3,983 research outputs found

    Piezo-electromechanical smart materials with distributed arrays of piezoelectric transducers: Current and upcoming applications

    Get PDF
    This review paper intends to gather and organize a series of works which discuss the possibility of exploiting the mechanical properties of distributed arrays of piezoelectric transducers. The concept can be described as follows: on every structural member one can uniformly distribute an array of piezoelectric transducers whose electric terminals are to be connected to a suitably optimized electric waveguide. If the aim of such a modification is identified to be the suppression of mechanical vibrations then the optimal electric waveguide is identified to be the 'electric analog' of the considered structural member. The obtained electromechanical systems were called PEM (PiezoElectroMechanical) structures. The authors especially focus on the role played by Lagrange methods in the design of these analog circuits and in the study of PEM structures and we suggest some possible research developments in the conception of new devices, in their study and in their technological application. Other potential uses of PEMs, such as Structural Health Monitoring and Energy Harvesting, are described as well. PEM structures can be regarded as a particular kind of smart materials, i.e. materials especially designed and engineered to show a specific andwell-defined response to external excitations: for this reason, the authors try to find connection between PEM beams and plates and some micromorphic materials whose properties as carriers of waves have been studied recently. Finally, this paper aims to establish some links among some concepts which are used in different cultural groups, as smart structure, metamaterial and functional structural modifications, showing how appropriate would be to avoid the use of different names for similar concepts. © 2015 - IOS Press and the authors

    Surface and bulk stresses drive morphological changes in fibrous microtissues

    Get PDF
    Engineered fibrous tissues consisting of cells encapsulated within collagen gels are widely used three-dimensional in vitro models of morphogenesis and wound healing. Although cell-mediated matrix remodeling that occurs within these scaffolds has been extensively studied, less is known about the mesoscale physical principles governing the dynamics of tissue shape. Here, we show both experimentally and by using computer simulations how surface contraction through the development of surface stresses (analogous to surface tension in fluids) coordinates with bulk contraction to drive shape evolution in constrained three-dimensional microtissues. We used microelectromechanical systems technology to generate arrays of fibrous microtissues and robot-assisted microsurgery to perform local incisions and implantation. We introduce a technique based on phototoxic activation of a small molecule to selectively kill cells in a spatially controlled manner. The model simulations, which reproduced the experimentally observed shape changes after surgical and photochemical operations, indicate that fitting of only bulk and surface contractile moduli is sufficient for the prediction of the equilibrium shape of the microtissues. The computational and experimental methods we have developed provide a general framework to study and predict the morphogenic states of contractile fibrous tissues under external loading at multiple length scales.Published versio

    Bio-Inspired design of a porous resorbable scaffold for bone reconstruction: a preliminary study

    Get PDF
    The study and imitation of the biological and mechanical systems present in nature and living beings always have been sources of inspiration for improving existent technologies and establishing new ones. Pursuing this line of thought, we consider an artificial graft typical in the bone reconstruction surgery with the same microstructure of the bone living tissue and examine the interaction between these two phases, namely bone and the graft material. Specifically, a visco-poroelastic second gradient model is adopted for the bone-graft composite system to describe it at a macroscopic level of observation. The second gradient formulation is employed to consider possibly size effects and as a macroscopic source of interstitial fluid flow, which is usually regarded as a key factor in bone remodeling. With the help of the proposed formulation and via a simple example, we show that the model can be used as a graft design tool. As a matter of fact, an optimization of the characteristics of the implant can be carried out by numerical investigations. In this paper, we observe that the size of the graft considerably influences the interaction between bone tissue and artificial bio-resorbable material and the possibility that the bone tissue might substitute more or less partially the foreign graft for better bone healing

    Bone orthotropic remodeling as a thermodynamically-driven evolution

    Get PDF
    International audienceIn this contribution we present and discuss a model of bone remodeling set up in the framework of the theory of generalized continuum mechanics and first introduced by DiCarlo et al.[1]. Bone is described as an orthotropic body experiencing remodeling as a rotation of its microstruc-ture. Thus, the complete kinematic description of a material point is provided by its position in space and a rotation tensor describing the orientation of its microstructure. Material motion is driven by energetic considerations , namely by the application of the Clausius-Duhem inequality to the microstructured material. Within this framework of orthotropic re-modeling, some key features of the remodeling equilibrium configurations are deduced in the case of homogeneous strain or stress loading conditions. First, it is shown that remodeling equilibrium configurations correspond to energy extrema. Second, stability of the remodeling equilibrium configurations is assessed in terms of the local convexity of the strain and complementary energy functionals hence recovering some classical energy theorems. Eventually, it is shown that the remodeling equilibrium configurations are not only highly dependent on the loading conditions, but also on the material properties

    Subchondral Bone Cysts - Filling the Void

    Get PDF
    Subchondral bone cysts (SBCs) are voids that can occur in the bones of young horses, especially horses intended for performance. Believed to be caused by trauma or osteochondrosis, these defects most often occur in the medial femoral condyle (MFC). Current treatments for equine SBCs have poor outcomes and have not improved over the last several decades. The gold standard for surgical treatment consists of cyst debridement and grafting. However, radiographic healing is not often reported, and when it is, only 20% of horses exhibit full radiographic healing. A novel treatment strategy has been recently introduced that places a lag screw across the SBC and has demonstrated high rates of radiographic healing. However, the mechanics of how a transcondylar lag screw could enhance SBC healing are unknown. The goals of this study were to determine a plausible mechanism of SBC initiation and growth, as well as understand the mechanics of the transcondylar lag screw. A finite element modeling approach has been taken to examine the mechanics associated with SBCs. Using CT scans from young Thoroughbred horses, several finite element models have been developed for this study. The results of this study show that high-impact loading from gallop can cause stresses high enough to initiate bone damage in a healthy equine stifle joint. Additionally, once a small defect has manifested, stresses rise even higher and further damage is likely. Medial meniscus stress also increases with a MFC SBC, which suggests that secondary injury to the medial meniscus may be due to a disrupted load path through the MFC. Furthermore, it was determined that the transcondylar screw is able to heal SBCs by providing enough mechanical stimulus to the adjacent bone to promote bone formation. Not only is the stimulus for growth present, but the screw also aligns third principal stresses transverse to trabecular orientation across the cyst. This encourages bone to form across the void, as opposed to trabecular thickening, which results in the sclerosis typically seen in MFC SBCs. Lastly, it was determined that larger cysts respond best to the transcondylar screw. Full penetration of the screw into the cystic cavity provides the highest bone-forming stimulus, and also best aligns stresses across the void. This work demonstrates that trauma can initiate SBCs and that the transcondylar screw provides a unique mechanism to enhance healing. Since humans are susceptible to a wide range of bone defects that exhibit similar characteristic of an equine SBC, it is believed that there is huge potential for translational applications

    On the theories and numerics of continuum models for adaptation processes in biological tissues

    Get PDF
    The final publication is available at Springer via http://dx.doi.org/10.1007/s11831-014-9142-8Computational continuum mechanics have been used for a long time to deal with the mechanics of materials. During the last decades researches have been using many of the theoretical models and numerical approaches of classical materials to deal with biological tissue which, in many senses, are a much more sophisticated material. We aim to review the last achievements of continuum models and numerical approaches on adaptation processes in biological tissues. In this review, we are looking, in particular, at growth in terms of changes of density and/or volume as, e.g., in collagen remodeling, wound healing, arterial thickening, etc. Furthermore, we point out some of the most relevant limitations of the current state-of-the-art in terms of these well established computational continuum models. In connection with these limitations, we will finish by discussing the trend lines of future work in the field of modeling biological adaptation, focusing on the computational approaches and mechanics that could overcome the current drawbacks. We would also like to attract the attention of all those researchers in classical materials (metal, alloys, composites, etc), to point out how similar the continuum and computational models between our fields are. We hope we can motivate them for getting their expertize in this challenging field of research.Peer ReviewedPostprint (author's final draft

    Numerical model of bone remodeling sensitive to loading frequency through a poroelastic behavior and internal fluid movements

    Get PDF
    International audienceIn this article, a phenomenological numerical model of bone remodeling is proposed. This model is based on the poroelasticity theory in order to take into account the effects of fluid movements in bone adaptation. Moreover, the proposed remodeling law stands from the classical 'Stanford' law, enriched in order to take into account the loading frequency, through fluid movements. This coupling is materialized by a quadratic function of Darcy velocity. The numerical model is carried out, using a finite element method, and calibrated using experimental results at macroscopic level, from the literature. First results concern cyclic loadings on a mouse ulna, at different frequencies between 1 Hz and 30 Hz, for a force amplitude of 1.5 N and 2 N. Experimental results exhibit a sensitivity to the loading frequency, with privileged frequency for bone remodeling between 5 Hz and 10 Hz, for the force amplitude of 2 N. For the force amplitude of 1.5 N, no privileged frequencies for bone remodeling are highlighted. This tendency is reproduced by the proposed numerical computations. The model is identified on a single case (one frequency and one force amplitude) and validated on the other ones. The second experimental validation deals with a different loading regime: An internal fluid pressure at 20 Hz on a turkey ulna. The same framework is applied, and the numerical and experimental data are still matching in terms of gain in bone mass density
    • …
    corecore