNN 
and the rest used either conventional machine-learning algorithms, the 
k-NN algorithm or logistic regression models. Despite the high accuracy 
usually reported by CNN algorithms, those reviewed do not outperform, 
in terms of spatial agreement with reference segmentations, the more 
traditional clustering (i.e. k-NN) and logistic regression supervised 
methods or the unsupervised methods published in this period. Probably 
the simplicity and strong priors of the k-NN and logistic regression 
methods make them easier to train with less data, and are less suscep
tible to overfitting when training data is limited, compared to the deep- 
learning schemes. The fact that most of these methods give probabilistic 
outputs, may be helpful in quantifying marginally pathological tissues 
like dirty-appearing white matter, and help in the characterisation of ill- 
defined WMH boundaries. However, it also conspires against their 
evaluation since these probabilistic results need to be binarised for 
comparison with manually-derived segmentation binary masks. Quality 
of reporting has a considerable effect on studies’ value. Poor reporting of 
the pre-processing and segmentation methods’ steps and lack of avail
ability of the code significantly affects the applicability of various 
studies included in this review. 

We evaluated the validity and accuracy of the segmentation methods 
reviewed. We refer to validity as the extent to which these algorithms 
measure what they intended to beyond the data used to develop (i.e., 
train) and validate them, thus including the applicability to other data. 
Most studies ignore the issues pertaining to validity and focus only on 
accuracy of their algorithms. The validity of the proposed segmentation 
methods was not always clear, mainly due to the different sources of bias 
in the reference used to evaluate the algorithms (i.e. observer bias in 
manually-delineated ground truth), the sample selection, and the data 
source (i.e. mainly from a single protocol and / or acquired from scan
ners with the same field strength). Many studies exhibited observer bias, 
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either in training or in evaluating their algorithms, as manual outlines of 
WMH are always affected by the observer’s perception in recognising a 
true lesion from an artefact and are influenced by the observer’s expe
rience and ability in delineating the lesion boundaries on MR images. 
Moreover, reference segmentations are generally obtained by manually 
refining a semi-automatic segmentation result, obtained generally by 
thresholding followed by a region-growing algorithm. Selecting the 
optimum threshold to segment WMH from FLAIR MRI can also be a 
source of bias (Valdés Hernández et al., 2010). Additionally, not all the 
studies included were absent of having data selection bias, which can 
facilitate overfitting if this is not properly addressed. Data augmentation 
helps reducing overfitting and increasing the number of the training 
data. However, effects of bias cannot be balanced-out by increasing the 
sample size or by repetition (Schmidt and Factor, 2013). 

It is important to describe the target population, which informs the 
individuals for whom the results of the study are intended to apply. It 
can be inferred from the data used in the method development. Studies 
that validated their methods on a dataset different from the one used to 
develop it, in terms of clinical and image acquisition characteristics, 
obtained lower spatial agreement in this validation dataset (Roy et al., 
2015; Wang et al., 2015; Atlason et al., 2019) (Table 2). Many of the 
studies included analysed the WMH load in the sample, only expressing 
that it “was representative of the whole load of WMH burden”. However, 
representativeness does not mean “balanced”: unbalanced data biases 
the results in favour of the dominant data subgroup – generally patients 
with medium-to-large WMH burden. Also, many studies did not explain 
the rationale followed for data selection. For instance, patients with mild 
cognitive impairment, Alzheimer’s disease, and normal cognition were 
included in the same study without explaining the selection criteria and 
relevance for the main objective of the study, i.e. segmenting WMH. For 
sample sizes like the ones observed in the majority of studies included (e. 
g. n<100), cognitive status is not a proxy for WMH load (Damangir 
et al., 2017). It is, therefore, difficult to decide for which level of severity 
of a particular condition or for which neurological condition the seg
mentation method had performed well and, therefore, would be 
recommended. 

Many of the included studies used the open access datasets or the 
datasets provided for the different Lesion Segmentation Challenges 
(Reinke et al., 2018). Mendelson et al. (2017) pointed out that using an 
open access dataset to evaluate the performance of a segmentation 
method introduces selection bias (Mendelson et al., 2017). It indeed is 
practical, cost effective and allows comparability between methods, but 
only within the context of the dataset used, especially in the case of 
supervised methods. Hence, segmentation studies can suffer from 
limited high-quality data, which is required for training, and poorly 
labelled region of interests (Challen et al., 2019). The full value of a large 
dataset depends on the accuracy and completeness of the data collec
tion, which is expensive and time consuming. The use of a limited 
dataset in cross-validation can falsely show high performance. To 
evaluate the performance of a segmentation method, large collections of 
image data are required. Data augmentation and high quality synthetic 
data can help addressing this need. 

Segmenting a medical image is a laborious task. In general, it re
quires two main steps: 1) image pre-processing; and 2) segmentation 
(Jude Hemanth and Anitha, 2012). Pre-processing steps generally 
involve registration, brain extraction, intensity inhomogeneity correc
tion, noise reduction and intensity normalisation (García-Lorenzo et al., 
2013). If task-unrelated pathologies (e.g., stroke lesions, SVD neurora
diological features) or imaging artefacts would affect the segmentation 
algorithm, their identification should be part of the segmentation 
framework. Main objectives of pre-processing are removal of noise and 
confounding features, and improving image quality. Not reporting all 
these steps can be interpreted as they not being necessary or part of the 
segmentation framework, affecting its reproducibility. Good reporting 
quality is extremely important, to ensure that accurate and trustworthy 
information is obtained from the published studies (Samuel et al., 2016). 

Quality of reporting research studies needs to be improved by following 
the guidelines outlined by various organisations (Reporting guidelines | 
The EQUATOR Network, 2020). Institutional strategies to stimulate high 
quality peer-review to ensure peer-reviewed published reports are in 
compliance with ICJME guidelines would be also helpful. 

Accuracy of the segmentation methods evaluated in this review re
fers to their ability to distinguish WMH from normal appearing white 
matter or other pathological features of similar appearance, as well as a 
reference or “ground truth” segmentation manually generated by ex
perts. Accuracy was estimated with Bland Altman plots, Jaccard Index, 
intra class correlation coefficient, true and false positives and negatives 
and DSC. All these measures have advantages and drawbacks when 
applied to this context, as none of them alone gives the necessary in
formation about the precision and further applicability of the results in a 
clinical context. For example, the Bland-Altman plot per-se only allows 
volumetric comparison between the target and reference methods. The 
Jaccard Index and DSC are equivalent and they reflect the spatial 
agreement between the two masks, but do not express how well the 
algorithm identified the true WMH and/or excluded the non-WMH 
voxels, as the true positives and negatives are given by other measure
ments (e.g., true positive fraction, true negative fraction, positive pre
dicted values, false negative/positive fractions). Finally, the correlation 
coefficient between quantitative WMH volumes and clinical visual rat
ings (e.g. Fazekas scores), although of clinical use, only gives a gross 
estimate of how close to the neuroradiological assessment the segmen
tation is. Most of the papers included did not analyse the results of these 
metrics combined. It reinforces the claim by Pellegrini et al. (2018) that 
the relevant literature of computational segmentation algorithms is still 
insufficiently intertwined with the clinical world. We believe this de
pends, at least in part, on a misalignment of targets and methods. The 
computer scientists’ community still aims primarily for algorithm nov
elty and reaching high levels of precision, experimenting with methods 
largely inspired by recent developments in the field of computer vision. 
The clinical research community, on the other hand, aims to verify as
sociations (e.g., biomarkers for outcome, effect of drugs vs. placebo) 
with clinically relevant features that reflect in an improvement in pa
tient outcomes using statistical models. A combination of methods and 
aims is, therefore, of great importance. The fact that 22 % of the studies 
analysed incorporated a clinical validation to their scheme is 
encouraging. 

Only 26 % of the studies included in the review reported the pro
cessing time of the proposed segmentation algorithm. Reporting the 
processing time of the segmentation method could also aid in its further 
translation to clinical practice, by highlighting its speed or the need of 
optimising its current implementation. Despite its importance, trans
lating research into clinical practice is challenging. Aside from simply 
demonstrating superior efficacy, new technologies entering the medical 
field must also integrate with current practices and be effective in an 
individual case basis. Kristensen et al. (2015) have reported that it takes 
more than a decade to implement research results in clinical practice. 
The research required for this “personalised’ medicine would only be 
possible through summarising and integrating enormous quantities of 
medical information. This review has shown that this is still unachieved. 

This review systematically extracted, synthesised, critically 
appraised and presents information about a highly active research field. 
Its main strengths are: 1) careful selection of relevant studies amongst a 
vast number of initial candidates resultant from the search; 2) identifi
cation of the possible sources of bias of the studies; and 3) synthesis of 
the contributions of the included papers. 

Limitations are that we only included the articles published in En
glish language for which we have full access: we may have missed ar
ticles published in languages other than English or other articles for 
which we could not access the full text. Also, there might be other 
relevant papers missing as a result of incongruences between the search 
terms and the article keywords or indexing in the databases. By 
excluding articles published in conference proceedings it is possible that 
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promising WMH segmentation methods could have been excluded. 

5. Conclusion and future works 

Despite the increasing popularity and high accuracy of CNN schemes 
applied to WMH segmentation, we found no evidence to favour their 
application in clinical research over the k-NN algorithm, linear regres
sion or unsupervised methods. High-quality large-sized data availability 
continues to limit computational developments of segmentation 
methods, biasing the studies. Future works should carefully consider 
ways to reduce or compensate the effect of observer, spectrum and se
lection biases, and improve transparent reporting. Future studies should 
also analyse the combined effect of several metrics in evaluating the 
results of their algorithms, to inform on the applicability of the method 
in clinical research and practice. The lack of code availability of some 
algorithms presented, and information about the pre- and post- 
processing steps, and processing time of segmentation per se limited 
the analyses presented and the further reproducibility of the results: 
issues that we hope future studies overcome. 
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Torrentà, L., Rovira, À., Lladó, X., 2017. Automated tissue segmentation of MR brain 
images in the presence of white matter lesions. Med. Image Anal. 35, 446–457. 
https://doi.org/10.1016/j.media.2016.08.014. 

Van Leemput, K., Maes, F., Vandermeulen, D., Suetens, P., 1999. Automated model-based 
tissue classification of MR images of the brain. IEEE Trans. Med. Imaging 18 (10), 
897–908. https://doi.org/10.1109/42.811270. 

Van Opbroek, A., Ikram, M., Vernooij, M., de Bruijne, M., 2015a. Transfer learning 
improves supervised image segmentation across imaging protocols. IEEE Trans. Med. 
Imaging 34 (5), 1018–1030. https://doi.org/10.1109/TMI.2014.2366792. 

Van Opbroek, A.V., Vernooij, M.W., Ikram, M.A., Bruijne, M., 2015b. Weighting training 
images by maximizing distribution similarity for supervised segmentation across 
scanners. Med. Image Anal. 24 (1), 245–254. https://doi.org/10.1016/j. 
media.2015.06.010. 

Viola, P., Wells III, W.M., 1997. Alignment by maximization of mutual information. Int. 
J. Comput. Vis. 24 (2), 137–154. https://doi.org/10.1109/ICCV.1995.466930. 

VisibleHuman, 2021. VisibleHuman.png.MRIcro | CRNL. www.mccauslandcenter.sc. 
edu/crnl/mricro. 

Wang, R., Li, C., Wang, J., Wei, X., Li, Y., Zhu, Y., Zhang, S., 2015. Automatic 
segmentation and volumetric quantification of white matter hyperintensities on 
fluid-attenuated inversion recovery images using the extreme value distribution. 
Neuroradiology 57 (3), 307–320. https://doi.org/10.1007/s00234-014-1466-4. 

Wardlaw, J.M., Smith, E.E., Biessels, G.J., Cordonnier, C., Fazekas, F., Frayne, R., et al., 
2013. Neuroimaging standards for research into small vessel disease and its 
contribution to ageing and neurodegeneration. Lancet Neurol. 12 (8), 822–838. 
https://doi.org/10.1016/S1474-4422(13)70124-8. 
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