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Resumo

O osso, um tecido complexo e dinâmico, tem um papel essencial na fisiologia e anatomia humana,
possuindo a capacidade intrínseca de regeneração e remodelação. Estes processos biológicos são
fundamentais para que o tecido ósseo se renove como resultado de diferentes necessidades fisi-
ológicas ao longo da vida. O processo de remodelação é um dos muitos processos biológicos
modelados por engenheiros e cientistas, que de forma a os conseguir descrever e compreender
melhor. Usando ferramentas computacionais, como são os métodos numéricos, e utilizando a for-
mulação de equações e leis constitutivas, é possível descrever este processo e, assim, expandir a
sua compreensão. Os modelos de remodelação óssea evoluíram desde os modelos mais simples,
em que apenas eram considerados os estímulos mecânicos como fator influenciadores, até mod-
elos que consideram fatores biológicos e mecânicos, e em diferentes escalas. O objetivo desta
tese foi alargar o conhecimento relativo ao processo de remodelação óssea, entender os métodos
numéricos, como o método dos elementos finitos e os métodos sem malha, e usá-los para desen-
volver ferramentas que permitam estudar a remodelação óssea. Para isso, foi explorado o uso do
método dos elementos finitos e de métodos sem malha no estudo de estruturas biológicas para
verificar e validar que estas metodologias eram comparáveis e eficientes com este tipo de análise.
Uma das características incorporadas nos modelos matemáticos de remodelação óssea que con-
sideram os estímulos mecânicos são as propriedades mecânicas ósseas. Assim, nesta tese, foi
desenvolvida uma metodologia de homogeneização que utiliza o conceito de fabric tensor, que é
capaz de definir as propriedades mecânicas ósseas, tendo em consideração a informação da mor-
fologia óssea existente em imagens médicas. Esta metodologia, desenvolvida para distribuições
bidimensionais (2D) e tridimensionais (3D), é capaz de representar um domínio ósseo altamente
heterogéneo, utilizando um domínio homogeneizado que contém as informações do domínio het-
erogéneo. Para o desenvolvimento da metodologia do fabric tensor em 2D foi usa uma abordagem
em que são usados técnicas de processamento de imagem, enquanto que a metodologia usada para
definir o fabric tensor em 3D usa uma abordagem algébrica e geométrica. As duas metodologias
foram avaliadas e posteriormente validadas. Nesta validação foram usados o método dos ele-
mentos finitos e os métodos sem malha, de forma a comparar se o comportamento mecânico das
estruturas homogéneas definidas usado a metodologia desenvolvida eram equivalentes às estru-
turas heterogéneas. Foi também verificado a existência de um decréscimo do custo computacional
quando é utilizada a metodologia proposta para definir as propriedades mecânicas materiais ho-
mogeneizadas, uma vez que é necessária uma menor discretização do domínio ósseo para se con-
seguir um comportamento mecânico equivalente ao do domínio altamente heterogéneo do osso.
Os métodos numéricos computacionais provaram ser uma ferramenta importante em biomecânica
e, neste trabalho em particular, mostraram resultados fundamentais para validação e aplicação da
metodologia de homogeneização desenvolvida.
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Abstract

Bone, a complex and dynamic tissue, plays an essential role in human physiology and anatomy,
possessing the intrinsic capacity of regeneration and remodelling. These biological processes are
fundamental for bone tissue to be renewed as a result of different physiological needs through-
out life. The remodelling process is one of many biological processes that arouse interest to
engineers and scientists. Using computational tools, such as numerical methods, and using the
equation formulations and constitutive laws, it is possible to describe this process and thus ex-
pand its understanding. Bone remodelling models evolved from the simplest models, in which
only mechanical stimuli were considered, to models that consider biological and mechanical fac-
tors, and at different scales. The objective of this thesis was to expand the knowledge related
to the bone remodelling process, understand numerical methods, such as finite element methods
and meshless methods, and use them to develop tools to study bone remodelling. Exploring the
use of the finite element method and meshless methods in the study of biological structures was
possible to verify and validate that these methodologies were equivalent and efficient with this
type of analysis. One of the parameters incorporated in the study of bone using numerical meth-
ods and mathematical modelling of bone remodelling, where is consider mechanical stimuli, is
the bone mechanical properties. In this thesis was developed a homogenization methodology that
uses the concept of fabric tensor, which is capable to define bone mechanical properties taking
into account the information of bone morphology existing in medical images. This methodol-
ogy, developed for two-dimensional (2D) and three-dimensional (3D) distributions, is capable of
representing a highly heterogeneous bone domain, using a homogenized domain that contains in-
formation from the heterogeneous domain. For the development of the methodology of fabric
tensor in 2D were used image processing approaches, while the methodology used to define the
fabric tensor in 3D uses an algebraic and geometric approach. Both methodologies were evaluated
and later validated. In this validation, the finite element method and the meshless methods were
used to compare whether the mechanical behaviour of the homogeneous structures defined using
the developed methodology developed was equivalent to heterogeneous structures. It was also ver-
ified the existence of a decrease in computational cost using the proposed methodology to define
the mechanical properties of homogenized material. This occurs since is necessary a lower bone
domain discretization to achieve a mechanical behaviour equivalent to the bone highly heteroge-
neous domain. Computational numerical methods proved to be an important tool in biomechanics
and, in this particular work, showed fundamental results for validation and application of the ho-
mogenization methodology developed.
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Chapter 1

Introduction

1.1 Motivation

The bone is a living-dynamic biomaterial tissue active during its lifetime that possesses relevant

structural properties and a remarkable remodelling capacity. Being medical science evolving to

individualised solutions, dictated by the distinct physiology of each patient, this study will allow

to better predict the bone mechanical proprieties, a key factor used in many studies that allow

predicting bone healing time up to the design of suitable implants for the patient unique bone

properties, obtained by CT or X-ray images. This ultimately allows to improve patient life quality

in a bone healing process, due to fracture/implants. Biomechanics is an area of increasing interest

within the scientific community. Currently, the exciting improvements of experimental techniques

allow researchers to obtain a considerable amount of data at several spatial scales. Supplied by

the accuracy of these experimental measurements and the novelty of the observed phenomena,

mathematical modelling of living matter begins to be a very attractive research field.

1.2 Goals

Based on all the reported facts, besides the biomechanical and bone remodelling research, the

main goal of this study was to extend the knowledge of bone tissue by exploring the use of ho-

mogenisation multiscale methodologies combined with advanced discretisation methodologies to

mechanically characterise bone. This goals to produce a methodology that can be used, in the

future, combined with the bone remodelling research.

1



2 Introduction

To understand and contextualise this problem, the following specific objectives were defined:

• Literature review of the biomechanical models of the bone remodelling process;

• Literature review of numerical tools as FEM, RPIM and NNRPIM;

• Validate the application of numerical tools as FEM, RPIM and NNRPIM to evaluate the

behaviour of biological structures;

• Consider new application methodologies in biological structure in order to numerically anal-

yse their response;

• Contribute to a better knowledge related with bone remodelling methodologies;

• Further develop tools to better study bone remodelling;

• Publication of the research outputs in international journals.

1.3 Thesis Outline

This structure of this thesis is based on the published/submitted journal papers and book chapters,

is organised in 4 main Chapters.

Chapter 1 introduces the thesis subject. It is divided into 3 sections. Section 1.1 describes

motivation for the development of the work. The objectives of the work are presented in the

section 1.2. The last section, section 1.3, shows the thesis outline.

Chapter 2 provides a literature introduction on bone and bone cells. Afterwards, it is intro-

duced the bone remodelling as the biological processes, but also, as its study and application in

the modelling point of view. The fourth section of this chapter briefly introduces the homogenisa-

tion methodology developed in this thesis, once the methodology is explored in the contributions

in Chapter 3. At last, numerical methods are introduced. In this chapter, section are presented the

Finite Element Method and the meshless methods.

Chapters 3 is composed of the articles and book chapters written during the project. This

chapter is designed to achieve the main purpose of this thesis. The sequence of articles is organised

as follows:

Section 3.2 - Article 1:

• Title: A new numerical approach to mechanically analyse biological structures;

• Authors: M. Marques, J. Belinha, L. M. J. S. J. S. Dinis, and R. M. Natal Jorge;



1.3 Thesis Outline 3

• Published in: Computer Methods in Biomechanics and Biomedical Engineering;

• Year: 2019;

• DOI: https://doi.org/10.1080/10255842.2018.1538413

Section 3.3 - Article 2:

• Title: A brain impact stress analysis using advanced discretization meshless techniques;

• Authors: M. Marques, J. Belinha, L. M. J. Dinis, and R. Natal Jorge;

• Published in: Proceedings of the Institution of Mechanical Engineers, Part H: Journal of

Engineering in Medicine;

• Year: 2018;

• DOI: https://doi.org/10.1177/0954411917751559

Section 3.5 - Article 3:

• Title: A multiscale homogenization procedure using the fabric tensor concept;

• Authors: M. Marques, J. Belinha, A. F. Oliveira, M. C. Manzanares Céspedes, and R. N.

Jorge;

• Published in: Science and Technology of Materials;

• Year: 2018;

• DOI: https://doi.org/10.1016/j.stmat.2018.01.002;

Section 3.6 - Article 4:

• Title: Combining radial point interpolation meshless method with a new homogenization
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Chapter 2

Background Literature Review

2.1 Bone

Bone is a structure mainly defined by the bone matrix and by bone cells. Bone cells are respon-

sible to produce the bone matrix. These cells create the bone matrix and reabsorb it, allowing the

replacement of the old bone matrix by a newer one. The bone matrix is normally made by 35% or-

ganic and 65% inorganic material, being the inorganic material mainly calcium phosphate crystal,

called hydroxyapatite Ca10(PO4)6(OH)2. The organic bone matrix is mainly made of type I col-

lagen (88%) and the remaining 12% are divided in 10% of non-collagenous proteins (osteocalcin,

osteonectin, bone sialoprotein and various proteoglycans) and 2% of lipids and glycosaminogly-

cans. [3]

2.1.1 Bone Structure and Functions

All the bones in the human body make the skeletal system. This system has support, protection,

movement, storage and blood cell production functions. Being bone a rigid and strong structure,

it is suited to support the body weight. Bones also allow the protection of organs by enclosing

them, being, for example, the brain and the spinal cord enclosed in the skull and in the vertebrae

for protection. Bones are connected to the muscles by tendons, which permits that when a muscle

contract a bone moves, producing body movements. Bones also have other functions as mineral

and energy repository. Mineral since they storage calcium and phosphorus, and energy since

7
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Figure 2.1: Bone morphology example adapted from [1].

yellow marrow fat cells are present in bones. Usually, long bones contain cavities filled with red

bone marrow, responsible for the creation of the blood cells and platelets. [1, 2, 4]

2.1.2 Bone Morphology

Bones can be classified according to its morphology, existing 5 classifications, the long, short, flat,

irregular and pneumatic bones, as can be seen in figure 2.1

Long bones have an elongated shaft, the diaphysis, and two expanded ends, the epiphyses, one

on either side of the shaft. Normally, the epiphyses are smooth and articular and the diaphysis has

a central medullary cavity where the bone marrow exists. Long bones are used for a greater range

of motion. Femur, humerus, metacarpals, metatarsals, and phalanges are examples of long bones.

Short bones have as main function providing support and stability with small movement. These

bones have a larger width than length. They are found mainly in the feet and hands, carpal and

tarsal bones, but also other anatomic areas, as the scaphoid and trapezoid bones. Flat bones are flat

and have two prominent surfaces known as the anterior and posterior surfaces, made from compact

bone to provide strength for protection, and their core consists of trabecular bone. Flat bones main

function is to provide protection to the body vital organs and to provide a base for muscular

attachment. Cranial bones, as frontal and temporal, are an example of flat bones. Irregular bones

consist primarily of trabecular bone, with a thin outer layer of compact bone. Typical examples

of irregular bones are the vertebrae, sacrum, and bones in the base of the skull Pneumatic bones,

or hollow bones, have the unique and different characteristic of having in it large void spaces,
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Figure 2.2: Cortical and trabecular bone schematics, adapted from [1]

which makes them lightweight. Pneumatic bones form the major portion of the skull to making

it light in weight. Pneumatic bones also contribute to the resonance of sound and function as

air-conditioning chambers for inspired air. [1, 2, 4]

2.1.3 Bone Structural Classification

Bone can be classified by its structure at different microscopic and macroscopic level. At a mi-

croscopic level, bone can be classified as reticular or lamellar and at a macroscopic level it can be

classified as cortical or trabecular, Figure 2.2.

2.1.3.1 Microscopic Level Bone: Reticular

Reticular or woven bone is immature bone, that contain collagen fibres in a not stress orientation.

Eventually reticular bone is converted to lamellar bone, except in adults, for whom it is only

present in a few places, such as the sutures of the flat bones of the skull, tooth sockets, and at

the insertion sites of some tendons. In adult, if present in other than this places reticular bone

is considered pathological. Compared to lamellar bone, reticular bone has more osteocytes per

unit of volume, providing a higher rate of turnover, and has smaller amounts of mineral substance

making it weaker and more flexible than lamellar bone. [1, 2, 4]

2.1.3.2 Microscopic Level Bone: Lamellar

Lamellar bone having its origin in reticular bone, is organised and stress oriented, being stronger

and less flexible than reticular bone. This is a normal type of adult mammalian bone composed

of thin plates (lamellae). Being cortical of trabecular bone, it is composed by parallel lamellae

former and concentric around a vascular canal. [1, 2, 4]
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Figure 2.3: Cortical bone schematics, adapted from [1]

2.1.3.3 Macroscopic Level Bone: Cortical Bone

Cortical or compact bone is the denser and harder type of bone and constitutes 80% of the skeletal

bone mass. Cortical bone is the hard material that makes the shaft of long bones and the outside

surfaces of other bones. [4] Figure 2.3 and Figure 2.4 have represented some of the most relevant

entities of the cortical bone.

The basic functional unit of cortical bone is the osteon, also known as the Havers system,

which consists of 4–20 concentric layers of bony lamellae surrounding a central Haversian canal,

that can contain blood vessels, nerves and loose connective tissue. The existence of perforating

canals, called Volkman’s canals, which run perpendicular to the long axis of the bone, allow blood

vessels from the periosteum or medullary cavity to enter the bone and the connection of the osteons

with each other, allowing the conduction of blood vessels through the bone.

In the between of the lamellar rings are present the osteocytes. The osteocytes communicate

with each other by projecting throughout the lamellae very thin and long cytoplasmic extensions

along the tiny canals called canaliculi. It is through the canaliculi that electro-chemical information

flows, the nutrients and minerals reach all points of the bone matrix but also the waste products

are removed. In long bones, besides the osteons, the outer surfaces of compact bone are formed

by circumferential lamellae, spawned by the inner layer of the periosteum. [1, 2] In general, the

Young’s modulus of compact bone is about 18 GPa and its porosity ranges from 5% to 30%. [4]
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Figure 2.4: Osteon schematics, adapted from [2]

2.1.3.4 Macroscopic Level Bone: Trabecular Bone

The trabecular bone, or spongy bone, is composed of mature lamellar bone and consists of inter-

connecting rods or plates of bone, a meshwork called trabeculae, Figure 2.5.

Trabeculae consist of thin, irregularly shaped plates arranged in an openwork framework. In

the case of a long bone, the trabecular bone is typically located at the proximal ends, where the

arrangement of the trabeculae is relatively regular, reflecting the mechanical loads to which this

kind of bone is subjected. Existing a variation of this load patter, the bone has the capability

of realigning the trabecular pattern with the new lines of stress created by the new load pattern.

Trabecular bone constitutes 20% of the skeletal bone mass, but due to the trabeculae vast specific-

surface, the surface-to-volume ratio is ten times higher than the cortical bone, reflecting why

metabolic bone diseases have a greater effect on trabecular bone than on cortical bone. Most

trabeculae are thin, 50–400 microns, and consist of several lamellae with osteocytes located in

lacunae between the lamellae. The trabeculae surfaces are covered with a layer of cells consisting

mostly of osteoblasts with a few osteoclasts. These osteocytes trapped between calcified lamellae

Figure 2.5: Trabecular bone schematics, adapted from [1]
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Figure 2.6: Bone cells schematics

are connected to each other through canaliculi. Being trabecula only a few cell layers thick, the

osteocyte can exchange nutrients with nearby blood vessels through their canaliculi. Despite its

relatively small volume and high apparent porosity, trabecular bone is well adapted to resist and

conduct compressive loads. Trabecular bone Young’s modulus is about 1 GPa and have a porosity

between 30% and 90%. [2, 4]

2.2 Bone Cells

Bone cells are found within the bone tissue and are responsible for many different metabolic

processes. These cells are included in the processes such as the development of new bones, bone

remodelling and in other processes such as homeostatic regulation of minerals in the body. The

bone cells are, Osteoprogenitors, Osteoblasts, Bone-lining cells, Osteocytes and Osteoclasts. In

Figure 2.6 is represented a schematic of the osteocyte, osteoblast and osteoclast.

2.2.1 Osteoprogenitors

The osteoprogenitors are non-specialised cells which differentiate to origin the osteoblasts. [5]

These cells are in the origin of all bone structures during the development process and are gen-

erated in the bone marrow, or in other connective tissues. This cells can be found in the interior

layers of the periosteum, in the endosteum and in the Haversian’s and Volkman’s canals. [1, 2, 4]

2.2.2 Osteoblasts

The osteoblasts are mononuclear bone-forming cells responsible for bone formation and for the

mineralization of the osteoid matrix. Osteoblasts are produced in the periosteum, bone outer



2.2 Bone Cells 13

surface, endosteum, bone inner surface, and in the bone marrow and can be found in the bone

endosteum and in bone periosteum, in a laminar distribution. This cells are responsible by the

collagen and proteoglycans production but also for the release of matrix vesicles, that contains

concentrate Ca2+ and PO3−
4 that originate hydroxyapatite crystals. Being the hydroxyapatite crys-

tals released from the matrix vesicles, they stimulate hydroxyapatite formation and mineralization

of the matrix. [1, 2, 4]

2.2.3 Bone-lining cells

The bone-lining cells are inactive elongated and thin osteoblasts that remain inactive in the bone

surface once the bone formation, or the bone remodelling, has finished. This cells, can however

be reactivated in response to mechanobiological stimulus. [1, 2, 4]

2.2.4 Osteocytes

The osteocytes are cells that mature from the osteoblasts. Osteocytes are relatively inactive, com-

pared with most osteoblasts, but still, they are able to produce the components needed to maintain

the bone matrix. Osteocytes occupy spaces inside the mineralised bone matrix, the lacunae. This

chambers are connected to each other by long cytoplasmic extensions, the canaliculi, that allow

osteocytes to conserve the connection with the outer osteoblasts. This lead to the preservation of

the surrounding mineralised bone matrix vitality. Canaliculi are used to pass through nutrients

and gases through the small amount of fluid surrounding the cells in the canaliculi and lacunae.

This canals also allow the creation of a vast network of cells that connect each other through GAP

connection. This vast network of osteocytes is connected to the outer cell, making osteocytes

work as a local sensor of the mechanical and chemical state of the bone and if needed initiates the

reabsorption process from the surface. [1, 2, 4, 6, 7]

2.2.5 Osteoclasts

Osteoclasts are the cells responsible for the reabsorption and/or elimination of Ca2+ and of PO3−
4

This process is done through the demineralisation of the mineralised bone matrix and the destruc-

tion of the bone organic matrix. This reabsorption allows the usage of Ca2+ and of PO3−
4 in many
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metabolic processes. Osteoclasts are multinucleated cells that originate within the red bone mar-

row monocyte/macrophage lineage and are maturated into functional osteoclasts by direct contact

with osteoblasts. Osteoclasts cells are located in superficial depressions (Howship lacunae) which

identify the bone reabsorption zones. The bone reabsorption process begins when the osteoblasts

present in the connective tissue around bone activate the movement of mature osteoclasts into a

bone remodelling area. Once the osteoclasts come in contact with the bone surface, they form

attachment structures via interactions with cell-surface proteins called integrins. After this, a set

of structures are formed, podosomes, creating a sealed section under the osteoclast. The osteoclast

forms a called ruffled border, that is a highly folded cell membrane. Acidic vesicles fuse of the

ruffled border and ATP-powered H+ pumps, and protein-digesting enzymes are inserted into the

membrane of the ruffled border. The secretion of H+ within the sealed section causes decalci-

fication of the bone matrix, and the protein-digestion enzymes that are secreted into the sealed

compartment digest the organic, protein component of the bone matrix. The degradation products

are removed by a transcytosis mechanism, where products enter the osteoclast through the sealed

side and move across the cytoplasm to the other side. These products are then secreted into the

extracellular space and enter the blood flow, is available for metabolic processes. [1, 2, 4]

2.3 Bone Remodelling

Bone remodelling is the biological process whereby living bone tissue renews itself in the course

of life. [8] In general growth, reinforcement, and resorption are collectively termed as remodelling

This remodelling is progressive and is induced in order to adapt the bone morphology to any new

external load. The concept strain/stress-induced bone remodelling was firstly reported by Wolff

in 1886. [9] Later in 1892, Wolff found that the orientation of trabecular bone coincides with

the direction of the stress trajectories. With this, Wolff proposed that bone loading is somehow

sensed by the bone. This principle of functional adaptation is known as Wolff’s law. In 1939

Wolff’s law was firstly described in vitro by Glucksmann in 1939. [10] In 1965 by Pauwels, was

created the first mathematical formulation that described the process described by Wolff. [11]

This mathematical formulation assumed that exist an optimal mechanical stimulus that balanced

the bone tissue resorption and deposition. [12]
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2.3.1 Bone Remodelling Process

Bone remodelling is a complex process performed by the coordinated activities of the osteoclasts,

that resorb the bone, osteoblasts that replace the bone, the osteocytes within the bone matrix, the

bone lining cells that covering the bone surface and the capillary blood supply. Together, osteo-

clasts and the osteoblasts cells form temporary anatomical structures, called bone remodelling

units (BMUs), which execute bone remodelling. The interactions between osteoblasts and osteo-

clasts, that guarantees a proper balance between bone gain and loss, is known as coupling. [13] All

the millions BMU present in the skeleton are in different stages, being the life span of individual

cells that create a BMU much shorter than that BMU itself. [14–16] These BMUs are constantly

remodelling bone tissue in growing adult and senescent skeleton, preventing premature deterio-

ration and maintaining its overall strength. If there is an interruption of this bone remodelling

process due to a biochemical or cellular link cut, such as osteoporosis or hyperparathyroidism,

might be disrupted a metabolic bone disease. Normal bone remodelling occurs in discrete bone

locations taking 2 to 5 years for a discrete location to complete one bone remodelling cycle. [17]

This constant care of the bone matrix prevents its premature deterioration and maintains its overall

strength. Bone remodelling can be classified as targeted remodelling, or by random remodelling.

If a specific region of the bone is induced to remodel due to a, for example, a structural microdam-

age, is said to occur a targeted remodelling. [18, 19] In this case remodelling permits to restore

the microdamage caused by fatigue and/or by shock. Being bone remodelling a main process with

a role in the mineral homeostasis, by providing calcium and phosphate, and being these calcium

and phosphate removed from random locations from the skeleton, in this case, it occurs a ran-

dom remodelling. [18, 19] Bone balance is defined as the amount of bone removed and of new

bone restored in the bone remodelling process. While the interactions between osteoblasts and

osteoclasts are rarely affected by outer factors, bone balance can be easily modified by diseases,

hormonal factors and even by external mechanical stimulus. Being bones a major reservoir of

body calcium, bone is under the hormonal control of parathyroid hormone (PTH), the most impor-

tant hormone regulating calcium homeostasis and bone remodelling. [20] The modification of the

bone remodelling behaviour, that has a direct influence in the bone mass is affected by the effect

of PTH, in which a continuous increase of the PTH levels decreases bone mass and discontinuous

PTH administration leads to an increase of bone mass. [21–24]
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Also, long-term physical activity on a regular basis plays a particularly important role in bone

remodelling. The mechanical stimulus-induced by physical exercise can maintain or increase bone

strength by increasing bone mass or by changing bone structures at micro and macro levels. Two

main types of exercise are beneficial to bone health: weight-bearing, exercise performed while a

person is standing so that gravity is exerting a force, and resistance exercise, exercises involving

lifting weights with arms or legs. Long-term physical activity on a regular basis plays a par-

ticularly important role in maintaining healthy bones. Exercise can maintain and increase bone

strength by increasing bone mass or by changing bone structures at micro and macro levels [25].

More recently, it was reported that as the presence of external loads lead to bone remodelling, also

the absence of load that occurs in conditions of disuse, such as during immobility, space flight, and

long-term bed rest lead to the same processes, having the opposite result, bone loss and mineral

changes. [4,26,27] Bone remodelling can be divided into five distinct phases that occur in a coordi-

nate and sequential way. This five phases are the activation, resorption, reversal, formation and the

termination. The activation phase is characterised by being a continuum process that occurs in the

boundaries of the BMU where it is detected the presence of an inducing remodelling signal, that

can be of mechanical or hormonal nature [17]. Bone cells are exposed to a dynamic environment

of biophysical stimuli that includes strain, stress, shear, pressure, fluid flow, streaming potentials

and acceleration, having these parameters independently the ability to regulate the cellular re-

sponses and influence the bone remodelling. The osteocytes located in the cortical bone have the

ability to sense this biophysical stimulus that though the canaliculi network activate the regulation

of the proteins sclerostin and receptor activator of nuclear factor kappa-β ligand (RANKL), that

has a major role in bone remodelling, by other bone cells. [25,28] The resorption phase is charac-

terised by the formation and activity of osteoclasts that, as explained before, create a sealed section

where the resorption process occurs. This formation and activity of osteoclasts is controlled by

osteoblast cells that activate the movement of mature osteoclasts into a bone remodelling site with

the expression of Colony Stimulating Factor 1 (CSF-1), RANKL, Osteoprotegerin (OPG) and by

PTH. [1, 2, 4, 17, 29, 30] The reversal phase lasts around 9 days and occurs when the maximum

eroded depth is achieved, between 60-40 µm. This phase is characterized by the transition of the

activity from osteoclast to osteoblast. [15] The osteoclasts start the process of apoptosis and at the

same time the bone-lining cells enter the lacuna and clean bone matrix remains. This clean up
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allows the deposition of a proteins (collagenous) layer in the resorption pits forming a cement line

(glycoprotein) which helps in the attachment of preosteoblasts that begin to differentiate. [31, 32]

The formation phase is characterized by the formation of new bone. Once osteoclasts resorbed

the cavity of the bone, they are replaced by cells of the osteoblast lineage, that initiate the bone

formation, the preosteoblast. The preosteoblast are attracted by the growth factors liberated from

the matrix that act as chemotactic and in addition stimulate its proliferation. The preosteoblasts

synthesise a cementing substance upon which the new tissue is attached and express bone mor-

phogenic proteins (BMP) responsible for differentiation. The bone resorption liberates TGF-β

from the matrix, which is a key protein for recruiting mesenchymal stem cells to sites of bone

resorption. This recruitment of mesenchymal stem cells and the presence of the BMP lead to the

differentiation of preosteoblasts to osteoblasts. The already differentiated osteoblasts synthesise

the osteoid matrix and also secrete collagen, that accumulated contributes to the cessation of cell

growth. Having the osteoid, the non-mineralised organic portion of the bone matrix, it has to be

mineralised with hydroxyapatite to create a mature bone tissue. [25, 33]

The termination phase is characterized when occurs the terminal differentiation of the os-

teoblast. Some of the osteoblast transform to lining cells, that cover the newly formed bone surface

while others osteoblast differentiate into osteocytes and remain in the matrix. [25, 28, 33]

2.3.2 Bone Remodelling: Up to Mechanobiological Models

Bone remodelling is a process that has been continuously studied, resulting in the developing of

semi-empirical mathematical descriptions of this process. This mathematical modelling resulted

in the creation of mathematic models that allow to study the process, providing a tool to simu-

late and predict experimental results using computer science. Since the understanding of bone

remodelling, the scientific community is continuously developing semi-empirical mathematical

descriptions of this process to gain a better understanding of the nature of bone remodelling. This

way, mathematical modelling provides a powerful tool for computational simulation and to predict

experimental results. The first mathematical formulation that described the ‘Wolff’s law’, assumed

the existence of an optimal mechanical stimulus balancing the bone tissue resorption and deposi-

tion and it was developed in 1965 by Pauwels. [11] In 1964 Frost presented the "Curvature Model"

describing that the remodelling process was controlled by strain actions . [34] In 1976, Cowin and
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co-workers presented the “Adaptive Elasticity” model that described the theory of bone internal

remodelling defined as the sum of chemical reactions between the bone matrix and the extra-

cellular fluids. [35–38] Later in 1987, the "self-optimisation" concept was introduced by Carter

and co-workers, disclosing the functional adaptation of a mathematical law for the bone trabecu-

lar structure. [39–42] The algorithm proposed by Carter assumes that the mechanical stimulus is

proportional to the effective stress field and permits to consider several mechanical cases. Also in

1987, Huiskes et al, developed a method to predict stress-related adaptive bone remodelling, where

the Strain Energy Density (SED) was used as a feed-back control variable to determine shape or

bone density adaptations, whereby homeostatic SED distribution was assumed as the remodelling

objective. [43] Later, Reiter et al. [44] and Pettermann et al [12], modifying Huiskes et al [43]

model introduced the effects of overstrain necrosis and usage of anisotropic material behaviour,

respectively. Harrigan and Hamilton introduced the strain energy density for stress-induced re-

modelling as mechanical stimuli, using "Adaptive Elasticity" concept. [45–47] In 2012, Belinha

et al [48, 49], developed a material law that permits to correlate the bone apparent density with

the obtained level of stress. With this new material law, Belinha et al developed a biomechanical

model for predicting bone density distribution, based on the assumption that the bone structure is

a gradually self-optimising anisotropic biological material that maximises its own structural stiff-

ness. This model, an adaptation of Carter’s model [39–42], assumes that mechanical stimulus acts

as the principal driving force in the bone tissue remodelling process [48, 49].

Since the majority of the proposed models only concern the bone remodelling induced by

mechanical stimuli at a non-cellular level, more recently have been developed and proposed math-

ematical models that mathematically reconstruct the process of bone remodelling at the cellular

level. [50–54] These models focus on how biomechanical stress induces bone formation [50–54] or

how biological factors affect bone resorption. [55] Martin and Buckland-Wright, 2004 developed

a mathematical model that predicted the depth of erosion and duration of the resorption phases in

healthy adult cancellous bone-based wholly on biological information. This model uses Michaelis-

Menten-like feedback mechanics to affect bone resorption. [55] Lemaire in 2004, developed the

first mathematical model that includes the RANKL/Receptor Activator of Nuclear Factor Kappa-

β (RANK)/OPG pathway, that affects the bone remodelling process. This model based on the idea

that the relative proportions of immature and mature osteoblasts control the degree of osteoclas-
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tic activity. [51] Pivonka et al, 2008 [53] proposed a model based on the Lemaire’s model [51],

adding four new parameters: 1: rate equation describing changes in bone volume with time; 2: a

rate equation describing the release of TGF-β from the bone matrix; 3: the expression of OPG and

RANKL on osteoblastic cell lines; 4: modified activator/repressor functions. [53] Komarova et al,

2003 [50] developed a mathematical model that described the population dynamics of bone cells,

with the number of osteoclasts and osteoblasts at a single BMU. The interactions of autocrine and

paracrine among osteoblasts and osteoclasts allowed the authors to calculate cell population dy-

namics and changes in bone mass at a discrete site of bone remodelling. [50] To summarise the net

effect of local factors on the rates of cell production, this model uses a power-law approximation

that was developed by Savageau [56] as effective tools for analysis of highly nonlinear biochem-

ical systems. In this model, all factors leading to a cell response are taken together in a single

exponential parameter. [50]

In an attempt to integrate both the mechanical and the biological components simulating the

remodelling process at a cellular level, mechanobiology, a discipline at the edge of biology and en-

gineering, started to gain importance. The used strategy to study bone cell remodelling restricted

to biochemical factors or to mechanical stimuli became to be considered reductionist, and so,

bone remodelling models start to consider the entire cell microenvironment, being now accepted

that mechanical forces are also involved in the development, physiological and pathological pro-

cesses. [57] Examples of mechanobiology are present in the mechanobiological models developed

by Yi et al 2015, [58] Hambli 2014, [59] and by Lerebours et al, 2015. [60] Yi et al 2015, devel-

oped a microscale bone remodelling model and corresponding governing equation. In this models

were used the equivalent strain as the mechanical stimuli, that affect proliferation and differenti-

ation of the osteoblast cells. The influence of the different physiological conditions, restricted by

the Denosumab, a used drug for treating osteoporosis, on the formation/resorption rate was also

considered. [58] Hambli, [59] developed a model that describes the bone remodelling process,

taking into consideration biological and mechanical stimuli. In this model, the cellular behaviour

is based on Komarova et al. (2003) dynamic law. [50] The mechanical behaviour of bone is de-

fined by the bone material fatigue damage accumulation and mineralization. In this model are

present strain–damage stimulus functions that relate the mechanical stimuli with the biological

one, since the strain–damage stimulus function controls the level of autocrine and paracrine fac-
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tors. Lerebours et al, 2016 [60] developed a multiscale mechanobiological model that describes

the evolution of a human mid-shaft femur scan subjected in osteoporosis and mechanical disuse,

two deregulating circumstances. In these models are included hormonal regulation and biochem-

ical coupling of bone cell populations. These models also include a mechanical adaptation of the

tissue and factors that influence the microstructure on the bone turnover rate. [60]

Mathematical models that describe and simulate bone remodelling have evolved from simple

macroscale models with simplistic approaches to multiscale, multi-factor and complex models.

The mechanobiological models used to simulate bone remodelling are quite much unexplored,

thus, this new approach has enough space and high possibilities to evolve and to describe unex-

plored topics.

2.4 Homogenisation Techniques

Some of the models and methodologies previously presented consider bone has a hierarchical

structure, where different structural levels can be identified from the macroscale (whole bone) to

sub-nano scale (hydroxyapatite crystals, constituents of the inorganic phase of bone and Tropocol-

lagen (TC) molecules). [61, 62] The macroscale and the microscale (the trabecular architecture

level), can be defined by different physical properties due to its different functional requirements,

such as bone density and corresponding mechanical properties. This means that the behaviour

of the structure at its microscale significantly influences the behaviour of the structure observed

at the macroscale. Finding the relation across scales, will allow to develop multiscale models

capable to predict the behaviour of the macroscale using the microscale, and vice-versa. Ho-

mogenisation techniques allow to homogenise the mechanical properties of the heterogeneous

material under study, thereby allowing to substitute this material with an equivalent homogeneous

material. This homogenisation can be integrated into multiscale methods allowing to define, for

example, the mechanical properties of highly complex microstructure as trabecular bone, and

replace this microstructure by a simple structure with equivalent mechanical proprieties. This

simplification allows to relate the multi scales and simplify the problem complexity, solving it

at the macroscale. [63] Combining homogenisation technique (applied to the trabecular bone mi-

cro scale) with numerical methods, meshless or FEM, it is possible to achieve low-cost and ef-
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ficient multiscale techniques. These homogenisation techniques allows to define the mechanical

properties of a trabecular bone representative volume element (RVE), often using medical im-

ages generated by micro-computational tomography (micro-CT), allowing to acquire information

of the trabecular bone morphology. The fabric tensor, a symmetric second rank tensor, started

to be used to create homogenisation techniques. [64–66] The fabric tensor, that can be obtained

using mechanical based or morphologic-based techniques, and it can mechanically characterise

arrangement of a multiphase material by encoding the orientation and anisotropy of the material.

Recalling that morphologic-based methods use the interface between phases of the material to

estimate the fabric tensor and that bone morphology can be defined using a micro-CT (at the mi-

croscale) or a computational tomography (CT) (at the macroscale), it is possible to use medical

images to define the fabric tensor, when considering bone. Most of the available techniques using

morphologic-based methods to obtain the fabric tensor apply an orientation distribution function

(ODF), to estimates an orientation-dependent feature of interest. In mechanics, and in biomechan-

ics, the accurate determination/characterisation of the material’s mechanical properties is a key

parameter, which will allow to describe and predict numerically the behaviour of such materials

for different scenarios. Naturally, there is a never-ending interest from the scientific community

concerning the material characterisation, by developing/enhancing: constitutive laws, experimen-

tal procedures and computational tools/methodologies. The use of the fabric tensor often start by

the definition of a region of interest able to define the material morphology that is intended to be

studied, ex. figure 2.7. The methodology developed by Whitehouse [67] (considered a golden

standard in this kind of application) requires the identification in the RVE of different phases char-

acteristic of the material. [67–71] Whitehouse’s methodology requires image processing tools. In

Whitehouse methodology, the Mean Intercept Length (MIL) methodology, the number of inter-

ceptions between a parallel family line in direction ι , with the interface between both phases of

the material is counted, Int(ι). The length of the parallel lines family, h, is also considered. The

relation between the parameters h, ι and Int(ι), equation (2.1), allow to define the ODF needed to

define the fabric tensor.

MIL(ι) =
h

Int(ι)
(2.1)

Figure 2.8a represents an example of an image containing a family of parallel lines Iι , in this



22 Background Literature Review

Figure 2.7: Is representative of trabecular bone

case, with ι = 0°. Counting the interceptions of those parallel lines with changes of phase of RVE,

represented by the boundaries of the Is, it is possible to obtain the orientation-dependent feature.

For different ι , between 0° and 180°, it is possible to obtain the ODF of the Is. The generated data

for ι between ]180°,360°[ is a [0°,180°] data repetition, since the orientation-dependent feature is

not influenced by the direction. For example, Fig. 2.8 represent the rotation of Iι between 0° and

180° with a ι increment of 45°.

To better understand how the ODF data is acquired using Is and Iι , figure 2.9 is presented.

Each sub-image makes reference ι between 0° and 180°, using an increment of 45°. In each

one of the images, five pixel colours: black, blue, cyan, red and pink are presented, as a result

of the combination of multiple images information. The blue pixels represent the correspondent

white pixels from the Is image. The black pixels represent the background of the Is image. This

information is constant in each set of images with origin in the same Is image. The only pixels

that changes in these images are the pixels in red, cyan and pink. The red pixels represent the Iι .

The creation of this Iι results in five different images, as can be observed in 2.9. The union of the

pink pixels with the cyan pixels represent the intersection of Is with each one of the Iι images. The

methodology to acquire the ODF data only needs the information of the material phase change,

and for this reason, only the cyan pixels are used to obtain the ODF data. Counting the number of

cyan pixels that result from combining Is with each Iι , and considering the length of the parallel

family lines, equation (2.1), the resulting ODF data is plotted in figure 2.10a. Fitting an ellipse

into this data, it is possible to obtain the material orientation of the trabecular RVE. In figure 2.10b

is representer the fitted ellipses to the corresponding ODF data. Considering Wolff’s Law, it is

understandable that this ellipse is aligned with the RVE preferential trabecular
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(a) Iι 0° (b) Iι 45° (c) Iι 90° (d) Iι 135° (e) Iι 180°

Figure 2.8: Images of parallel lines rotation Iι with an angle increment of 45°, within the interval
of ι = [0,180]

(a) 0° (b) 45° (c) 90° (d) 135° (e) 180°

Figure 2.9: Grid Lines Rotation Interceptions of Fig. 2.7

2.4.1 3D Homogenisation Technique

The 3D homogenisation technique can be developed using the same principles of the 2D method-

ology. In this work were attempted different approaches to extrapolate the 2D methodology to 3D.

One of attempt was to develop the 3D methodology using exactly the same approach used in the

2D methodology, where to each slice of the 3D image was applied the 2D methodology. Thus,

when validating the results, it was verified that the used approach was not accurate. In this failed

attempt, the 3D RVEs, a set of pilled 2D images acquired from a micro-CT or CT image, was

used. To each layer of each orthogonal plane of this 3D image was applied the 2D methodology,

as showed in figure 2.11. This methodology has the expected result if the principal directions of

the material was normal to any of the 3 orthogonal planes of the image. In figure 2.12, is presented

as example a RVE with the principal direction normal to one of the orthogonal directions. In this

cases, the ODF data from each layer of each orthogonal direction, figure 2.12a, 2.12b and 2.12c,

was able to encode the RVE principal direction. Merging the ODF data off all RVE layers, figure

2.12d, it was possible to define an ellipsoid that encodes the RVE principal direction, figure 2.12e.

On the other hand, when the principal diction of the RVE was not normal to any of the orthogonal

planes, figure 2.13a, the methodology was no able to define an ellipsoid with the RVE principal di-

rection encoded, figure 2.13b. In figure, 2.13a the red line represents the RVE principal direction,

that is oblique to all the orthogonal planes.
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Figure 2.10: 2.10a: Polar plot of ODF data, the red points, from figure 2.7; and 2.10b correspon-
dent fitted ellipse.

Figure 2.11: RVE and orthogonal planes. Orthogonal direction 1 - red; Orthogonal direction 2 -
Black; Orthogonal direction 3 - blue.

(a) (b) (c) (d) (e)

Figure 2.12: 2.12a - ODF data for figure 2.11 orthogonal direction 1; 2.12b - ODF data for figure
2.11 orthogonal direction 2; 2.12c - ODF data for figure 2.11 orthogonal direction 3; 2.12d - ODF
merged data; 2.12e ODF data fitted with ellipsoid.

(a) (b)

Figure 2.13: 2.13a - Example of a RVE with an obliquely principal direction; 2.13b - in-accurate
ellipsoid fitting ODF data from obliquely principal direction

After the development of these inaccurate methodologies, it was seeking other methodology
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able to define accurately the 3D fabric tensor, in order to further develop the 3D homogenisation

technique to define bone mechanical properties. With this, the methodology used to define the

3D fabric tensor was developed with the hypothesis of a search sphere, that contains a set of

vectors with well-defined directions, that iteratively change its centre, within the RVE geometrical

space, and the interceptions of each vector is counted, in each iteration with the RVE bone zones.

Contribution VI 3.8, explore the development of this methodology as well as its validation and

application on a structural analysis.

2.5 Numerical Methods

One of the most central activities performed by engineers and scientists is to model natural phe-

nomena in order to study and simulate them. Much of the physical phenomena studied, particu-

larly those related to continuum theory and time variable, can be formulated in terms of algebraic,

ordinary or partial differential and/or integral equations, and referred to a particular area. This

conceptual and mathematical models simulate physical events, whether they are biological, chem-

ical, geological, or mechanical, are based on laws of physics. The constitutive model from the

physical law allows to build a set of integro-diffential equations after the application of energy and

mass conservation principles. Such equations form an equilibrium system of equations, allowing

to obtain the aimed variable field (displacement, temperature, velocity, etc.). In order to obtain the

problem’s solutions, one has to characterise the problem boundary conditions (or border) and (or)

initial conditions. There are many phenomena often associated with different branches, that can

obtain using the same mathematical model and consequently the same differential equations. [72]

Most real engineering problems cases are characterised by very complex equations modelled on

geometrically complicated regions and defined by equations with nonlinear nature, making it gen-

erally impossible to obtain an analytical solution. For these cases, it can be used numerical ap-

proximation methods to obtain the solutions. The development of computers in recent decades has

made possible from these methods, the solution of many problems heretofore unsolvable and al-

lowed the development of new formulations and new algorithms for solving many others. With the

massive usage of computers, the development and use of numerical methods has increased. In this

work, it is understood as numerical simulation, the solution of governing equations of one mathe-



26 Background Literature Review

matical model using a numerical method and a computer. Numerical methods typically transform

differential equations to algebraic equations that are easily and quickly solved using computers,

making them an extremely powerful tools for engineering analysis. Even linear problems may not

admit exact solutions due to geometric and material complexities, but it is relatively easy to obtain

approximate solutions using numerical methods. Finite difference methods, finite element meth-

ods, meshless methods, and their variants, are the most used numerical methods in the analysis of

practical engineering problems. These methods are created on the idea that every system is created

by different parts and hence its solution may be represented in parts.

2.5.1 Finite Elements Method

The finite element methods are based on the idea that every system is physically a continuum but

may be represented in parts. With this, the problem domain is discretised as a collection of geomet-

rically simple subdomains, called finite elements, that although discretising the domains, it keeps

the domain connectivity, and can differ from each other in shape, material properties and physical

behaviour. These finite elements express the unknown field variables by approximating functions,

the shape functions, within each element. These shape functions approximate the unknown field

variables by linear combinations of algebraic polynomials and undetermined parameters, and al-

gebraic relations among the parameters often in a weighted-integral sense, in all elements. The

undetermined parameters represent the values of the field variable at a finite number of preselected

points, the so-called nodes, [72,73] Finite element method usually follows the following pipeline:

• Selection of suitable field variables and elements.

• Discretisation of the continua.

• Selection of interpolation functions.

• Define elements properties.

• Assemble element properties to obtain global properties.

• Impose the boundary conditions, natural and essential.

• Solve the system equations to obtain the nodal unknown field variable.
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2.5.2 Meshless Methods

One of the most popular numerical tools is the Finite Element Method (FEM), but in the last

few years meshless methods, such as Smooth Particle Hydrodynamics (SPH) Method [74], Radial

Point Interpolation Method (RPIM) [75–77], and as Natural Neighbour Radial Point Interpolation

Method (NNRPIM) [78], came into the focus of interest. The first meshless method to be de-

veloped dates from 1977, when Gingold et al 1977 proposed the smooth particle hydrodynamics

(SPH) method, that had a kernel approximation for a single function u(x) in a domain Ω. This

method was used for modelling astrophysical phenomena without boundaries, such as explod-

ing stars and dust clouds. [74] From 1997 to now many different methods were developed, using

different approaches: generalised finite difference method (FDM) (Liszka et al, 1980) [79], dif-

fuse element method (DEM) (Nayroles et al., 1992) [80], element free Galerkin (EFG) method

(Belytschko et al, 1994) [81], meshless local Petrov–Galerkin (MLPG) method (Atluri et al,

1998) [82], point interpolation method (PIM) (Liu et al, 2001, 2001, 2001) [75–77] and RPIM

(Wang et al, 2002, 2002), [83, 84]. The point interpolation method (PIM) was developed using

Galerkin weak form and shape functions that are constructed based only on a group of nodes

arbitrarily distributed in a local support domain by means of interpolation. [75–77] The major

advantage of PIM is that the shape functions created to possess the Kronecker delta function prop-

erty, which allows simple enforcement of essential boundary conditions as in the conventional

finite element method. PIM can use two types of shape functions: polynomial basis functions and

radial basis functions (RBFs), being termed RPIM when using the RBFs. [83, 84] More recently

were developed new methods, such as the NNRPIM (Dinis et al 2007), [78] that is based on the

combination of the natural neighbour finite element method with the radial point interpolation

method, and Natural Radial Element Method (NREM) (Belinha, J. et al 2013), [85] that combines

the simplicity of low-order finite elements connectivity with the geometric flexibility of meshless

methods.

The main advantage of the meshless methods is that they do not require elements to discre-

tise the problem domain [2]. In meshless methods, the problem domain is discretised using an

unstructured nodal mesh. In biomechanics, this discretisation flexibility is advantageous, since

it permits to discretise the problem domains using directly medical images. Meshless methods

can be divided in approximation meshless methods [80–82, 86] and interpolation meshless meth-
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ods [75, 83, 85, 87, 87, 88]. The major advantage of using interpolator meshless methods is the

possibility to impose directly the essential and natural boundary conditions, since the constructed

test functions possess the delta Kronecker property. They can also be separated in meshless meth-

ods that use the strong form solution, that uses directly the partial differential equations governing

the studied physical phenomenon, and others that use the weak form solution. The weak form

stands by a formulation that uses the variational principle to minimise the residual weight of the

differential equations ruling a phenomenon, where the residual is obtained replacing the exact

solution by an approximated one, affected by a test function. The meshless methods start with

the problem domain being discretised by a regular or irregular node set. These nodal set are not

considered a mesh since the meshless method does not require any previous information about

the nodes in order to create the approximation or interpolation functions to the unknown variable

field function. In meshless methods, the nodal spatial distribution and nodal density discretisa-

tion affects the performance of the method. Usually having a denser nodal distributions result in

more accurate results, however, the increase of the density of the dense distributions results in a

growth of the computational costs. As unbalanced nodal distribution leads to a lower accuracy,

where location with predictable concentration of stress should have a higher nodal density when

compared with locations with a smooth distribution of stress. After having the domains discretised

by a set of nodes is created a background integration mesh, that can be nodal dependent or nodal

independent. This background mesh allows to numerically integrate the weak form of the equation

that governs the problem. The most used integration meshes are created using the Gauss-Legendre

quadrature technique, resulting in a fitter Gaussian integration mesh or in a general Gaussian in-

tegration mesh, independent nodal integration meshes, and can be also created using the Voronoï

approach that results in the creation of nodal dependent background integration mesh. Having

the nodal distribution and the integration mesh, meshless methods have to guarantee the nodal

connectivity, that are not predefined by elements as in FEM. With this, in meshless methods, for

each point of interest must be defined areas or volumes that act as influence-domains. The mesh-

less methods and the FEM are discrete numerical methods, and so, both need to discretise the

problem-domain. The FEM discretise the problem-domain using nodes and elements, where the

finite element concept assures the nodal connectivity. In the meshless methods, the problem’s

domain is discretised using nodes and points, and consequently, there are no elements, as in the
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FEM assuring that the nodes belong to the same element interact directly between each other and

with the boundary nodes of neighbour finite elements. Herewith in the meshless methods in order

to obtain the influence-domains is necessary to first define areas or volumes, respectively for the

2D and 3D problem, containing a certain number of nodes.

2.5.2.1 Radial Point Interpolation Method

RPIM is a meshless method that evolved from the Point Interpolation Method (PIM) [75], which

uses a group of arbitrarily distributed points to build polynomial interpolants. With the inclusion

of a RBF a distinction occurred between PIM and RPIM, since this inclusion allowed to stabilise

the construction procedure of the shape function. [2] RPIM uses the concept of influence-domain

instead of globaldomain, which allows to generate sparse and banded stiffness matrices, more

adequate to complex geometry problems. RPIM evolved and today it can be found several varia-

tions of the original RPIM, such as the Natural Neighbour RPIM [78,89,90], the nodal integration

RPIM [91], the linearly conforming RPIM [92], the cell-based smoothed RPIM [93] and the Nat-

ural Radial Element Method. [85, 87, 87] RPIM is an interpolator meshless method that uses the

concept of influence-domain to force the nodal connectivity. RPIM requires a background integra-

tion mesh, which can be constructed using integration cells and the Gauss-Legendre quadrature

rule. The meshless methods and the FEM are discrete numerical methods, and so, both need to dis-

cretise the problem-domain. The FEM discretise the problem-domain using nodes and elements,

where the finite element concept assures the nodal connectivity. In meshless methods, the prob-

lem’s domain is discretised using nodes and points, and consequently, there are no elements, as in

the FEM, assuring that the nodes belong to the same element interact directly between each other

and with the boundary nodes of neighbour finite elements. Herewith in the meshless methods in

order to obtain the influence-domains, it is necessary to first define areas or volumes, respectively

for the 2D and 3D problem, containing a certain number of nodes. In order to obtain the influence-

domains, RPIM uses a radial search to find the nodes inside the area or volume. Overlapping the

influence-domain of each node allows to obtain the nodal connectivity. [2, 81–83, 86, 94] This is

a simple method, however, the size, shape of the influence-domain, and the existence of irregu-

lar domain-boundaries or node clusters, can lead to unbalanced influence-domains affecting the

performance and the meshless method final solution. [2] The weak formulation uses a variational
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principle (the Galerkin weak form) to determine the system of equations and to minimise the

residual weight of the integrodifferential equations ruling the studied physical phenomenon. In

order to obtain the integral of the residual weight of the differential equations, it is necessary to

select an integration scheme. In the FEM the integration mesh is built from a lattice of integration

cells coincident with the element mesh and following the Gauss-Legendre quadrature rule. Since

the FEM shape functions are known polynomial functions, the number of integration points per

integration cell can be pre-determined using accurate well-known relations. [95, 96] Otherwise,

in meshless methods the shape function degree is generally unknown, being impossible to define

a priori the background integration mesh, that allows to perform the numerical integration. In

RPIM the background integration mesh can be created, using an analogy with the FEM, being

nodal dependent, or nodal independent [2]. In a nodal independent background integration, the

problem-domain can be divided into a regular grid forming quadrilateral integration cells, being,

each grid-cell filled with integration points, respecting the Gauss-Legendre quadrature rule. [2] In

the RPIM shape functions are obtained using the Radial Point Interpolators (RPI), that combine

radial basis functions with polynomial basis functions, where the support-domain, a small set of

field nodes in the vicinity of the interest point, is coincident with the influence-domain.

2.5.2.2 Natural Neighbours Radial Point Interpolation Method

The NNRPIM is a combination of the RPI with the concept of the Natural Neighbours, [97] the

Voronoï Diagrams [98] and the Delaunay tessellation [99], to create the influence-cells and the

background integration mesh, completely dependent on the nodal mesh. In NNRPIM the interpo-

lation functions, possessing the delta Kronecker property, are used in the Galerkin weak form and

are constructed using RPI. The RBF used in the RPI is the multi-quadric RBF. [100].

Discretization

Firstly, the problem domain is discretised in a nodal computational mesh, then using the Natural

Neighbour concept [97], similar to the RPIM that created an influence-domain, the NNRPIM uses

the influence-cell concept, which are influence-domains dependent on the nodal mesh organisa-

tion. This influence-cells are created based on geometric and spatial relations between Voronoï
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A B

C D

Figure 2.14: A: n0 Neighbour nodes; B: Provisional Voronoï cell, V∗0; C: Voronoï cell, V0; D:
Voronoï diagram

cells and the Delaunay triangulation [2, 98]. Considering the nodal set N = {n1,n2, . . . ,nN} dis-

cretising the space domain Ω⊂ Rd with X = {x1,x2, . . . ,xN} ∈Ω. The Voronoï diagram of N is

the partition of the function space discretised by X in closed and convex sub-regions, Vi. Each Vi

sub-region is associated to the node ni in a way that no other point in the interior of Vi is closer to

ni than any other node n j ∈N ∧ j 6= i. The set of Voronoï cells V define the Voronoï diagram, V =

{V1,V2, . . . ,VN}. The Voronoï cell is defined by, Vi = {x1 ∈Ω⊂Rd : ‖x1−xi‖< ‖x1−x j‖,∀ i 6= j},

being x1 an interest point of the domain and ‖ · ‖ the Euclidian metric norm. Thus, the Voronoï

cell Vi is the geometric place where all points are closer to n1 than to any other node. Consid-

ering that a nodal set is used create the Voronoï cell V ∗0 of node n0, being some nodes chosen as

potential neighbours of n0. Then one of the nodes is selected as potential neighbour, for example

node n1, and the vector u10 is determined, u10 =
(x0−x1)
‖x0−x1‖ , being u10 = {u10,v10,w10}. Using the

normal vector u10 it is possible to defined plane p10, and if the node do not respect the following

condition, u10x+v10y+w10z ≥ (u10x1 + v10y1 +w10z1), is discarded as natural neighbours of n0.

This process is repeated for each one of the initial nodal set. Being V ∗0 a provisional Voronoï, they

are modified by equation (2.2) , resulting in V0.

d∗0i =
d0i

2
=
‖x0− xi‖

2
(2.2)

Doing this process to all de nodes in the nodal set, the result is the Voronoï diagram, 2.14
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Figure 2.15: A: First and second degree natural neighbours in NNRPIM.; B and C: Delaunay
Tessellation; D: Generated quadrilaterals; E: Sub-cell.

The influence-cell can have two degrees, Figure 2.15A. The first degree contains the first-

degree natural neighbours of a certain influence-cell. In the second-order influence-cell, the

influence-cell considerer those with first-degree natural neighbour plus the natural neighbours of

the first-degree influence-cells. The Delaunay triangulation is the geometrical dual of the Voronoï

diagram and it is constructed by connecting the nodes whose Voronoï cells have common bound-

aries. An important property of the Delaunay triangles is the empty circumcircle criterion where,

if a set of nodes Nset =
{

n j,nk,nl
}
∈ N forms a Delaunay triangle, then the circumcircle formed

by the triangle Nset contains no other nodes of the global nodal set N. In the context of the natural

neighbour interpolation, these circles are known as natural neighbour circumcircles. The Voronoï

diagram is used to create the influence-cells, which enforce the connectivity between the nodes

discretising the problem domain, N. On the other hand, the duality between the Voronoï cells

and the Delaunay triangles is used in order to construct a nodal dependent background integra-

tion mesh. Following the construction of the Voronoï diagram, it is possible to obtain a nodal

dependent integration mesh-based purely on the nodal distribution spatial information. [2] This is

done by taking the previously obtained Voronoï diagram and dividing each of its Voronoï cells into

smaller sub-areas, using the Delaunay tessellation. The nodes of Voronoï cells sharing common

boundaries are connected, figure 2.15B, and the overlap of both the Delaunay tessellation and

the influence-cell boundaries leads to a smaller sub-cell, figure 2.15C. [2] As result, as demon-

strated in figure 2.15D, it is possible to divide each Voronoï cell, VI into n sub-cells SIi, being n

the total number of natural neighbours of a particular Voronoï cell, VI . Having the sub-cells for

all Voronoï cells, being each sub-area isoparameterised and filled with integration points using the

Gauss-Legendre integration scheme the domain integration mesh is obtained, figure 2.15E.
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2.5.2.3 Shape Functions

In order to construct the shape functions, the NNRPIM uses the RPI technique, which requires a

RBF and a complete polynomial basis. [97] Still, previous works on the NNRPIM showed that

if the shape parameters of the RBF are chosen carefully, the polynomial basis can be removed

from the formulation and substituted by a constant unity basis. [78, 101] Consider the function

u(x) defined in the domain Ω ⊂ Rd and an interest point xI ∈ Ω, possessing an influence-cell

containing n nodes: XI = {x1,x2, . . . ,xn} ∈Ω ∧xi ∈Rd . It is assumed that only the nodes within

the influence-cell of the interest point xI have effect on u(xI). Thus, the value of function u(xI)

can be defined with equation (2.5.2.3).

u(xI) =
n

∑
i=1

[Ri (xI) ·ai (xI)]+Cu ·b(xI) = R(xI) ·a(xI)+ Cu ·b(xI) (2.3)

In equation (2.5.2.3) Ri (xI) is the RBF and ai (xI) are non-constant coefficients of Ri (xI). The

parameter Cu is the unity basis, being Cu = 1 and b(xI) is a non-constant coefficient of Cu. In this

work it is used the multi-quadric (MQ) RBF function, Ri (xI) = R(rIi) = (r2
Ii + c2)

p in which rIi is

the distance between the relevant node xI and the neighbour rIi = |xi−xI |, and c and p are two

shape parameters [100]. It was found that c should be close to zero, c∼= 0, and p should be close

to one, p ∼= 1, [78]. Applying equation (2.5.2.3) to the node inside the influence-cell domain,

considering each node as the interest point, and including an extra equation ∑
n
i=1 ai (xI) = 0, to

guarantee the unique solution [102], it is possible to obtain the following equation system (2.4),




u1

u2

...

un

0




=




R(r11) R(r12) . . . R(r1n) 1

R(r21) R(r21) . . . R(r2n) 1
...

...
. . .

...
...

R(rn1) R(rn2)
. . . R(rnn) 1

1 1 . . . 1 0







a1(xI)

a1(xI)

...

an(xI)

b(xI)




⇔




us

0


=




R Cu

Cu 0







a

b


 (2.4)

where us = {u1,u2, . . . ,un}T is the vector for the nodal function values for the nodes on the

influence-cell. Therefore, reorganising equation (2.4) it is possible to obtain the non-constant
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coefficients, 


a

b


=




R Cu

Cu 0




−1


us

0


⇒




a

b


= M−1




us

0


 (2.5)

Substituting in equation , the result from equation , it is possible to obtain the interpolation

function Φ(xI) = {ϕ1 (xI) ,ϕ2 (xI) , . . . ,ϕn (xI) ,ψc} for an interest point xI .

u(xI) =

{
R1 (xI) R2 (xI) . . . Rn (xI) Cu

}
M−1





us

0





= Φ(xI)





us

0





(2.6)

The last term of the interpolation function, ψc, comes from the constant term Cu and it does not

possess useful physical meaning. Thus, only the n first components of Φ(xI) are relevant and

form the interpolation function [85]. The partial derivative of Φ(xI) with respect to a variable ξ is

defined as equation (2.7),

Φξ (xI) =

{
R1 (xI) R2 (xI) . . . Rn (xI) Cu

}

ξ

M−1 (2.7)

Notice that since Cu is a constant scalar, then Cu,ξ = 0. The partial derivatives of the MQ-RBF

with respect to a variable ξ are obtained with equation (2.8),

R,ξ (ri j) = 2p
(
r2

i j + c2)p−1
(ξ j−ξi) (2.8)

The NNRPIM shape functions possess several important numerical properties, such as the

unit partition property and the delta Kronecker property, which permits to impose the essential

and natural boundary conditions using direct imposition methods. In the literature, it is possible

to find complete studies regarding its numerical properties. [2, 98]

2.5.2.4 Discrete System of Equations

Consider the body described by the domain Ω⊂ R2 and bounded by Γ, where Γ ∈Ω : Γu∪Γt =

Γ∧Γu ∩Γt = /0, being Γu the essential boundary and Γt the natural boundary. The equilibrium

equations governing the linear elastostatic problem are defined as ∇Λ+b = 0 in Ω. Being ∇ the

gradient operator; Λ the Cauchy stress tensor for a kinematic admissible displacement field u and
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b the body force per unit volume. The boundary conditions are given by, Λn = t̄ on Γt and u = ū

on Γu, where ū is the prescribed displacement on the essential boundary Γu, t̄ is the traction on

the natural boundary Γt and n is the unit outward normal to the boundary of domain Ω. Using

the Voigt notation and assuming the Galerkin procedure for linear elasticity, the weak form for the

discrete problem can be written as equation (2.9),

δL =
∫

Ω

δε
T

σdΩ−
∫

Ω

δuTbdΩ−
∫

Ω

δuTt̄dΓt = 0 (2.9)

Where ε is the strain vector defined as ε = Lu, being L a differential operator (2.10) and

(2.11),

L2D =




∂

∂y 0 ∂

∂y

0 ∂

∂x
∂

∂y




T

(2.10)

L3D =




∂

∂x 0 0 ∂

∂y 0 ∂

∂ z

0 ∂

∂y 0 ∂

∂x
∂

∂ z 0

0 0 ∂

∂ z 0 ∂

∂y
∂

∂x




T

(2.11)

It is possible to directly correlate the stress field with the strain field using the Hooke Law:

σ = cε = cLu. Being c the material constitutive matrix, which can be obtained inverting the

compliance elasticity matrix, c = s−1. The compliance elasticity matrix s for the general isotropic

material case is defined by equation (2.12) for the 2D plane strain formulation and in equation

(2.13) for the 3D classical formulation.

s2D =




1
Exx

− νyx
Eyy

0

− νxy
Exx

1
Eyy

0

0 0 1
Gxy




(2.12)
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s3D =




1
Exx

− νyx
Eyy

− νzx
Ezz

0 0 0

− νxy
Exx

1
Eyy

− νzy
Ezz

0 0 0

− νxz
Exx

− νyz
Eyy

1
Ezz

0 0 0

0 0 0 1
Gxy

0 0

0 0 0 0 1
Gyz

0

0 0 0 0 0 1
Gzx




(2.13)

Being E the elasticity modulus, ν material Poisson coefficient and G the distortion modulus.

To easy the exposition, consider now just the 2D the plane strain assumption. Each node xi dis-

cretising the problem domain has two degrees of freedom: ui = ui,vi. Thus, in order to interpolate

the virtual displacement at the interest point xi equation (2.6) can be written as,

δu(xI) = δuI = I





ΦI

ΦI





δus =




ϕ1(xI) 0 . . .ϕn(xI) 0

0 ϕ1(xI) 0 ϕn(xI)








δu1

δv1

...

δun

δvn





=HIδus

(2.14)

Being I a 2× 2 identity matrix. Substituting ε = Lu in the first term of equation (2.9) and

considering equation (2.14) it is possible to write,

∫

Ω

δε
T

σdΩ =
∫

Ω

(Lδu)T c(Lu)dΩ =
∫

Ω

(LHIδus)
T c(LHIus)dΩ

=
∫

Ω

δus
T BT

I cBIusdΩ = δus
T
∫

Ω

BT
I cBIdΩu

(2.15)

Being BI the resultant deformation matrix defined for the n nodes constituting the influence-

cell of interest point xi,

BI =




∂ϕ1(xI)
∂x 0

0 ∂ϕ1(xI)
∂y

∂ϕ1(xI)
∂y

∂ϕ1(xI)
∂x

∂ϕ2(xI)
∂x 0

0 ∂ϕ2(xI)
∂y

∂ϕ2(xI)
∂y

∂ϕ2(xI)
∂x

. . .

∂ϕn(xI)
∂x 0

0 ∂ϕn(xI)
∂y

∂ϕn(xI)
∂y

∂ϕn(xI)
∂x




(2.16)
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Using an analogous procedure for the second and third terms of equation (2.9), the following

force vectors are obtained,

∫

Ω

δus
T bdΩ =

∫

Ω

(HIδus)
T bdΩ = δus

T
∫

Ω

HT
I bdΩ (2.17)

∫

Γi

δuT t̄dΓt =
∫

Γi

(HIδus)
T t̄dΓt = δus

T
∫

Γi

HT
I t̄dΓt (2.18)

Thus, equation (2.9) can be re-written as,

δL = δuT
∫

Ω

BT
I cBIdΩ−δus

T
∫

Ω

HT
I bdΩ−δus

T
∫

Γi

HT
I t̄dΓt = 0 (2.19)

The equation system can be presented in the matrix form: Ku= f. Being K the stiffness matrix,

u the displacement field vector and f = fb + ft , the vector of applied forces. Since the RPI shape

function possesses the delta Kronecker property, the essential boundary conditions can be directly

applied in the stiffness matrix [78]. After the determination of the displacement field solving the

linear equation system K−1f = u, the strain in an interest point xI ∈Ω can obtained using ε (xI) =

Lu(xI), and then, considering the Hooke Law, σ (xI) = c(xI) ε (xI), it is possible to determine

the stress field. It is possible to obtain the three principal stresses σ(xI)i for each interest point xI ,

det(Λ(xI)−σ(xI)iI) = 0, and the three principal directions n(xI)i : (Λ(xI)−σ (xI)iI)n(xI)i = 0,

being Λ(xI) the Cauchy stress tensor obtained for the interest point and I the identity matrix. Using

the three principal stresses σ(xI)i and equation (2.20), the von Mises effective stress of interest

point xI is obtained.

σ̄(xI) =

√
1
2

( (
σ(xI)1−σ(xI)2

)2
+
(
σ(xI)2−σ(xI)3

)2
+
(
σ(xI)3−σ(xI)1

)2
)

(2.20)

Comparing NNRPIM with other meshless methods, it has a higher re-meshing flexibility and a

higher accuracy on the solution variable field. [90,103] Another benefit of the NNRPIM compared

to others meshless methods is its lower computational cost during the processing phase of the

numerical analysis (after the construction of the nodal connectivity, integration mesh and shape

functions), that can be relevant in demanding tasks as in non-linear and dynamic analysis. [78,89,

101, 104–106] Being the nodal connectivity and integration mesh constructed only based on the

nodal discretisation, this becomes an advantage in the biomechanical analysis, since it is possible
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to analyse extremely irregular meshes and convex boundaries. [107]



Chapter 3

Original Developed Work

3.1 Introductory Remarks

In order to develop the proposed work, it was first required to perform a technical introduction to

the used numerical tools and softwares. For that, it was developed a work concerning the usage

of these softwares and numerical tool in biological structures. The softwares used in this works

was FEMAS - Finite Element and Meshless Analysis Software, that in this case was only used

to perform the numerical analyses, and Mimics Innovation Suite 19, that was used to create the

biological structures geometrical models, through the usage of medical images. The first contri-

bution, section 3.2, present a study where it was explored and confronted the usage of a numerical

meshless method, the NNRPIM, with the FEM, in a biological structure, the brain. The second

contribution, section 3.3, intended to explore and confront the numerical meshless method, the

RPIM, with the FEM, in the brain. Contribution, 3.5, 3.6 and 3.7 explore the usage and valida-

tion of a 2D homogenisation technique, where it is used the fabric tensor concept in 2D, to define

the mechanical properties of trabecular bone. In these publications were used the FEM, RPIM

and NNRPIM to verify the methodology. Contribution 3.8 explores the homogenisation method-

ology in 3D to define bone mechanical properties, using the fabric tensor concept and a set of

phenomenological laws. In contribution 3.9 the 3D homogenisation technique was applied to a

femoral bone, allowing to analyse femur mechanical behaviour, using three different approaches

to define the domain mechanical properties, being one of the methodologies the developed ho-

mogenisation technique.

39
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3.2 Contribution I: A new numerical approach to mechanically anal-

yse biological structures.

Highlights of Contribution: 3.2

This contribution focused on the numerical simulation of biological structures, using the NNRPIM

meshless method and the FE method.

Therefore, the main contents of this publication include:

I. Literature review on brain impact mechanical models;

II. NNRPIM methodology applications and formulation;

III. A convergence study to demonstrate the differences between the FEM and the NNRPIM

meshless methods;

IV. One 2D and two 3D brain geometrical model were constructed with the resource to medical

images, gathered from Lalys F, et all, with a 1024× 1024 pixel resolution, using MIMICS

Innovation Suite V19 software, [108, 109]. The 2D geometrical model was built using an

image in the medial sagittal plane, where it was considered the scull, brain grey and white

matter and the cerebrospinal fluid (CSF). Concerning the 3D geometrical models, one was

constructed by extruding the 2D model, and the other was constructed using the medical

images, allowing to create a half brain 3D model.

V. Convergence study: NNRPIM shows a faster convergence when compared with the FEM

method, in both 2D and 3D analysis, figure 3.1.

VI. Conclusion: The performed convergence study compared the discretisation techniques and

allowed to obtain the necessary awareness regarding the level of the discretisation required

to obtain a reliable solution. It was concluded that commonly FEM analyses available in

the literature did not consider the importance of the discretisation level. In many cases the

discretisation level in commercial software is automatic and the lack of awareness regarding

the value of the discretisation level can lead to invalid results. The results obtained with

meshless methods are capable to produce smoother stress fields when compared with the

FEM.
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Figure 3.1: Contribution I convergence study results: A - 2D; B - 3D.

The complete document can be found in the next pages.



1 

A New Numerical Approach to Mechanically Analyse Biological 

Structures 

M. Marques a, J. Belinha a, b*, L.M.J.S. Dinis a, c, R. M. Natal Jorge a, c 

a Institute of Science and Innovation in Mechanical and Industrial Engineering (INEGI), 
University of Porto, Portugal;  

b ISEP - School of Engineering, Polytechnic of Porto, Porto, Portugal; 

 c Faculty of Engineering of the University of Porto (FEUP), Portugal 
 

In this work, an advanced discretization meshless technique is used to study 

the structural response of a human brain due to an impact load. The 2D and 

3D brain geometrical models, and surrounding structures, were obtained 

through the processing of medical images, allowing to achieve a realistic 

geometry for the virtual model and to define the distribution of the 

mechanical properties accordingly with the medical images colour scale. 

Additionally, a set of essential and natural boundary conditions were 

assumed in order to reproduce a sudden impact force applied to the cranium. 

Then, a structural numerical analysis was performed using the Natural 

Neighbour Radial Point Interpolation Method (NNRPIM). The obtained 

results were compared with the finite element method (FEM) and a solution 

available in the literature. This work shows that the NNRPIM is a robust 

and accurate numerical technique, capable to produce results very close to 

other numerical approaches. In addition, the variable fields obtained with 

the meshless method are much smoother than the FEM corresponding 

solution. 

Keywords: brain impact; meshless methods; natural neighbours; radial point 

interpolator; 

1. Introduction 

Head injury is a major health and socioeconomic problem, since it is frequent and severe 

in almost all types of traffic accidents that annually injuries 20-50 million persons [1], 

[2]. The traumatic brain injuries (TBI) occur due to an abrupt mechanical stimulus applied 
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to the cranium affecting directly or indirectly the brain. This can cause temporary or 

permanent brain damage and dysfunction [3], [4]. Brain is one of the softest biologic 

materials. It shows nonlinear behaviour, which does not allows a straightforward 

prediction of its response to an applied mechanical stimulus. Being largely constituted by 

water, brain maintains its volume when pressures are applied slowly or transiently. 

However, because of its tissue characteristics when shearing forces are applied injuries 

may occur, which can be classified as focal or diffuse [5]. In the case of focal injuries, it 

occurs a bleeding within the brain, on the surface of the brain, or in the cortical gray 

matter, leading to the brain tissue necrosis and to the increase of the intracranial pressure. 

In the case of diffuse injuries (not localized to one area of the brain but more distributed 

throughout the brain), it occurs damage at the level of neuronal cells, leading to a 

widespread disruption of brain neuronal networks [6], [7]. These lesions can result in 

hospitalization, being estimated that one fifth of the hospitalized patients cannot return to 

a normal life [8]. Having the TBI devastating consequences and a significant incidence 

(1.4 million people in the US per year), considerable research has been devoted to 

understand and to prevent TBI [9], [10]. Herewith, the scientific community started to 

investigate this event conducting studies using cadaver heads, animal heads, physical 

head models, and in vitro models [11]. However, with the computational evolution, 

biomechanical computational simulation now provides powerful tools that allow a less 

expensive study of the TBI event. Most of the experimental mechanical tests available in 

biomechanics are only capable to detect external structural changes (measuring the 

surface deformation, for instances). The use of computational mechanics applied to bio-

tissues allows to predict the full domain deformation. Thus, computational simulation 

permits to obtain a potential stress/strain field and thus, to understand how the material 

will respond to a given loading scenario, overcoming some inherent limitations of 

experimental tests. [12]. Such non-invasive methodology is very useful to study delicate 

tissues, as the brain tissue. The current usage of the computational simulation led to the 

development of the numerical head models, that evolved from simple anatomic 

representations to sophisticated models created though the usage of medical images [11]. 

One of the most popular numerical tools used in structural analysis is the Finite Element 

Method (FEM). However, in the last few years, meshless methods came into focus of 

interest. The main different between the Finite Element Method and meshless methods is 

the procedure to impose the nodal connectivity. The two methodologies apply distinct 
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methodologies to impose how the nodes discretizing the problem’s domain interact with 

each other. Furthermore, FEM and meshless methods use distinct techniques to build the 

background integration mesh and to construct their shape functions. In the finite element 

method, it is assumed a nodal connectivity using the finite element mesh, made by 

elements, where the nodes belonging to the same element interact directly between each 

other and with the boundary nodes of neighbour finite elements. In meshless methods the 

nodal connectivity has to be determined after the nodal distribution, using different 

methodologies accordingly to different meshless methods. The main advantage of the 

meshless method is they do not require elements to discretize the solid’s domain [13], 

being the solid’s domain discretized using an unstructured nodal mesh. In biomechanics 

this discretization flexibility is advantageous, since it permits to discretize the problem 

domains using directly medical images. Additionally, meshless methods have a high re-

meshing efficiency, allowing the method to deal with large distortions, that commonly 

occur in soft materials or soft tissues, such as muscles, internal organs, skin, or to simulate 

fluid flow, with great importance for example in the hemodynamics. 

Meshless methods can be divided in approximation meshless methods [14]–[17] and 

interpolation meshless methods [18]–[23]. The major advantage of using interpolation 

meshless methods is the possibility to impose directly the essential and natural boundary 

conditions, since the constructed test functions possess the delta Kronecker property. In 

this work, it was used the Natural Neighbour Radial Point Interpolation Method 

(NNRPIM) [24], that uses mathematical concepts, such as the Voronoï Diagrams [25] 

and the Delaunay tessellation [26], to create the influence-cells and the background 

integration mesh, both completely dependent on the nodal mesh. The NNRPIM shape 

functions are constructed using the Radial Point Interpolation technique, which permits 

to obtain shape functions possessing a virtual infinite continuity and the delta Kronecker 

property. The NNRPIM was extended to several biomechanical applications [13], such 

as bone tissue remodelling analysis [27]–[32], stress state transient analysis due to the 

insertion of implants [33]–[37], and the study of the inner ear [38], [39]. 

2. Meshless Method 

In order to integrate the integro-differential equation from the Galerkin weak 

formulation, the discrete numerical method requires a background integration mesh. 

Additionally, in order to establish the algebraic system of equations, it is necessary to 
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substitute the test functions of the Galerkin weak form by the shape functions of the 

assumed numerical methodology. Furthermore, aiming to construct the shape functions it 

is necessary to obtain the nodal connectivity of each integration point. Therefore, a 

discrete approximation numerical technique based on the Galerking weak formulation 

requires three numerical entities: a background integration mesh, a technique to enforce 

the nodal connectivity and a methodology to construct the shape functions. This section 

presents these three entities for the NNRPIM. In addition, the implementation of the 

discrete system of equations is shown. 

 2.1 Nodal Connectivity and Numerical Integration 

In the NNRPIM, both the nodal connectivity and the background integration mesh 

are constructed using the Natural Neighbour concept [40], which is explained with detail 

in the literature [13], [25] and briefly in the following paragraph. 

Consider the nodal set 𝑵 = {𝑛%, 𝑛', … , 𝑛)} discretizing the problem’s domain Ω ⊂	ℝ/ , 

being 𝑿 = {𝒙%, 𝒙', … , 𝒙)} ∈ Ω are the corresponding nodal coordinates. The Voronoï 

diagram of 𝑵 is the partition of the function space discretized by 𝑿 in closed and convex 

sub-regions, 𝑉4. Each 𝑉4 sub-region is associated to the node 𝑛4 in a way that no other 

point in the interior of 𝑉4	is closer to 𝑛4 than any other node 𝑛5 ∈ 𝑵	 ∧ 𝑗 ≠ 𝑖. The set of 

Voronoï cells	𝑉 define the Voronoï diagram, 𝑽 = {𝑉%, 𝑉', … , 𝑉)}. The Voronoï cell is 

defined by,  𝑉4 = ;𝒙< ∈ 	Ω	 ⊂ 	ℝ/: ‖𝒙< − 𝒙4‖ < A𝒙< − 𝒙5A, ∀	𝑖 ≠ 𝑗C, being 𝒙< an interest 

point of the domain and ‖∙‖ the Euclidian metric norm. Thus, the Voronoï cell 𝑉4 is the 

geometric place where all points are closer to 𝑛< than to any other node. 

After the construction of the Voronoï diagram, it is possible to enforce the nodal 

connectivity using the concept of the “influence-cell”, which is very similar with the 

“influence-domain” concept commonly used in meshless methods. However, the 

influence-cells are directly obtained from the Voronoï diagram, making the process much 

more organic and automatic. Generally, the influence-cells can have two degrees, Figure 

1A. The first degree influence-cell of an interest point 𝒙<  contains the first natural 

neighbours of 𝒙<. The second degree influence-cell of an interest point 𝒙< contains the 

first natural neighbours of 𝒙< and, in addition, it contains the natural neighbours of the 

first natural neighbours of 𝒙<, enlarging significantly the final influence-domain. 
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The Delaunay triangulation is constructed by connecting the nodes whose Voronoï cells 

have common boundaries. The duality between the Voronoï cells and the Delaunay 

triangles is used to construct a nodal dependent background integration mesh. [13], [25] 

Following the construction of the Voronoï diagram, it is possible to obtain a nodal 

dependent integration mesh based purely on the nodal distribution spatial information 

[13], [25]. This is done by taking the previously obtained Voronoï diagram and dividing 

each of its Voronoï cells into smaller sub-areas, using the Delaunay tessellation. The 

nodes of Voronoï cells sharing common boundaries are connected, Figure 1B, and the 

overlap of both the Delaunay tessellation and the influence-cell boundaries leads to a 

smaller sub-cell, Figure 1C [13], [25]. As result, as demonstrated in Figure 1D, it is 

possible to divide each Voronoï cell, 𝑉<  into 𝑛  sub-cells 𝑆<4 , being each sub-area 

isoparameterized and filled with integration points using the Gauss-Legendre integration 

scheme, the domain’s integration mesh is finally obtained, Figure 1E. 

2.2 Shape Functions 

In order to construct the shape functions, the NNRPIM uses the Radial Point 

Interpolators (RPI) technique, which requires a radial basis function (RBF) and a 

complete polynomial basis [40]. Still, previous works on the NNRPIM showed that if the 

shape parameters of the RBF are chosen carefully, the polynomial basis can be removed 

from the formulation and substituted by a constant unity basis [24], [41]. 

In this work, a Multiquadric (MQ) RBF was used, 𝑅4(𝒙<) = 𝑅(𝑟<4) = (𝑟<4' + 𝑐')L, with 

parameters 𝑐  close to zero, 𝑐 ≅ 0, and 𝑝 close to one, 𝑝 ≅ 1 , being 𝒙< , the point of 

interest and 𝑟<4   [24], [42]. The NNRPIM shape functions possess several important 

numerical properties, such as the unit partition property and the delta Kronecker property. 

In the literature, it is possible to find complete studies regarding its numerical properties 

[13], [25]. Since the NNRPIM shape functions are interpolating functions (due to the delta 

Kronecker property), the essential and natural boundary conditions can be imposed using 

the direct imposition method (the same methodology used to impose the boundary 

conditions in the FEM). Additionally, the literature describes with detail the development 

of the system of equation for an elasto-static problem (as the one here presented) and the 

imposition of the essential and natural boundary conditions, see the work of Belinha [13]. 
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3. Materials and Methods 

In this study, a mechanical simulation was done to evaluate the TBI. This study 

was performed using a meshless method - the NNRPIM - and the conventional FEM. 

Firstly, in order to demonstrate the differences between the FEM and the meshless 

methods a convergence study was performed. Afterwards, a 2D elasto-static simulation 

the TBI was studied considering the 2D plane strain assumption. At last, a 3D analysis 

was performed. 

 3.1 Convergence Study 

This section presents the 2D and 3D models used to perform the convergence 

study. Regarding the 2D study, a 10𝑚 × 10𝑚 square was discretized with 5 distinct 

nodal distributions, which are indicated in Table 1. For the 3D study, a 10𝑚 × 10𝑚 × 𝐻 

regular hexahedron was considered. The 3D solid was discretized with four regular nodal 

distributions, Table 1. In order to maintain a regular nodal spacing, respecting the nodal 

average distance ℎ in all directions, the thickness 𝐻 varies with the nodal mesh, Table 1. 

The ℎ parameter is obtained with the expression: h = min	(h_i	), ∀{i, j} ∈ ℕ: {i, j} ≤ N ∧

i ≠ j, being N the number of node discretizing the problem domain. In both 2D and 3D 

models, all the nodes in coordinate 𝑦 = 0 are constrained. In the 2D model those nodes 

are fixed with {𝑢, 𝑣} = {0,0}  and in the 3D models they are fixed with 	{𝑢, 𝑣, 𝑤} =

{0,0,0}.  For the nodes at 𝑦 = 10 , it was applied a distributed shear force of 1N/m, 

coplanar with 𝑂𝑥𝑧 plane, as represented in Figure 2. Additionally, for this preliminary 

study the following mechanical properties were assumed: Elastic modulus: 𝐸 = 1𝐺𝑃𝑎; 

and a Poisson ratio: 𝜈 = 0.45. 

3.2  Traumatic Brain Injuries Analysis 

The TBI was simulated using a 2D numerical model and assuming a 2D plane 

strain linear elastic analysis. The 2D geometrical model was built from medical images, 

gathered from Lalys F, et all, with a 1024	 × 	1024 pixel resolution, using MIMICS 

Innovation Suite V19 software [43], [44], providing a high detail geometry, that 

represents a slice of the brain in a medial sagittal plane, Figure 4. The discretization mesh 

was obtained using triangular elements, having 1653 nodes and 3165 elements. Regarding 

the h parameter, the 2D model presents h=0.0222. 
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Afterwards, two 3D numerical models were constructed. One was constructed by 

extruding the previously built 2D model in the Oz direction with a thickness of 16mm, 

the 3D slice model, Figure 6A-1 and Figure 6A-2, and the other was constructed using 

the medical images, allowing to create a half brain 3D model, Figure 5A. Although the 

authors were able to construct the complete 3D brain model, the authors decided to 

construct the 3D model from the 2D model in order to fully control the mesh generation 

and to create a 3D model similar with the 2D models, and also due to hardware limitations, 

the authors decided just to create a 3D half brain geometrical model. The obtained 3D 

slice model has 8265 nodes and 12660 tetrahedral elements, leading to a h parameter: 

h=0.0221. For the 3D half brain model, the number of nodes (9790) and the number of 

elements (56005), correspond to 29370 degrees of freedom.  

The mechanical properties considered in this study were gathered from the literature [10], 

[45]. Four distinct mechanical properties were assumed, being applied to the four distinct 

assumed anatomic structures, correspondingly. These anatomic structures were 

segmented using the MIMICS software and are in accordance with the medical images 

information. Thus, the models contain: the skull bone with a 1210 Kg/m3 density, a 8000 

MPa elastic modulus and a 0,22 Poisson’s ratio; the cerebrospinal fluid (CSF) with a 1130 

Kg/m3 density, a 12 MPa elastic modulus and a 0,45 Poisson’s ratio; and the brain grey 

matter with a 1040 Kg/m3 density, a 34 MPa elastic modulus and a 0,45 Poisson’s ratio; 

and the brain white matter with a 1040 Kg/m3 density, an 41 MPa elastic modulus and a 

0,45 Poisson’s ratio. To simplify the model and the analysis, since CSF is a fluid, its 

mechanical properties were replaced by the dura mater meninges mechanical properties. 

Regarding the essential boundary conditions, the 2D model assumed the skull completely 

constrained: 𝑢n = 0 ∧ 𝑣̅ = 0, as represented in Figure 6A-1. For the 3D slice model, in 

addition to the previous mentioned constrains, in the top and bottom plane (𝑧 = 0 ∧ 𝑧 =

16), the nodes were fixed along 𝑂q  direction (𝑤r = 0),	in order to create a symmetry 

plane, Figure 6A-2. For the half brain 3D model, in order to enforce the symmetry of the 

model, it was assumed that all nodes belonging to the symmetry plane of the head model 

(plane 𝑂st  with 𝑧 = 0) are fixed along the 𝑂q  direction (𝑤r = 0). In addition, all the 

nodes belonging to the skull surface were fixed in the three directions: 𝑂s , 𝑂t  and𝑂q 

({𝑢n, 𝑣̅, 𝑤r} 	= {0,0,0}). 
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In the 2D and 3D models, it was applied to all nodes of the model an acceleration of 

2000m/s2 along direction 𝑂t, corresponding to the peak head acceleration found in the 

literature, Figure 6A-1 and Figure 6B. [10] 

4. Results 

In this section, the results for the 2D and 3D convergence studies are presented. 

Additionally, the results regarding the 2D and 3D analyses of the brain, using the 

NNRPIM and FEM, are shown. A new graphical technique suited to evaluate the stress 

values in the brain is introduced by showing only the results regarding the brain domain.  

 4.1 - Convergence Results 

Regarding the convergence study, the results to be acquired were the total 

displacement, |𝑢|, at the coordinates {𝑥, 𝑦, 𝑧} = {10,10,0}. The |𝑢| was acquired for all 

models, 2D and 3D, using two different discrete methods, FEM and NNRPIM. In Figure 

3A, for the 2D model, it is visible that NNRPIM shows a faster convergence when 

compared with the FEM method. This can be concluded, since all the methods converge 

to a very similar displacement value when the h parameter of the mesh is h=0.015625. 

Notice, that for high values of h the NNRPIM solution is closer to the final converged 

solution than the FEM for the same values of h. As Figure 3A shows, using a mesh 

possessing h=0.03125, the NNRPIM is capable to obtain a solution very close to the final 

converged solution, since the results are very similar with the results obtained with 

h=0.015625. Concerning the 3D analysis, Figure 3B shows that once more the NNRPIM 

converges faster than the FEM. Notice that with h=0.0625 both methods present the same 

magnitude for |𝑢| and with h=0.25 the FEM shows a much lower value of |𝑢| when 

compared to the meshless method. Figure 3B shows that considering h=0.03125 both 

methods have already converged to a solution very close to the expected final converged 

solution, since the results are very close to those obtained with h=0.015625. 

 4.2 - 2D Models Results 

In order to perform a comparative analysis of the stress field in the brain tissue, a 

division of the brain in standardized layers was performed. The technique is inspired in 

the Gruen zones, a common clinical division adopted for the femur. Thus, a geometrical 

division of the brain was performed, in which 6 divisions where assumed, all with the 
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same height and perpendicular to the imposed acceleration, as represented in Figure 7, 

being zone 1 the more proximal and zone 6 the more distal. In Figure 7A, it is represented 

the average von Mises effective stress obtained in each corresponding division, and in 

Figure 7B the average principal stress σ11 found in each division. 

The behaviours of NNRPIM and FEM are similar, which can be confirmed by the results 

presented in Figure 7. Both Table 2 and Figure 7B, in which are presented the σ11 average 

values for each division, show that the difference between the FEM and the NNRPIM 

solution is less than 5% (with the exception of division 4). In Figure 9, the principal stress, 

𝜎%%, 𝜎'', and the von Mises effective stress are represented in colour maps. The 𝜎%% stress 

map shows that in the impact proximal zone are found mainly compressive stresses (since 

𝜎%% is negative). The distal impact zone, in which 𝜎%% is mostly positive, is under the 

action of tension stresses. 

4.3 - 3D Slice Model Results 

Following the technique adopted for the 2D analysis, a division of the 3D domain 

of the brain was performed. In Figure 8A is represented the corresponding average values 

of von Mises effective stress for each division, and in Figure 8B the average principal 

stress σ11 for each division are represented. Once more, the NNRPIM and FEM solutions 

are very close, as shown in Figure 8A and Figure 8C. Comparing the results obtained with 

the two numerical techniques, Table 2 indicates that the difference between the NNRPIM 

solution and the FEM solution does not overcome 8%. Figure 8C supports this last 

statement. The divisions showing lower average values for the von Mises effective stress 

and principal stress 𝜎%% are the central one: 2 ,3 and 4. As in the 2D, the distal slice has 

the highest stress values. 

In Figure 9, relevant stress fields are presented. The results allow to sustain that the FEM 

values are higher than the NNRPIM, which corroborates the results of the average stress 

values presented in Figure 8A and Figure 8B.  

4.4 - 3D Half Brain Model Results 

Following the technique adopted for the 2D and for the 3D slice model analysis, in the 

created half brain 3D model, the same six Gruen zones were considered and it was 

calculated their local average principal stresses 𝜎%%, 𝜎'' and the von Mises stress, for both 

FEM and NNRPIM analyses, as shown in Table 3. As can be seen from Table 3, the 

50 Original Developed Work



10 

results between different methodologies are very similar. Still, comparing the results of 

the 2D model and 3D model with the half brain 3D model, it is possible to visualize that 

the results are different. Nevertheless, regardless it is being used a slice of the half brain 

model (represented in Figure 5B) to obtain the stress values, this difference was expected, 

since the geometrical models are very different. Thus, concerning the effective stress, 

𝜎%%, 𝜎'' and the von Mises stress results obtained using the FEM and the NNRPIM, there 

is an average difference of 5,9% with a SD of 1%. The 𝜎%% Gruen zone values show that 

in the impact proximal zone are found mainly compressive stress (since 𝜎%% is negative), 

and that in the distal impact zone, in which 𝜎%% is mostly positive, is under the action of 

tension stresses. This is coherent with the results obtained with the analysis of the 2D 

model. 

5. Discussion 

In this work, it was used a methodology that allowed the construction of a 2D and 

two 3D brain models from medical images. From these medical images, using the 

software Mimics, the mechanical properties (obtained from the literature) were attributed 

to the identified anatomic regions, according to the segmented anatomical zones. Using 

the impact acceleration found in the literature, the constructed models were analysed 

using NNRPIM and FEM. It was also performed a convergence study to compare the 

discretization techniques that allowed to obtain the necessary awareness regarding the 

level of the discretization required to obtain a reliable solution. It was shown that the 

quality of the discretization level can be gauged by the h parameter. 

The usage of the h parameter permits to understand the discretization level and to decide 

regarding the necessity to increase or to reduce such level, allowing to optimize the 

discretization. In our 2D model and in the 3D slice model the selected h parameter is more 

than capable to produce accurate results, as seen in Figure 3A and Figure 3B. This is an 

important issue in approximation techniques. Unfortunately, most of FEM analysis 

available in the literature did not consider such parameter. In many cases the 

discretization level in commercial software is automatic and the lack of awareness 

regarding the value of the discretization level can lead to invalid analyses. The 

convergence study confirm that meshless methods have a faster converge rate when 

compared with the FEM, allowing to meshless methods to use sparser meshes and still 

produce valid results. Due to the authors’ hardware limitations, it was not possible to 
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analyse a full 3D brain with a nodal mesh density comparable to the 2D brain model and 

to the 3D brain slice model. Due to hardware limitations, this 3D half brain model does 

not possess a sufficient discretization level, capable to discretize with detail the brain 

structures. 

From the obtained stress fields, it can be concluded that meshless and FEM results are 

very similar, in magnitude and in its spatial distribution. Comparing the 2D model and 

the 3D slice model, since the acceleration was applied only in one direction, the results 

are comparable using the 𝜎%% field. The von Mises stress fields cannot be used to compare 

the 3D model with 2D, since the 2D analysis principal stress component 𝜎yy is null (𝜎yy =

0), making the results incomparable. Comparing the 𝜎%% fields of the NNRPIM and FEM, 

it is perceived that the results are very similar. The average value of the principal stresses 

𝜎%%  is relevant, since it indicates the higher compressive and traction zones. As 

anticipated, the average stress values in each division, show that the higher values are 

present in the proximal and distal impact zone divisions. It is notorious that the values of 

𝜎%%, are higher than 𝜎'' in both numerical methods, which is an expected result since the 

impact force was considered along the Oy-axis direction. 

Concerning the results of the 3D half brain model, 𝜎%%, 𝜎'' and the von Mises stress, 

obtained for each zone, the two numerical approaches give very similar results. As 

previously said, in order to objectively compare the results obtained with the 2D model 

and the 3D slice model, with the 3D half brain model, a brain slice with the same thickness 

of the 3D slice model was selected from the half brain 3D model. Despite this, it is 

possible to visualize comparing the results from Table 2  and Table 3 that the results are 

different. Nevertheless, this difference was expected because, as said before, in contrast 

to the 2D model and the 3D slice model, the 3D half brain model is not capable to define 

with detail all the structures defining the brain.  

Being FEM a widely used method, possessing several available commercial packages, it 

has the advantage of being more evolved and optimized. FEM has the advantage of being 

faster when compared to the meshless methods since its shape functions can be pre-

established before the beginning of the numerical analysis. Additionally, the FEM shape 

functions are simpler to compute due to its lower intrinsic connectivity. In FEM, the 

triangular and tetrahedral elements are widely used due to their ability to adjust virtually 
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to any geometry. However, as this work has shown, these elements present a weaker 

numerical performance when compared with meshless methods. 

Regarding the stress distribution, the results show that meshless methods are capable to 

produce smoother stress fields. As figure 9 shows, meshless methods allow to obtain 

stress levels similar to the FEM. However, notice that the stress field produced by 

meshless methods does not shows as many field discontinuities as the FEM solution. This 

smoothness comes from the higher nodal connectivity of meshless method. Thus, an 

interest point (belonging to a material domain) will interact with distant nodes (which can 

belong to another material domain). This creates a natural gradient material 

homogenization that smooths the variable fields, such as the displacement field, the stress 

field, the strain field, etc. 

If the numerical model is constructed through imaging techniques, meshless methods 

have the advantage to permit the allocation of the material properties directly to the nodes, 

using the pixel/voxel information. They also have the benefit of allowing the construction 

of complex geometrical models, without any special concern about the mesh geometry 

and element discretization created by the CAD programs. 

The methodology of creating divisions in the brain to evaluate the stress fields revealed 

itself to be useful and standardizable, which will permit to future research works a solid 

and robust comparison basis. Although the main objective of the present study was to 

show the potential of meshless methods combined with imaging techniques, this study 

presents some limitations. First, regarding the 3D analyses, it was used a 3D brain model 

constructed from the extrusion of the 2D model, resulting in the lost the anatomical real 

reproduction, and afterwards, a 3D half brain model was built possessing an insufficient 

mesh discretization level. Furthermore, the study was performed considering a linear 

elastic regime, neglecting the viscoelastic mechanical properties of the brain. 

Additionally, it was also used in substitution of the CSF, a fluid, a mechanical propriety 

of the dura mater with ν=0.45. In addition, although the impact analysis demands a 

dynamic and transient regime, all the analyses here presented assumed the corresponding 

static assumptions.  
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Figure 1 – A: First and second degree natural neighbours in NNRPIM.; B and C: 

Delaunay Tessellation; D: Generated quadrilaterals; E: Sub-cell. 
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Figure 2 – 2D and 3D models, for meshless and FEM analysis, with h parameter = 0.25, 

and with applied natural boundary condition, dimensions in [m].  
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Figure 3 – A: convergence results for the 2D model, hmodel= 0,0222; B: convergence 

results for the 3D model, hmodel= 0,0221. In both images, the vertical bar, ( ), indicates 

the h value for the 2D and 3D brain model. 𝒙 axis in Log10 scale.  
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Figure 4 – Geometrical head model obtained from a MRI, through the Mimics® software. 

[43].  
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Figure 5 – A: Images of the half brain 3D model; B: image with representation of the 

3D half brain model slice used to acquire the 𝜎%%, 	𝜎'' and von Mises stress values. 
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Figure 6 – A-1: 2D model with 𝒖 = 𝟎 ∧ 𝐯 = 𝟎	 ∧ 𝒘 = 𝟎 constrains in the skull and with 

an acceleration with y component of 2000m/s2; A-2: Symmetry condition applied to the 

top and button slice of the 3D slice model, for	𝒛 = 𝟎 ∧ 𝒛 = 𝟏𝟔: 𝒘 = 𝟎; B: Curve 

regarding the head peak acceleration from Yang et al 2014 [10].   
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Figure 7 – A: 2D model division average von Mises stress and representative column 

graphic for NNRPIM.; B: 2D model’s division average 𝜎%% stress and representative 

column graphic for FEM and NNRPIM. 
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Figure 8 – A: 3D model division average von Mises stress and representative column 

graphic for NNRPIM.; B: 3D model’s division average σ11 stress and representative 

column graphic for FEM and NNRPIM.  
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Figure 9 – Principals stress field, 𝜎%% and 𝜎'', and von Mises stress field for 2D FEM 

and NNRPIM and principals stress field, 𝜎%%, 𝜎'' and 𝜎yy for the FEM and NNRPIM 

3D slice models.  
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2D discretization  3D discretization  
Mesh Nodal 

distribution 

Nodes h 

parameter 

 Mesh Nodal 

distribution 

Nodes h 

parameter 

Thickness H 

[m]           
A 5x5 25 0,25  F 5x5x3 125 0,25 0,25 
B 9x9 81 0,125  G 9x9x3 243 0,125 0,125 
C 17x17 289 0,0625  H 17x17x3 867 0,0625 0,0625 
D 33x33 1089 0,03125  I 33x33x3 3267 0,03125 0,03125 
E 65x65 4225 0,015625       

Table 1 – Different discretization and correspondent h value.  
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  2D  3D Slice Model 

Division  FEM NNRPIM  FEM NNRPIM 

1  -6,0E-03 -6,1E-03  -7,6E-03 -7,5E-03 

2  -3,6E-03 -3,5E-03  -4,7E-03 -4,5E-03 

3  6,2E-05 2,8E-04  -1,5E-03 -1,2E-03 

4  3,0E-03 3,0E-03  2,3E-03 2,5E-03 

5  4,5E-03 4,5E-03  5,0E-03 4,9E-03 

6  7,2E-03 7,2E-03  8,1E-03 7,7E-03 

Table 2 – Principals average stress field, 𝜎%%, for the 3D slice model and for the 2D 

model, using FEM and NNRPIM, for each Gruen division [MPa].  
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3D Half Brain Model Gruen zones. 

  𝜎%%  	𝜎''  von Mises Stress 
Division  FEM NNRPIM  FEM NNRPIM  FEM NNRPIM 

1  -7,6E-02 -7,4E-02  -7,9E-02 -7,9E-02  2,2E-02 2,4E-02 

2  -4,1E-02 -4,0E-02  -4,5E-02 -4,5E-02  1,9E-02 2,0E-02 

3  -4,4E-03 -4,2E-03  -1,1E-02 -1,2E-02  1,5E-02 1,6E-02 

4  2,9E-02 2,7E-02  2,0E-02 1,8E-02  1,2E-02 1,3E-02 

5  7,1E-02 6,5E-02  5,5E-02 5,0E-02  1,9E-02 2,0E-02 

6  1,2E-01 1,1E-01  8,9E-02 8,2E-02  3,0E-02 2,8E-02 

Table 3 – Principals average stress field, 𝜎%%, 	𝜎'' and von Mises stress, for the 3D half 

brain FEM and NNRPIM models, in each Gruen division [MPa]. 
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3.3 Contribution II: A brain impact stress analysis using advanced

discretisation meshless techniques.

3.3.1 Highlights of Contribution: 3.3

This contribution focused on the numerical simulation of biological structures, using the RPIM

meshless method and the FE method.

Therefore, the main contents of this publication include:

I. Literature review on brain impact mechanical models and meshless methods;

II. RPIM methodology applications and formulation;

III. A convergence study to demonstrate the differences between the FEM and the RPIM mesh-

less methods, whereas also compared the FEM results using Abaqus and FEMAS.

IV. One 2D and two 3D brain geometrical models were constructed with the resource to medical

images, gathered from Lalys F, et al, with a 1024× 1024 pixel resolution, using MIMICS

Innovation Suite V19 software, [108, 109]. The 2D geometrical model was built using an

image in the medial sagittal plane, where it was considered the scull, brain grey and white

matter and the CSF. Concerning the 3D geometrical models, one was constructed by ex-

truding the 2D model, and the other was constructed using the medical images, allowing to

create a half brain 3D model.

V. Convergence study: RPIM shows a faster convergence when compared with the FEM method,

figure 3.2. ABAQUS FEM and FEMAS FEM results in the convergence study are almost co-

incident, validating the FEM formulation implemented in the academic software FEMAS.

Regarding the computational cost, the meshless formulation shows a computational time

very similar to the FEM, figure 3.3.

VI. Conclusion: The convergence study developed in this study enhanced the importance of

the discretisation level to obtain a reliable solution when working with numerical methods.

The convergence study showed that RPIM has a faster converge rate than the FEM, allowing

the usage of sparse meshes, still capable of providing valid results. RPIM and FEM results

are very similar, in magnitude and in spatial distribution, being meshless methods capable

of producing smoother results. The methodology of dividing the brain domain in standard
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sections allowed to compare efficiently the RPIM and the FEM results. Additionally, this

technique could permit future works to compare future results following a standardised sys-

tem, inspired in the Gruen zones, a standardised system widely used to evaluate stress upon

the use of prostheses in the femoral bone. [110, 111]

Figure 3.2: Contribution II convergence study results.

Figure 3.3: Contribution II: computational cost results.

The complete document can be found in the next pages.
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Abstract 

This work has the objective to compare the mechanical behaviour of a brain impact using 

an alternative numerical meshless technique. Thus, a discrete geometrical model of a 

brain was constructed using medical images. This technique allows to achieve a 

discretization with realistic geometry, allowing to define locally the mechanical 

properties accordingly with the medical images colour scale. After defining the discrete 

geometrical model of the brain, the essential and natural boundary conditions were 

imposed to reproduce a sudden impact force. The analysis was performed using the Finite 

Element Analysis (FEM) and the Radial Point Interpolation Method (RPIM), an advanced 

discretization technique. The results of both techniques are compared. When compared 

with the FEM, it was verified that meshless methods possess a higher convergence rate 

and that they are capable to produce smoother variable fields. 

 

Keywords: computational biomechanics; meshless methods; radial point interpolation 

method; finite element analysis; brain impact. 

 

 

1. Introduction 

Head injury is a major health and socioeconomic problem, since it is frequent and severe 

in almost all types of traffic accidents that annually injury approximately 24 million 

individuals [1]. Head injury is also very common in contact sports, such as American 
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football, boxing, ice hockey, football and others [2]. In particular, the traumatic brain 

injuries (TBI) occurs in the presence of an abrupt mechanical stimulus (due to an external 

factor) into the brain or to the cranium. This sudden action cause temporary or permanent 

brain damage and dysfunction, and can result in a diffuse lesion, if there are rotational 

and deceleration forces, or can result in a focal lesion, result of the direct contact forces 

[3,4]. These lesions can result in the hospitalization of the subject, and it is estimated that 

one fifth of the hospitalized persons cannot return to a normal life [5]. Having the TBI 

devastating consequences and a significant incidence, 2–5 million people in the US per 

year, considerable research efforts have been devoted to understand and to prevent TBI 

[6–8]. Due to the significant incidence of TBI, the scientific community interest started 

to grow. Driven by unprecedented technological developments, computational mechanics 

evolved and now it is possible to simulate in-silico several physical phenomena, such as 

TBI. The early research works of TBI used in-vitro models, such as cadaver human heads  

[9,10], animal heads and physical head models that have evolved from simple anatomic 

representations to highly complex models constructed from medical images [11–13]. 

With the technological developments, today, using computational mechanics, it is 

possible to study the TBI virtually, using geometric models representative of the head, 

that allow to short the total time of the research (since computational analysis are faster 

and more predictable than experimental analysis) and with a very low economic cost 

(because the computational procedure is much cheaper than the complete experimental 

process).  

Due to its robustness and rehabilitee, in computational mechanics, the most widely used 

discrete numerical technique is the Finite Element Method (FEM). Nevertheless, in recent 

years, meshless methods come into focus within the computational mechanic’s research 

community. Meshless methods possess some relevant advantages when compared with 

the FEM. For instances, meshless methods allow to discretize the physical domain using 

only a cloud of points or nodes, without the need to build an element mesh [14]. The 

meshless concept comes from the fact that the points, or nodes, of the computational cloud 

do not have any pre-established connection between them. Thus, the nodal discretization 

of the domain can be completely unstructured, fitting exactly the domain geometry of 

complex shapes, such are the biological structures. Thus, in computational biomechanics, 

the discretization flexibility of meshless methods is a true asset, since it permits to 

discretize the problem domains using directly the pixels/voxels of the medical images. 
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There are several meshless methods available in the literature, each one with its own 

particular characteristics, however all have common features [14]. A meshless method 

for the analysis of a mechanical problem requires: a technique to impose the nodal 

connectivity; a methodology to build the background integration grid and; a numerical 

technique to construct the shape functions. This work uses a very popular meshless 

method, the radial point interpolation method (RPIM) [15]. The RPIM is a meshless 

method that evolved from the point interpolation method (PIM) [16], which uses a 

polynomial basis function to construct the interpolation shape functions but is not capable 

to produce stable results when the nodes are perfectly aligned (regular nodal grids). 

Therefore, Wang and Liu [15] included a radial basis function (RBF) in the formulation 

allowing the stabilization of the procedure. RPIM evolved and today it is possible find 

several variations of the original RPIM, such as the Natural Neighbour RPIM [17–19], 

the nodal integration RPIM [20], the linearly conforming RPIM [21,22], the cell-based 

smoothed RPIM [23] and the Natural Radial Element Method [24–26]. As mentioned 

before, being the RPIM a meshless method, it allows to discretize the physical domain 

using only a cloud of points or nodes, that do not have any pre-established connection 

between them, eliminating the need to build an element mesh [14]. Thus, using the RPIM, 

the nodal discretization of the domain can be completely unstructured, fitting exactly the 

domain geometry of complex shapes, such are the biological structures, which is not 

possible using the FEM conventional method. Presently, the RPIM is validated in several 

computational mechanics applications, such as the analysis of composite laminated plates 

[27], determination of stress intensity factors for fatigue crack growth [28] or numerical 

analysis of piezoelectric ceramics [29]. 

In this work, the mechanical response of a human head model was simulated in order to 

evaluate the effects of a TBI. This study was performed using the RPIM and then, for 

comparison purposes, using the Finite Element Method (FEM). Firstly, in order to 

understand and document the discretization effects, a convergence study is performed. 

Afterwards, a 2D head model and a 3D model are analysed with both numerical 

techniques. The results are compared and discussed and in the end the most relevant 

conclusions are mentioned. 

In order to allow an accurate and comprehensive comparison between methodologies, the 

authors have fully developed a complete RPIM and FEM computational framework for 

the analysis of a human head. The developed software allows to read the discrete models 
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built in the imaging software MIMICS© [30,31]. In this work, the RPIM is compared 

with the triangular finite element and with the tetrahedron finite element formulations, 

because these two elements types are the most commonly used finite elements for 2D and 

3D analyses, respectively. 

 

2. Methodology 

In this section, it is presented the methodology used in the study. Then, it was performed 

a convergence study in order to understand the convergence rate of the proposed 

technique and to obtain the suitable mesh size that allows to perform robust analyses. In 

addition, this convergence study permitted to compare the FEM and RPIM performances. 

Afterwards, a 2D analysis and a 3D analysis of the TBI was performed. Thus, in order to 

compare the FEM and RPIM solutions, it was used a technique inspired in the Gruen 

zones, a common technique that allows to evaluate the stress shielding in the femoral 

bone. In Gruen zone analysis the femur bone is divided in medial and lateral patches and 

an average stress values for each patch is calculated [32]. 

The RPIM is an interpolator meshless method that uses the concept of influence-domain 

to force the nodal connectivity. Recall that the FEM discretizes the problem-domain using 

nodes and elements, and the finite element concept assures the nodal connectivity: nodes 

belonging to the same element interact directly between each other and with the boundary 

nodes of neighbour elements. In opposition, an influence-domain consists in a set of 

neighbour nodes surrounding an interest point (commonly an integration point). 

Generally, these nodes are found by radial search [14]. Overlapping the influence-domain 

of each node allows to obtain the nodal connectivity [14,15,33–36]. This is a simple 

concept used by several meshless techniques [14]. The use of local influence-domains, 

instead of global influence-domains, allows to generate sparse and banded stiffness 

matrices, more adequate to complex geometry problems. As already mentioned, a 

meshless method requires the construction of a background grid of integration points. The 

weak formulation uses a variational principle (the Galerkin weak form) to determine the 

system of equations and to minimize the residual weight of the integro-differential 

equations ruling the studied physical phenomenon. In order to obtain the integral of the 

residual weight of the differential equations it is necessary to select an integration scheme. 

In meshless methods, generally, the integration points are obtained using a background 
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grid, in which each grid-cell is filled with integration points via the Gauss-Legendre 

quadrature rule [14]. RPIM shape functions are obtained using the Radial Point 

Interpolators (RPI), that combine radial basis functions with polynomial basis functions, 

where the support-domain, a small set of field nodes in the vicinity of the interest point, 

is coincident with the influence-domain [14].  

However, previous works have shown that the polynomial basis of the RPI is unnecessary 

if shape parameters of the RBF are chosen carefully [14]. This is an important innovation 

since it increases the computational efficiency of these methods. So, considering the 

function ℎ(𝒙𝐼) defined in the domain 𝛺 ⊂ ℝ2, the value of function ℎ(𝒙𝐼) at the point of 

interest 𝒙𝐼 is defined by, 

 

ℎ(𝒙𝐼) =  ∑𝑅𝑖(𝒙𝐼) ∙ 𝑎𝑖(𝒙𝐼) = 𝑹(𝒙𝐼) ∙ 𝒂(𝒙𝐼)

𝑛

𝑖=1

 (1) 

 

where 𝑅𝑖(𝒙𝐼) is the RBF, 𝑛 is the number of nodes in the influence-cell of 𝒙𝐼. The 

coefficients 𝑎𝑖(𝒙𝐼) and 𝑏𝑗(𝒙𝐼) are the non-constant coefficients of 𝑅𝑖(𝒙𝐼) and 𝑝𝑗(𝒙𝐼), 

respectively. The monomials of the polynomial basis are defined by 𝑝𝑗(𝒙𝐼) and 𝑚 is the 

basis monomial number. The variable 𝑟𝑖𝑗  is the distance between the relevant node 𝒙𝑖 =

{𝑥𝑖, 𝑦𝑖}
𝑇  and the neighbor node 𝒙𝑗 = {𝑥𝑗 , 𝑦𝑗}

𝑇
, 𝑟𝑖𝑗 = √(𝑥𝑗 − 𝑥𝑖)2 + (𝑦𝑗 − 𝑦𝑖)2. Several 

known RBFs are well studied and developed in [14]. This work uses the Multiquadric 

(MQ) function 𝑅(𝑟𝑖𝑗) = (𝑟𝑖𝑗
2 + 𝑐2)𝑝, where 𝑐 and 𝑝 are two parameters that need to be 

optimized, since they affect the performance of the RBFs. 

Notice that each integration weight should possesses its own 𝑐 parameter. Thus, for 

integration point 𝐼 with an integration weight 𝜔̂𝐼, the shape parameter 𝑐 is obtained with:  

𝑐𝐼 ≅ 𝛾𝜔̂𝐼. This spatial dependence of the RBF’s shape parameter is demonstrated in 

research works available in the literature [14]. Previous works on the NNRPIM found that 

parameter 𝛾 should be close to zero,  𝛾 ≅ 0, and 𝑝  should be close to one, 𝑝 ≅ 1 [14]. 

However, these values cannot be 𝛾 = 0 and 𝑝 = 1. The use of the exact integer value for 

𝑝 leads to a singular moment matrix and assuming a null 𝛾 leads to singular moment 

matrix. Furthermore, previous works [14] have shown that values of 𝑝 very close to the 

unit allow to obtain the most accurate solutions (regardless the analysed problem). Thus, 
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the authors have decided to use 𝑝 =1.0001 or 𝑝 =0.9999. Additionally, as shown in [14], 

the parameter 𝛾 should be very close to zero, because as its value grows, the RPI shape 

functions lose its interpolation properties. Thus, the authors have selected 𝛾 = 0.0001 in 

order to “maximize” the RPI interpolation properties. 

Commonly, the polynomial basis has to possess a low degree to guarantee that the 

interpolation matrix of RBF is invertible. Thus, in this work the constant polynomial basis 

is used: 𝒑𝑇(𝒙) = {1};   𝑚 = 1. The polynomial basis has to satisfy an extra requirement 

in order to obtain an unique solution [14], 

 

∑𝑝𝑗
(𝒙𝑖)𝑎𝑖(𝒙𝑖)

𝑛

𝑖=1

= 0,    𝑗 = 1,2,… ,𝑚 (2) 

 

in which 𝑛 represents the number of nodes inside the influence-cell of interest point 𝒙𝐼. 

Therefore, applying Eq.(1) and Eq.(2) to every node forming the influence-cell of interest 

point 𝒙𝐼, a new equation system can be written,  

 

{
𝒖𝑠

0
} = [

𝑹𝑄   𝑷𝑚

𝑷𝑚
𝑇      0  

] {
𝒂
𝒃
} = 𝑮 {

𝒂
𝒃
} (3) 

 

where 𝒖𝑠 are the variable values at the nodes inside the influence-cell of interest point 𝒙𝐼. 

It must be noted that the geometric matrix 𝑮 is a symmetric matrix because the distance 

is directional independent, i.e., 𝑅(𝑟𝑖𝑗) =  𝑅(𝑟𝑗𝑖). By solving Eq.(3) and substituting its 

solution into Eq. (1), the shape function 𝝋(𝒙𝐼) is obtained, 

 

{𝝋(𝒙𝐼),𝝍(𝒙𝐼)} = {𝑹𝑇(𝒙𝐼), 𝒑
𝑇(𝒙𝐼)}𝑮

−1

= {{𝜑1
(𝒙1), 𝜑2

(𝒙2), … , 𝜑𝑛
(𝒙1)}, {𝜓1

(𝒙1), 𝜓2
(𝒙2), … ,𝜓𝑚

(𝒙1)}} 

(4) 

 

Notice, that the shape function 𝝋(𝒙𝐼) is only formed by the first 𝑛 terms, 

{𝜑1(𝒙1), 𝜑2(𝒙2),… , 𝜑𝑛(𝒙1)}. The last 𝑚 terms {𝜓1(𝒙1), 𝜓2(𝒙2), … , 𝜓𝑚(𝒙1)} are not 

included in the shape function vector because they a by-product of Eq.(4), with no 

relevant physical meaning associated. 
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In order to obtain the equilibrium equations, the principle of virtual work is applied,  

 

∫ 𝛿𝛆𝛵𝝈
Ω

𝑑Ω + ∫ 𝛿𝒖𝛵𝒃
Ω

𝑑Ω − ∫ 𝛿𝒖𝛵𝒕
Г𝑡

𝑑Г = 0 (5) 

 

Where 𝒖 is the displacement field, 𝒃 is the body force vector and 𝒕 the traction on the 

natural boundary, Г𝑡. The strain vector 𝛆 is defined as = 𝑳 𝒖 , where L is the differential 

operator defined as: 

 

𝑳 =

[
 
 
 
 
 
 
𝜕

𝜕𝑥
0

0
𝜕

𝜕𝑦
𝜕

𝜕𝑦

𝜕

𝜕𝑥]
 
 
 
 
 
 

  (6) 

 

The linear constitutive relations are given with = 𝒄𝜺 . Being 𝝈 the stress tensor and 𝒄 the 

material matrix defined as 

 

𝒄 = 𝜇1 [
1 ν 0

ν 1 0

0 0 μ2

] (7) 

 

being 𝜇1 = 𝐸/(1 − 𝜈2) and 𝜇2 = 𝐸/(2 + 2𝜈), where 𝐸 is the Young’s modulus and 𝜈 is 

the Poisson’s ratio. In general, the first term of Eq. (9) can be presented as  

 

∫ 𝛿𝛆𝛵𝝈
Ω

𝑑Ω = 𝛿𝒖 [∫ 𝑩𝑇𝒄𝑩𝑑Ω
Ω

]𝒖= 𝛿𝒖 [∫ 𝑩𝑇𝒄𝑩𝑑Ω
Ω

] (8) 

 

where 𝑩 is the deformation matrix,  
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𝑩(𝒙𝐼)𝑖
𝑇 =

[
 
 
 
 
𝜕𝜑𝑖

𝜕𝑥
0

𝜕𝜑𝑖

𝜕𝑦

0
𝜕𝜑𝑖

𝜕𝑦

𝜕𝜑𝑖

𝜕𝑥 ]
 
 
 
 

 (9) 

 

The force vectors are defined by developing the second and third terms of Eq. (9),  

 

𝑭𝑡 = ∫ 𝑯𝑇

Г𝑡

𝒕𝑑Г𝑡        𝑎𝑛𝑑            𝑭𝑏 = ∫ 𝑯𝑇

Ω
𝒃𝑑Ω (10) 

 

Matrix 𝑯 is an interpolation matrix, 𝑯𝐼= 𝝋(𝒙𝐼)𝑰, being 𝑰 the identity matrix with size 

2× 2 for 2D formulations and 3 × 3 for 3D formulations. Thus, the stiffness matrix can 

be defined as: 𝑲 = ∫ 𝑩𝑇𝒄𝑩𝑑Ω
Ω

. Both vectors can be combined, 𝑭 = 𝑭𝑡 + 𝑭𝑏. The 

essential boundary conditions can be directly imposed in the mass matrix and in the 

stiffness matrix as in the FEM, since the RPIM interpolation function possesses the delta 

Kronecker property. Thus, the equilibrium equations governing the linear dynamic 

response, neglecting the damping effect, can be represented in the matrix form 𝑲𝑼 = 𝑭. 

The mechanical properties used in this work are linear elastic properties, since the main 

focus of the study is to evaluate the performance of the FEM and RPIM formulations. 

However, other more complex and realistic material models that characterizes the brain 

and skull could be considered, such as viscoelastic and hyperelastic material models 

assuming large-strains [37–46]. These models would allow to obtain more accurate strain 

fields, expectedly higher than the ones obtained with linear elasticity, and a structural 

response depending on time. Nevertheless, these non-linear analyses (assuming large 

deformations and hyperelastic or viscoelastic models) possess a much higher 

computational cost than the small-strains linear analysis. Additionally, in this study, it 

was considered a quasi-static analysis. The main aim of this work is to show the 

potentialities of a new numerical technique (the RPIM meshless method), combined with 

imaging techniques, in the structural simulation of the brain. Thus, the authors have 

selected from the literature a reproducible case, such as an impact study. From the impact 

study it was possible to obtain the peak acceleration occurring during a head impact. Thus, 

with the peak acceleration it is possible to perform a quasi-static study, which in the 

authors’ opinion is enough to show the potentialities of the RPIM. 
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2.1 Convergence 

In order to understand the refinement level that has to be achieved and, additionally, to 

demonstrate the differences between the FEM and the meshless methods, a convergence 

study was performed. It was also performed a cross-validation study in which the solution 

obtained with the software developed by the authors is compared with the solution of a 

well-known and widely used commercial FEM software: ABAQUS. 

A regular parallelepiped with L × D × H mm3 was considered for this study, as Figure 1 

shows. The dimensions L and D (the dimensions along Ox and y , respectively) are defined 

as: L = 10mm and D = 10mm. The dimension H represents the thickness of the 

parallelepiped (dimensions along direction Oz). In order to maintain a uniform nodal 

discretization, the number of division along the thickness of the 3D model (direction Oz) 

is always 2 (corresponding to 3 nodes along direction Oz) and the model thickness varies. 

Thus, the solid is discretized with four regular nodal distributions of m × m × 3 nodes, 

in which four values for m where considered: m = {5,9,17,33}, leading to four nodal 

distributions with {75,243,867,3267} nodes respectively, each one with its own 

thickness H = {5,2.5,1.25,0.625} and h parameter h = {0.25,0.125,0.0625,0.03125}. 

In this work, the discretization level is indicated by a ℎ parameter, which is obtained with 

the expression: h = (min(hi))/(max (L, D, H)), ∀{i, j} ∈ ℕ: {i, j} ≤ N ∧ i ≠ j, being N 

the number of node discretizing the problem domain and (L, D H) are the maximum 

dimension of the domain along Ox, Oy and Oz, respectively. As the expression indicates, 

sparse meshes present high values for ℎ and refined meshes present low values for ℎ. 

Thus, as Figure 1 shows, with the mentioned discretization it is possible to discretize the 

solid domain using evenly distributed nodes (in the 3 dimensional directions Ox, Oy and 

Oz). 
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Figure 1. Created geometrical models to be used in the convergence study, using meshless 

and FEM method, using ABAQUS and the developed software. 

In order to clarify the dimensions, the geometric features of each model presented in 

Figure 1 are shown in Table 1. It is notorious that the number of elements and nodes 

increases as the number of divisions of the models increases. 

Model (a) (b) (c) (d) 

Dimensions 10 x 10 x 5 10 x 10 x 2.5 10 x 10 x 1.25 10 x 10 x 0.625 

Sides Divisions 4 x 4x 2 8x8x2 16x16x2 32x32x2 

Number of nodes 94 286 991 3590 

Number of elements 307 1029 3824 14284 

Table 1 - Geometrical features of each model analysed (a,b,c,d) 

Regarding the essential boundary conditions, all nodes with 𝑦 = 0 possess a constrain 

displacement: 𝑢̅ = 0 ∧ 𝑣̅ = 0 ∧ 𝑤̅ = 0. Notice that {𝑢, 𝑣, 𝑤} are the displacement along 

the axis directions Ox, Oy and Oz, respectively. An example of the natural boundary 

conditions applied to the models is represented in Figure 2. For the convergence models, 

in the surface boundary 𝑦 = 10𝑚𝑚 it was applied a shear uniform distributed pressure 

of 1𝑁/𝑚𝑚2.  
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Figure 2. Example of the natural boundary conditions applied to models, in this case for 

model (a). 

In this convergence study, the material of the model is assumed isotropic and 

homogeneous, possessing the mechanical properties indicated in Table 2. 

 

Young’s modulus [E] 1000 MPa 

Poisson’s ratio [] 0.3 

Table 2 – Mechanical proprieties of the material 

2.2 Traumatic Brain Injuries Analysis 

In this work, the TBI was analysed using two distinct approaches, a 2D analysis and a 3D 

analysis. The 2D analysis assumes the plane strain linear elastic formulation with small 

strains. The 3D analysis assumes the classical 3D deformation theory with small strains. 

The 2D geometrical model of the human head was obtained from anonymized medical 

images, providing a highly detailed and accurate geometry. Two distinct 3D models were 

constructed. One was obtained by extrusion of the 2D model, allowing to obtain a 3D 

slice model by means of an extrusion of 16mm from the 2D model. The other 3D model 

was obtained from anonymized medical images, and it represents half of a brain. 

The mechanical proprieties considered in this work were gathered from the literature 

[7,47]. Regarding the boundary conditions, the skull bone was fixed, and an acceleration 

was applied to all nodes of the model. 

2.2.1 2D model 

Firstly, it was created a 2D model possessing the skull bone, the cerebrospinal fluid 

(CSF), and the brain (with grey and white matter division). This model represents a slice 

of the brain in a medial sagittal plane. This 2D model was created using MIMICS© 

software, which allows to easily perform the segmentation of the zones of interest, 
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according to the MRI different grey values. Notice that the distinct grey zones represent 

different anatomical zones. This procedure permits to create a realistic model [30,31]. 

The domain was initially discretized using triangular elements, since the element mesh 

can be used for both FEM (assuming the standard 3-node constant strain triangular 

element) and meshless analysis (the meshless analysis neglects the element and only 

assumes the nodes). The final 2D model possessed 3165 triangular elements with a total 

of 1653 nodes. since in the 2D plane strain analysis each node possesses two degrees of 

freedom, this 2D model possesses a total of 3306 degrees-of-freedom. The 2D model has 

a parameter h=0.0222. As already mentioned, the h parameter permits to understand the 

level of the discretization and to make an inform decision regarding the necessity to 

increase or to reduce the level of discretization, allowing to optimize the discretization 

process. Unfortunately, most of the FEM analysis available in the literature do not take 

into account such parameter. 

In this study, accordingly to each anatomical zone, four distinct mechanical proprieties 

were assumed. To simplify the model and the analysis, since CSF is a fluid, its mechanical 

proprieties were replaced by the meninges mechanical proprieties, more specifically from 

the dura mater. The used mechanical proprieties obtained from the literature are 

represented in Table 3 [7,47]. 

      
 Anatomical Region 

Density 

[Kg/m3] 

Young’s Modulus 

[MPa] 

Poisson’s 

Ratio 
 

      
       Bone 1210 8000 0,22  

 Grey Matter 1040 34 0,45  

 White Matter 1040 41 0,45  

 CSF 1130 12 0,45  

      
Table 3. Model mechanical properties 

In this study, the nodes belonging to the skull were constrained in both directions: 𝑢̅ =

0 ∧ 𝑣̅ = 0, as represented in Figure 3-A-1. Additionally, it was applied to all the nodes of 

the model an acceleration of 2000m/s2 along direction Oy, corresponding to the peak head 

acceleration occurring during sudden impact, as [7] recommends,. The acceleration value 

and the direction of the impact is documented in the literature [7,12]. Notice that the work 

developed by Yang et al. [7], deals with a general problem of a head impact, in which the 

peak impact occurs with a total acceleration of 2000m/s2 .Thus, the authors have decided 

to use this acceleration peak as a typical acceleration occurring in a standard impact case. 
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The acceleration was applied to all model nodes, assuming that in the instant before the 

impact, every part of the domain possesses the same acceleration. The impact is simulated 

by constraining all degrees of freedom of the skull. This way, the free nodes (brain and 

cerebrospinal fluid) will be compressed against the rigid skull.  

 

Figure 3. A-1: 2D model with u=0 ∧ v=0 constrains in the skull and with an acceleration 

with y component of 2000m/s2 [7]; A-2 Symmetry condition applied to the top and button 

slice of the 3D model, for 𝒛 = 𝟎 ∧ 𝒛 = 𝟏𝟔: 𝒘 = 𝟎;  

As already mentioned, since the 2D model has a much smaller thickness than its 

dimension along Ox or Oy and the displacement (and the deformation) along the Oz 

directions is null, due to a physical imposition, the plane strain formulation was assumed.  

2.2.2 3D model 

In this work, as mentioned before, the two 3D models were obtained by two distinct 

processes.  One of the 3D models was obtained by extrusion of the 2D model along the 

Oz direction, creating a 3D slice with 16mm and 5 nodes distributed along the thickness 

The other 3D model was constructed using anonymized medical images, which allowed 

to create an half brain 3D model. 

Nevertheless, despite having the complete 3D brain model, due to hardware limitations, 

the authors decided to analyse the 3D slice and a half brain geometrical model. This 

approach allows a higher control in the mesh generation and the construction of a 3D 

model more suitable to be compared with the 2D model. From Figure 3-A-2, it is possible 

to understand how the 3D slice model was obtained. Since the 3D slide model was 

obtained by extrusion of a triangular mesh of a 2D model, the created 3D triangular prism 

elements (linear finite elements with 6 nodes) from the linear extrusion were then divided 
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each one in three tetrahedral elements (linear tetrahedral finite element with 4 nodes). In 

the end, the final 3D slice model possess 12660 elements, 8265 nodes and, consequently, 

24795 degrees-of-freedom. The obtained 3D slice model has a h parameter h=0.0221. 

The mechanical properties of the several materials considered in the analysis are 

described in Table 3. 

Additionally, the 3D slice model is constrained in the orthogonal directions of the plane 

of the slices, the direction Oz, not allowing displacement or strains in that direction (𝜀𝑧𝑧 =

0, 𝛾𝑧𝑥 = 0, 𝛾𝑧𝑦 = 0). This condition is in accordance with the plain strain assumptions 

considered in the 2D model. Thus, both the 2D model and the 3D slice model can be 

directly compared. 

 

For the half brain model, for each biological structure the material mechanical properties 

(already mentioned in Table 3) were once again considered. Additionally, the number of 

nodes and the number of elements of the half brain model are the ones present in Table 4, 

corresponding to 29370 degrees-of-freedom. The half brain model geometry is presented 

in Figure 4. 

    

(a) (b) (c) (d) 

Figure 4. Image of the half brain 3D model with different views: (a) - isometric; (b) – side; 

(c) – front (d) – back. 

 

 Nodes Elements 

Full Model 9790 56005 

Skull 3937 11721 

White Matter 3684 6806 

Grey Matter 4796 20185 

CSF 4987 17293 

Table 4 - Geometrical characteristics of the 3D brain model. 
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The boundary conditions of the 3D slice model (as Figure 3-A-1 shows) are the following: 

in the top and bottom plane (𝑧 = 0 ∧ 𝑧 = 16), the nodes were fixed along Oz direction 

(𝑤̅ = 0), in order to create a symmetry plane, Figure 3-A-2. Once again, the skull was 

completely constrained, {𝑢̅, 𝑣̅, 𝑤̅} = {0,0,0}. In order to simulate the peak force, an 

acceleration of 2000m/s2 along direction Oy was assumed, Figure 3-B, as documented in 

the literature [7,12], and as previous explain in the 2D analysis 

For the half brain 3D model, in order to enforce the symmetry of the model, it was 

assumed that all nodes belonging to the symmetry plane of the head model (plane Oxy 

with z= 0) are fixed along the Oz direction(𝑤̅ = 0). In addition, all the nodes belonging 

to the skull surface were fixed in the three directions: Ox, Oy and Oz ({𝑢̅, 𝑣̅, 𝑤̅} =

{0,0,0}). 

3. Results 

In this section, the results for the convergence study are presented for both 2D and 3D 

analyses, using RPIM and FEM. Additionally, 2D and 3D analyses of brain models are 

performed and the obtained RPIM and FEM results are compared. Notice that, despite 

the brain models distinguishes the brain, the CSF and the skull bone domains, in this 

section only the results regarding the brain domain are evaluated and shown.  

3.1 Convergence Results 

Concerning the convergence study, the four models, (a), (b), (c) and (d), shown in Figure 

1, were analysed with the commercial software ABAQUS and with the academic software 

fully developed by the authors. In ABAQUS, the 3D models were analysed using linear 

strain tetrahedral elements, ABAQUS FEM, and in the academic software the 3D models 

were analysed using the same kind of linear element, linear strain tetrahedral elements, 

FEMAS FEM, and also for the RPIM formulation, FEMAS RPIM. In each analysis, the 

displacement at node 𝒙𝑖 = {10,10,0}𝑇 along direction Ox is acquired. The obtained 

results are shown in Figure 5. Thus, in Figure 5, the Y-axis contains the obtained 

displacement in Ox direction and the X-axis contains the variable h, which represents the 

average nodal distance of the model. 
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Figure 5. B: Convergence results for the (a), (b), (c) and (d) 3D model. Displacement value 

at node 𝒙𝒊 = {𝟏𝟎, 𝟏𝟎, 𝟎}𝑻 . The 𝒙 axis in Log10 scale. 

Notice that the solutions ABAQUS FEM and FEMAS FEM are almost coincident, 

validating the FEM formulation implemented in the academic software. 

Regarding the results from the meshless formulation, as expected, the obtained results are 

significantly different. As is shown in Figure 5, the meshless formulation converges much 

faster than the FEM solution  

In order to perform a comparative study regarding the computational cost, the 

computational time of each analysis was documented. Thus, in Figure 6, it is possible to 

visualize the time necessary to perform the analysis of each model. Surprisingly, the 

meshless formulation shows a computational time very similar with the FEM. In the less 

discretize models, models (a) and (b), the obtained computational cost is not 

representative of the true analysis cost. The analysis is very fast, and the majority of the 

computational cost is due to intrinsic MATLAB functions, such as opening and closing 

results figures. 

 

Figure 6. Computational time for the convergence models (a), (b), (c) and (d), used in the 

convergence study. 
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3.2 2D Brain Model Results 

In order to perform a comparative analysis of the stress field in the brain tissue, a division 

of the brain domain in standardized layers was performed, a technique inspired in the 

Gruen zones [32]. Thus, a geometrical division of the brain domain was performed, in 

which 6 sections where assumed, all with the same height and orthogonal to the imposed 

acceleration, as represented in Figure 7-A and Figure 7-B. In Figure 7-A is represented 

the average von Mises effective stress for each section, and in Figure 7-B the average 

principal stress σ11 for each section. 

 

Figure 7. A: Average von Mises stresses in the 2D sections and representative column 

graphic for FEM and RPIM [MPa]; B: Average σ11 stress in the 2D sections and 

representative column graphic for FEM and RPIM [MPa]. 

The results obtained with the RPIM and the FEM are similar, as demonstrated in Figure 

7-A and Figure 7-B. From Figure 8 and Figure 7-B, where are represented the σ11 average 

values for each section, it can be found that RPIM, compared with FEM, has a difference 

of 10%, except in the fourth section where this difference is higher. The average value of 

the principal stresses σ11 is relevant, since it will indicate the higher compressive and 

traction zones. 
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Figure 8. Principals stress field, σ11 and σ22, and Von Mises stress field for 2D FEM and 

RPIM [MPa]. 

As expected, the average stress values in each section, show that the higher values can be 

found in the proximal and distal impact zones. 

In Figure 8 are represented the σ11 and σ22, principal stresses and the von Mises effective 

stress. The σ11 stress map shows that in the impact proximal zone are mostly found 

compressive stress, as the σ11 is negative. In the distal impact zone, having σ11 positive 

values, it is possible to find mostly traction stresses. It is notorious, that the values of the 

σ11 are higher than the σ22 in both RPIM and FEM, as it what was expected since the 

impact force was applied along the Oy-axis direction. Concerning the RPIM results, it is 
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relevant to mention that some images show an abrupt variation of the stress value at the 

surroundings of the boundary. This phenomenon occurs due to the influence-domain 

concept. In FEM, each element is associated with a material (for example, bone, grey 

matter, white matter, etc.). Thus, since the integration points (in which the strains and 

stresses are evaluated) are built within each element, the integration point inherit the 

material of their parent-element. Additionally, in FEM, the interpolation is made for each 

element. Thus, the shape functions and respective partial derivatives are constructed for 

each integration point using the nodes forming the parent-element of the integration point. 

Thus, an integration point inside element ‘j’ (representing the material ‘k’) constructs the 

shape functions and its partial derivatives using the nodes of element ‘j’ (all nodes 

represent also material ‘k’).  

In opposition, in meshless methods, there are no elements. Thus, in the model 

construction phase, to each node it will be associated a material (depending on its 

geometric position) and to each integration point will be associated also a material 

(depending on its geometric position). Due to the influence-domain concept, an 

integration point will search for ‘n’ nodes within its vicinity. Those nodes will form the 

influence-domain of that integration point. Notice now that an integration point 

representing material ‘k’, can possess inside its influence-domain nodes that are so distant 

that represent other materials. Thus, in meshless methods, an integration point 

(representing a material ‘k’) constructs the shape functions and its partial derivatives 

using, possibly, the nodes representing other materials than ‘k’. 

When the number of nodes is very large, this effect is desirable and produce smooth 

variations on the stress gradient. However, when the number of nodes is reduced, it causes 

abrupt material variations (such as the ones found near the boundary) and the 

approximation can be less smooth on those locations. 

In Figure 9 is represented the hydrostatic pressures for the 2D model, for the used 

numerical method, FEM and RPIM. As can be seen in Figure 9, in the impact proximal 

zone have the hydrostatic pressure presents negative values, caused by compression, and 

in the distal zone the hydrostatic pressure has positive values caused by the traction.  
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Figure 9. Hydrostatic Pressure field, for the 2D FEM and RPIM [MPa]. 

3.3 3D slice Brain Model 

As in the 2D analysis, a Gruen division of the 3D domain of the brain was performed. In 

Figure 10-A are represented the average values of von Mises effective stress for each 

section, and in Figure 10-B are represented the σ11 average stress values also for each 

section. 

 

Figure 10. A: Average von Mises stress obtained in each 3D section and corresponding 

column graphic for FEM and RPIM [MPa]; B: Average σ11 stress in each 3D section and 

corresponding column graphic for FEM and RPIM [MPa]. 

 

Once again, the behaviour of RPIM and the FEM is similar, as shown in Figure 10-A and 

by Figure 10-B. As Table 5 reports, comparing the average percentage difference between 

the σ11 values in the same section, but with different numerical methods, the difference 

does not overcome 8%. This observation is validated with the graph in Figure 10-B.  
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   2D  3D  

 Section  FEM RPIM  FEM RPIM  

         
         
 6  -5,9554E-03 -6,7273E-03  -7,6364E-03 -7,5242E-03  

 5  -3,6333E-03 -3,7150E-03  -4,7459E-03 -4,5347E-03  

 4  6,1787E-05 4,1555E-04  -1,5196E-03 -1,2892E-03  

 3  2,9799E-03 3,3191E-03  2,3195E-03 2,4834E-03  

 2  4,4886E-03 4,9600E-03  4,9504E-03 4,8925E-03  

 1  7,1690E-03 7,9450E-03  8,1350E-03 7,3606E-03  

         
Table 5. Average principal stresses, σ11, for 2D and 3D obtained with the FEM and RPIM 

models in each division [MPa]. 

The sections with lower von Mises effective stress or lower σ11 stresses are the middle 

ones, zones 2 ,3 and 4. As in the 2D, the distal zone has the higher stress values. 

In Figure 11, relevant stress fields are presented. The results allow to sustain that the FEM 

values are higher than RPIM, which corroborates the results of the average stress values 

presented in Figure 10-A and Figure 10-B. 
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Figure 11. Principals stress field, σ11, σ22, and σ33, and von Mises effective stress field for 

3D FEM and RPIM [MPa]. 

3.4 3D Half Brain Model 

In the created half brain 3D model, the same 6 Gruen zones were considered and their 

local average principal stresses σ11 were calculated.  

For comparison purposes in Table 6 are represented the obtained average values of σ11 

for all the 6 zones of the 3D model obtained by extrusion of the 2D model, for both FEM 

and RPIM analyses. Also for comparison purposes, in Table 7 are shown the average 

values of σ11 for the same 6 zones obtained with the 2D model, for both FEM and RPIM 

analyses. 

FEM RPIM

σ11

σ22

3D

σ33

0.015 0 -0.01

11E-3 0 -8.5E-3

8.5E-3 0

10E-3 0 -8E-3

Von-Mises
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 3D Slice Brain Model - 𝜎11 

Section FEM RPIM 

6 -7,6364E-03 -7,5242E-03 

5 -4,7459E-03 -4,5347E-03 

4 -1,5196E-03 -1,2892E-03 

3 2,3195E-03 2,4834E-03 

2 4,9504E-03 4,8925E-03 

1 8,1350E-03 7,3606E-03 

Table 6. 𝝈𝟏𝟏 obtained values for the FEM and RPIM formulation using the developed 

software for the different six sections, for the 3D model obtained with the extrusion of the 

2D. 

 2D Brain Model - 𝜎11 

Section FEM RPIM 

6 -5,9554E-03 -6,7273E-03 

5 -3,6333E-03 -3,7150E-03 

4 6,1787E-05 4,1555E-04 

3 2,9799E-03 3,3191E-03 

2 4,4886E-03 4,9600E-03 

1 7,1690E-03 7,9450E-03 

Table 7. 𝝈𝟏𝟏  obtained values for the FEM and RPIM formulation using the developed 

software for the different six sections, for the 2D model. 

Concerning the half brain 3D model, in Table 8 and Table 9 are represented the average 

σ11 and σ22 stress values of each zone previously mentioned, respectively. In this case, 

the 3D model was analysed with the developed software using the FEM and RPIM 

methodology, and also with ABAQUS software using the linear strain tetrahedral finite 

elements. 

 3D Half Brain Model - 𝜎11 

Section FEM RPIM Abaqus 

6 -7,6418E-02 -7,1221E-02 -7,5084E-02 

5 -4,0565E-02 -3,7638E-02 -4,1784E-02 

4 -4,3978E-03 -2,7899E-03 -9,5437E-03 

3 2,8753E-02 2,8861E-02 2,0582E-02 

2 7,1482E-02 6,9915E-02 5,3468E-02 

1 1,1675E-01 1,1704E-01 8,1727E-02 

Table 8. 𝝈𝟏𝟏 obtained values for the FEM and RPIM formulation using the developed 

software for the different six sections, for the 2D model. 

 3D Half Brain Model - 𝜎22 

Section FEM RPIM ABAQUS 

6 -7,8270E-02 -7,6825E-02 -9,3783E-02 
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5 -4,4932E-02 -4,2249E-02 -5,3389E-02 

4 -1,0981E-02 -9,9260E-03 -1,4131E-02 

3 2,0126E-02 1,8905E-02 2,6471E-02 

2 5,4800E-02 5,2332E-02 6,9180E-02 

1 8,6878E-02 8,6280E-02 1,0566E-01 

Table 9. 𝝈𝟐𝟐 obtained values for the FEM and RPIM formulation using the developed 

software, and for FEM formulation using Abaqus, for the different six sections, for the 

complete 3D model. 

In order to allow a fair comparison with the results obtained with the 2D model and the 

3D slice model, a brain slice with the same thickness of the 3D slice model, was selected 

from the half brain 3D model. In Figure 12, it is shown the selected slice. 

 

Figure 12. Used slice from the 3D model to obtain 𝒔𝟏𝟏 and 𝒔𝟐𝟐 results - isometric view. 

As can be seen in Table 6 to Table 9 the results between different methodologies are very 

similar. Still, comparing the results of the 2D model and 3D model with the half brain 3D 

model, it is possible to visualize that the results are different. Nevertheless, this difference 

was expected.  

Presently, due to the authors’ hardware limitations, it is not possible to analyse a full 3D 

brain (or even a half brain 3D model) with a nodal mesh density comparable to the 2D 

brain model and to the 3D brain slice model. Nonetheless, it was built a 3D geometric 

model of the brain and adjacent structures with the maximum number of nodes allowed 

by the hardware limitations. In this 3D model it is not possible to define with detail all 

the structures defining the brain. For instances, this 3D sparse model does not allow to 

distinguish the brain white and grey matter. 

With the construction and consequent analysis of the 3D half brain model, the analysis of 

this 3D half brain model intended to validate the implemented FEM and RPIM 

formulations against ABAQUS using a more complex 3D model.  

The results from Table 8 and Table 9 show that the implemented FEM and RPIM 

formulations allows to obtain results very close with the ones obtained with ABAQUS.  

96 Original Developed Work



25 

  

Therefore, the difference observed between the results of Table 6 (or Table 7) and Table 

8 does not have its origin in the software. 

The observed difference is mainly due to the discretization level of the complete 3D 

model, which is not capable to accuracy capture the details of the biological structures 

involved in the analysis. As Figure 3 with the increase of the discretization level the 

solution tends to a theoretical converged solution. Unfortunately, the discretization level 

of the complete 3D model has not yet reached a sufficient refinement level. Thus, 

possibly, the obtained solution is still far from the theoretical converged solution. 

Nevertheless, these results are very important, since they reveal the relevance of 

selecting/constructing a proper finite element mesh capable of producing a solution near 

the theoretical converged solution. 

In Figure 13 is represented the hydrostatic pressures of the 3D half brain model obtained 

with the FEM and RPIM formulation. The obtained FEM and RPIM values, as can be 

seen in Figure 13, are very similar. 

 

Figure 13. Hydrostatic Pressure field, for the 3D FEM and RPIM [MPa]. 

4. Conclusions 

In this work, it was used a methodology that allowed the construction and the structural 

analysis of 2D and 3D brain models obtained directly from medical images. From these 

medical images, using the commercial software Mimics©, the mechanical properties 

were obtained according to the segmented anatomical zones. Using the impact 

acceleration found in the literature, corresponding to the head peak acceleration in case 

of an impact, the created models were analysed using RPIM and FEM. Furthermore, it 

was also performed a convergence study to compare both discretization techniques. 

The presented convergence study allowed to understand the importance of the 

discretization level, which is vital to obtain a reliable solution. It was shown that the 
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quality of the discretization level can be gauged by the h parameter. This is an important 

issue in approximation techniques. In many cases, the discretization level in a commercial 

software is selected automatically and the unawareness of a proper discretization level 

can lead to invalid analysis. The convergence study, where the h parameter was analysed, 

show that RPIM has a faster converge rate than the FEM, allowing the usage of sparse 

meshes, still capable to provide valid results. 

Being FEM a widely-used discretization method, with various commercial packages 

available, it has the advantage of being more evolved and optimized. FEM has the 

advantage of being faster when compared to meshless methods because its shape 

functions are simpler to compute due to its lower intrinsic connectivity. Additionally, in 

FEM, the triangular and tetrahedral elements are widely used due to its ability to adjust 

virtually to any geometry. However, as this work has shown, these elements present a 

weaker numerical performance when compared with the RPIM. 

From the obtained stress fields, it is possible to conclude that meshless and FEM results 

are very similar, in magnitude and in spatial distribution. Regarding the 3D results, it is 

visible that the meshless method is capable to produce smoother results when compared 

to the FEM results.  

Comparing the 2D and the 3D slice model solutions, since the acceleration was applied 

only in one direction, the results are comparable using the σ11 field. The von Mises 

effective stress field cannot be used to compare the 3D model with 2D, since for the 2D 

analysis the principal stress component σ33 is null (σ33 =0). Comparing the σ11 fields of 

the RPIM and FEM, it is perceived that the results are very similar in both discretization 

methods. In addition, the average values of σ11 in each section obtained with the RPIM 

are very close with the ones obtained with the FEM.  

This study allowed to conclude that the RPIM is capable to produce variable fields 

smoother than the FEM, especially in the 3D analyses.  

The methodology of dividing the brain domain in standard sections allowed to compare 

efficiently the RPIM and the FEM results. Additionally, this technique will permit to 

compare future results following a standardized system. This is also an advantage since, 

being the brain a region with different mechanical proprieties and different anatomical 

geometries, using the full model average values could lead to a wrong interpretation of 
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the results, but this approach allows to do a simultaneous local and overall results 

interpretation.  

Since the authors built an original RPIM and FEM software, it is possible to understand 

the main differences between both numerical techniques. In biomechanics, the numerical 

model is constructed though imaging techniques. Since meshless methods allow to 

allocate the material properties directly to the nodes, using the pixel/voxel information, 

meshless methods are suitable techniques for biomechanics. It was also found that 

meshless methods also have the benefit of allowing the construction of complex 

geometrical models, without any special concern about the mesh geometry and element 

discretization created by the CAD programs. The literature shows that the most 

disadvantageous feature of the RPIM is the computational cost, which in 3D analyses can 

be 1.5 times slower than the FEM [14]. Nevertheless, in this work, the opposite was 

shown. The RPIM were actually faster than the FEM. 

This study has several limitations. First, it was used a 3D brain model constructed from 

the extrusion of the 2D model, resulting in the lost the anatomical real reproduction. In 

addition, the created half brain 3D model was not capable to accuracy capture the details 

of the biological structures involved in the analysis due to the discretization level, leading 

to the observed differences. Nevertheless, the obtained results are important to emphasise 

the relevance of selecting/constructing a proper finite element mesh capable of producing 

a solution near the theoretical converged solution. Moreover, the study was performed 

considering a linear elastic regime, neglecting the viscoelastic mechanical proprieties of 

the brain. Additionally, it was also used in substitution of the CSF, a fluid, a mechanical 

propriety of the dura mater with ν=0.45. Furthermore, although the impact analysis 

demands a dynamic and transient regime, all the studies here presented were analysed 

assuming a quasi-static analysis.  
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3.4 Homogenisation Technique

The following contributions focus on the definition of a multiscale homogenisation technique,

where it was used the fabric tensor concept. The methodology was firstly explored in the 2D di-

mension, where the methodology was evaluated concerning it robustness upon changes in the RVE

size and rotation. In these works, the FEM and the meshless methods were explored in order to

validate the equivalence of the homogeneous mechanical properties obtained using the methodol-

ogy with trabecular mechanical properties obtained from the literature. After the development of

the 2D methodology, it was developed the 3D methodology, where the same concepts were used,

but expanded to 3D.

2D Homogenisation Technique

3.5 Contribution III: A multiscale homogenisation procedure using

the fabric tensor concept.

3.5.1 Highlights of Contribution: 3.5

This contribution focused on the bone mechanical properties definition using a homogenisation

technique, defined by the fabric tensor concept.

Therefore, the main contents of this publication include:

I. Literature review on multiscale homogenisation techniques;

II. Literature review on the fabric tensor concept;

III. Application of a homogenisation technique, defined using a morphologically based fabric

tensor and a phenomenological material law method;

IV. Validate of the homogenisation methodology using numerical tests involving size and rota-

tion analyses;

V. Applied a structural analysis using FEM, where it was created a metric able to compare

heterogenous and equivalent homogeneous domains.
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VI. Conclusion: The methodology introduced in this contribution allowed to define the me-

chanical properties trabecular bone just using of a micro-CT information. As demonstrated

in figure 3.4, by using the developed methodology a homogenous domain, with a less dis-

cretised mesh, is mechanically equivalent to a highly discretised heterogeneous domain.

Thus, the methodology, as demonstrated in figure 3.5, provide models defined with the ho-

mogeneous domains and mechanical properties that have a lower computational cost, when

compared to the equivalent heterogeneous models.

Figure 3.4: Contribution III numerical convergence comparing structural analysis using heteroge-
neous models and the equivalent homogeneous ,defined using the developed methodology.

Figure 3.5: Contribution III computational time.

The complete document can be found in the next pages.
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Abstract 

Bone is a heterogeneous material in which structural levels can be identified, from the microscale to macroscale. Multiscale models 
enable to model the material using homogenization techniques. In this work, an innovative homogenization technique for trabecular 
bone tissue is proposed. The technique combines the fabric tensor concept and a bone phenomenological material law, linking the 
apparent density with the trabecular bone mechanical properties. The proposed methodology efficiently homogenizes the trabecular 
bone highly heterogeneous medium, allowing to define its homogenized microscale mechanical properties and to reduce the analysis 
computational cost (when compared with classical homogenization techniques). 
In order to verify the efficiency of the technique, several examples were solved using a confined square patch of trabecular bone 
under compression. In the end, the results obtained with a classic homogenization technique and the proposed methodology were 
compared. 
Keywords: Fabric Tensor; homogenization; multiscale. 

1. Introduction 

Bone biomechanics, one of the main biomechanics field of study, is based on the idea that load bearing bone tissues are 
structurally optimized for their mechanical function [1,2]. It is normal to classify bone as a hierarchical structure, where 
different structural levels can be identified as belonging to a macroscale or a microscale level [3]. The entire bone 
(macroscale) and the trabecular architecture level (microscale), can be defined by different physical properties due to 
its different functional requirements. At the trabecular level, microscale, it is possible to recognize the bone trabecular 
non-homogeneous structure, which after being homogenized allows to define local anisotropic homogeneous 
mechanical properties, such as apparent density and directional elastic moduli. 
Bone is a tissue that renews itself by a biological process called bone remodelling [4]. This bone remodelling is 
progressive and induces adaptation of bone morphology to any new external stimulus. Wolff in 1886 reported that 
strain/stress induces bone remodelling [5]. Thus, Wolff documented that the orientation of trabecular bone coincides 
with the direction of the stress trajectories, proposing that external loads were, somehow, sensed by the bone. This 
principle is known as Wolff’s law. In 1939 Wolff’s law was firstly described in vitro by Glucksmann in 1939 [6] and it 
was described mathematically in 1965 by Pauwels et al. [7]. Later, this formulation was computationally implemented 
by Pettermann et al. [8]. In their bone remodelling algorithms, many authors have considered bone as an isotropic 
material, a simplistic approach on the behaviour of trabecular bone, disregarding the importance of orientation in the 
remodelling process [9–12]. 
Meanwhile other models where created linking material density and orientation with its anisotropic mechanical 
properties, allowing to overcome the material isotropy simplification. These remodelling models not only avoid any a 
priori assumption on material but also take into account the trabecular architecture [13–16]. More recent models start 
to consider biological and mechanical factors based on bone cell activity, resulting in mechanobiological models, which 
allow to simulate the evolution of bone tissue considering both mechanical and biological stimuli [17–20]. 
Bone started to be characterized mechanically using the fabric tensor concept [21,22]. The Fabric tensor is a symmetric 
second rank tensor that characterizes the arrangement of a multiphase material, encoding the orientation and anisotropy 
of the material. Back in 1985, Cowin [23] developed a relation between the elasticity tensor ℂ"#$%	and a fabric tensor	𝑨, 
proving that an ellipsoid may be associated with the variation of material symmetries observed in many natural 
materials. The fabric tensor can be acquired by two different techniques, the mechanical based techniques and by the 
morphologic-based. In morphologic-based methods, the fabric tensor is estimated using the interface between phases 
of the material. The bone morphology is usually obtained using a micro-CT (at the microscale) or a CT (at the 
macroscale). Most of the available techniques, using morphologic-based methods, obtain the fabric tensor applying an 
orientation distribution function (ODF), which is estimated from an orientation-dependent feature of interest.  
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In mechanics, and in biomechanics, the accurate determination/characterization of the material's mechanical properties 
is a key parameter, which will allow to describe and predict numerically the behaviour of such materials for different 
scenarios.  
Discrete numerical methods allow to study and analyse in silico the behaviour of materials and structures, being the 
finite element method (FEM) one of the most popular discrete numerical method [24].  

2. Homogenization technique 

In this section, the used homogenization technique is fully described. Firstly, 2D images (thin slices) were selected. The 
images correspond to the cuboid bone and describe locally the bone morphology at its microscale. Then, it was applied 
the fabric tensor concept in order to determine the material orientation to the selected square microscale images. 
Additionally, a bone tissue phenomenological law was used to obtain the homogenized material properties of the 
microscale patch. This homogenization allowed to define the anisotropic mechanical properties of the trabecular bone. 
Fig. 1 represents the algorithm describing the proposed homogenization technique. 

2.1. Fabric tensor morphologic based method  

By defining a relevant micro-CT slice image and then identifying a square region of interest with relevant information 
(the binary image represented in the left-upper image of Fig. 1), it was possible to define the morphologic based fabric 
tensor. This square patch, a grey scale image, was then binarized, resulting in a binary image 𝐼)	  that contained the 
characteristic morphology of the (local) trabecular bone. 
To define the fabric tensor it was used a methodology developed by Whitehouse [25], in which the number of 
interceptions between a parallel family line set, with direction 𝜄, with the interface between both phases of the material 
were counted, 𝐼𝑛𝑡(𝜄). The length of the parallel lines family, ℎ, for the 𝜄 direction was also obtained. Knowing ℎ and 𝜄, 
it was possible to define the ODF, which in this case is called Mean Intercept Length (MIL), represented in equation 
(1). 
 

𝑀𝐼𝐿(𝜄) = ℎ/𝐼𝑛𝑡(𝜄)  (1) 
 
Whitehouse’s methodology is considered a golden standard to predict mechanical properties of trabecular bone since 
exists a large amount of works that sustain its appropriateness [25–29]. The literature shows that when the ODF data is 
disposed on a polar plot and fitted in an ellipse, the corresponding ellipse parameters can be correlated with the material 
orientation (its anisotropy), in particular the trabecular bone [30]. 
The dimensional information of 𝐼7	 was used to define the size of an image containing the family of parallel lines with 
𝜄 = 0°. Counting the interceptions of those parallel lines with the boundaries of the binary image square patch, it was 
possible to obtain the orientation-dependent feature.  
By rotating the family of parallel lines image with 𝜄 between 0°	and 180°, and then counting the interception of the 
family of parallel lines with the square patch binary image 𝐼7	, it was possible to obtain the ODF of the 𝐼7	. The created 
data for 𝜄 between ]180°, 360°]is a ]0°, 180°] data repetition, since the orientation-dependent feature depends only on the 
orientation and it is not influenced by the direction.  
The created ODF data was then plotted in polar coordinates, where it was fitted into an ellipse, from which it was 
possible to obtain the material orientation of the trabecular micropatch (see both central boxes of Fig. 1). 
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Fig. 1 - Microscale homogenization technique.  

From the fitted ellipse, three parameters were extracted: the ellipse minor axis length, bmin; the major axis length, bmax 
; and the q, the angle of ellipse major axis with the polar plot horizontal axis. 

2.2. Phenomenological material law method 

Using the fitted ellipse information and the average apparent density of the binary image 𝐼7	 it was possible to define the 
homogenized anisotropic mechanical properties of 𝐼7	. Thus, first it was necessary to define the average apparent density, 
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𝜌BCC, of the binary image 𝐼7	. As equation 2 shows, the apparent density, 𝜌BCC, was obtained using the number of white 
pixels, 𝛼E and black pixels, 𝛼F, of 𝐼7	. In this work, the cortical bone apparent density was assumed as 𝜌GHHIJKLMIBN =
2.1g/cmS 

𝜌GHH = (𝛼T/𝛼U)𝜌GHHVWXY"VG% (2) 

Using the 𝜌BCC	and the phenomenological material law [31], the axial elastic modulus 𝐸B[MBN	could be defined. 
If 𝜌BCC ≤ 1.3, equation 3 is applied, otherwise, it should be used equation 4 [31]. Coefficients 𝑎^	and 𝑏^ can be found in 
Table 1 

𝐸G`"G% = ∑ 𝑎#	𝜌GHHS
#bc 	𝑖𝑓	𝜌GHH ≤ 1.3 (3) 

𝐸G`"G% = ∑ 𝑏#	𝜌GHHS
#bc 	𝑖𝑓	𝜌GHH > 1.3 (4) 

Table 1 - Coefficients for the assumed phenomenological material law [31]. 

 𝑗 = 0 𝑗 = 1 𝑗 = 2 𝑗 = 3 

𝑎^ 0.0E+00 7.216E+02 8.059E+02 0.0E+00 

𝑏^ -1.770E+05 3.861E+05 -2.798E+05 6.836E+04 

 
The transverse elastic modulus 𝐸LKBh7iwas defined using the relation between the ellipse minor axis length, 𝛽kMh, and 
major axis length, 𝛽kB[, and the axial elastic modulus 𝐸B[MBN as equation 5 shows. 

𝐸YXG)lm = (‖𝛽o"l‖𝐸G`"G%)/‖𝛽oG`‖ (5) 

The Poisson's coefficient, 𝜈, was calculated according the mixture theory, using the relation between white and black 
pixels, as represented in equation 6, being 𝛼L the total number of pixels of the binary image 𝐼7. 

𝜈 = (0.0𝛼U + 0.3𝛼T)/(𝛼Y) (6) 

The shear modulus,	𝐺, was expeditiously calculated using equation 7. 

𝐺 = 𝐸G`"G%/s2(1 + 𝜈)t (7) 

As Fig. 1 shows, using the homogenized material properties (𝐸G`"G% , 𝐸LKBh7i, 𝜈 and 𝐺) the constitutive matrix was 
defined 𝒄J[vwv for the 𝑜𝑥′𝑦′ local coordinate system (oriented with the material principal axis, following the material 
principal directions ‘axial’ and ‘transverse’). To define this matrix in global axis, it is used the angle 𝜃 obtained from 
the ellipse fitting, and then it is applied a rotation matrix 𝑻, equation 8. Thus, it is possible to define the material 
constitutive matrix in global axis, 𝒄J[w, equation 9. Notice that 𝒄 = 𝒔��, being the anisotropic compliance matrix 𝒔 
defined by equation 10. 

𝑻(𝜃) = �
	𝑐𝑜𝑠(𝜃) −𝑠𝑖𝑛	(𝜃) 0
𝑠𝑖𝑛	(𝜃) 𝑐𝑜𝑠	(𝜃) 0
0 0 1

� (8) 

𝒄𝒐𝒙𝒚 = 𝑻(𝜽)𝑻𝒄𝒐𝒙v𝒚v𝑻(𝜽) = �
	𝒄𝟏𝟏 𝒄𝟏𝟐 𝒄𝟏𝟑
𝒄𝟐𝟏 𝒄𝟐𝟐 𝒄𝟐𝟑
𝒄𝟑𝟏 𝒄𝟑𝟐 𝒄𝟑𝟑

� (9) 

𝒔 =

⎣
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��������
���
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���

0
�����������

���
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���

0

0 0 �
���⎦
⎥
⎥
⎥
⎤

 (10) 

3. Numerical Examples 

To validate the homogenization methodology, some numerical tests were performed involving size and rotation analyses 
of predefined 𝐼7 binary images. 
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Thus, to confirm the robustness of the proposed technique, a benchmark binary image (with a known preferential 
material orientation) was analysed. Then, the input image was rotated and it was verified if the fitted ellipse (from the 
fabric tensor based methodology) was aligned with the material orientation of the image. 
Furthermore, in order to verify the behaviour of the proposed homogenization technique, it was performed a structural 
FEM analysis using two distinct geometrical models (a homogeneous model and a heterogeneous model). 

3.1. Validation of MIL methodology 

The validation of the MIL methodology was assessed with two distinct studies. The first study verified the influence of 
the size of the representative volume element (RVE) in the determination of the anisotropic constitutive matrix. In the 
second study, the consistency of the methodology was tested, by imposing a known material orientations to the model.  

3.1.1. RVE size 
In order to understand the influence of the size of the RVE in the proposed methodology, two distinct models were 
constructed, figure Fig. 2a) and figure Fig. 2b). The model presented in figure Fig. 2a) is a benchmark fabricated unitary 
binary image showing a well-defined material orientation (90°). This model was repeated 𝑟h × 𝑟h , being 𝑟h the number 
of repetitions of the RVE. For illustration purposes, Fig. 2c) represents a 10 × 10 repetition. 
Alternatively, the model shown in figure Fig. 2b) is a unitary binary image representing a realistic trabecular square 
patch obtained from a micro-CT image. Similarly to the benchmark fabricated unitary binary image, this patch was 
repeated 𝑟h × 𝑟h, being the 10 × 10 repetition shown in figure Fig. 2d). 
The propose homogenization methodology was applied to each one of the RVEs (fabricated benchmark and realistic 
square patch) and their several corresponding repetitions 𝑟h × 𝑟h, being 𝑟h = {1,2,3, … ,10}. 
Following the described homogenization methodology, it was possible to obtain all the components of the constitutive 
tensor 𝒄W`�v as can be seen in Fig. 3a), for the the realistic trabecular RVE, and in Fig. 3b) for the fabricated benchmark 
RVE. In both figures, it is possible to visualize the evolution of the components of the constitutive matrix, 𝑐M^, with 
respect to the number of repetitions of the corresponding basic unit RVE. For both RVEs types (benchmark and 
realistic), it is perceptible that the value of each component of the constitutive matrix, 𝑐M^, do not vary significantly with 
the number of repetitions, 𝑟h. 
Notice that for the fabricated benchmark RVE, as expected, 𝜃 does not vary significantly (the average value is 45° with 
a standard deviation of 0°). Similar, for the realistic trabecular RVE the number of repetitions do not relevantly change 
the material orientation angle of the basic unit RVE being the obtained average value: 115.7° with a standard deviation 
of 1.0°. 

3.1.2. RVE rotation 
To verify if the developed methodology was capable to deliver accurate material orientations, both, the benchmark 
fabricated RVE, figure Fig. 2a), and the realistic trabecular RVE, figure Fig. 2b) were rotated. The RVEs were rotated 
in relation to their initial position following increment angles of 20°	between the interval [0°, 180°]. Fig. 4 and Fig. 5 
show the results of a single analysis for the exposed case. It was possible to visualize the orientation/size of the produced 
ellipse and the corresponding angle of the material. In Fig. 6 are represented the material orientation angles 𝜃 of the 
fitted ellipse, and the expected ones for a 20° rotation. The difference between the expected orientation and the obtained 
material orientation 𝜃 (coming from the proposed MIL algorithm) can be explained by the change of the source image 
upon the rotation process, performed using a MATLAB 2016b function. This leads to the change of the number of white 
pixels of the image, a parameter closely related with the calculation of the fabric tensor.  

4. Structural application 

In this section it was verified if a homogenized RVE, with homogenized anisotropic mechanical properties obtained 
with proposed methodology, was capable to produce a homogenize von Mises effective stress field similar with the one 
obtained with a heterogeneous RVE. To evaluate the efficiency of the proposed homogenization technique, it was 
performed a structural analysis of the realistic trabecular RVE, figure Fig. 2b), and its 𝑟h × 𝑟h repetitions, and the results 
were compared with the ones obtained with a homogeneous RVE. 
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a) b) c) d) 

Fig. 2 - Binary images used to verify the MIL dependence on the RVE size. (a) Benchmark fabricated unitary image, (b). Realistic binary image 
from a micro-CT. To analyse the effect of using different RVE sizes, the binary images were repeated up to a 10´10  repetitions, c) 10´10  

repetitions of benchmark fabricated unitary image and d) 10´10  repetitions realistic binary image. 

  
a) b) 

Fig. 3 - Constitutive matrix values obtained using a unitary image and up to 10´10 repetitions. (a) Results for the trabecular square patch obtained 
using the micro-CT image. (b) Results for the created image. 

 

Fig. 4 - Benchmark fabricated RVE rotation results, for the 20º case. 

 

Fig. 5 – Realistic trabecular RVE rotation results, for the 20º case. 

The same essential and natural boundary conditions were applied to all the RVEs. Being all the RVEs squares micro 
patches with dimensions 𝐿 × 𝐿, it was imposed a displacement of 0.1 × 𝐿 at the nodes of the top layer, 𝑦 = 𝐿 . The 
nodes at 𝑥 = 0  and 𝑥 = 𝐿	where constrained on 𝑂𝑥  direction, 𝑢 = 0 , and the nodes at 𝑦 = 0  and 𝑦 = 𝐿   where 
constrained on 𝑂𝑥 and 𝑂𝑦 direction, 𝑢 = 0 and 𝑣 = 0. This constrains are exemplified in Fig. 7. 
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The homogeneous RVE is typically discretized by a set of 𝑛 × 𝑛 nodes uniformly distributed within the RVE domain, 
Fig. 8a). All the integration points of the homogeneous RVEs models possess the same homogenized material 
properties, while the heterogeneous RVEs (the realistic trabecular RVE) is formed by trabecular bone and void space, 
the discretization of such complex domain is exemplified in Fig. 8b). 
Applying the proposed homogenization technique to the RVE it was possible to obtain the anisotropic material 
properties presented  
Table 2, column "Homogeneous RVE". Thus, every integration point of the homogeneous RVEs assumed these 
materials properties. 
Since the realistic trabecular RVEs are binary images, containing bone or void space, it was necessary to assume 
mechanical properties for these two materials, as indicated in  
Table 2, trabecular bone and void space. 
Following the literature, the mechanical properties of the trabecular bone were defined as isotropic [32]. 
Since the geometrical information coming from the micro-CT forces the existence of the void space in between the 
trabeculae, it was necessary to define this 'material' as solid, hence, the material was defined as a soft material that 
would not (significantly) interfere with the global structural response of the RVE, being attributed an elastic modulus 
with a much lower magnitude when compared with the trabecular bone. 
Two homogeneous RVEs were analysed, one with 11 × 11 nodes and another with 21 × 21 nodes. The von Mises 
effective stress maps obtained with FEM, presented in Fig. 9a) and Fig. 9b). 
In order to compare the stress field obtained with the homogeneous RVE with the heterogeneous RVE, the concept of 
homogenized stress was used. The RVE's von Mises effective stress field (or any other RVE's stress/strain field) can be 
summarized in one scalar value, the homogenized von Mises effective stress, which can be defined with equation 11, 
being 𝑛§ the number of integration points discretizing the problem domain and not belonging to the vicinity of the 
domain boundary. 
 
Table 2 - Mechanical properties used in the structural analysis. 

Mechanical Properties 

Homogenized 

RVE 

Trabecular 

bone 
Void Space 

Eaxial 2366.08 MPa E 11600 MPa E 100 MPa 

Etranv 1035.86 MPa   

G 4239.87 MPa   

q 62º   

n 0.12 n 0.36 n 0.45 

 

𝜎©ªª« = 1/𝑛¬s∑ 𝜎(𝒙M)©ªª
l­
Mb� t  (11) 

 
In Fig. 10 blue dots represent the integration points that were included to calculate 𝜎©ªª«  and in red the integration points 
that were excluded from equation 11. 
This homogenization excludes only 2% of the integration points forming the integration mesh. This exclusion was 
necessary to avoid the (inaccurate) stress concentrations that appear near the domain boundary, as can be seen in Fig. 9 
Thus, Fig. 11 shows the homogenized von Mises effective stress, 𝜎©ªª« 	obtained for each analysed RVE, using FEM. In 
this figure, besides the homogenized von Mises effective stress obtained in the integration points, it is also shown the 
𝜎©ªª«  extrapolated to the nodes. The stress at the nodes was obtained by linear extrapolation using the element 
information. 
Notice that four heterogeneous RVE were considered: a 1 × 1  heterogeneous RVE (corresponding to the one 
represented in Fig. 9c), a 2 × 2 heterogeneous RVE (corresponding to the one represented in Fig. 9d), a 3 × 3 and a 
4 × 4 heterogeneous RVEs following the same repetition rule.It is visible in Fig. 11 that increasing the level of detail 
and the size of the heterogeneous RVE, which are governed by the number of repetitions (the 1 × 1 RVE has a lower 
detail than the 4 × 4 RVE), the value of the homogenized stress decreases. Thus, when the analysis considers a 
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heterogeneous model following a 4 × 4 repetition, the obtained homogenized stress is very close with the homogenized 
stress obtained with the homogeneous RVE. 

 

Fig. 6 - Obtained material orientation angles q of the fitted ellipse versus the expected ones for the benchmark fabricated RVE and the realistic 
trabecular RVE. 

 

Fig. 7 -Boundary conditions applied to all RVEs. 

  
a) b) 

Fig. 8 – a) Discretized homogeneous RVE; b) Example of a discretized heterogeneous RVE created using micro-CT image information. 
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(a) (b) (c) (d) 

Fig. 9 – Effective Stress for the homogeneous model, a) 1´1 and b) 2´2, and for heterogeneous model, c) 1´1 and d) 2´2. 

 

 

Fig. 10 - Integration points used to calculate the homogenized von Mises effective stress. The blue points represent valid integration points, the red 
points represent excluded integration points. Integration mesh of the homogenized RVE for FEM analysis; 

 

Fig. 11 - Homogenized von Mises effective stress 𝜎©ªª«  obtained with FEM methodology. 

 

Fig. 12 - Computational cost (in seconds) of each analysis. 

This indicates that the homogenization technique proposed in this work is capable to accurately obtain the homogenized 
anisotropic material properties of a trabecular patch. Each one the analyses has its own computational cost. In Fig. 12 
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are shown the time-lapse of each structural analysis. Observing the computational cost of each analysis, it is possible to 
understand that the analysis of the homogenized RVE is much faster than heterogeneous RVEs (with 𝑟h × 𝑟h, 𝑟h =
{1,2,3,4}). In Fig. 11 it was shown that the 4 × 4 heterogeneous RVE produces results very close with the homogeneous 
RVE. However, the 4 × 4 heterogeneous RVE took 5000𝑠 to analyse and the homogeneous RVE only required 4 − 6𝑠 
. 
Generally, the multiscale techniques use highly discretized RVEs, with a high computational cost associated. As this 
example shows, the proposed homogenization methodology is capable to reduce the computational cost of the multiscale 
analysis, enabling more demanding simulations. 

5. Conclusions 

The methodology introduced in this work allowed to define the mechanical properties of a micro-CT trabecular bone 
square patch without any a-priory knowledge. The obtained data using the MIL methodology, enabled to define the 
material orientation using a distribution function. This function was approximated by a ellipse function, as described by 
Moreno et al. [30], that can define a tensor (a 2 × 2 matrix) that represents the bone trabeculae distribution/density. 
With this, it was possible to define the material mechanical properties, directly related with the trabeculae anisotropy 
encoded in the fabric tensor and with a phenomenological material law [31]. The studies performed to evaluate the 
behaviour of the methodology (both RVE scale and rotation studies), revealed that this methodologies are stable and 
provide solid results. In this work, it was verified that with the homogeneous RVE (whose material properties were 
obtained using the proposed homogenisation technique) it was possible to produce similar results with the ones obtained 
with highly heterogeneous RVE (the heterogeneous RVE). 
Nevertheless, it was shown that an elasto-static analysis using the homogeneous RVE only takes 4 − 6𝑠 to perform and 
the same analysis with the 4 × 4 heterogeneous RVE takes about 5000s, 1000´ more. 
Since usually multiscale techniques use highly discretized RVEs, it is expected that the homogenization technique here 
proposed will be capable to reduce the cost of the multiscale analyses, allowing to simulate more complex problems. 

Acknowledgements 

The authors truly acknowledge the funding provided by Ministério da Ciência, Tecnologia e Ensino Superior - Fundação 
para a Ciência e a Tecnologia (Portugal), under Grants SFRH/BD/110047/2015 and SFRH/BPD/111020/2015, and by 
project funding MIT-EXPL/ISF/0084/2017 and UID/EMS/50022/2013. Additionally, the authors gratefully 
acknowledge the funding of Project NORTE-01-0145-FEDER-000022 - SciTech - Science and Technology for 
Competitive and Sustainable Industries, cofinanced by Programa Operacional Regional do Norte (NORTE2020), 
through Fundo Europeu de Desenvolvimento Regional (FEDER). 

References 

[1] Carter DR, Van Der Meulen MC, Beaupré GS. Mechanical factors in bone growth and development. Bone 1996;18:5S–10S. 
doi:10.1016/8756-3282(95)00373-8. 
[2] Mow VC, Ratcliffe A, Poole AR. Cartilage and diarthrodial joints as paradigms for hierarchical materials and structures. 
Biomaterials 1992;13:67–97. 
[3] Lucchinetti E. Composite Models of Bone Properties. Bone Mech. Handbook, Second Ed., CRC Press; 2001, p. 12-1-12–9. 
doi:10.1201/b14263-16. 
[4] Wnek GE, Bowlin GL. Encyclopedia of Biomaterials and Biomedical Engineering. New York: Informa Healthcare USA; 2008. 
[5] Wolff J. The Law of Bone Remodelling. J Anat 1986;155:217. doi:10.1097/00006534-198810000-00036. 
[6] Glucksmann A. Studies on Bone mechanics in vitro. Anat Rec 1939;73:39–55. doi:10.1002/ar.1090730105. 
[7] Pauwels F. Gesammelte Abhandlungen zur funktionellen Anatomie des | Friedrich Pauwels | Springer. Springer 1965:543. 
[8] Pettermann HE, Reiter TJ, Rammerstorfer FG. Computational simulation of internal bone remodeling. Arch Comput Methods 
Eng 1997;4:295–323. doi:10.1007/BF02737117. 
[9] Hart RT, Davy DT, Heiple KG. A Computational Method for Stress Analysis of Adaptive Elastic Materials With a View Toward 
Applications in Strain-Induced Bone Remodeling. J Biomech Eng 1984;106:342. doi:10.1115/1.3138503. 

116 Original Developed Work



 

[10] Huiskes R, Weinans H, Grootenboer HJ, Dalstra M, Fudala B, Slooff TJ. Adaptive bone-remodeling theory applied to prosthetic-
design analysis. J Biomech 1987;20:1135–50. doi:10.1016/0021-9290(87)90030-3. 
[11] Carter DR, Fyhrie DP, Whalen RT. Trabecular bone density and loading history: Regulation of connective tissue biology by 
mechanical energy. J Biomech 1987;20:785–94. doi:10.1016/0021-9290(87)90058-3. 
[12] Beaupré GS, Orr TE, Carter DR. An approach for time-dependent bone modeling and remodeling-theoretical development. J 
Orthop Res 1990;8:651–61. doi:10.1002/jor.1100080506. 
[13] Jacobs CR, Simo JC, Beaupré GS, Carter DR. Adaptive bone remodeling incorporating simultaneous density and anisotropy 
considerations. J Biomech 1997;30:603–13. doi:10.1016/S0021-9290(96)00189-3. 
[14] Fernandes P, Guedes JM, Rodrigues H. Topology optimization of three-dimensional linear elastic structures with a constraint 
on “perimeter.” Comput Struct 1999;73:583–94. doi:10.1016/S0045-7949(98)00312-5. 
[15] Doblaré M, Garcı́a JM. Application of an anisotropic bone-remodelling model based on a damage-repair theory to the analysis 
of the proximal femur before and after total hip replacement. J Biomech 2001;34:1157–70. doi:10.1016/S0021-9290(01)00069-0. 
[16] Doblaré M, Garcı́a JM. Anisotropic bone remodelling model based on a continuum damage-repair theory. J Biomech 2002;35:1–
17. doi:10.1016/S0021-9290(01)00178-6. 
[17] García-Aznar JM, Rueberg T, Doblare M. A bone remodelling model coupling microdamage growth and repair by 3D BMU-
activity. Biomech Model Mechanobiol 2005;4:147–67. doi:10.1007/s10237-005-0067-x. 
[18] Hazelwood SJ, Bruce Martin R, Rashid MM, Rodrigo JJ. A mechanistic model for internal bone remodeling exhibits different 
dynamic responses in disuse and overload. J Biomech 2001;34:299–308. doi:10.1016/S0021-9290(00)00221-9. 
[19] Taylor D, Lee TC. Microdamage and mechanical behaviour: predicting failure and remodelling in compact bone. J Anat 
2003;203:203–11. doi:10.1046/j.1469-7580.2003.00194.x. 
[20] Hernandez CJ, Beaupré GS, Carter DR. A model of mechanobiologic and metabolic influences on bone adaptation. J Rehabil 
Res Dev 2000;37:235–44. 
[21] Hazrati Marangalou J, Ito K, van Rietbergen B. A novel approach to estimate trabecular bone anisotropy from stress tensors. 
Biomech Model Mechanobiol 2015;14:39–48. doi:10.1007/s10237-014-0584-6. 
[22] Moreno R, Smedby Ö, Pahr DH. Prediction of apparent trabecular bone stiffness through fourth-order fabric tensors. Biomech 
Model Mechanobiol 2016;15:831–44. doi:10.1007/s10237-015-0726-5. 
[23] Cowin SC. The relationship between the elasticity tensor and the fabric tensor. Mech Mater 1985;4:137–47. doi:10.1016/0167-
6636(85)90012-2. 
[24] Zienkiewicz OC, Taylor RL. The Finite Element Method. 4th ed. London: McGraw-Hill; 1994. 
[25] Whitehouse WJ. The quantitative morphology of anisotropic trabecular bone. J Microsc 1974;101:153–68. doi:10.1111/j.1365-
2818.1974.tb03878.x. 
[26] Cowin SC, Doty SB. Tissue Mechanics. Springer Science; 2007. 
[27] Mizuno K, Matsukawa M, Otani T, Takada M, Mano I, Tsujimoto T. Effects of structural anisotropy of cancellous bone on 
speed of ultrasonic fast waves in the bovine femur. IEEE Trans Ultrason Ferroelectr Freq Control 2008;55:1480–7. 
doi:10.1109/TUFFC.2008.823. 
[28] Odgaard A. Three-dimensional methods for quantification of cancellous bone architecture. Bone 1997;20:315–28. 
doi:10.1016/S8756-3282(97)00007-0. 
[29] Zysset PK. A review of morphology–elasticity relationships in human trabecular bone: theories and experiments. J Biomech 
2003;36:1469–85. doi:10.1016/S0021-9290(03)00128-3. 
[30] Moreno R, Borga M, Smedby O. Techniques for Computing Fabric Tensors - A Review. Math. Vis., vol. 5, 2014, p. pp 271-
292. doi:10.1007/978-3-642-54301-2_12. 
[31] Belinha J, Jorge RMN, Dinis LMJS. A meshless microscale bone tissue trabecular remodelling analysis considering a new 
anisotropic bone tissue material law. Comput Methods Biomech Biomed Engin 2012;5842:1–15. 
doi:10.1080/10255842.2012.654783. 
[32] Natali AN, Carniel EL, Pavan PG. Constitutive modelling of inelastic behaviour of cortical bone. Med Eng Phys 2008;30:905–
12. doi:10.1016/j.medengphy.2007.12.001. 
 

3.5 Contribution III: A multiscale homogenisation procedure using the fabric tensor concept. 117



118 Original Developed Work

3.6 Contribution IV: Combining the radial point interpolation mesh-

less method with a new homogenisation technique for trabecular

bone multiscale structural analyses.

3.6.1 Highlights of Contribution: 3.6

This contribution focused on the bone mechanical properties definition using a homogenisation

technique, defined by the fabric tensor concept, combined with the RPIM meshless method.

Therefore, the main contents of this publication include:

I. Literature review on multiscale homogenisation techniques;

II. Literature review on the fabric tensor concept;

III. Application of a homogenisation technique, defined using a morphologically based fabric

tensor and a phenomenological material law method;

IV. Validate of the homogenisation methodology using numerical tests involving size and rota-

tion analyses;

V. Applied a structural analysis using FEM and RPIM, where it was used a metric able to

compare heterogenous and equivalent homogeneous domains.

VI. The RPIM meshless method results are very similar to the FEM methods, reinforcing the

applicability of meshless methods in biomechanical applications.

VII. Conclusion: The methodology introduced in this contribution allowed to define the mechan-

ical properties of trabecular bone by using medical images information. As demonstrated in

figure 3.6, by using the developed methodology a homogenous domain, with a less discre-

tised mesh, is mechanically equivalent to a highly discretised heterogeneous domain. Thus,

the methodology, as demonstrated in figure 3.7, provides models defined with the homoge-

neous domains and mechanical properties representing a lower computational cost, when

compared to the equivalent heterogeneous models.
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Figure 3.6: Contribution IV convergence study results.

Figure 3.7: Contribution IV computational time.

The complete document can be found in the next pages.



 

Title: Combining radial point interpolation meshless method with a new homogenization 

technique for trabecular bone multiscale structural analyses 

Abstract: 

Purpose: Bone tissue is a dynamic tissue, possessing different functional requirements at 

different scales. This layered organization indicates the existence of a hierarchical 

structure, which can be characterized to distinguish macro-scale from micro-scale levels. 

Structurally, both scales can be linked by the used of classic multiscale homogenization 

techniques. Since in bone tissue each micro-scale domain is distinct form its neighbour, 

applying a classic multiscale homogenization technique to a complete bone structure 

could represent an inadmissible computational cost. Thus, this work proposes a 

homogenization methodology that is computationally efficient, presenting a reduced 

computational cost, and capable to define the homogenized microscale mechanical 

properties of the trabecular bone highly heterogeneous medium. 

Methods: The methodology uses the fabric tensor concept in order to define the material 

principal directions. Then, using an anisotropic phenomenological law for bone tissue 

correlating the local apparent density with directional elasticity moduli, the anisotropic 

homogenized material properties of the micro-scale patch are fully defined. To validate 

the developed methodology, several numerical tests were performed, measuring the 

sensitivity of the technique to changes in the micro-patch size and preferential orientation. 

Results: The results show that the developed technique is robust and capable to provide a 

consistent material homogenization. Additionally, the technique was combined with two 

discrete numerical techniques: the finite element method and radial point interpolation 

meshless method. 

Conclusions: Structural analyses were performed using real trabecular patches, showing 

that the proposed methodology is capable to accurately predict the micro-scale patch 

mechanical behavior in a fraction of the time required by classic homogenization 

techniques. 

Keywords: Meshless Methods, Radial Point Interpolation Method, Fabric Tensor, 

Homogenization Technique, Multiscale 

1. Introduction 

Bone is a mineralized biological structure defined by bone matrix and by bone cells. 

Among many other functions, bone is designed to structurally support soft tissues in the 
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body. The renew of bone occurs by a biological process called bone remodeling [20]. In 

addition to its morphology adaptation, bone also changes its macro-scale mechanical 

properties to fulfill and optimize the specific physiological function of structural support 

[6]. In order to understand bone structure and biological and mechanical functions bone 

can be classified in different hierarchical structures, constituted of many scale levels with 

specific interactions and with very complex architectures [10] Some authors classify bone 

with different structural levels from the macroscale (whole bone) to sub-nanoscale 

(hydroxyapatite crystals, constituent of the inorganic phase of bone and TC molecules) 

[1]. Since the bone has different functional requirements at different scales, to analyze 

the equivalent (homogenized) mechanical behavior of bone material it is necessary to 

investigate the mechanical properties of its distinct components and the structural 

relationships between such components at different scales [13]. Many researchers have 

addressed the study of bone mechanical behavior by developing analytical and numerical 

models. Thus, to describe the mechanical behavior of bone at certain scale levels, some 

models apply multiscale approaches and other use homogenization techniques combined 

with distinct discretization approaches, such as finite element methods (FEM). Today, it 

is generally accepted that bone remodeling is mainly caused by the transient nature of its 

strain/stress fields (induced by the external loads applied in its physical boundary). This 

simple concept was proposed first by Wolff in 1886 [21]. Wolff reported that the 

directions of the external applied loads directly influences the direction of the trabecular 

bone, since bone cell sense the applied loads and change their physical disposition and 

distribution (modifying the local and global bone morphology). 

The study of bone remodeling using numerical approaches evolved significantly since the 

first simplistic models, which considered bone as an isotropic-elastic material only 

sensitive to mechanical stimuli [5,11]. Year after year, the complexity of bone models 

starts to increase. Some authors started to consider the trabecular orientation (material 

anisotropy), and others developed bio-mechanical models assuming both mechanical and 

biological stimuli. More recently, multiscale models were successfully developed. 

Trabecular bone is the major responsible for the bone metabolic activity, in which is 

included the remodeling process. The typically trabecular bone architecture leads to a 

highly heterogeneous medium, showing anisotropic material properties. Thus, some 

authors, started to characterize bone mechanical properties, considering and encoding the 

orientation and anisotropy of the material [16]. These authors used the fabric tensor 
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concept , a symmetric second rank tensor that characterizes the arrangement of a 

multiphase material. Back in 1985, Cowin [7], described the relation between the fabric 

tensor and the fourth rank elasticity tensor . Cowin also shown that the fabric tensor 

provides an ellipsoid that can be associated with the varieties of material symmetries 

observed in many natural materials. Presently, two different techniques are available to 

estimate the fabric tensor, the mechanical based techniques and the morphologic-based 

techniques (morphologic-based use the interface between phases of the material to 

estimate the fabric tensor). Thus, naturally, morphologic-based techniques are commonly 

used to define the fabric tensor of bone tissue. Most of the available techniques, using 

morphologic-based methods, obtain the fabric tensor applying an orientation distribution 

function (ODF), which is estimated from an orientation-dependent feature of interest. In 

the literature it is shown that when the ODF data is disposed on a polar plot and fitted in 

an ellipse the corresponding ellipse parameters can be correlated with the material 

orientation/anisotropy. [8,15,19,22]. Material mechanical properties can be estimated 

experimentally (using mechanical tests) or virtually (using concepts as the fabric tensor). 

Such estimation is of high importance, since it feeds constitutive laws. Then, combining 

the constitutive laws with discrete numerical methods, it is possible to predict the material 

structural behavior. Thus, an accurate and robust model depends on three blocks: an 

accurate predictor of the material properties, a reliable constitutive law, and an accurate 

discrete numerical method. 

Discrete numerical techniques allow to discretize the problem domain in small parts 

(elements in the FEM and nodes in meshless methods). Then, a variational principle 

(governing the physical phenomenon) is applied to obtain an algebraic system of 

equations. Solving such equation system permits to access the variable field of interest 

(such as the displacement or the strain/stress fields). The first discrete numerical 

technique applied to orthopedic biomechanics, in 1972, was the FEM and it was used to 

evaluate stresses in human bones [12]. In order to answer to some discretization 

drawbacks of FEM, other discretization techniques have been developed, such as 

meshless methods. In the literature it is possible to find several distinct meshless methods 

techniques [2,4,14,18]. 

The main objective of this work is to combine a new developed homogenization 

technique, in which is applied the fabric tensor concept in synergy with a previous 

A
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developed bone tissue material law, with the Radial Point Interpolation Method (RPIM) 

meshless method, aiming to achieve a low-cost and efficient multiscale technique. 

2. Material and Methods 

In this section the RPIM formulation is briefly presented. Also, the nodal connectivity, 

integration mesh, shape functions and elasto-static linear equations used in this 

formulation are explained. In this section is also fully presented the proposed 

homogenization technique. 

2.1. Radial Point Interpolation Method Formulation  

Meshless methods, unlike the FEM, do not use elements or any other lattice discretization 

to establish nodal/particle connectivity. With meshless methods, the problem domain is 

discretized using an unstructured nodal set where nodes can be distributed regularly or 

irregularly. These methods have advantages in the field of biomechanics, since they are 

capable of discretize highly complex problem domains using information gathered 

directly from medical images [2]. In meshless methods, the nodal discretization only 

requires the spatial coordinates of the nodes and, possibly, its individually material 

properties. The nodal connectivity (how each node interacts with its neighbor) is obtained 

using geometrical and mathematical constructions, allowing to define the influence-

domain concept, the equivalent to the element concept in the FEM. In this work, meshless 

methods are combined with weak formulations to solve in integro-differential equations. 

Thus, it is mandatory the construction of a background integration mesh, which can be 

nodal-dependent or nodal-independent, to enable the numerical integration of such 

equations. Only the meshless methods that use nodal dependent constructions are called 

truly meshless methods, because they allow to directly define the spatial position and the 

integration weight of all integration points using only the spatial positions of the nodes 

[2]. Concerning the construction of shape functions, RPIM shape functions are obtained 

using the Radial Point Interpolators (RPI) technique. In this technique, a radial basis 

function is combined with a polynomial basis function [18]. Despite the classical RPI 

formulation uses polynomial basis functions, previous works have shown that they are 

unnecessary if RBF's shape parameters are chosen carefully [2]. This is an important 

innovation since it allows to increase its computational efficiency. Nonetheless, in this 

work, it is assumed the classical RPI formulation. Therefore, considering the function 

 defined in the domain  the value of function  at the point of interest

 is defined by equation (1), 

( )Ih x 2WÌ ! ( )Ih x

Ix
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  (1) 

where  is the RBF,  is the number of nodes in the influence-domain of . The 

coefficients  and  are the non-constant coefficients of  and 

, respectively. The monomials of the polynomial basis are defined by  and  is 

the basis monomial number. The variable  is the distance between the relevant node 

 and the neighbor node , . Several 

known RBFs are well studied and developed in [2]. This work uses the Multiquadric 

(MQ) function , where  and  are two parameters that need to be 

optimized, since they affect the performance of the RBFs. Notice that each integration 

weight should possesses its own  parameter. Thus, for integration point  with an 

integration weight , the shape parameter  is obtained with: . This spatial 

dependence of the RBF's shape parameter is demonstrated in research works available in 

the literature [2]. Previous works on the RPIM found that parameter  should be close 

to zero, , and  should be close to one,  [2]. However, these values cannot be 

 and . The use of the exact integer value for  leads to a singular moment 

matrix and assuming a null  leads to singular moment matrix. Furthermore, previous 

works [2] have shown that values of  very close to the unit allow to obtain the most 

accurate solutions (regardless the analyzed problem). Thus, the authors have decided to 

use  or . Additionally, as shown in [2], the parameter  should be 

very close to zero, because as its value grows, the RPI shape function loses its 

interpolation properties. Thus, the authors have selected  in order to 

"maximize" the RPI interpolation properties. Commonly, the polynomial basis has to 

possess a low degree to guarantee that the interpolation matrix of RBF is invertible. Thus, 

in this work the constant polynomial basis is used:  . The polynomial 

basis has to satisfy an extra requirement in order to obtain an unique solution [2], 

   (2) 
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in which  represents the number of nodes inside the influence-domain of interest point 

. Comparing RPIM with other meshless methods, it has lower computational cost 

during the processing phase of the numerical analysis (after the construction of the nodal 

connectivity, integration mesh and shape functions) and shows a higher re-meshing 

flexibility and a higher accuracy on the solution variable field [9]. 

2.2. Homogenization Technique 

The homogenization technique used in this word is fully described in this section. In this 

work, it was used a micro-CT from the cuboid bone. First, since this work is 2D, only a 

CT-slice was considered. Then, for the selected thin slice of bone tissue, a square Region 

of Interest (ROI) was identified. Afterwards, the fabric tensor concept was applied to that 

ROI, allowing to determine the material preferential orientation. In addition, using a bone 

tissue phenomenological law, the pixel information of the selected ROI was used to obtain 

the homogenized material properties of the microscale patch. This homogenization 

technique allows to define the homogenized anisotropic material proprieties of the 

trabecular bone, a highly heterogeneous material. The algorithm describing the proposed 

homogenization technique is presented in Figure 1 and its features are presented in the 

following subsections. 

 
Figure 1 - Microscale homogenization technique 

2.3. Fabric tensor morphologic based method 

In order to apply the fabric tensor methodology, it is necessary to transform the ROI's 

gray-scale image into a binary image (black and white image), which in this work is 

identified as . An example of an  is shown in the left-upper box of Figure 1. 

n

Ix

SI SI

3.6 Contribution IV: Combining the radial point interpolation meshless method with a new
homogenisation technique for trabecular bone multiscale structural analyses. 125



 

The methodology developed by Whitehouse [19] was used to define the fabric tensor. 

Thus, the number of interceptions between a parallel family line set, with direction , 

with the interface between both phases of the material is counted, . Furthermore, 

the length of the parallel lines family,  for the  direction is also obtained. Possessing 

 and , it is possible to defined the an orientation distribution function (ODF), which in 

this case is called mean interception length (MIL), equation (3). 

   (3) 

In the literature, it is possible to find several works showing the robustness and accuracy 

of this technique in the prediction of the material properties of trabecular bone [8,19,22]. 

The work of Moreno et al. [15] shows that when the ODF data is disposed on a polar plot 

and fitted in an ellipse, the corresponding ellipse parameters can be correlated with the 

material orientation (its anisotropy). The dimensional information of  is used to define 

the size of an image containing the family of parallel lines with . Counting the 

interceptions of those parallel lines with the boundaries of the binary image square patch, 

it is possible to obtain the orientation-dependent feature. The ODF of the  can be 

obtained by rotating the family of parallel line image with  between  and , and 

then counting the interception of the family of parallel lines with the square patch binary 

image . The created data for  between  is a  data repetition, 

because the orientation-dependent feature is not influenced by the direction (it only 

depends on the orientation). 

In order to obtain the material orientation, the ODF data is plotted using polar coordinates. 

This data is then fitted into an ellipse. Observing now both central boxes of Figure 1, it is 

perceptible that it is possible to obtain the material orientation of the trabecular 

micropatch from the ellipse orientation. In addition, from the fitted ellipse, it is possible 

to obtain the ellipse minor axis length,  , and major axis length, , and , the angle 

of ellipse major axis with the polar plot horizontal axis. 

2.4. Phenomenological material law method 

In this work, the homogenized anisotropic mechanical properties of  are defined using 

the information from the fitted ellipse and the average apparent density of the binary 
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image . As equation (4) shows, the average apparent density,  , of the binary image 

 can be obtained using the number of white pixels,  , and black pixels,  , of : 

   (4) 

in which the cortical bone apparent density is considered as . 

Assuming the phenomenological material law proposed by Belinha and co-workers [3], 

it is possible to defined the axial Young's modulus  using the homogenized  

from equation (4). In order to adjust more closely to the experimental results, Belinha's 

phenomenological law is divided in two equations [3]. Thus, if  it should be 

applied equation (5), otherwise it should be used equation (6). The coefficients  and 

 can be found in Table 1. 

   (5) 

   (6) 

     
     
     

Table 1 - Coefficients from Belinha’s material law [3]. 

The transverse elastic modulus  is defined using the relation between the ellipse 

minor axis length, , and major axis length,  , as shown in equation (7), 

   (7) 

Considering the well-known mixture theory, it is possible to define the Poisson's 

coefficient, , using the relation between white and black pixels. Notice that white pixels 

represent solid bone (for which it was assumed ) and black pixels represent void 

space (for which it was assumed ). 

   (8) 
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In equation(8),  represents the total number of pixels of the binary image . The shear 

modulus, , was expeditiously calculated using equation (9). 

   (9) 

After defining all the required homogenized material properties ( , ,  

and ), it is possible to build the constitutive matrix:  , for the  local coordinate 

system (oriented with the material principal axis, following the principal directions 'axial' 

and 'transverse'). In fact, first it is defined the orthotropic compliance matrix for the 

material axis . Only after,  is defined with . For this it is necessary to 

rotate the  to the global axis using the angle  obtained from the ellipse fitting, using 

the transformation rotation matrix  , equation (10), 

   (10) 

and then, finally, it is possible to write the material constitutive matrix in the global axis 

with equation (11), 

   (11) 

3. Results 

Aiming to validate the proposed homogenization methodology, some numerical tests 

were performed. The tests involved size and rotation analyses of predefined  binary 

images and static analysis using the homogenized material properties. 

First, it is presented a study in which the RVE size is varied, allowing to understand the 

influence of this scale parameter in the accuracy of the proposed methodology. Second, 

in order to access the robustness of the proposed technique, it was analyzed a predefined 

binary image showing a clear preferential material orientation. Afterwards, the input 

image was rotated, and it was verified if the ellipse fitted from the fabric tensor based 

methodology had  aligned with the material orientation of the image. In this 

validation example, it was assumed angle increments of  for the family of parallel 

lines rotation. 

ta SI

G

2 )(1
axialEG
n

=
+

axialE transvE n

G ox y¢ ¢c ' 'ox y

' 'ox y ox y¢ ¢c 1-=c s

ox y¢ ¢c θ

T

cos( ) sin( ) 0
( ) sin( ) cos( ) 0

0 0 1

q q
q q q

-é ù
ê ú= ê ú
ê úë û

T

11 12 13

21 22 23

31 32 33

( ) ( )T
oxy ox y

c c c
c c c
c c c

q q¢ ¢

é ù
ê ú= = ê ú
ê úë û

c T c T

SI

maxb

20°

128 Original Developed Work



 

In the end, in order to show the efficiency and accuracy of the proposed homogenization 

technique, it was performed a numerical structural analysis using two distinct geometrical 

models (a homogeneous model and a heterogeneous model). To show the versatility of 

the proposed methodology, the technique was combined with two distinct numerical 

methods, the FEM and the RPIM. For the FEM formulation, in this study, it was used the 

standard plane strain triangular element. Concerning the RPIM formulation used in this 

work, it was assumed influence-domain with 16 nodes inside; one integration point per 

each integration triangular cell (matching the triangular elements of the FEM analysis for 

comparison proposes); the MQ-RBF shape parameters suggested in the literature ( 

 and  ); and a constant polynomial basis. 

3.1. Validation of MIL methodology 

3.1.1. RVE size 

In this section, two distinct RVE models were constructed, Figure 2a and Figure 2d. The 

RVE model shown in Figure 2a is a benchmark fabricated unitary binary image 

possessing a well-defined material orientation ( ). In order to understand the influence 

of size of the RVE in the proposed methodology, this fabricated model was repeated 

, being  the number of repetitions of the RVE. For illustration purposes, Figure 

2b shows its  repetition and in Figure 2c it is shown its  repetition. Regarding 

the model of Figure 2d, it represents a realistic trabecular square patch unitary binary 

image obtained from a micro-CT image. Likewise, this realistic RVE was repeated 

. In Figure 2e and Figure 2f are shown examples for the  repetition and  

repetition, respectively. 
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Figure 2 - Binary images used to verify the MIL dependence on the RVE size. Benchmark fabricated unitary image, (a). 

Realistic binary image from a micro-CT, (d); To analyze the effect of using different RVE sizes, the binary images were 

repeated from a  repetition, (b) and (e) to a   repetitions, (c) and (f) respectively 

The homogenization methodology proposed was applied to all models: fabricated image 

and realistic image, and corresponding RVE repetitions ( ). Thus, all the 

components of the constitutive tensor , equation (11) , were obtained for each one of 

the analyzed RVEs. Thus, Figure 3a and Figure 3b show the components of the 

constitutive matrix that are obtained using the proposed homogenization methodology for 

the fabricated benchmark RVE and the realistic trabecular RVE, respectively. 

As equation (11) and Figure 1 indicates, angle  represents the approximated orientation 

of the material. Thus, using the developed methodology, the angle  for each RVE model 

(and corresponding repetitions) is obtained and the results are presented in Table 2. For 

the fabricated benchmark RVE, it was obtained an average value of  with a standard 

deviation of . For realistic trabecular RVE, it was obtained an average value of  

with a standard deviation of . 

 
Figure 3- Constitutive matrix values obtained using a image up to  repetitions. Figure 3a: Results for realistic. Figure 3b: 

Results for the benchmark image 

Repetition 1 2 3 4 5 6 7 8 9 10 Average SD 

 Created 90 90 90 90 90 90 90 90 90 90 90 0 
Trabecular 124 127 126 127 127 127 127 127 127 127 127 0 

Table 2 - Relation between the image repetition and  
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3.1.2. RVE Rotation 

In order to verify if the developed methodology is capable to deliver accurate material 

orientations, an RVE rotation study was performed. The two created models, the 

benchmark fabricated RVE, Figure 2a, and the realistic trabecular RVE, Figure 2d, were 

rotated in relation the their initial position following increment angles of , between 

the interval  . As Figure 4 and Figure 5 show, it is possible to visualize the 

orientation/size of the produced ellipse and the corresponding approximated material 

angle. 

 
Figure 4 - Benchmark fabricated RVE rotation results. Figure 4a: 0° rotation; Figure 4b: 20° rotation; Figure 4c: 40° rotation; 

Figure 4d: 60° rotation; Figure 4e: 80° rotation; Figure 4f: 100° rotation; Figure 4g: 120° rotation; Figure 4h: 140° rotation; 

Figure 4i: 160° rotation; Figure 4j: 180° rotation.  
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Figure 5 - Realistic trabecular RVE rotation results. Figure 5a: 0° rotation; Figure 5b: 20° rotation; Figure 5c: 40° rotation; 

Figure 5d: 60° rotation; Figure 5e: 80° rotation; Figure 5f: 100° rotation; Figure 5g: 120° rotation; Figure 5h: 140° rotation; 

Figure 5i: 160° rotation; Figure 5j: 180° rotation. 

  
Figure 6 - Figure 6a: Obtained material orientation angles  of the fitted ellipse versus the expected ones for the benchmark 

fabricated RVE (Figure 2a) and the realistic trabecular RVE (Figure 2b). Figure 6b: Difference between the obtained  

results and the expected ones, in percentage. 

3.2. Stress Analysis 

In this section distinct RVEs are structurally analyzed using two distinct discretization 

techniques, the FEM and the RPIM. This study aims to verify if a homogeneous RVE is 

capable to produce a homogenized von Mises effective stress similar to the one obtained 

q

q
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with a heterogeneous RVE. The homogenized orthotropic mechanical properties are 

obtained with proposed methodology. 

Therefore, the realistic trabecular RVE previously presented, Figure 2d, and its  

repetitions are structurally analyzed using the elasto-static formulation. The obtained 

results are compared with the ones obtained with a homogeneous RVE using much lower 

discretization levels. 

All the analyzed RVEs are squares micro patches with dimensions   and were 

submitted to the same essential boundary conditions, Figure 7. Thus, it was imposed a 

displacement of  at the nodes of the top layer, . The nodes at  and 

 where constrained along  direction, , and the nodes at  and  

where constrained along  direction, . 

As Figure 8a shows, the homogeneous RVE is typically discretized by a set of  nodes 

uniformly distributed within the RVE domain and every integration point within its 

domain possess the same homogenized material properties. Conversely, heterogeneous 

RVEs (realistic trabecular RVE) are formed by trabecular bone and void space. Naturally, 

as Figure 8b shows, the discretization of such complex domain is more demanding. 

Concerning the element type used in the finite element analyses, in the case of the 

heterogeneous model, it were used plane strain/plane stress 2D triangular elements with 

3 nodes. Alternatively, for the homogeneous model, the authors have considered 2D 

Lagrangian quadrilateral elements with four nodes (full integration scheme). 

Using the RVE represented in Figure 2a, and applying the proposed homogenization 

technique, allow to obtain the orthotropic material properties presented in Table 3, 

column "Homogeneous RVE". Notice that, as already mentioned, every integration point 

of the homogeneous RVEs will assume these materials properties. 

Due to their binary nature, all realistic trabecular RVEs possess or solid bone tissue or 

void space. Thus, it is necessary to define the material properties of these two domains. 

Hence, in Table 3 are indicated the mechanical properties for the two domains (trabecular 

bone and void space). Following the literature, the mechanical properties of the trabecular 

bone (solid material) was defined as isotropic, [17]. 

Concerning the void domain, the geometrical information coming from the micro-CT 

forces the existence of a void space between trabeculae. Thus, it was necessary to define 

the void domain as solid. In order to ensure that the void material does not (significantly) 
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interfere with the global structural response of the RVE, to the 'void space' was attributed 

a Young's modulus with a much lower magnitude when compared with the trabecular 

bone. 

 
Figure 7- Boundary conditions applied to all RVEs. 

 
Figure 8 - Figure 8a Discretized homogeneous RVE ( nodes uniformly distributed). Figure 8b: Example of a discretized 

heterogeneous RVE created using micro-CT image information 

Mechanical Proprieties 
Homogenized RVE Trabecular bone Void Space 

 4488,548 [MPa]  11600 [MPa]  100 [MPa] 

 2520,426 [MPa]       

 10066,1 [MPa]       
 56 [degrees]       
 0.3   0,36   0,459  

Table 3-Mechanical properties used in the structural analysis.  

The results from the homogeneous RVEs, regardless the level of the discretization or the 

used numerical method (FEM or RPIM), were very similar, as can be seen in Figure 9a 

and Figure 9b. In these figures it is also perceptible the preferential orientation of the 

material, that was obtained using the developed methodology applied to Figure 2a. 

Concerning the heterogeneous RVEs, Figure 9, the results obtained using FEM are 

slightly different from the one obtained with the RPIM, as can be seen in Figure 9e and 

Figure 9g and in Figure 9f and Figure 9h. The von Mises effective stress maps obtained 

with both FEM and RPIM techniques are presented in Figure 9a and Figure 9c for the 

FEM and in Figure 9b and Figure 9d for the RPIM. 
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Figure 9 - Effective stress for homogeneous model: Figure 9a: FEM 1X1; Figure 9b: RPIM 1X1; Figure 9b: FEM 

2XFigure 9d: RPIM 2X2; and for heterogeneous models: Figure 9e: FEM 1X1; Figure 9f: RPIM 1X1; Figure 9g: FEM 2X2; 

Figure 9h: RPIM 2X2   

It was used the homogenized stress concept to compare the stress fields obtained with the 

homogeneous RVE and with the heterogeneous RVE. The RVE's von Mises effective 

stress field (or any other RVE's stress/strain field) can be summarized in one scalar value 

- the homogenized von Mises effective stress - which can be defined with equation (12). 

   (12) 

The number of integration points discretizing the problem domain not belonging to the 

boundary of the domain boundary is represented by . FEM integration mesh is 

constructed differently from the RPIM. Thus, the integration points of both techniques 

possess different spatial positions. To minimize this effect in order to avoid the 

(inaccurate) stress concentrations that appear at the domain boundaries, as Figure 9 

shows, part of the domain was excluded: 2% of the domain boundary integration points 

that form the complete integration mesh from equation (12). 

 
Figure 10 Homogenized von Mises effective stress obtained with the FEM and the RPIM. 
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One of the main objectives of this work was to achieve a low-cost and efficient 

homogenization technique. Thus, in order to understand the computational cost of each 

analysis, the time-lapse of each structural analysis was recorded. Hence, in Figure 11 are 

shown the time-lapse of each structural analysis for the heterogeneous RVEs (with 

) and for the homogeneous model (with  ).In this comparison 

study, only the computational cost of the  homogeneous model is presented, since, as 

seen in Figure 10, it provides a similar result when compared with the , and it also 

provides a close result when compared with the  heterogeneous model. 

 
Figure 11 - Computational cost (in seconds) of each analysis. 

4. Discussion 

Regarding the RVE size analysis, it is possible to visualize in both figures the evolution 

of  with respect to the number of repetitions of the corresponding basic unit RVE. 

Notice that for both RVEs types (benchmark and realistic), the value of each component 

of the constitutive matrix, , does not vary significantly with the number of repetitions, 

. The results also indicate that for the fabricated benchmark RVE, as expected,  does 

not suffers any significant variation (the average value is with a standard deviation 

of ). For the realistic trabecular RVE the number of repetitions do not relevantly 

change the material orientation angle of the basic unit RVE, being the obtained average 

value:  with a standard deviation of . Regarding the RVE rotation some of the 

differences obtained between the expected orientation and the obtained approximated 

material orientation  are related with the modification of the source image due to the 

rotation process. In Figure 12 it is perceptible that due to the rotation the initial image is 

modified. The red circle marks the same region in distinct rotated images, and it is visible 

the modification of that region with the image rotation. This effect is caused by the low 

number of pixels of the figure. Increasing the number of pixels will lead to lower 

differences. However, it will lead also to a higher computational cost. The methodology 

here proposed is based in pixel information. Changing of the number of white pixels of 
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the image (a parameter highly related with the calculus of the MIL, as equation (3) 

indicates) result in the modification of the MIL value. This effect can be also observed in 

Figure 6, in which are represented the material orientation angles  of the fitted ellipse 

and the expected ones. 

 
Figure 12 - Image rotation process and inherent morphologic change, (a): Original Image; (b): 20º rotation; (c): 40º rotation; 

(d): 60º rotation; (e): 80º rotation. 

Regarding the results obtained in Stress Analysis section, the homogenized von Mises 

effective stresses, , obtained for each analyzed RVE (using both FEM and RPIM 

methodologies), are shown in Figure 10. From this figure it is perceptible that for the 

considered heterogeneous RVEs, as the model detail increases,  decreases. Notice 

that the model detail is governed by the number of repetitions (the  RVE has a lower 

detail than the  RVE). The analyses of the homogeneous models, regardless the 

discretization technique (FEM or RPIM) or the repetition pattern (  and  ), present 

very similar results. Furthermore, these results are also very similar with the ones obtained 

with the RPIM using the  and  repetition heterogeneous models. Such similarity 

indicates that the proposed homogenization technique is capable to approximate the 

homogenized orthotropic material properties of a trabecular patch. Comparing the FEM 

with the RPIM, it is visible that the results obtained with the homogeneous RVEs are 

equivalent. However, the FEM and RPIM results obtained with the heterogeneous RVEs 

are not so close. This difference could be explained by locking effects in the FEM (plane 

strain triangular elements are being used). 

Concerning the computational cost presented in Figure 10 it was shown that the  

heterogeneous RVE produces results very close with the  homogeneous RVE. 

However, Figure 11 shows that the  heterogeneous RVE takes  to analyze and 

the homogeneous RVE only requires . Commonly, multiscale techniques use 

highly discretized RVEs, leading to high computational costs. However, as this study 

demonstrates, the proposed homogenization methodology is capable to reduce 

significantly the cost of a multiscale analysis, enabling more demanding and complex 

simulations. 
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5. Conclusions 

In this work, a new multiscale methodology is proposed. The methodology uses a 

homogenization technique that, without any a-priory knowledge, allows to estimate the 

material properties of bone tissue using standard imaging techniques. The results obtained 

show that the methodologies used to create the fabric tensor and to obtain the mechanical 

properties are stable. Regarding the RVE size studies, it was demonstrated that the 

methodology is capable to consistently approximate the bone tissue material mechanical 

properties. It is expected that the proposed technique will be capable to reduce the cost of 

the multiscale analyses, allowing to simulate more complex problems. 
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3.7 Contribution V: A multiscale homogenisation procedure combin-

ing the fabric tensor with a natural neighbour meshless method.

3.7.1 Highlights of Contribution: 3.7

This contribution focused on the bone mechanical properties definition using a homogenisation

technique, defined by the fabric tensor concept, combined with the NNRPIM meshless method.

Therefore, the main contents of this publication include:

I. Literature review on multiscale homogenisation techniques;

II. Literature review on the usage of discrete numerical methods in biomechanics;

III. Literature review on meshless methods applied in biomechanics;

IV. Review of the NNRPIM formulation;

V. Application and description of a homogenisation technique, where it is used the fabric tensor

concept and a bone tissue phenomenological law, applied in cuboid bone micro-CT images

that describe locally the bone morphology at its microscale;

VI. Validation of the homogenisation methodology defined by a morphologically based fabric

tensor methodology;

(a) Rotation Validation: by observing figure 3.8, were are present the differences between

the expected principal direction angle and the obtained principal direction angle was

possible to verify that the methodology it was able to identify the material principal

direction, with a maximum error of 3,5%;

(b) Scale Validation: by observing the results in figure 3.9a and 3.9b it was possible to

verify that the results were consistent despite the changes in the RVE size/scale. It

was possible to verify that in the case of a truly periodic RVE, figure 3.9b, results are

exactly the same despite the size/scale;

VII. A structural application using FEM and NNRPIM was used to verify and to compare the

heterogenous and equivalent homogeneous domains.

VIII. The NNRPIM meshless method results were similar to the FEM methods, reinforcing the

applicability of meshless methods in biomechanical applications.

IX. Conclusions: Contribution V describes a methodology that allows to define the mechanical
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properties of a micro-CT trabecular bone square patch without any a-priory knowledge. This

contribution used the MIL methodology where it was proved that it was possible to acquire

data to define the material orientation using medical images and so, define a homogenous

methodology that allows to define homogeneous domains, with a less discretised mesh,

by mechanical properties that are equivalent to a highly discretised heterogeneous domain.

Thus, as demonstrated in figure 3.11, this methodology provides models defined with the

homogeneous domains and mechanical properties that have a lower computational cost,

when compared to the equivalent heterogeneous models.
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Figure 3.8: Contribution V: Rotation validation data.
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Figure 3.9: Contribution V: Scale validation data: 3.9a - data from a trabecular bone RVE; and
3.9b - data from a created periodic benchmark.
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Abstract

Bone is a material that can be classified as a hierarchical structure, where the dif-

ferent structural levels can be identified from the microscale to macroscale. Mul-

tiscale models enable to model the material using homogenization techniques.

In this work an innovative homogenization technique for trabecular bone tissue

is proposed, which uses the fabric tensor concept and a bone phenomenological

material law, linking the apparent density with the trabecular bone mechani-

cal proprieties. The proposed methodology efficiently homogenize the trabec-

ular bone highly heterogeneous medium, allowing to define its homogenized

microscale mechanical properties and to reduce the analysis computational cost

(when compared with classical homogenization techniques). The homogeniza-

tion technique is combined with the natural neighbour radial point interpolation

method (NNRPIM). The NNRPIM uses the natural neighbour mathematical

concept to enforce the nodal connectivity and build the background integration

mesh, required to numerically integrate the integro-differential elasticity equa-

tions. Furthermore, the NNRPIM uses the radial point interpolators technique

to construct its interpolating shape functions. In order to verify the efficiency

of the technique several examples are solved using a confined square patch of

trabecular bone under compression. In the end, the results obtained with a

classic homogenization technique and the proposed methodology are compared.
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1. Introduction

Bone biomechanics is based on the idea that load bearing bone tissues are

structurally optimized for their mechanical function [1, 2]. Being one of the

main biomechanics field, bone biomechanics includes bone tissue engineering,

mechanical characterization, bone remodelling and bone regeneration. Bone is

a structure defined by bone matrix and by bone cells. Bone cells are responsible

for producing bone matrix, where they became entrapped. These cells are the

same that reabsorb bone to allow the replacement of old bone matrix by a newer

one [3]. Bone can be classified as a hierarchical structure, where the different

structural levels can be identified from the macroscale to microscale [4]. The

macroscale (the entire bone) and the microscale (the trabecular architecture

level) can be defined by different physical properties due to its different func-

tional requirements, such as bone density and corresponding mechanical proper-

ties. At the microscale it is possible to recognize a non-homogeneous trabecular

structure, which after being homogenized allows to define local anisotopic homo-

geneous mechanical properties, such as apparent density and directional Young

moduli. Being bone a living tissue, it renews itself in the course of life by a

biological process called bone remodelling [5]. In general, other biological pro-

cess (such as growth, reinforcement, and resorption) are collectively termed as

remodelling. This remodelling is progressive and is induced to adapt the bone

morphology to any new external load. The concept that strain/stress induces

bone remodelling was firstly reported by Wolff in 1886 [6]. Thus, Wolff reported

that the orientation of trabecular bone coincides with the direction of the stress

trajectories, proposing that bone loading is for some reason sensed by the bone.

This principle of functional adaptation is known as Wolff’s law. In 1939 Wolff’s

law was firstly described in vitro by Glucksmann in 1939 [7] and was described

mathematically in 1965 by Pauwels et al. [8]. This formulation assumed that

2

3.7 Contribution V: A multiscale homogenisation procedure combining the fabric tensor with a
natural neighbour meshless method. 145



exist and optimal mechanical stimulus that balanced the bone tissue resorption

and deposition [9].

To study the remodelling process of the bone some authors developed mod-

els that considered bone as an isotropic material, a simplistic approach on the

behaviour of trabecular bone, disregarding the importance of orientation in

the remodelling process [10, 11, 12, 13]. To overcome this simplification, other

models were created linking material density and orientation with its anisotropic

mechanical properties. These remodelling models not only avoid any a priori

assumption on material but also take into account the trabecular architecture

features [14, 15, 16, 17]. Afterwards, considering both biological and mechani-

cal factors based on bone cell activity, mechanobiological models were proposed,

allowing to simulate the evolution of bone tissue considering both mechanical

and biological stimuli [18, 19, 20, 21].

Recent works are starting to characterize bone mechanical properties with

a concept called fabric tensor [22, 23]. The fabric tensor is a symmetric sec-

ond rank tensor that characterizes the arrangement of a multiphase material,

encoding the orientation and anisotropy of the material. Back in 1985, Cowin

[24] developed a relation between the fourth rank elasticity tensor Cijkl and a

fabric tensor A, proving that an ellipsoid may be associated with the varieties of

material symmetries observed in many natural materials. The fabric tensor can

be obtained using mechanical based techniques or morphologic-based methods.

Recall that morphologic-based methods use the interface between phases of the

material to estimate the fabric tensor. The bone morphology is usually obtained

using a micro-CT (at the microscale) or a CT (at the macroscale). Most of the

available techniques, using morphologic-based methods, obtain the fabric tensor

applying an orientation distribution function (ODF), which is estimated from

an orientation-dependent feature of interest.

In mechanics, and in biomechanics, the accurate determination/characterization

3
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of the material’s mechanical properties is a key parameter, which will allow to

describe and predict numerically the behaviour of such materials for different

scenarios. Naturally, there is a never-ending interest from the scientific commu-

nity concerning the material characterization, by developing/enhancing: consti-

tutive laws, experimental procedures and computational tools/methodologies.

Discrete numerical methods allow to study and analyze in silico the be-

haviour of materials and structures. Today, the finite element method (FEM)

is one of the most popular discrete numerical method [25]. Nevertheless, in

the last few years a new class of discrete numerical method have appeared -

the meshless methods [26]. The first developed meshless method dates from

1977, when Gingold et al. 1977 proposed the smoothed-particle hydrodynamics

(SPH) method, that has a kernel approximation for a single function u(x) in a

domain Ω. This method was used for modeling astrophysical phenomena with-

out boundaries, such as exploding stars and dust clouds [27]. From 1997 to now,

many different methods were developed using different approaches: generalized

finite difference method (Liszka et a., 1980) [28], diffuse element method (DEM)

[29], element free Galerkin (EFG) method [30], meshless local Petrov–Galerkin

(MLPG) method [31]. All these first developed meshless methods use approx-

imation functions to construct the shape functions. Although this approach

allows to obtain smooth variable fields, the shape functions obtained with it

do not possess the delta Kronecker property, which hinders the imposition of

the natural and essential boundary conditions. Thus, in order to overcome this

difficulty and increase the efficiency of meshless methods, researchers start to

focus on new approaches capable to produce interpolating shape functions. As

a consequence, several efficient interpolating meshless methods were developed,

such as the point interpolation method (PIM) [32, 33, 34] and the radial point

interpolation method (RPIM) [35, 36] and its more recent variants, the Natu-

ral Neighbor Radial Point Interpolation Method (NNRPIM) [37] (based on the

combination of the natural neighbour concept with the radial point interpo-

lators), the Natural Radial Element Method (NREM) [38] (that combines the

4
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simplicity of low-order finite elements connectivity with the geometric flexibility

of meshless methods), the Meshless Local Radial Point Interpolation (MLRPI)

method [39, 40, 41, 42] and the Spectral Meshless Radial Point Interpolation

(SMRPI) method [43, 44, 45, 46, 47, 48, 49].

The main objective of this work is to combine a new developed multiscale

homogenization technique with a truly meshless methods (the NNRPIM), aim-

ing to achieve a low-cost and efficient multiscale technique. This manuscript is

divided in the next following sections. In section 2 it is presented a brief descrip-

tion of the NNRPIM formulation - nodal connectivity, integration mesh, shape

functions and elasto-static linear equations. Then, in section 3 the proposed

homogenization technique is fully presented. The fabric tensor is introduced as

well as all the required steps to determine consistently the material constitutive

matrix. Afterwards, comes section 4, in which several micro-patches are ana-

lyzed in order to validate and calibrate the proposed methodology. Additionally,

in the same section 4, a realistic bone patch is analyzed and the efficiency of

the proposed homogenization technique is demonstrated. The manuscripts ends

with a description of the main conclusions and final remarks in section 5.

2. Natural Neighbour Meshless Formulation

In meshless methods it is not necessary to discretize the problem domain

using elements or any other lattice possessing a pre-established nodal/element

connectivity. With meshless methods the problem domain can be discretized

using an unstructured nodal set, whose nodes can be regularly or irregularly

distributed [26]. In biomechanics this discretization flexibility is advantageous,

since it permits to discretize the problem domains using directly medical images.

This nodal set discretizing the problem domain does not represents a mesh be-

cause, besides the spatial coordinates of the nodes and possibly its individually

material properties, no previous or additionally information is required. The

5
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nodal connectivity (how each node interacts with its neighbours) is obtained

after applying geometrical and mathematical constructions, allowing to define

the influence-domain concept. Since the fundamental equations ruling the lin-

ear elastic problem studied in this work are integro-differential equations, it is

necessary to construct a background integration mesh, which can be nodal de-

pendent or nodal independent. Nodal independent constructions rely on the

Gauss-Legendre quadrature scheme. A regular lattice is defined (covering the

complete problem domain) and then each lattice cell is filled with integration

points following Gauss-Legendre quadrature scheme [26]. Afterwards, integra-

tion points outside the problem domain are removed from the background mesh.

Alternatively, nodal dependent constructions are much more appealing because

they allow to directly define the spatial position and the integration weight of

all integration points only using the spatial positions of the nodes. Meshless

methods using this last approach are called truly meshless methods [26]. Re-

garding the shape functions, there are several approximation functions available

in the literature for the construction of suitable meshless shape functions [26] .

Preferentially, the produced shape functions should possess the delta Kronecker

property, since it will easy the imposition of the essential and natural boundary

conditions.

In this work it is used a truly interpolating meshless method - the NNRPIM.

Thus, in this section, the main features of the NNRPIM are described with

detail.

2.1. Nodal connectivity

The NNRPIM combines the Natural Neighbour concept [50] with the Radial

Point Interpolators (RPI) [36]. First, the problem domain is discretized with

a nodal cloud with N nodes: X = {x1,x2, . . . ,xN} ∈ Ω. Then, applying the

Natural Neighbour concept to the nodal distribution it is possible to construct

the Voronöı Diagram discretizing the problem domain [51].

Recall that the Voronöı diagram of N = {n1, n2, . . . , nN} is the partition of
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Figure 1: 1a: Neighbour nodes; 1b: Provisional Voronöı cell, ; 1c: Voronöı cell, ; 1d: Voronöı

diagram

the function space discretized by X in closed and convex sub-regions, Vi. Each

Vi sub-region is associated to the node ni in a way that no other point in the

interior of Vi is closer to ni than any other node nj ∈ N ∧ j 6= i . The set of

Voronöı cells defines the Voronöı diagram, V = {V1, V2, . . . , VN}. The Voronöı

cell is defined by, Vi = {xI ∈ Ω ⊂ Rd :‖ xi − xI ‖<‖ xj − xI ‖,∀i 6= j}, being

xI an interest point of the domain, d the domain’s space dimensional order and

‖ · ‖ the Euclidean metric norm. Thus, the Voronöı cell VI is the geometric

place where all points are closer to xI than to any other node xi ∈X.

Since it is easy to represent, a 2D process to obtain the Voronöı cell of an

hypothetical node n0 is described in figure 1. Thus, starting from an initial set

of nodes in the surroundings of a given central node n0, figure 1a, the closest

nodes to the interest node n0 are found using orthogonal planes and Boolean

conditions, as shown in figure 1b. Then, the Voronöı cell of node n0 is defined,

figure 1c. Afterwards, the procedure can be applied to all the remaining nodes

of the problem and the Voronöı diagram is constructed, figure 1d. The literature

provides detailed description of this methodology [26].

Using the Voronöı diagram it is now possible to define the nodal connectivity.

Consider a node xi ∈ X, represented in figure 2, as the central node (inside

the light-gray Voronöı cell). Notice that, as figure 2 shows, it is possible to

define the levels of connectivity without using the influence-domain concept.

Thus, the natural neighbours of the central node (the nodes inside the medium-

gray Voronöı cells) are the first degree natural neighbours of the central node.

7
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Figure 2: First and second

degree natural neighbors in

NNRPIM

This set (nodes inside the light-gray and medium-grey cells) is considered the

first-degree influence cell of the central node. As figure 2 depicts, first-degree

influence cells have a very low nodal connectivity, therefore other higher degree

influence-cells can be defined, such as the second-degree influence cell. Thus,

the second-degree influence cell is defined by adding to the first degree influence-

cell all the nodes that are natural neighbours of the first natural neighbours of

the central node (all the nodes inside the gray cells belong to the second-degree

influence cell of the central node).

2.2. Numerical Integration

Additionally, using the Voronöı diagram it is possible to construct the back-

ground integration mesh. This feature allows to define a background integration

mesh completely dependent on the nodal distributions, which is an advantage

because it allows to obtain directly from the nodal cloud all the required math-

ematical entities for the meshless formulation (influence-domains, integration

mesh and shape funtions). Thus, as figure 3 shows, using the Delaunay trian-

gulation [52], the geometrical dual of the Voronöı diagram, the integration cells

and the integration points are fully defined [26]. This is done by taking the

previously obtained Voronöı diagram and dividing each of its Voronöı cells into

smaller sub-areas, using the Delaunay tessellation. The nodes of Voronöı cells

sharing common boundaries are connected, figure 3a, and the overlap of both

the Delaunay tessellation and the influence-cell boundaries lead to a smaller

8
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Figure 3: 3a: Voronöı cell; 3b: Delaunay triangulation, ; 3c: Sub-cells forming the initial

Voronöı cell, ; 3d: Selected sub-cell

sub-cells, figure 3b [26]. As demonstrated in figure 3c, it is possible to divide

each Voronöı cell, VI into n sub-cells SIi, being n the total number of natural

neighbors of a particular Voronöı cell,VI . Having the sub-cells for all Voronöı

cells, being each sub-area isoparameterized and filled with integration points us-

ing the Gauss-Legendre integration scheme, the integration mesh of the sub-cell

is obtained, figure 3d. Repeating this process for all sub-cell, it is possible to

obtain the complete background integration mesh of the problem domain.

2.3. Radial Point Interpolators

In order to construct the shape functions, the NNRPIM uses the Radial Point

Interpolators (RPI) technique, which requires a radial basis function (RBF) and

a complete polynomial basis [26]. Still, previous works on the NNRPIM showed

that if the shape parameters of the RBF are chosen carefully, the polynomial

basis can be removed from the formulation and substituted by a constant unity

basis [37, 53]. Consider the function u(x) defined in the domain Ω ⊂ Rd and

an interest point xI , possessing an influence-cell containing n nodes: XI =

{x1,x2, . . . ,xn} ∈ Ω ∧ xi ∈ Rd. It is assumed that only the nodes within the

influence-cell of the interest point xI will be considered to interpolate u(xI).

Thus, the value of function u(xI) can be defined with equation (1).

u(xI) =
n∑

i=i

[Ri(xI) · ai(xi)] + Cu · b(xI) = R(xI) · a(xI) + Cu · b(xI) (1)
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In equation (1), Ri(xI) is the RBF and ai(xi) are non-constant coefficients

of Ri(xI) . The parameter Cu is the unity basis, being Cu = 1 and b(xi) is a

non-constant coefficient of Cu.

In this work it is used the multiquadric (MQ) RBF function, Ri(xI) =

R(rIi) = (r2
Ii + c2)p, in which rIi is the distance between the interest point xI

and a neighbour node xi, rIi = |xi−xI |, and c and p are two shape parameters

of the MQ-RBF [54].

Notice that each integration weight possesses its own parameter. Thus,

for integration point xI , the shape parameter c is obtained with: cI = γωI ,

being ωI the integration weight of integration point xI . In the literature it is

possible to find research works showing the spatial dependence of the RBF’s

shape parameter [26] [55]. Previous works found that γ should be close to zero,

γ u 0 , and p should be close to one, p u 1 , [37]. The work of Belinha and co-

workers [37] [26] shows that these values cannot be γ = 0 and p = 1 because the

use a null γ leads to singular moment matrix and the use of a positive integer

value for p leads to a singular moment matrix. The same previous research

works showed that values of p very close to the unit allow to obtain the most

accurate solutions (regardless the analyzed problem). Thus, in this work, it

was assumed p = 0.9999. Additionally, it was reported and demonstrated in

[37] [26] that γ should be very close to zero, since when its magnitude grows,

the RPI shape function loses its interpolation properties. Therefore, in order to

“maximize” the interpolation property of the RPI shape functions, the authors

have selected γ = 0.0001. In fact, optimizing the RBF’s shape parameters is

a never-ending research topic. Since the early works of Hardy [54] and Franke

[56] up to today, several researchers have focus their efforts to this topic [57]

[58] [59] [60].

Applying equation (1) to the node inside the influence-cell domain, consid-

ering each node as the interest point, and including an extra equation,

n∑

i=1

ai(xI) = 0 (2)
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to guarantee the unique solution [61], it is possible to obtain the following

equation system (3),




u1

u2

u3

...

0




=




R (r11) R (r12) . . . R (r1n) 1

R (r21) R (r22) . . . R (r2n) 1
...

...
. . .

...
...

R (rn1) R (rn2)
. . . R (rnn) 1

1 1 . . . 1 0







a1 (xI)

a2 (xI)
...

an (xI)

b (xI)




⇔


 us

0


 =


 R Cu

Cu 0




 a

b




(3)

where us = {u1, u2, . . . , un}T is the vector of the nodal function values for

the nodes in the influence-cell. Therefore, reorganizing equation (3) it is possible

to obtain the non-constant coefficients,


 a

b


 =


 R Cu

Cu 0



−1 
 us

0


⇒


 a

b


 =

[
M

]−1


 us

0


 (4)

Substituting in equation (1), the result from equation (4), allows to obtain

the interpolation function (5) for an interest point xI .

Φ(xI) = {ϕ1 (xI) , ϕ2 (xI) , . . . , ϕn (xI) ,Ψc} (5)

u (xI) = {R1 (xI) , R2 (xI) , . . . , Rn (xI) , Cu}M−1




us

0



 = Φ (xI)





us

0





(6)

The last term of the interpolation function, Ψc, comes from the constant

term Cu and it does not possess useful physical meaning. Thus, only the n first

components of Φ(xI) are relevant and form the interpolation function [38]. The
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partial derivative of Φ(xI) with respect to a variable ξ is defined by equation

(7),

Φξ (xI) = {R1 (xI) , R2 (xI) , . . . , Rn (xI) , Cu}ξM−1 (7)

Notice that since Cu is a constant scalar, then Cu,ξ = 0. The partial deriva-

tives of the MQ-RBF with respect to a variable ξ are obtained with equation

(8),

Rξ (rij) = 2p
(
r2
ij + c2

)p−1
(ξj − ξi) (8)

The NNRPIM shape functions possess several important numerical proper-

ties, such as the unit partition property and the delta Kronecker property, which

permits to impose the essential and natural boundary conditions using direct

imposition methods. In the literature it is possible to find complete studies

regarding its numerical properties [26], [51].

2.4. Discrete System of Equations

Consider the body described by the domain Ω ⊂ R2 and bounded by Γ,

where Γ ∈ Ω : Γu ∪ Γt = Γ ∧ Γu ∩ Γt = 0, being Γu the essential boundary

and Γt the natural boundary. The equilibrium equations governing the linear

elastostatic problem are defined as ∇Λ + b = 0 in Ω . Being ∇ the gradient

operator; Λ the Cauchy stress tensor for a kinematic admissible displacement

field u and b the body force per unit volume. The boundary conditions are given

by, Λn = t on Γt and u = t on Γu, where u is the prescribed displacement on

the essential boundary Γu, t is the traction on the natural boundary Γt and

n is the unit outward normal to the boundary of domain Ω. Using the Voigt

notation and assuming the Galerkin procedure for linear elasticity, the weak

form for the discrete problem can be written as equation (9),

δL =

∫

Ω

δεTσdΩ−
∫

Ω

δuT bdΩ−
∫

Γt

δuT tdΓt = 0 (9)
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Where ε is the strain vector defined as ε = Lu , being L a differential

operator,

L2D =




∂
∂x 0 ∂

∂y

0 ∂
∂y

∂
∂x



T

(10)

It is possible to directly correlate the stress field with the strain field using

the Hooke Law: σ = cε = cLu. Being c the material constitutive matrix,

which can be obtained inverting the compliance elasticity matrix, c = s−1. The

compliance elasticity matrix s for the general isotropic material case is defined

by equation (11) for the 2D plane strain formulation.

S2D =




1−νzxνxz

Exx

−νyz−νzxνyz

Eyy
0

−νxy−νzyνxz

Exx

1−νzyνyz

Eyy
0

0 0 1
Gxy


 (11)

Eii is the Young modulus in direction i, νij is the Poisson ratio which char-

acterizes the deformation rate in direction j when a force is applied in direction

i, Gij is the shear modulus which characterizes the variation angle between di-

rections i and j. Each node xi discretizing the problem domain possesses two

degrees of freedom: ui = {ui, vi}. Thus, in order to interpolate the virtual

displacement at the interest point xi equation (6) can be written as,

δu (xI) = δuI = I





ΦI

ΦI



 δus =


 ϕ1 (xI) 0

0 ϕ1 (xI)
. . .

ϕn (xI) 0

0 ϕn (xI)








δu1

δv1
...

δun

δvn





= Hiδus

(12)

Being I a 2 × 2 identity matrix. Substituting ε = Lu in the first term of
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equation (9) and considering equation (12) it is possible to write,

∫

Ω

δεTσdΩ =

∫

Ω

(Lδu)
T
c (Lu) dΩ =

∫

Ω

(LHIδus)
T
c (LHIus) dΩ =

∫

Ω

δus
TBT

I cBIusdΩ = δuTs

∫

Ω

BT
I cBIdΩu

(13)

Being BI the local deformation matrix defined for the n nodes constituting

the influence-cell of interest point xI ,




∂ϕ1(xI)
∂x 0 ∂ϕ2(xI)

∂x 0

0 ∂ϕ1(xI)
∂y 0 ∂ϕ2(xI)

∂y

∂ϕ1(xI)
∂y

∂ϕ1(xI)
∂x

∂ϕ2(xI)
∂y

∂ϕ2(xI)
∂x

. . .

∂ϕn(xI)
∂x 0

0 ∂ϕn(xI)
∂y

∂ϕn(xI)
∂y

∂ϕn(xI)
∂x


 (14)

Using an analogous procedure for the second and third terms of equation

(9), the following force vectors are obtained,

f b =

∫

Ω

δuTs bdΩ =

∫

Ω

(HIδus)
T
bdΩ = δuTs

∫

Ω

HT
I bdΩ (15)

f t =

∫

Γt

δuTs tdΩ =

∫

Γt

(HIδus)
T
tdΓt = δuTs

∫

Γt

HT
I tdΓt (16)

Thus, equation (9) can be re-written as,

δL = δuT
∫

Ω

BT
I cBIdΩu− δuTs

∫

Ω

HT
I bdΩ− δuTs

∫

Γt

HT
I tdΓt = 0 (17)

The equation system can be presented in the matrix form: Ku = f . Be-

ing K the stiffness matrix, u the displacement field vector and f = f b + f t

the vector of applied forces. Since the RPI shape function possesses the delta

Kronecker property, the essential boundary conditions can be directly applied

in the stiffness matrix [37].
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After the determination of the displacement field solving the linear equation

system K−1f = u, the strain in an interest point xI ∈ Ω can be obtained using

ε (xI) = Lu (xI), and then, considering the Hooke Law, σ (xI) = c (xI) ε (xI),

it is possible to determine the stress field at xI . It is possible to obtain the three

principal stresses σ (xI)i for each interest point, xI , det (Λ (xI)− σ (xI)i I) = 0

and the three principal directions: n (xI)i : (Λ (xI)− σ (xI)i I)n (xI)i = 0,

being Λ (xI) the Cauchy stress tensor obtained for the interest point and I a

identity 2× 2 matrix. In the general 3D case, using the three principal stresses

σ (xI)i and equation (18), the von Mises effective stress of interest point xI is

obtained.

σ(xI)eff =
√

1

2

(
(σ (xI)1 − σ (xI)2)

2
+ (σ (xI)2 − σ (xI)3)

2
+ (σ (xI)3 − σ (xI)1)

2
) (18)

Comparing NNRPIM with other meshless methods, the NNRPIM shows a

higher re-meshing flexibility and a higher accuracy on the solution variable field

[62, 63]. Another benefit of the NNRPIM compared to others meshless methods

it is the lower computational cost during the processing phase of the numeri-

cal analysis (after the construction of the nodal connectivity, integration mesh

and shape functions), that can be relevant in demanding non-linear analysis,

such as material non-linearity, large deformations, transient dynamic analysis

[37, 64, 53, 65, 66, 67]. Being the nodal connectivity and integration mesh con-

structed only based on the nodal discretization, this becomes an advantage in

the biomechanical analysis, since it is possible to analyze extremely irregular

meshes and convex boundaries [68].

3. Homogenization Technique

In this section, the homogenization technique is fully described. First, from

cuboid bone micro-CT images it were selected 2D images (thin slices) describing

locally the bone morphology at its microscale. Then, the fabric tensor concept
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Figure 4: Microscale homogenization technique

was applied to these selected square microscale images in order to determine its

material orientation. Additionally, a bone tissue phenomenological law was used

to obtain the homogenized material properties of the microscale patch. This

homogenization technique allows to define the anisotropic mechanical proprieties

of the trabecular bone. The algorithm describing the proposed homogenization

technique is presented in figure 4 and its features are presented in the following

subsections.

3.1. Fabric tensor morphologic based method

The 2D square patch used to define the morphologic based fabric tensor

can be selected from the set of micro-CT by defining a relevant micro-CT slice

image and then identifying a square region of interest with relevant information

(the binary image represented in the left-upper image of figure 4). This square

patch, a gray scale image, is then binarized, resulting in a binary image Is that

contains the characteristic morphology of the (local) trabecular bone.

To define the fabric tensor it was used a methodology developed by White-

house [69]. In this methodology the number of interceptions between a parallel

family line set, with direction ι, with the interface between both phases of the

material is counted, Int (ι). The length of the parallel lines family, h for the ι

direction is also obtained. With h and ι it is possible to defined the an orienta-
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tion distribution function (ODF), which in this case is called mean interception

length (MIL), equation (19).

MIL (ι) =
h

Int(ι)
(19)

This methodology is considered a golden standard since exists a large amount

of works that sustain its appropriateness to predict mechanical properties of

trabecular bone [69, 70, 71, 72, 73]. The literature shows that for many types of

materials, in particularly bone trabeculae, when the ODF data is disposed on a

polar plot and fitted in an ellipse, the corresponding ellipse parameters can be

correlated with the material orientation (its anisotropy) [74].

The dimensional information of Is is used to define the size of an image

containing the family of parallel lines with ι = 0◦. Counting the interceptions

of those parallel lines with the boundaries of the binary image square patch, it

is possible to obtain the orientation-dependent feature.

Rotating the family of parallel line image with ι between 0◦ and 180◦, and

then counting the interception of the family of parallel lines with the square

patch binary image Is, is possible to obtain the ODF of the Is. The created data

for ι between ]180◦, 360◦[ is a [0◦, 180◦] data repetition, since the orientation-

dependent feature depends only on the orientation and it is not influenced by

the direction. Afterwards, the ODF data is plotted using polar coordinates.

This data is then fitted into an ellipse, from which it is possible to obtain the

material orientation of the trabecular micropatch (see both central boxes of

figure 4). From the fitted ellipse it is possible to obtain the ellipse minor axis

length, βmin, and major axis length, βmax and θ, the angle of ellipse major axis

with the polar plot horizontal axis.

3.2. Phenomenological material law method

Using the information from the fitted ellipse and the average apparent den-

sity of the binary image Is it will be possible to define the homogenized anisotropic

mechanical properties of Is. Notice that the average apparent density, ρapp, of

17
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Table 1: Coefficients from Belinha’s material law [75].

j = 0 j = 1 j = 2 j = 3

aj 0.0E + 00 7.216E + 02 8.059E + 02 0.0E + 00

bj −1.770E + 05 3.861E + 05 −2.798E + 05 6.836E + 04

the binary image Is can be obtained using the number of white pixels, αw, and

black pixels, αb, of Is as equation (20) shows.

ρapp =

(
αw
αb

)
ρcorticalapp (20)

being the cortical bone apparent density assumed as ρcorticalapp = 2.1g/cm3.

Using the ρapp and the phenomenological material law defined by Belinha and

co-workers [75], the axial Young’s modulus Eaxial can be defined. As recom-

mended in [75], if ρapp ≤ 1.3 it should be applied equation (21), otherwise it

should be used equation (22). The coefficients aj and bj can be found in table

1.

Eaxial =

3∑

j=0

ajρapp if ρapp ≤ 1.3 (21)

Eaxial =
3∑

j=0

bjρapp if ρapp > 1.3 (22)

To define the transverse elastic modulus Etrasnv it is used the relation be-

tween the ellipse minor axis length, βmin, and major axis length, βmax, and the

axial elastic modulus Eaxial as equation (23) shows.

Etransv =
(||βmin||Eaxial)

||βmax||
(23)

The Poisson’s coefficient, ν, was calculated according the mixture theory

using the relation between white and black pixels, as represented in equation
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(24).

ν =
0.0 (αb) + 0.3 (αw)

αt
(24)

being αt the total number of pixels of the binary image Is. The shear

modulus, G, was expeditiously calculated using equation (25).

G =
Eaxial

2(1 + ν)
(25)

As figure 4 shows, using the homogenized material properties (Eaxial, Etrasnv,

ν and G) the constitutive matrix is defined cox′y′ , for the ox′y′ local coordinate

system (oriented with the material principal axis, following the principal di-

rections ’axial’ and ’transverse’). Using the angle θ obtained from the ellipse

fitting, it is defined the transformation rotation matrix T , equation (26).

T (θ) =




cos(θ) −sin(θ) 0

sin(θ) cos(θ) 0

0 0 1


 (26)

Afterwards, it is possible to define the material constitutive matrix in the

global axis with,

coxy = T (θ)T cox′y′T (θ) =




c11 c12 c13

c21 c22 c23

c31 c32 c33


 (27)

being cox′y′ defined with c = s−1, in which the anisotropic compliance

matrix s is obtained for the material axis ox′y′ with equation (11).

4. Numerical Examples

First, in order to validate the homogenization methodology, some numerical

tests were performed, involving size and rotation analyses of predefined Is binary

images.
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Thus, to verify the robustness of the proposed technique, a predefined binary

image (with a known preferential material orientation) was analyzed. Then, the

input image was rotated and it was verified if the ellipse fitted from the fabric

tensor based methodology had βmax aligned with the material orientation of the

image. In this case it was considered an angle increment of 20◦ for the family

of parallel lines rotation.

Furthermore, in order to verify the behaviour of the proposed homogeniza-

tion technique, it was performed a numerical structural analysis using two dis-

tinct geometrical models (a homogeneous model and a heterogeneous model).

The numerical analysis was performed with 2 distinct numerical methods, the

FEM and the NNRPIM. Concerning the NNRPIM formulation used in this

work, it was assumed: only first degree influence cells; one integration point

per each integration sub-cell; the MQ-RBF shape parameters suggested in the

literature (c = 0.0001 and p = 0.9999); and a constant polynomial basis.

4.1. Validation of MIL methodology

The validation of the MIL methodology will be assessed with two distinct

studies. The first study will verify the influence of the size of the representative

volume element (RVE) in the determination of the anisotropic constitutive ma-

trix. In the second study, the consistency of the methodology will be tested, by

imposing known material orientations to the model.

4.1.1. RVE size

In order to understand the influence of the size of the RVE in the proposed

methodology, two distinct models were constructed, figure 5a and figure 5d. The

model presented in figure 5a is a benchmark fabricated unitary binary image

showing a well-defined material orientation (90◦). This model was repeated

rn×rn, being rn the number of repetitions of the RVE. For illustration purposes,

figure 5b shows its 2×2 repetition and 5c its 10×10 repetition. Alternatively, the

model shown in figure 5d represents a realistic trabecular square patch unitary

binary image obtained from a micro-CT image. Similarly, this realistic RVE

20

3.7 Contribution V: A multiscale homogenisation procedure combining the fabric tensor with a
natural neighbour meshless method. 163



(a) (b) (c)

(d) (e) (f)

Figure 5: Binary images used to verify the MIL dependence on the RVE size. Benchmark

fabricated unitary image, 5a. Realistic binary image from a micro-CT, 5d; To analyze the

effect of using different RVE sizes, the binary images were repeated from a 2 × 2 repetition,

5b and 5e to a 10 × 10 repetitions, 5c and 5f, respectively

was repeated rn×rn and examples for the 2×2 repetition and 10×10 repetition

are shown respectively in figure 5e and figure 5f.

The propose homogenization methodology was applied to each one of the

RVEs (fabricated benchmark and realistic square patch) and their several cor-

responding repetitions rn×rn, being rn = 1, 2, 3, ..., 10.

Following the methodology described in section 3 it was possible to obtain

all the components of the constitutive tensor coxy, equation (27). Figures 6a

and 6b show the components of the constitutive matrix that are obtained using

the proposed homogenization methodology for the fabricated benchmark RVE

and the realistic trabecular RVE, respectively. In both figures it is possible

to visualize the evolution of cij with respect the number of repetitions of the

corresponding basic unit RVE. For both RVEs types (benchmark and realistic),

it is perceptible that the value of each component of the constitutive matrix,

cij , does not vary significantly with the number of repetitions, rn.

Concerning the angle θ, which indicates the orientation of the material, see

equation (27) and figure 4, the obtained values for θ for the distinct RVE’s

repetitions are presented in table 2. Notice that for the fabricated benchmark
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Figure 6: Constitutive matrix values obtained using a unitary image and up to 10× repetitions.

6a: Results for the trabecular square patch obtained using the micro-CT image. 6b: Results

for the created image.

RVE, as expected, θ does not suffers any significant variation (the average value

is 90◦ with a standard deviation of 0◦). Similar, for the realistic trabecular RVE

the number of repetitions do not relevantly change the material orientation angle

of the basic unit RVE (118◦), being the obtained average value: 115.7◦ with a

standard deviation of 1◦.

4.1.2. RVE rotation

The aim of this study is to verify if the developed methodology is capable to

deliver accurate material orientations. Thus, both RVEs already presented - the

benchmark fabricated RVE, figure 5a, and the realistic trabecular RVE, figure 5d

- were rotated in relation the their initial position following increment angles of

20◦, between the interval [0◦, 180◦]. In figure 7 and figure 8 are shown the results
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Table 2: Relation between the image repetition and the corresponding obtained θ

Repetition 1 2 3 4 5 6 7 8 9 10 Average SD

θ
Created 90 90 90 90 90 90 90 90 90 90 90 0

Trabecular 118 114 116 115 117 115 116 115 115 115 116 1

of the several analysis performed.It is possible to visualize the orientation/size of

the produced ellipse and the corresponding angle of the material. The originals

images with respective MIL data and fitted ellipse are represented in figure 7a

and figure 8a.

In figure 9a are represented the material orientation angles θ of the fitted

ellipse and the expected ones. For instances, for the 20◦ rotation of the realistic

trabecular RVE, it was obtained a 152.22◦ θ orientation, however it was expected

140.143◦, resulting in a difference of 12.08◦. For the cases presented in this

work the average difference between the obtained material orientation and the

expected angle is 5.83◦.

The difference between the expected orientation and the obtained material

orientation θ (coming from the proposed MIL algorithm ) can be explained by

the change of the source image upon the rotation process, performed using a

MATLAB 2016b function. This leads to the change of the number of white

pixels of the image, a parameter highly related with the calculus of the MIL,

as equation (19) shows. To better illustrate this feature, figure 10 demonstrates

the image modification due to its rotation, where the red circle marks the same

region in different rotated images.

4.2. Structural application

The objective of this section is to verify if a homogenized RVE (whose

homogenized anisotropic mechanical properties were obtained with proposed

methodology) is capable to produce a homogenized von Mises effective stress

field similar with the one obtained with a heterogeneous RVE.

Thus, in order to assess the efficiency of the proposed homogenization tech-

nique, it is performed a structural analysis of the realistic trabecular RVE pre-
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Figure 7: Benchmark fabricated RVE rotation results. 7a: 0◦ rotation; 7b: 20◦ rotation; 7c:

40◦ rotation; 7d: 60◦ rotation; 7e: 80◦ rotation; 7f: 100◦ rotation; 7g: 120◦ rotation; 7h:

140◦ rotation; 7i: 160◦ rotation; 7j: 180◦ rotation.
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Figure 8: Realistic trabecular RVE rotation results. 8a: 0◦ rotation; 8b: 20◦ rotation; 8c: 40◦

rotation; 8d: 60◦ rotation; 8e: 80◦ rotation; 8f: 100◦ rotation; 8g: 120◦ rotation; 8h: 140◦

rotation; 8i: 160◦ rotation; 8j: 180◦ rotation.
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Figure 9: 9a: Obtained material orientation angles θ of the fitted ellipse versus the expected

ones for the benchmark fabricated RVE (5a) and the realistic trabecular RVE (5d). 9b:

Difference between the obtained θ results and the expected ones, in percentage %.

(a) (b) (c) (d) (e)

Figure 10: Image rotation process and inherent morphologic change, 10a: Original Image;

10b: 20◦ rotation; 10c: 40◦ rotation; 10d: 60◦ rotation; 10e: 80◦ rotation.
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v = 0.1 x L

L

L

Figure 11: Boundary conditions applied to all RVEs.

(a) (b)

Figure 12: 12a Discretized homogeneous RVE (11 × 11 nodes uniformly distributed). 12a

Example of a discretized heterogeneous RVE created using micro-CT image information.

viously presented, figure 5d, and its rn × rn repetitions, and the results are

compared with the ones obtained with a homogeneous RVE.

All the RVEs were submitted to the same essential and natural boundary

conditions. Being all the RVEs squares micro patches with dimensions L × L,

it was imposed a displacement of 0.1× L at the nodes of the top layer, y = L.

The nodes at x = 0 and x = L where constrained on Ox direction, ū = 0, and

the nodes at y = 0 and y = L where constrained on Oy direction, v̄ = 0. This

constrains are exemplified in figure 11.

The homogeneous RVE is typically discretized by a set of n× n nodes uni-

formly distributed within the RVE domain, figure 12a. All the integration points

of the homogeneous RVEs models possess the same homogenized material prop-

erties. The heterogeneous RVEs (the realistic trabecular RVE) is formed by

trabecular bone and void space, the discretization of such complex domain is

exemplified in figure 12b.

Applying the proposed homogenization technique to the RVE represented in

figure 5d, it is possible to obtain the anisotropic material properties presented

in table 3, column ”Homogeneous RVE”. Thus, every integration point of the
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Table 3: Mechanical properties used in the structural analysis

Mechanical Proprieties

Homogenized RVE Trabecular bone Void Space

Eaxial 2366.0898 [MPa] E 11600 [MPa] E 100 [MPa]

Etransv 1035.8652 [MPa]

G 4239.8785 [MPa]

θ 62 [degrees]

ν 0.1231 ν 0.36 ν 0.459

homogeneous RVEs will assume these materials properties. Since the realistic

trabecular RVEs are binary images, containing bone or void space, it is necessary

to assume mechanical properties for these two materials. Thus, in table 3 are

indicated the mechanical properties for the two domains (trabecular bone and

void space). The mechanical properties of the trabecular bone were defined

as isotropic according to the literature, [76]. Notice that since the geometrical

information coming from the micro-CT forces the existence of the void space in

between the trabeculae, it was necessary to define this ’material’ as solid. Thus,

the solution was to define it as a soft material that would not (significantly)

interfere with the global structural response of the RVE. Thus, to the ’void

space’ was attributed a Young’s modulus with a much lower magnitude when

compared with the trabecular bone.

Two homogeneous RVEs were analyzed, one with 11×11 nodes and another

with 21 × 21 nodes. The von Mises effective stress maps obtained with both

FEM and NNRPIM techniques are presented in figure 13a and figure 13c for

the FEM and in figure 13b and figure 13d for the NNRPIM.

The results for homogeneous RVEs, whose mechanical properties were ob-

tained using the proposed homogenization technique, are very similar, regardless

the level of the discretization or the used numerical method (FEM or NNRPIM).

As can be seen in figure 13a and 13b the colour maps are similar, and demon-
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(a) (b) (c) (d)

(e) (f) (g) (h)

Figure 13: Effective stress Seff for homogeneous model: 13a: FEM 1X1; 13b: NNRPIM

1X1; 13c:FEM 2X;13d: NNRPIM 2X2; and for heterogeneous models: 13e: FEM 1X1; 13f:

NNRPIM 1X1; 13g: FEM 2X2; 13h: NNRPIM 2X2

strate the preferential orientation of the original realistic trabecular micro patch

(from which the material properties were obtained, figure 5d ).

Regarding the heterogeneous RVEs, in figure 13 only the von Mises effective

stress distribution in the trabecular domain is shown. As figure 13e and figure

13g show, the results obtained for the FEM are slightly different from the one

obtained with the NNRPIM, figure 13f and figure 13h.

In order to compare the stress field obtained with the homogeneous RVE

with the heterogeneous RVE, the concept of homogenized stress is used.

The RVE’s von Mises effective stress field (or any other RVE’s stress/strain

field) can be summarized in one scalar value - the homogenized von Mises effec-

tive stress - which can be defined with equation (28).

σheff =
1

nQ

nQ∑

i=1

σ(xi)eff (28)

being nQ the number of integration points discretizing the problem domain

and not belonging to the vicinity of the domain boundary. Since, the inte-

gration mesh constructed within the FEM is fundamentally different from the
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(a) (b) (c) (d)

Figure 14: Integration points used to calculate the homogenized von Mises effective stress

σh
eff . The blue points represent valid integration points, the red points represent excluded

integration points. 14a: Integration mesh of the homogenized RVE for the FEM analysis; 14b:

Integration mesh of the homogenized RVE for the NNRPIM analysis; 14c: Integration mesh

of the heterogeneous RVE for the FEM analysis; 14d: Integration mesh of the heterogeneous

RVE for the NNRPIM analysis.

integration mesh constructed with the NNRPIM formulation, the position of

their integration points is very different. In figure 14 are presented the inte-

gration mesh of the homogenized RVE model for the FEM (14a) and for the

NNRPIM (14b) and the integration mesh of the heterogeneous RVE model for

the FEM (14c) and for the NNRPIM (14d). In blue are represented the inte-

gration points that will be included to calculate σheff and in red are shown the

integration points that will be excluded from equation (28).

This homogenization excludes only 2% of the integration points forming the

integration mesh. This exclusion is necessary to avoid the (inaccurate) stress

concentrations that appear near the domain boundary, as can be seen in figure

13.

Thus, figure 15 shows the homogenized von Mises effective stress, σheff , ob-

tained for each analyzed RVE, using both FEM and NNRPIM methodologies.

Besides the homogenized von Mises effective stress determined in the integra-

tion points, in the figure are shown the σheff obtained in the nodes. This last

variable is obtained using equation (28). However, instead of considering the

stress at the integration points it is considered the stress extrapolated to the

nodes.

Notice that four heterogeneous RVE were considered: a 1× 1 heterogeneous
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Figure 15: Homogenized von Mises effective stress σh
eff obtained with the FEM and the

NNRPIM.

RVE (corresponding to the one represented in 5d), a 2× 2 heterogeneous RVE

(corresponding to the one represented in 5e), and then a 3 × 3 and 4 × 4 het-

erogeneous RVEs following the same repetition rule.

It is perceptible in figure 15 that increasing the level of detail and the size of

the heterogeneous RVE, which are governed by the number of repetitions (the

1×1 RVE has a lower detail than the 4×4 RVE), the value of the homogenized

stress decreases. Thus, when the analysis uses a heterogeneous model following

a 4 × 4 repetition, the obtained homogenized stress is very close with the ho-

mogenized stress obtained with the homogeneous RVE. This indicates that the

homogenization technique proposed in this work is capable to accurately obtain

the homogenized anisotropic material properties of a trabecular patch. Com-

paring the FEM with meshless method is notorious that for the homogeneous

RVEs’ results are equivalent. However, the FEM and NNRPIM results obtained

with the heterogeneous RVEs are not so close. This difference can be explain

by locking effects in the FEM.

Each one the analyses has its own computational cost. In figure 16 are shown

the time-lapse of each structural analysis. Observing the computational cost of

each analysis, it is possible to understand that the analysis of the homogenized

RVE is much faster than heterogeneous RVEs (with rn × rn, rn = 2, 3, 4). In

figure 15 it was shown that the 4× 4 heterogeneous RVE produces results very

close with the homogeneous RVE. However, the 4× 4 heterogeneous RVE takes

5000s to analyze and the homogeneous RVE only requires 4−6s. Generally, the
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Figure 16: Computational cost (in seconds) of each analysis.

multiscale techniques use highly discretized RVEs, with a high computational

cost associated. As this example shows, the proposed homogenization method-

ology is capable to reduce the cost of the multiscale analysis, enabling more

demanding simulations.

5. Conclusions

The current work provided a methodology that allows to define the me-

chanical properties of a micro-CT trabecular bone square patch without any

a-priory knowledge. Using the MIL methodology it is possible to acquire data

to define the material orientation using a distribution function. Applying the

methodology defined by Fitzgibbon et al. [77], the orientation distribution is

approximated by a ellipse function. As described by Moreno et al. [74], bone

trabeculae distribution/density can be defined by a tensor (a 2× 2 matrix) rep-

resenting the estimated ellipse. With this, it is possible to define the material

mechanical properties, directly related with the trabeculae anisotropy encoded

in the fabric tensor and with the material law developed by Belinha et al, 2012

[75].

The studies performed concerning the modification of the RVE scale and its

rotation, demonstrated that the methodologies used to create the fabric tensor

and to obtain the mechanical properties are stable and provide good results.

Regarding the RVE rotation study, it were observed differences with an average

of 1.62%. However, this magnitude is not relevant by itself or in the clinical use,
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since in real scenarios the input images are not to be rotated.

It was verified that the homogeneous RVE, using the homogenized anisotropic

material properties, is capable to produce the same results as the highly hetero-

geneous RVE (the 4×4 heterogeneous RVE). However, an elasto-static analysis

with the homogeneous RVE only takes 4− 6s to perform and the same analysis

with the 4× 4 heterogeneous RVE takes about 5000s. Since usually multiscale

techniques use highly discretized RVEs, it is expected that the homogenization

technique here proposed combined with meshless methods will be capable to

reduce the cost of the multiscale analyses, allowing to simulate more complex

problems.

Additionally, the inclusion of the NNRPIM in multiscale analysis could be

a true asset. In this manuscript it was shown that the NNRPIM is capable

to produce accurate and smooth microscale variable fields (at the RVE scale),

which will allow to obtain accurate final homogenized variable fields.

The results obtained with the NNRPIM are very close with the FEM results,

showing that this technique is a valid alternative to the FEM. Furthermore, the

NNPRIM does not shows the same locking behaviour demonstrated by the FEM.
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[13] G. S. Beaupré, T. E. Orr, D. R. Carter, An approach for time-dependent

bone modeling and remodeling-theoretical development, Journal of Or-

thopaedic Research 8 (5) (1990) 651–661. doi:10.1002/jor.1100080506.

URL http://doi.wiley.com/10.1002/jor.1100080506

[14] C. R. Jacobs, J. C. Simo, G. S. Beaupre, D. R. Carter, Adaptive bone

remodeling incorporating simultaneous density and anisotropy consider-

ations, Journal of Biomechanics 30 (6) (1997) 603–613. doi:10.1016/

S0021-9290(96)00189-3.

[15] P. Fernandes, J. Guedes, H. Rodrigues, Topology optimization of three-

dimensional linear elastic structures with a constraint on “perime-

ter”, Computers & Structures 73 (6) (1999) 583–594. doi:10.1016/

S0045-7949(98)00312-5.
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[17] M. Doblaré, G. J.M., Anisotropic bone remodelling model based on a con-

tinuum damage-repair theory, Journal of Biomechanics 35 (1) (2002) 1–17.

doi:10.1016/S0021-9290(01)00178-6.
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3.8 Contribution VI: A 3D trabecular bone homogenization tech-

nique. (Submitted)

3.8.1 Highlights of Contribution: 3.8

This contribution focused on the bone mechanical properties definition using a 3D homogenisa-

tion technique defined by the fabric tensor concept and a set of phenomenological laws, combined

with the FEM.

Therefore, the main contents of this publication include:

I. Literature review on bone remodelling;

II. Literature review on homogenisation techniques;

III. Literature review on fabric tensor concept;

IV. Application and description of a 3D homogenisation technique, where it is used the fabric

tensor concept and a set of bone tissue phenomenological laws.

V. Description of the 3D methodology to acquire the fabric tensor using the MIL methodology

upon the 3D spatial dimension.

VI. Material laws capable of defining bone mechanical proprieties using the fabric tensor data

and using the medical images used to define the bone geometry.

VII. Validation and evaluation of the robustness of the homogenisation methodology defined by

a morphologically based fabric tensor methodology;

(a) Evaluation of effect of the change of the vectors number inside the search sphere, upon

the obtained θ , ω , r1, r2 and r3 parameters;

(b) Evaluation of the obtained mechanical parameters (θ , ω ,E1, E2, E3, G1, G2, G3, ν1,

ν2 ν3 and ρapp) using different RVE with well defined characteristics;

VIII. A structural application using FEM and two sets of applied boundary conditions, was used to

verify and to compare the heterogenous and equivalent homogeneous domains. It was used

the concept of homogenised stiffness K to compare the homogenous and heterogeneous

models.

IX. Conclusions: Contribution VI describes a methodology that allows to define the mechan-

ical properties of a micro-CT trabecular bone RVE without any a-priory knowledge. This
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contribution used a 3D MIL methodology that demonstrated to be robust and capable to

encode the material orientation and morphology. Using the 3D fabric tensor and the phe-

nomenological laws it was possible to define mechanically a homogenous domain that, as

shown by the results obtained in the mechanical simulation, have a equivalent mechanical

behaviour when compared to a highly discretised heterogeneous domain, 3.12. Also, one of

the main objectives of using a homogenisation methodology is to reduce the computational

cost, which in this case was achieved, as can be seen in figure 3.13.
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Figure 3.12: 3.12a - Homogenised stiffness K for the mechanical simulation results performed us-
ing the first set of boundary conditions; 3.12b - Homogenised stiffness K value for the mechanical
simulation results performed using the second set of boundary conditions.



190 Original Developed Work

HT HM HT HM HT HM HT HM HT HM

Model 1 Model 2 Model 3 Model 4 Model 5
Set 1 3253.80 24.70 49.90 23.90 1382.50 26.50 152.10 22.50 544.40 24.30

Set 2 2912.60 23.40 49.30 23.80 1317.50 24.50 145.30 22.00 516.40 23.50
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Figure 3.13: Computational cost of the models defined with the homogenised methodology versos
the computational cost of the heterogenous models.
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Title: A 3D Trabecular Bone Homogenization Technique 

Abstract: 

Purpose: Bone is a hierarchical material that can be characterized from the microscale to 

macroscale. Multiscale models allow to study bone remodeling, inducing bone adaptation 

by using information of bone multiple scales. This work proposes a computationally 

efficient homogenization methodology useful for multiscale analysis. This technique is 

capable to define the homogenized microscale mechanical properties of the trabecular 

bone highly heterogeneous medium.  

Methods: In this work, it was used a morphologic based fabric tensor and a set of 

anisotropic phenomenological laws for bone tissue, in order to define the bone micro-

scale mechanical properties. To validate the developed methodology, several examples 

were performed in order to analyze its numerical behavior. Thus, trabecular bone and 

fabricated benchmarks patches (representing special cases of trabecular bone 

morphologies) were analyzed under compression.  

Results: The results show that the developed technique is robust and capable to provide a 

consistent material homogenization, indicating that the homogeneous models were 

capable to accurately reproduce the micro-scale patch mechanical behavior. 

Conclusions: The developed methodology has shown to be robust, computationally less 

demanding and allows to obtain close results when comparing the heterogeneous models 

with equivalent homogenized models. Therefore, it is capable to accurately predict the 

micro-scale patch mechanical behavior in a fraction of the time required by classic 

homogenization techniques. 

Keywords: Fabric Tensor, Homogenization Technique, Multiscale; Bone 

 

1. Introduction 

Bone is a complex mineralized biological structure defined by bone matrix and by bone 

cells. It can be classified as a hierarchical material possessing distinct scales from the 

nanoscale to the macroscale [1]. To comprehend bone physiology it is necessary to 

understand bone at its different scales. Therefore, bone is studied at its macroscale level, 

[2], microscale level [3], and also crossing scale levels (multiscale analyses) [4]. Bone 

remodeling is one of the most trend research topics in computational biomechanics. In 

this process, bone cells are responsible to renew the bone matrix, by creating or 
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reabsorbing it, [5] This process is progressive and it is triggered to allow bone adaptation 

to any new external loads. Being bone a hierarchical structure, bone morphology 

adaptation leads to changes of its macro-scale mechanical properties, needed to fulfill and 

optimize the bone specific physiological function of structural support. [6] Bone 

remodeling can be studied using a multi-scale approach, where information from two or 

more scales can be used to define bone different functional requirements at different 

scales, reflecting bone’s different behavior at different scales. [7] Wolff reported that the 

directions of the external applied loads directly influence the direction of the trabecular 

bone. [8] As a consequence, changes in bone’s trabecular structure (at a microscale level), 

influence the macroscale mechanical behavior of bone, which in turn impacts the 

remodeling process. 

Today, it is common to use computational biomechanics to study this type of biological 

problems [10]. The numerical methods and discretization techniques used in 

computational biomechanics allow to define, approximate and mimic biological 

processes using mathematical descriptions of the problem. Bio-mathematical 

formulations combined with distinct discretization approaches, such as finite element 

methods (FEM) [9] and meshless methods [10], allow to describe the mechanical 

behavior of bone at certain scale levels by using multiscale approaches [11] and 

homogenization techniques [12]. As in many other subjects, the use of the numerical 

approaches to study bone remodeling began with simplistic models. At first, it was 

considered that bone was only sensitive to mechanical stimuli [13]. In these early studies, 

bone tissues started to be considered as an isotropic-elastic material, a consideration that 

disregard the importance of material orientation and structure in the remodeling process. 

In the last few years, the complexity of bone models gradually increased, and models 

started to be combined with multiscale methodologies [11], in which are required 

homogenization techniques [14]. Trabecular bone is characterized by having a highly 

heterogeneous morphology, possessing a high surface-area-to-volume. Thus, trabecular 

bone is the major responsible for bone’s metabolic activity, including the remodeling 

process. Thus, considering that many of bone remodeling studies are performed using 

discretization methodologies, the highly heterogeneous trabecular bone domain can have 

a negative impact in the perform of these methodologies. With this, some authors started 

to use homogenization techniques, which allow do define the trabecular bone highly 

heterogeneous domain as a homogeneous domain, but considering its orientation and 

anisotropy [15]. This homogenization techniques allow to determine equivalent 
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mechanical properties of a heterogeneous material by substituting the volume of the 

heterogeneous material with an equivalent volume of homogeneous material, and so, 

predict the behavior of the macro-scale using the mechanical properties coming from the 

micro-scale. The fabric tensor concept, , a symmetric second rank tensor, allows to 

characterize the arrangement of a multiphase material. Back in 1985, Cowin [16] 

described the relation between the fabric tensor and the fourth rank elasticity tensor 

. The fabric tensor also provides information that allows to define an ellipsoid that can be 

related with the several material symmetries observed in many natural materials, such as 

bone tissue. The fabric tensor can be defined using two different methodologies, a 

mechanical based methodology and the morphologic-based methodology. The Mean 

Intercept Length (MIL) tensor [17], a morphologic-based method that uses the interface 

between phases of the material to estimate the tensor, is the most used technique to 

compute a fabric tensor [18]. When considering the bone structure, it is possible to obtain 

information regarding the material phase-change using computed tomography scan 

images, leading, naturally, to the use of morphologic-based techniques to define the fabric 

tensor. The morphologic-based methods use an orientation distribution function (ODF), 

which is estimated from an orientation-dependent feature of interest. ODF disposes the 

data in a polar plot and, then, fits the data with an ellipse. As Cowin initially suggested 

[16], it was afterwards demonstrated in the literature that the ODF fitted ellipse 

(specifically, the ellipse parameters) can be correlated with the material orientation, i.e., 

the material anisotropy [17]. This fabric tensor concept allows to numerically define bone 

mechanical proprieties, which is of high importance when studying the structural 

behavior of bone tissue or its biological processes, such as bone remodeling. Defining 

these mechanical properties allows to feed constitute laws, in order to better simulate the 

structural behavior of bone tissue. With this, the main objective of this work is to combine 

a new developed 3D homogenization technique, applying the fabric tensor concept 

combined with a previously developed bone tissue material law and with FEM, aiming to 

achieve a low-cost and efficient multiscale technique. 

 

2. Material and Methods 

The objective of this work is to develop a homogenization technique based in the fabric 

tensor concept. Thus, it was used a 3D MIL methodology to define an ellipsoid encoding 

the material anisotropy and orientation. This 3D MIL methodology uses as input a micro-

A

ijklC
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CT bone image Representative Volume Elements (RVE), which enables to represent the 

bone structure. The methodology was evaluate using a set of RVE benchmarks. Having 

the ellipsoid parameters and using a phenomenological material law from Belinha et al. 

[19] and from Agic et al. [20], it was possible to define an homogenized domain 

representative of a highly heterogeneous trabecular domain. Then, a set of mechanical 

simulations were performed, in which heterogeneous models were used. The geometry of 

these heterogeneous models was defined by micro-CT images representative of the 

trabecular bone. Additionally, homogenous geometrical models with regular shape 

(cubes) were constructed, with their mechanical proprieties defined using the developed 

homogenization technique. 

 

2.1. 3D MIL  

To define the fabric tensor encoding bone anisotropy, the methodology requires as input 

a medical image. These images are usually a set of grey-scale images, thus, the first 

operation of this methodology is to segment the medical images using the Otsu method. 

This allows to define in the RVE which voxels are bone material or void. The second step 

of the methodology is defined by an iterative process, where a random search using a 

sphere centered within the RVE boundaries is selected. This search sphere contains a set 

of vectors with random directions that are set constant in all the iterations. In each 

iteration, the search sphere centroid changes, and the intersection between the vectors 

from the vector list and the bone voxels are counted. These intersections are only counted 

if the bone voxel centroid has a maximum distance from the vector of at least the voxel 

size. Being the vector list constant within the iterative process, it is possible to sum for 

each vector the number of bone voxels that are intercepted in all the iterations. In this 

work, depending on the benchmark, the iterative process has a minimum and a maximum 

of 1000 and 5000 iterations, respectively, and has a variance stop criteria of 0.08. Using 

equation (1), it is possible to transform the intersection count into Cartesian coordinates. 

For each direction, , represented by a unique vector, it is multiplied the number 

iterations, , with the original vector size, . Dividing this value with the number of 

interceptions of the vector with direction  for all the iterations, it is obtained the 

. The original vector size, , was defined by the search sphere size, that contained 

the vector list. Having the  value, the ODF data, it is possible to fit it into an ellipsoid 

using Fitzgibbon methodology. [21] After defining the ellipsoid, relevant parameters for 

i
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194 Original Developed Work



 

the methodology are extracted. Specifically, the parameters extracted are the radius that 

define the ellipsoid, ,  and  being  , and the angles theta, , and azimuth 

, defined from , that defined the ellipsoid 3D orientation. ,  and  are normalized 

by the  size, being  always.  

  (1) 

2.2. Material Law 

 

Using the parameters obtained from the 3D MIL methodology, the RVE image 

information, and the phenomenological material laws from Belinha et al. [19] and Agic 

et al. [20] , it is possible to create and define a material law. 

The segmented image information was used to define the bone apparent density, . 

This was obtained using a relation between the number of white voxels (bone voxels), 

, and the black voxels (void voxels), , as described in equation (2). In this equation, 

 represents the bone typical maximum apparent density. 

  (2) 

Also, using the image information, through the universal mixture laws, was possible to 

define , equation (3), being  the typical poisson ratio for cortical bone (bone 

voxels, at the microscale). 

  (3) 

Regarding  and  in this work the values from Agic et al. [20] are assumed, Figure 1, 

where it is shown a relation between  and  and the bone apparent density, . 

Fitting Agic et al. data it was possible to define two fourth order polynomial equations, 

equation (4) and (5), allowing to describe analytically the behavior of  and , 

considering . 
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Figure 1 - Data from Agic et al.[20] fitted to polynomial functions.  

  (4) 

  (5) 

Considering Belinha's material law [22] and using equation (6) and coefficients from 

Table 1, it is possible to define . Concerning  and , it is defined a relation between 

 and the radius ,  and . Thus,  is defined using a relation between ,  and 

 equation (7), and , is defined using ,  and , equation (8). 

Table 1 - Coefficients from Belinha's material law [22] . 
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The shear modulus, ,  and , are approximated using equation (9), (10) and (11), 

respectively: 

  (9) 

  (10) 

  (11) 

Using the proposed methodology it is possible to define a set of mechanical properties 

capable of defining a homogenized RVE ( , , , , , , , ,  and  and 

). This allowed do construct a constitutive matrix  , equation (12) for the  

local coordinate system (oriented with the material principal axis, following the principal 

'axial' and 'transverse' directions).Using  and  obtained from the ellipsoid fitting, the 

transformation rotation matrices , are defined, equation, (13) and (14).  

  (12) 

  (13) 

  (14) 

Afterwards, it is possible to define the material constitutive matrix in the global axis with 

equation (15), 

  (15) 
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2.3. Algorithm Robustness 

In order to evaluate the robustness of the 3D MIL methodology, benchmark examples 

were analyzed. One of the factors that could influence the methodology was the number 

of vectors in the vector list present inside the search sphere. Thus, it was evaluated the 

behavior of the methodology assuming distinct vector list sizes with: 50, 100, 250, 1000 

and 1500 vectors. These sets are represented in Figure 2. Furthermore, 6 benchmarks 

RVEs were fabricated with well-defined geometric characteristics, containing bone-

voxels and void-voxels, being bone voxels represented in blue (as Figure 3 shows). 

Benchmark 1, Figure 3(a), has a well-defined vertical material principal direction. 

Benchmark 2, Figure 3(b), has exactly the same number of bone and void voxels from 

Benchmark 1, but it was obtained applying a rotation to benchmark 1 in order to have a 

horizontal material principal direction. Benchmark 3, Figure 3(c), and benchmark 4, 

Figure 3(d) have an oblique material principal direction. The difference between 

benchmark 3 and 4, is the number of voxels that define the thickness of the bone region. 

Benchmark 5, Figure 3(e), and benchmark 6, Figure 3(f), have the same material principal 

direction, but have a different number of bone voxels defining the bone voxels central 

column. The corresponding ellipsoids and material directions are shown in Figure 3(g) to 

(l). It was expected that the material first principal direction was collinear with the 

material distribution. With Figure 3(g) to (l), it is possible to observe that using the 

proposed technique, the obtained material directions are in accordance with the expected 

material directions of each benchmark. The study of these benchmarks aimed to evaluate 

the obtained mechanical proprieties, prior to the transformation with equation (15), and 

verify if the obtained parameters translate correctly the benchmarks morphology, which 

was confirmed. 

      
(a) (b) (c) (d) (e) (f) 

Figure 2 - Set of image is representing different numbers of vectors inside the search sphere (a): 50 vectors; (b): 100 vectors; 

(c): 250 vectors; (d): 500 vectors; (e): 1000 vectors; (f): 1500 vectors; 
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(a) (b) (c) (d) (e) (f) 

      

(g) (h) (i) (j) (k) (l) 

Figure 3 - Images (a) to (f) represent the constructed benchmarks, and images (g) to (l) represent the respective ellipsoid fitting. 

 

2.4. Mechanical Simulation  

Using the developed homogenization technique, it was possible to define the mechanical 

properties of homogeneous RVEs from the heterogeneous RVE (characterizing real 

trabecular bone morphology). With this, and using structural mechanical simulations, it 

was created a set of models that allow to analyze if the mechanical behavior of the 

homogenized RVEs is equivalent to the heterogeneous RVEs. Thus, 5 different 

geometrical models were constructed considering the trabecular bone morphology, Figure 

4(b), Figure 4(c), Figure 4(d), Figure 4(e) and Figure 4(f), and 5 equivalent homogenized 

RVEs, represented in Figure 4(g) as an example (all homogenized RVEs are simple cubes 

discretized regularly as the one in Figure 4(g)). These mechanical simulations were 

performed using ABAQUS Unified FEA - SIMULIATM 6.14 by Dassault Systèmes®. 

The heterogeneous models were constructed using the same models on which the 

developed homogenization technique was applied to. The images used to create these 

models were obtained using micro-computerized tomography (micro-CT) from a foot 

cuboid bone. Since these images were obtained using micro-CT, they possess a 

sufficiently high resolution to represent the trabecular structure, but also possess 

information about the pixel and voxels dimensions, allowing to define, for each voxel a 

mesh element. Using the same threshold methodology and parameters used in the 

homogenization technique, each voxel corresponds to a hexahedric element, which could 

be defined as bone material or void space. The mechanical properties applied to the 

elements defined as bone and void in the heterogeneous models are represented in Table 

2. Notice that the geometrical information from the micro-CT imposed the existence of 

void space in between the trabeculae, making necessary to define it has a solid 'material'. 

Thus, the solution was to define it as a soft material that would not (significantly) interfere 

with the global structural response of the RVE. Thus, for the “void space” it was attributed 

a Young's modulus with a much lower magnitude when compared with the Young's 
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modulus of the trabecular bone. Concerning the boundary condition, two sets of boundary 

conditions were considered, resulting in two simulation sets. Figure 4(a) represents a 

generalization of the geometrical models used in all simulations. For the first set of 

boundary conditions, at the top layer nodes ( ) it was imposed a displacement of (

) and a displacement restriction . It was also applied at the 

bottom layer nodes ( ) a displacement restriction . For the second set of 

boundary conditions, at the top layer nodes ( ) it was also imposed a displacement 

of ( ) and a displacement restriction . However, at the bottom 

layer nodes ( ) it was imposed a complete displacement restriction, 

, being  the displacement components along the 

 axis, respectively. 

 

Table 2 - Mechanical properties used to define the bone by Hong et al.[23]  and void space in the heterogeneous models. 

Mechanical Properties 

 Cortical Bone Void Space 

Young Modulus [GPa] 3.470  

Poisson's Ratio 0.36 0.1 

 

     
(a) (b) (c) (d) (e) 

  
(f) (g) 

Figure 4 - Figure 4(a) - Geometrical models schematics; Figure 4(b) - Heterogeneous model 1; Figure 4(c) - Heterogeneous 

model 2; Figure 4(d) - Heterogeneous model 3; Figure 4(e) - Heterogeneous model 4; Figure 4(f) - Heterogeneous model 5; 

Figure 4(f)- Generic homogeneous model. 

 

3. Results 
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This section presents the results obtained from the computational analyses performed to 

evaluate the behavior of the 3D MIL and also the results obtained from the mechanical 

simulations, where the mechanical properties of the homogeneous models were defined 

using the developed homogenization methodology. 

 

3.1. Validation of MIL methodology 

Using the created benchmarks, it was analyzed the number of vectors (in the vector list 

inside the search sphere) that provided stable results with the developed methodology. It 

was analyzed the behavior of theta, , and azimuth, , Figure 6(a), and the length of the 

radius that defines the fitted ellipsoid, Figure 6(b). The results in Figure 6(a) and Figure 

6(b) were obtained from applying the proposed methodology to the benchmarks present 

in Figure 5. In Table 3, are shown the several parameters obtained using the proposed 

methodology for all benchmarks of Figure 3. 

      
(a) (b) (c) (d) (e) (f) 

Figure 5 - Different number of vectors inside the search sphere (a): 50 vectors; (b): 100 vectors; (c): 250 vectors; (d): 500 

vectors; (e): 1000 vectors and (f): 1500 vectors. 

 

 

(a) 

q w
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(b) 

Figure 6 – (a): Evolution of the obtained  and  with the increase of the number of vectors in the vector list inside the 

search sphere; (b): Evolution of the obtained ,  and  with the increase of the number of vectors in the vector list inside 

the search sphere. 

 
Table 3 - Parameters obtained using the developed methodology, defining the local mechanical properties of the constructed 

benchmarks. 

Benchmark 

 1 2 3 4 5 6 

 11.985 0.219 43.701 44.373 28.517 26.107 

 89.546 0.089 34.733 35.731 89.654 89.138 

 333.440 333.440 15.509 111.540 15.509 66.301 

 253.905 249.008 2.133 55.018 5.280 34.569 

 247.595 246.993 2.085 54.725 5.176 34.354 

 159.084 159.084 7.731 54.720 7.731 32.757 

 95.211 93.374 0.993 23.472 2.459 15.350 

 103.035 102.784 0.958 24.360 2.379 15.554 

 0.048 0.048 0.003 0.019 0.003 0.012 

 0.333 0.333 0.074 0.172 0.074 0.126 

 0.202 0.202 0.088 0.123 0.088 0.104 

 0.336 0.336 0.021 0.134 0.021 0.084 
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3.2. Mechanical Simulation 

The performed mechanical simulations aimed to evaluate if the developed 

homogenization technique was able to define the mechanical properties of the 

heterogeneous domains, allowing to define homogeneous models (mechanically 

equivalent to the trabecular heterogeneous models defined by the heterogeneous 

geometrical models). For the constructed models, both the von Mises stress field and the 

displacement field were obtained, Figure 7 and Figure 8, respectively. Figure 7 regards 

to the first set of boundary conditions applied to the models. In each sub-image of this 

figure it is presented the result for the heterogeneous model and its homogeneous 

equivalent. In Figure 8 concerns to the second set of boundary conditions. Also, in this 

figure, each sub-image shows the result for the heterogeneous model and its 

homogeneous equivalent.  

 

    
(a) (b) 

    
(c) (d) 

    
(e) (f) 

    
(g) (h) 

    
(i) (j) 
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Figure 7 - Von Mises Stress and displacement for the mechanical simulations using the first set of boundary conditions. 

(a),(c),(e),(f),(i): Model 1 to 5, heterogeneous and equivalent homogeneous model von Mises stress; Figure 7(b),(d),(f),(h)(j): 

Model 1 to 5, heterogeneous and equivalent homogeneous model von Mises stress. 
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(a) (b) 

    
(c) (d) 

    
(e) (f) 

    
(g) (h) 

    
(i) (j) 

Figure 8 - Von Mises Stress and displacement for the mechanical simulations using the second set of boundary conditions. 

(a),(c),(e),(f),(i): Model 1 to 5, heterogeneous and equivalent homogeneous model von Mises stress. (b),(d),(f),(h)(j): Model 1 to 

5, heterogeneous and equivalent homogeneous model von Mises stress. 

 
4. Discussion 

In this section, the discussion regarding the results obtained from the tests performed to 

evaluate the behavior of the 3D MIL are presented. More, also the results obtained from 

the mechanical simulations, where the mechanical properties of the homogeneous models 

were defined using the developed homogenization methodology, are also analyzed and 

discussed. 

From the results obtained using the benchmarks, concerning the behavior of theta, , and 

azimuth, , Figure 6(a), and the length of the radius that defines the fitted ellipsoid, 

Figure 6(b), it is possible to visualize that starting from 250 vectors, highlighted with 

q

w
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vertical dotted line, the results stabilize, which means that the convergence is achieved 

and using a higher number of vectors does not increases significantly the accuracy of the 

solution. Thus, using 250 vectors allows to obtain results very close with the ones 

obtained considering 1500 vectors. The advantage is the computational time, an analysis 

with 250 vectors is much faster than an analysis with 1500 vectors. Concerning the values 

from Table 3, when comparing the results of benchmark 1 and 2, Figure 3(a) and Figure 

3(b) respectively, and considering the benchmarks characteristic, it is possible to 

conclude that these results are as expected. Benchmark 1 and 2 have the same number of 

bone voxels, reflecting the high similarity between , , , , , , , ,  

and , however, when considering  and  these two parameters reflect the different 

benchmark principal direction. 

Concerning benchmark 3 and 4, Figure 3(c) and Figure 3(d), that as previously described 

have an oblique principal direction,  and  parameters reflect this oblique topology. 

The remain parameters, , , , , , , , ,  and , reflect the different 

number of voxels that define the thickness of the bone region. Comparing the results 

obtained with benchmark 5 and benchmark 6, Figure 3(e) and Figure 3(f), the values in 

Table 3 allow to understand that  and  parameters are highly similar. The remain 

parameters, , , , , , , , ,  and  are not comparable. These 

results were the expected ones, because as previously described, these benchmarks have 

the same material principal direction but a different number of bone voxels. Although 

insignificant, the difference between values (that should be exactly the same, as for 

example ) for benchmark 1 and 2, occurs because of the random selection of the 

centroid of the search sphere. In Figure 3(g) to Figure 3(l), are presented the fitted 

ellipsoids. In these images it is visible that the fitted ellipsoid, by visual inspection, have 

the same material principal direction as the fabricated benchmarks, re-enforcing that the 

developed methodology can define and encode trabecular bone orientation and 

anisotropy.  

Concerning the mechanical simulation results, it was observed for all the heterogeneous 

models results that bone zones, which define the trabeculae, present higher values of the 

stress. For the case of the displacement values, as expected, higher values are observed in 

the region close to , which is the location were the imposed displacement was 

applied. As expected, it is also observed a gradual apparent linear decrease of the 
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displacement from   to . Concerning the homogeneous models, they present, 

when compared with the heterogeneous models, a smoother von Mises stress spatial 

distributions, reflecting the homogeneous nature of the model. Analyzing the 

displacement values, the images show that similarly to the heterogeneous models, the 

higher displacement values appear in the nodes where it was applied the enforced 

displacement, the region close to , and that occurs a gradual decrease of the 

displacement values down to . Being the geometrical nature of the models so 

different, it is difficult to compare these models using a local perspective of the models. 

Thus, to evaluate if the homogeneous models have an equivalent behavior to the 

heterogeneous model, it was defined a relation between the sum of the  components of 

the reaction forces, at ,  , and the displacement applied at , , 

equation (16), leading to a homogenized value of stiffness . 

  (16) 

The results obtained using equation (16) are represented in Figure 9 and in Figure 10. 

Concerning the results of Figure 9, concerning the first boundary conditions set, the 

difference between the homogeneous and the heterogeneous model is of 56% for the 

model 1, 0% for model 2, 26% for model 3, 38% for model 4 and 9% for the model 5, 

representing an overall average difference of 21%. For the case of mechanical simulations 

performed using the second set of boundary conditions, the difference between the 

homogeneous and the heterogeneous model is of 6% for the model 1, 7% for model 2, 

11% for model 3, 3% for model 4 and 59% for the model 5, representing an overall 

average difference of 14%. 
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Figure 9 - Homogenized stiffness  for the mechanical simulation results performed using the first set of boundary 

conditions, for the homogeneous (HM) and heterogeneous (HT) models. 

 

Figure 10  - Homogenized stiffness  for the mechanical simulation results performed using the second set of boundary 

conditions, for the homogeneous (HM) and heterogeneous (HT) models. 

One factor possessing a significant impact in multiscale simulation is the computational 

cost. Thus, it was analyzed the computation cost of the developed methodology. In Figure 

11 it is presented the computational cost of the performed mechanical simulation for each 

model, and for both boundary condition sets (set 1 and set 2). The developed methodology 

lead to a maximum decrease of 99.2% of the computation time, in the case of the model 

1, a minimum of 51.7% for model 4 and a 90.3% average decrease of the computational 

time of all the models. 

K

K

208 Original Developed Work



 

 
Figure 11 - Computational cost of the mechanical simulations performed using the 6 heterogeneous models (HT), and its 6 

equivalent homogeneous models (HM), for the two sets of boundary conditions, set 1 and set 2. 
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5. Conclusions 

In this work, it was proposed a methodology to define the homogeneous equivalent 

mechanical properties of the highly heterogeneous trabecular bone tissue. The 

methodology uses the fabric tensor concept and two material laws [8], [19], [20]. 

Concerning the fabric tensor, the results show that the fabric tensor actually encodes the 

trabecular bone orientation and anisotropy. Also, using the set of fabricated benchmarks, 

it was evaluated the robustness of the methodology, which allowed to conclude that it 

provides reliable information about the principal directions and anisotropy. The 

considered material laws (Belinha’s law and Agic’s law) complemented the fabric tensor 

information, by providing the Young’s modulus of the homogenized material in the 

material’s principal direction and the Poisson’s coefficient (by using the average apparent 

density of the complete domain). The mechanical simulations analyzed heterogeneous 

and homogeneous models with equivalent mechanical properties obtained using the 

developed methodology. The simulations shown that the developed methodology define 

properly the equivalent mechanical proprieties of the homogeneous models. Since the 

analyzed geometric models have a distinct discretization (the nodes of two distinct models 

do not spatially coincide), it was not possible to compare the results using a local nodal 

comparison, in which are analyzed the displacements and stresses at the same nodal 

coordinates in both models. Thus, the concept of homogenized stiffness  was 

considered, proving to be an efficient tool to compare the homogeneous and 

heterogeneous models. Considering the differences in the homogenized stiffness  

between the heterogeneous and the equivalent homogeneous models and the differences 

between the computation cost, it is possible to conclude that the proposed homogenization 

technique is capable to deliver accurate homogenized mechanical properties to be apply 

to very coarse homogenized discrete models in a fraction of time. Thus, the proposed 

homogenization methodology possesses the potential to decrease significantly the 

computational cost of demanding multiscale analyses without compromising its accuracy. 
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3.9 Contribution VII. Application of an enhanced homogenization

technique to the structural multiscale analysis of a femur bone.

(Submitted)

3.9.1 Highlights of Contribution: 3.9

This contribution focused on the application of the developed homogenisation technique to a bone

model. In this work, three meshes were developed and all three were used with the FEM to evalu-

ated and compare the behaviour of the developed homogenisation technique.

Therefore, the main contents of this publication include:

I. Literature review on homogenisation techniques;

II. Application of a 3D homogenisation technique, where it is used the fabric tensor concept

and a set of bone tissue phenomenological laws.

III. Creation of a heterogenous geometrical model and of a homogenous geometrical model

using medical images, giving origin to three meshes:

(a) Creation of a heterogeneous mesh (M1), with a real representation of the bone inte-

rior and exterior heterogeneous anatomy, with its mechanical properties defined using

literature information.

(b) Creation of a homogeneous model (M2), representing bone as a single solid shell, with

the mechanical properties defined using the developed homogenisation technique.

(c) Creation of a homogeneous model (M3), representing bone as a single solid shell, with

two mechanical properties, defined according to the distribution of the DICOM image

grey values.

IV. Description of the methodology applied to use the homogenisation technique in the case of

a mesh defined using medical images, where the methodology is applied to each element

constituent of the homogenous mesh;

V. A structural application using FEM was used to verify and to compare the mechanical be-

haviour of the three created meshes. In this structural analysis, two patches and three ROIS

were used in each mesh, to allow a localised evaluation of the mechanical behaviour;



214 Original Developed Work

VI. Conclusions: The application of a bone homogenisation technique allows to develop 3D

homogeneous models with equivalent mechanical behaviour to its 3D heterogeneous equiv-

alent model, 3.14. The applied methodology is capable to accurately predict bone mechani-

cal behaviour with less computational effort, and also, to decrease the computational effort

associated with the mesh construction, that traditionally can present discretisation problems,

reducing the ill-condition cases related with mesh distortion.
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Figure 3.14: Computational cost of the models defined with the homogenised methodology versus
the computational cost of the heterogenous models.

The complete document can be found in the next pages.
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ABSTRACT
Bone is a complex hierarchical material that can be characterized from the microscale
to macroscale. This work demonstrates the application of an enhanced homogeniza-
tion methodology to the multiscale structural analysis of a femoral bone. The use of
this homogenization technique allows to remove subjectivity and reduce the compu-
tational cost associated with the iterative process of creating a heterogeneous mesh.
Thus, it allows to create simpler homogenized meshes with its mechanical proper-
ties defined using information directly from the mesh source: the medical images.
Therefore, this methodology is capable to accurately predict bone mechanical be-
havior in a fraction of the time required by classical approaches. The results show
that using the homogenization technique, despite the differences between the used
homogeneous and heterogeneous meshes, its mechanical behavior is similar. The
proposed homogenization technique is useful for a multiscale modelling and it is
computationally efficient.

KEYWORDS
Fabric Tensor; Homogenization Technique; Multiscale; Bone; MIL

1. Introduction

Bone is a complex biological structure, which can be divided in distinct spatial scales,
from the nanoscale to the macroscale Dorozhkin (2010); Barkaoui et al. (2014). To un-
derstand bone physiology, it is necessary to understand bone at its different scales
and therefore understand the relation between different scales. Some previous re-
search works focus on the study of bone’s tissue using distinct approaches, such as
the macroscale approach Marco et al. (2019), the microscale approach Belinha et al.
(2016, 2013); Peyroteo et al. (2019), and the multiscale approach Sabet et al. (2016);
Ghosh et al. (1995); Coelho et al. (2009). Bone remodeling process, the process re-
sponsible to renew bone matrix by creating or reabsorbing it Wnek and Bowlin (2004),
is one of the subjects where multiscale approaches are advantageous. Using bone in-
formation from two or more scales it is possible to describe the distinct behavior of
bone tissue at different scales Landis (1995). With multiscale models it is possible
to describe the mechanical behavior of bone using homogenization techniques Moreno
et al. (2016); Perrin et al. (2019). To define and approximate biological processes using
mathematical descriptions, it is usual to apply analytical and numerical methodolo-
gies combined with distinct discretization approaches, such as finite element methods
(FEM) and meshless methods Belinha (2014). The numerical approaches to study
bone remodeling began with a simplistic approach where bone tissue was considered
an homogeneous isotropic-elastic material, a consideration that disregarded the im-
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portance of material orientation and structure - its anisotropy. In fact, bone’s tissue
anisotropic nature was a main material characteristic that Wolff reported as having a
directly influence on the bone mechanical behavior impacting the remodeling process
Wolff (1986). Having in consideration that many of bone remodeling studies are per-
formed using discretization methodologies, where the highly heterogeneous trabecular
bone domain can influence the performance of such methodologies, and that, bone
remodeling leads to a morphological evolution (changing the physical domain where
the discretization methodologies are being applied to), some authors started to use ho-
mogenization techniques. Such strategy allowed to define bone highly heterogeneous
domain (observed at the microscale) as a homogeneous domain (at the macroscale), but
still considering its local homogenized orientation and anisotropy Moreno et al. (2016).
The homogenization methodology used in this work uses the fabric tensor concept and
a set of phenomenological laws, allowing to determine properties of a heterogeneous
material by substituting this material with an equivalent homogeneous material, and
so, allowing to predict the behavior of the macro-scale using the micro-scale, and
vice-versa Cowin (1985); Whitehouse (1974); Marques et al. (2019c,a,b, 2018). The
homogenization techniques used to define bone mechanical properties (among many
other methodologies, such as digital image correlation or mechanical experiments)
are of high importance since they allow to define the material’s mechanical proper-
ties, feeding constitutive matrices and laws for advanced discretization techniques and
other analytical methodologies. Thus, the main objective of this work is to understand
if the homogenized anisotropic material properties (obtained with the proposed ho-
mogenization technique combined with FEM) applied to the structural analysis of a
femur bone, allow to achieve similar results with the structural analysis of a corre-
sponding highly discretized heterogeneous multiscale femur bone. This work also has
the goal to expand the previously developed 2D homogenization methodology, Mar-
ques et al. (2019c,a,b, 2018), to 3D, which results on a completely different approach.
This work presents for the first time a new homogenization technique combining sev-
eral computational mathematical/mechanical concepts. It combines the fabric tensor
concept with medical image data to obtain the material principal axis. Furthermore,
it uses the gray-tone information of the medical image to acquire the local mechanical
properties of each material point by means of well-established phenomenological laws
correlating the apparent bone density with the axial Young’s modulus. Although being
a preliminary study, this work extends the technique to a large scale problem showing
its robustness and efficiency. Thus, this new methodology is capable to homogenize
the mechanical properties of a heterogeneous medium at the microscale in a fraction
of the time of traditional homogenization techniques, allowing to perform faster large
scale multiscale analyses. Furthermore, it is aimed to report the difference between
the computational cost and efficiency of a full heterogenous analysis and a simplified
multiscale homogeneous analysis.

2. Methodology

This work is divided in two parts. The first part intends to evaluate the robustness
of the developed homogenization methodology algorithm. In the second part it is
performed a structural analysis, where it is applied and analyzed the developed ho-
mogenization methodology on a femur bone mesh. In the first part of this work four
benchmark with well-defined geometric characteristics were defined, containing bone
voxels (represented in blue in figure 1) and non-bone voxels (not represented in figure

2
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(a) (b) (c) (d)

(e) (f) (g) (h)

(i) (j) (k) (l)

Figure 1.: Images 1a to 1d represent the fabricated benchmarks, images 1e to 1h repre-
sent the respective ellipsoid fitting, and images 1e to 1l represent the MIL Cartesian
coordinates data scatter with the fitted ellipsoid.

1). Benchmark 1, figure 1a, has a well-defined vertical material principal direction,
being defined by two groups of bone voxels. Benchmark 2, figure 1b, is a thinner ver-
sion of Benchmark 1, also showing well-defined vertical material principal direction.
Benchmark 3, figure 1c, represent a benchmark with a well-defined vertical material
principal direction, but with the trabeculae showing a larger transversal section, when
compared to benchmark 1 and 2. Benchmark 4, figure 1d has a diagonal material
principal direction. The main difference between benchmark 1 and 2, is the number
of voxels that define the thickness of the bone region. The analysis of these bench-
marks aims to evaluate the obtained algorithm mechanical properties and verify if
they translated the benchmarks morphology.

The created benchmarks were defined by binary information, bone or non-bone
voxel. This information was used by the developed homogenization methodology to
count the interceptions between the bone voxel and the vectors from a vector list
contained inside a search sphere. The vectors inside the search sphere have random
directions, ι, kept constant along all the iterations. In this methodology each iteration
represents a change in the sphere position within the boundaries of the physical domain
under study, in this case: the cubic domain of the benchmark. Within this domain
boundary, the intersections Int(ι) are counted between each vector with the specific
vector direction, ι, and the bone voxels. Multiplying the number of iterations of the
process with the characteristic size of the vectors, h, defined by the search sphere
size, h× iter and dividing this value by the number of interceptions of a vector with

3
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Figure 2.: Data from Agic et al. Agić et al. (2006) fitted to polynomial functions.

direction Int(ι), it was obtained the Mean Intercept Length MIL for the direction ι,
equation (1). This equation allows to transform the intersection count into Cartesian
coordinates, as represented in figure 1(i) to 1(l) by the scatter orange dots.

Having the MIL, the orientation distribution function (ODF) data, it was possible to
fit this data into an ellipsoid using Fitzgibbon methodology, Fitzgibbon et al. (1996).
Using the ellipsoid it is possible to extract its radius, r1, r2 and r3 being r1 > r2 > r3,
the angles theta, θ, and the azimuth ω, defined from r1, that defines the ellipsoid 3D
orientation. r1, r2 and r3 are normalized by the r1 size, being always r1 = 1.

MIL (ι) =
h× iter
Int(ι)

(1)

Using these ellipsoid parameters, and applying Belinha et al. (2013) and from Agić
et al. (2006) phenomenological material laws it was possible to create and define a
material law for the domain in study. Using the domain binary information it was
possible to define bone apparent density, ρapp. The ρapp was acquired using a relation
between the number of bone voxels, wv, and the non-bone voxels, bv, equation 2. In
this equation, ρ0 = 2.1g/cm3 represents the bone typical maximum apparent density.
Also, using domain binary information and the universal mixture laws it was possible
to define ν1, equation (3), where ν = 0.3 is the typical Poisson’s ratio for cortical bone
(bone voxels, at the microscale). Using Agić et al. (2006) phenomenological material,
figure 2, it was possible to obtain ν2 and ν3, considering a relation with the bone
apparent density, ρapp, equation (4) and (5).

ρapp =
wv

(bv + wv)
× ρ0 [g\cm3] (2)

ν1 =
(0× bv) + (0.3× wv)

(bv + wv)
(3)

4
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ν2 =





7.1743ρapp
4 − 7.8346ρapp

3 + 2.3005ρapp
2 + 0.6563ρapp + 0.0589 → if ρapp < 0.5

0.43 → if ρapp ≥ 0.5
(4)

ν3 =





4.5307ρapp
4 − 5.4559ρapp

3 + 2.048ρapp
2 + 0.1064ρapp + 0.0838 → if ρapp < 0.5

0.245 → if ρapp ≥ 0.5
(5)

In order to define E1 it was used Belinha’s material law Belinha et al. (2016).
Concerning E2 and E3, it was defined a relation between E1 and the ellipsoid radius
parameters r1, r2 and r3. Thus, E2 was defined using a relation between r1, r2 and
E1, equation (6), and E3, was defined using r1, r3 and E1, equation (7).

E2 =
r2 × E1

r1
(6)

E3 =
r3 × E1

r1
(7)

The shear modulus, G1, G2 and G3, were approximated using equation (8), (9) and
(10), respectively:

G1 =
E1

2× (1 + ν1)
(8)

G2 =
E2

2× (1 + ν2)
(9)

G3 =
E3

2× (1 + ν3)
(10)

Using the homogenization methodology it was possible to mechanically define each
benchmark’s domain, acquiring E1, E2, E3, ν1, ν2, ν3, G1, G2, G3 and θ and ω. This
parameters allow to evaluate if the obtained mechanical properties translate well the
different morphologies and characteristics of each benchmark.

The second part of the work was to mechanically analyze, using the finite element
analysis (FEA), the behavior of a mesh with its mechanical properties obtained using
the developed homogenization technique. For this, three meshes were created, describ-
ing the femur geometry from the femur head to a few centimeters distal from the less
trochanter. The information used to create these meshes was acquired using medical
images with a resolution of 512 × 512 pixels over 706 slices and a voxel dimension of
0.27539 × 0.27539 × 0.625mm (x, y, z). Using MIMICS Innovation Suit from Materi-
alize Materialise (2017), it was possible to segment the femur and create the meshes.
To analyze and compare the behavior of an homogenous mesh defined using the de-
veloped homogenization two other meshes were created. Thus, in this work, it was
defined an heterogeneous mesh Mht, a simplified mesh Ms, and the homogenous mesh
Mhm. The developed homogenization technique was applied only to the homogenous
mesh, Mhm. The heterogenous mesh, Mht, figure 4a and 4b, defined using a MIMICS
image mask that only represents the spacial information of bone voxels, represented
in figure 3a. This mesh is highly heterogeneous, figure 3c, possessing void zones in its
inner space, a characteristic of trabecular bone morphology. Using the segmentation

5
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(a) (b) (c) (d)

Figure 3.: Segmentation masks, Figure 3b and 3a, were created using MIMICS Ma-
terialise (2017) and gave origin to two geometrical models. Figure 3c represents the
obtained heterogeneous geometrical model obtained using mask from Figure 3a; Fig-
ure 3d represents the homogeneous geometrical model obtained using the mask from
Figure 3b.

information created to define the heterogeneous mesh, and using image processing
tools, it was possible to define a new mask, figure 3b. This mask allowed to create a
geometrical model that just represents the bone boundaries, ignoring the inner bone
structure, figure 3d. Using this mask, it was possible to define a homogeneous geomet-
rical model. This homogeneous geometrical model was used to define the simplified,
Ms, and the homogenous, Mhm, meshes. For the homogenized mesh Mhm, figure 4c
and 4d, the mechanical properties of each element are defined using the developed
homogenization technique, which uses Belinha’s and Agic’s phenomenological laws
Belinha et al. (2013); Agić et al. (2006) to correlate the bone apparent density with
the Young’s modulus and the Poisson’s coefficient, respectively. The procedure to ap-
ply this homogenization technique into the created mesh,Mhm, is explained further.
For the simplified mesh Ms, figure 4e and 4f, the mechanical properties were spatially
distributed using BONEMAT software Taddei et al. (2007). Using the medical images
and this software, it was possible to define for each mesh element which one correspond
to cortical or trabecular bone. This was possible because the voxels intensity is related
with the bone density. Thus, this allows the software to create two different element
sets associated with the image voxels intensity values. Then, it is possible to define for
each set distinct mechanical properties.

In order to use the developed homogenization technique to define the mechanical
properties of the homogenized mesh, Mhm, each element of the mesh has to be me-
chanically defined. Thus, the homogenization technique, was applied to each mesh
element, ei, i ∈ [1, 2, ..., n], being n the total number of mesh elements. The first step
of this procedure was to overlap Mhm mesh into the medical image, I, used to define
the segmentation mask that gave origin to the geometrical model. For each tetrahedral
element of the mesh, defined by 4 nodes N ei

j , j ∈ [1, 2, 3, 4], it was possible to define

the largest distance between all the nodes of each element, ei∆d. Then, using ei∆d it
was defined a cube Cie, with ei∆d × ei∆d × ei∆d dimension. Defining the centroid for
each element, eiC , the image I, and Cie, it was defined for each element, a sub-image,
Iei that has its center in Cie, and the same Cie dimensions. To apply the homogeniza-
tion methodology it was applied to each sub-image Iei , a binary segmentation process
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(a) (b) (c) (d) (e)

(f)

Figure 4.: Created meshes: 4a: - Mht mesh frontal view; 4b: - Mht mesh down view;
4c: - Mhm mesh frontal view ; 4d: - Mhm down view. In this image the different colors
elements represent elements with different mechanical properties; 4e: - Ms mesh frontal
view; 4f: - Ms mesh down view. In this image the two different colors represent two
different mechanical properties distributed in the mesh.

using the Otsu method Otsu (1979), allowing to define which DICOM voxels repre-
sent bone or non-bone space. After defining the binary information to each sub-image
Iei , it was applied the homogenization methodology that mechanically define each Iei
correspondent element. In figure 5 , three random Mhm elements are represented, to
which the methodology was applied to, being the red pale rectangle I, the green zone
Mhm nodes, and the red scatter inside the green zone the Iei sub-image.

In this case, since each element has its own local axis, the acquired informations
needed to be transformed to the mesh global axis. Thus, defining a constitutive matrix
cox′y′z′ , equation (11) for the elements ox′y′z′ local coordinate system (oriented with
the material principal axis), and using θ and ω, it was possible to define the transfor-
mation rotation matrices T , equation (12) and (13), allowing to define the material
constitutive matrix in the global axis with equation (14), for each element.

(a) (b) (c)

Figure 5.: 5a, 5b and 5c represent different iteration examples of the used methodology
to define the mechanical properties of a specific element ei, i ∈ [1, 2, ..., n].
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Table 1.: Mht, Mhm and Ms Mesh Properties.

Mesh Properties

Mht Mhm Ms

# Nodes 210725 1939 1939
# Elements 799331 7248 7248
# Materials 1 7248 2

cox′y′z′ =




1

E1

−ν1
E2

−ν3
E3

0 0 0
−ν1
E1

1

E2

−ν2
E3

0 0 0
−ν3
E1

−ν2
E2

1

E3
0 0 0

0 0 0 1

G1
0 0

0 0 0 0 1

G2
0

0 0 0 0 0 1

G3




(11)

T oy(β) =




cos2 β 0 sin2 β 0 0 sin 2β
0 1 0 0 0 0

sin2 β 0 cos2 β 0 0 − sin 2β
0 0 0 cosβ − sinβ 0
0 0 0 sinβ cosβ 0

− sinβ cosβ 0 sinβ cosβ 0 0 cos2 β−sin2 β


 (12)

T oz(β) =




cos2 β sin2 β 0 − sin 2β 0 0
sin2 β cos2 β 0 sin 2β 0 0

0 0 1 0 0 0
sin2 β − sin2 β 0 cos2 β−sin2 β 0 0

0 0 0 0 cosβ − sinβ
0 0 0 0 sinβ cosβ


 (13)

coxyz = [T oz]
T
θ

[
[T oy]

T
ω cox′y′z′ [T oy]ω

]
[T oz]θ (14)

2.1. Structural Application

Using the created meshes, it was performed a structural analysis that allowed to com-
pare the behavior of the meshes defined with different mechanical properties. The
number of nodes, elements and the number of mechanical properties used in each
mesh are described in Table 1. The three meshes were defined by four-nodes constant
strain 3D solid tetrahedral elements (C3D4). Mht and Ms mechanical properties are
described in Table 2. For Mhm mesh it is inconvenient to represent the used mechanical
properties, once its number is equal to the number of elements.
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Table 2.: Mechanical properties used to define bone mechanical properties Hong et al.
(2007); Kelly and McGarry (2012).

Mechanical Properties

Cortical Bone Trabecular Bone

Young’s Modulus [GPa] 3.470 0.3055
Poisson’s Ratio 0.36 0.16

2.1.1. Boundary Conditions

The three meshes were defined with the same boundary conditions. The nodes at
z = 0, in the lower bone zone, were fully constrained. Two forces were applied in two
different zones. Fa it was applied to the femur head zone, presented in figure 6c as
the red zone in the femur head, S1. Fb was applied in the femur greater trochanter,
represented in figure 6c by the left red zone in the bone, S2. The magnitude of the
applied loads was obtained from the literature, being Fa = [−942.409, 0,−2116.68] N
and Fb = [330.039, 0, 620.712] N Belinha et al. (2012). The Fa load case considers a
simple vertical load applied to the head of the femur. This load case corresponds to a
vertical load of 725N induced by the weight of a 74Kg human being minus the weight
of one leg. The one-legged stance considered here cannot be maintained without the
action of the hip abductor muscles that prevent the rotation movement of the body
around the hip joint rotation axis. This force has an estimated value of 1592N. The
addition of this force gives a total combined load at the head of the femur of 2317N,
increasing the compression the femoral neck. The load Fb represents the force on the
trochanter, representing the abductor muscle actuation upon the one-legged stance
position. To compare the three meshes, two linear paths were defined in each mesh.
The first path, P1 was defined from the femur neck to the subtrochanteric zone, as
represented in figure 6a. This path starts in point OP1 and finishes in point LP1, being
L the path total length. The second path was defined in the mesh base, P2, crossing
it from one side to other starting in point OP2 and finishing in point LP2, being L the
path total length, as represented in figure 6b. With the same comparison purpose, four
regions of interest (ROI) were defined: ROI1, ROI2, ROI3 and ROI4. For each ROI,
possessing a 7.5mm radius, the average von Mises stress was obtained. The created
ROIs are represented as the blue zones, in figure 6.

3. Results and Discussion

In this section, the results obtained are described and discussed, allowing to understand
the robustness and stability of the developed algorithm and its structural viability.

3.1. Fabric Tensor Algorithm Robustness

In Table 3, the parameters obtained with the developed methodology for each bench-
mark, figure 1, are shown. Comparing the results of benchmark 1 and 2, figure 1a and
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Figure 6.: Red Lines: path 1 (P1) and path 2 (P2); Blue zones: ROIs. 6a - Frontal View;
6b - Down View; 6c - S1 and S2 and respective Fa and FB loads; Mesh constraints, in
the bone lower zone.

figure 1b, and considering the benchmarks characteristic, it can be conclude that these
results are as expected. Benchmark 1 and 2 have the same principal direction, reflected
in θ and ω and in E1 and G1, that are higher when compared to E2, E3 and to G2,
G3. Having benchmark 1 a thicker morphology, when compared to benchmark 2, ρapp
reflect this aspect by being higher in benchmark 1. Concerning benchmark 3, figure 1c,
it also has a vertical principal direction, reflected in θ = 89.71, and also reflected by
the higher E1 and G1, compared to E2,E3 and G2,G3. Comparing benchmark 3 with
benchmark 1 and 2, it is noticeable the higher E2, E3, G2 and G3, that reflects the
higher transversal cross section and so, a higher stiffness in direction 2 and 3. The ρapp
from benchmark 3, has the higher value when comparing to all of the other bench-
marks, reflecting the higher number of bone voxels in the benchmark. Benchmark 4,
figure 1h, as previously described, has a diagonal principal direction, reflected in θ
and ω parameters from Table 3. The remain parameters, E1, E2, E3, G1, G2, G3, ν1,
ν2, ν3 and ρapp, reflect the different number of voxels that define the thickness of the
bone region. The obtained fitted ellipsoids and the fitted ellipsoids with MIL data are
presented in figure 1e to 1l. In these images it is visible that the fitted ellipsoid and
the MIL data have the same material principal direction, re-enforcing the fact that
the developed methodology is able to define and encode trabecular bone orientation
and anisotropy.

3.2. Structural Analysis

It is important to recall that mesh Mht possesses much more nodes than meshes Mhm

and Ms. Such discretization difference is important to understand the relevance of the
obtained results. The Mhm and Ms meshes have 108.6× less nodes and 110.28× less
elements when compared to the Mht mesh. The three meshes show that the maximum
displacement umax occurs on the femoral head: uMht

max = 2, 611 mm, uMhm
max = 6, 337

mm and uMs
max = 4, 642 mm. The distribution of the equivalent von Mises stress in the

meshes is similar, as represented in figure 7. It was observed that a stress concentration
occurs in the lower part of the femur neck down to the subtrochanteric zone. Also in
the neck upper zone, the three meshes have a visible stress concentration. This two
concentration zones are expected due to the applied loads, as described by Belinha et
al. Belinha et al. (2012). Observing the stress distribution for the three meshes, it is
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Table 3.: Parameters obtained using the developed methodology, defining the mechan-
ical properties of the created benchmarks, before the transformation using equation
(14), used to evaluate the algorithm robustness.

Benchmark
1 2 3 4

ω 83,7 90,11 138,55 90,51
θ 89,94 89,79 89,71 44,54
E1 75,39 7,67 165,17 22,72
E2 28,82 1,34 62,9 5,27
E3 28,78 1,34 62,45 4,96
G1 37,19 3,83 80,41 11,31
G2 12,69 0,63 25,75 2,44
G3 12,99 0,61 27,25 2,28
ν1 0,014 0,002 0,03 0,01
ν2 0,14 0,07 0,22 0,08
ν3 0,11 0,09 0,15 0,09
ρapp 0,09 0,01 0,19 0,03

possible to understand that the stress concentrations are similar in the three meshes,
re-enforcing that the three meshes have a similar mechanical behavior. Concerning
Mht, the higher equivalent stress value is 741 MPa, a value much more higher that
the average stress value of the mesh, but also from the other two meshes. This can
occur because of the high heterogeneous nature of the meshes that can lead to stress
concentrations and numerical inaccuracies. ComparingMhm andMs stress distribution
it is visualized that the stress distribution of Mhm is smoother, and that it is possible
to observe the absence of the abrupt transitions of stress resultant from the material
properties spacial distribution. Afterwards, new numerical approaches to compare the
results had to be developed, since the use of different meshes (in discretization size)
hinder a direct comparison of Mht, Mhm and Ms results using the traditional node to
node and element to element comparison. Thus, the results obtained of the paths (P1
and P2) and for the ROI (ROI1,...,ROI4) were compared. The results regarding the
von Mises equivalent stress for each path, figure 6a and 6b, are represented in figure
8. For P2, the three meshes have a VM average stress value of σMht

eq = 28, 59 MPa,

σMhm
eq = 33, 88 MPa and σMs

eq = 31, 74 MPa. These results show that it exists a larger
difference in the results when comparing mesh Mht with Mhm, and a lower difference
when comparing Mhm with Ms. Concerning P1, comparing Mhm and Ms meshes, it
can be said that they possess a similar behavior, having lower VM equivalent stress
values in the path zone corresponding to the interior part of the bone, characteristic
of having trabecular bone. Comparing Mht with Mhm and Ms, this mesh has higher
VM stress values, and have null values in the path zone correspondent to the mesh
zone where there is no bone tissue, as can be seen in figure 4b. The higher values of
Mht can be explained by the highly heterogeneous mesh, that can lead to unexpected
results in the structural analysis. The P1 path VM average stress are σMht

eq = 6.53

MPa, σMhm
eq = 5.69 MPa and σMs

eq = 5.32 MPa. Concerning the average VM values
of the created ROIs, Table 4, it is possible to observe that the Mht mesh has lower
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Table 4.: Mht, Mhm and Ms, ROIs average VM stress.

Average VM Stress in ROI [MPa]

Mesh Mht Mhm Ms

ROI1 25.87 34.74 36.45
ROI2 18.87 37.98 31.33
ROI3 16.82 31.44 19.91
ROI4 15.96 17.27 16.01

values when compared to both Mhm and Ms. As expected, the higher values for the
three meshes occur in ROI1 and ROI2, since they are located in the femoral neck
zone. This observation is reinforced with the information provided with the stress
filed color maps from figure 7, where ROI1 and ROI2 are located in the zones with
colors matching higher VM values. Concerning the computational cost of the structural
analysis of the three meshes, the Mht mesh finished the analysis in 2012 s, the Mhm

mesh finished the analysis in 5 s and the Ms meshes finished the analysis in 1 s, being
notorious that the Mht mesh was the meshes with higher computational cost, 402, 5×
and 2012× more when compared with Mhm and Ms meshes, respectively. One factor
that has high impact in this process, is the creation of the Mht mesh. The creation
of the mask and subsequent manipulation to create a functional mesh, is iterative,
often leading to invalid or unusable meshes. Also its construction and the procedure
to achieve the final mesh is highly subjective and strongly depends on the user ability.
This comes from the fact that many of the processes used to define the geometry from
the mask are not fully automatic (depend on the user decision and ability/efficiency
with the software), leading to the creation of different meshes from the same mask.
This process can be time consuming, and can lead to the definition of meshes that are
not representative of the created segmentation masks. On the other hand, using the
masks from figure 3b all the subjective processes from the mesh creation are reduced,
since it is easier to create meshes that are confined to a single shell, where its inner
elements can be homogeneously distributed, leading to a lower time consuming process
to create the mesh. This study uses a methodology well-established in medical image
processing, in particularly in the use of automatic image segmentation. The use of a
unique segmentation threshold value for all the study sub-images, Iei normalizes the
image set image processing. However, considering a unique value can translate into
a poor-quality outcome if the image set possesses a high intensity variability. In the
future, the authors expect to apply this methodology to study bone remodeling, where
bone mechanical properties are constantly changing with the remodeling. Thus, with
this methodology, it will possible to define the transient bone mechanical properties,
considering the morphological changes resultant from bone remodeling.

4. Conclusion

In this work, it was demonstrated a methodology that enables to define the homoge-
neous equivalent mechanical properties of the highly heterogeneous bone tissue. The
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Figure 7.: 7a - Heterogenous mesh, Mht, Von Misses stress field maps; 7b - Homoge-
neous mesh, Mhm, Von Misses stress field maps; 7c - Simplified mesh, Ms, Von Misses
stress field maps.
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Figure 8.: Von Misses Stress Distribution 8a - Path P1; 8b - Path P2.

methodology uses the fabric tensor concept and two phenomenological laws Belinha
et al. (2013); Agić et al. (2006). The fabric tensor robustness analysis showed that the
methodology is capable to mechanically define a structure by considering the CT im-
ages and the bone domain anisotropy. The performed structural analysis shown that
the homogenization methodology properly defines the equivalent mechanical prop-
erties of the homogeneous meshes. Having the Mht and Mhm/Ms different meshes,
108.6× less nodes, for comparison purposes, two approaches were defined, the paths
and ROIs, that allowed to locally compare the results. This approaches revealed to
be capable to demonstrate that the observed stress levels are equivalents. Plus, VM
stress average values and local displacement values between meshes are similar. Con-
sidering the differences between the Mht, Mhm and Ms and the differences between
the computation cost, it is possible to conclude that the homogenization technique
is capable to define the mechanical properties of bone tissue using medical images
information, reducing the overall computational cost of the analysis. In addition, the
proposed technique removes some of the subjectivity associated with the creation of
the heterogeneous meshes. This allows to conclude that this methodology is efficient
and possesses the potential to be used in demanding multiscale analyses without com-
promising its accuracy and increasing the computational efficiency, by reducing the
analyses computational cost.
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3.10 Book Chapters 231

3.10 Book Chapters

In this section, two published book chapters are presented. In the first publication, section 3.10.1,

it is introduced the bone remodelling and bone regeneration topic, associated with numerical meth-

ods, with focus in the meshless methods. This book chapter has a review character, dealing with

models that use numerical methods to engage bone remodelling and regeneration processes. The

second book chapter, section 3.10.2, intends to expand the explanation of the development of the

2D methodology used to anisotropically define bone tissue, combined with the meshless methods.

3.10.1 Contribution VIII: "Meshless, Bone Remodelling and Bone Regeneration

Modelling."

This contribution focused on the review of the bone remodelling and regeneration process, and its

modulation. Both processes were reviewed under a biological point of view. It was also performed

a review about the existent models that define these processes, considering mechanical, biological

and mechanobiological stimuli. In addition, some of the existent numerical method that are used

in the topic were enumerated, focusing in the FEM and meshless methods.

The complete document can be found in the next pages.
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Abstract In this chapter it is presented an extensive bibliographic survey about 

meshless methods, bone remodelling and bone regeneration modelling. 
Here, the regeneration and remodelling processes are shown with detail 
and, in addition, it is presented a description of the mathematical models 
approaching both regeneration and remodelling processes. Three different 
classification of models are presented, the mechanoregulated models, the 
bioregulated models and the mechanobioregulated models. The literature 
shows that the combination of remodelling models with meshless 
techniques allows to numerically achieve more realistic trabecular 
distributions. Thus, in this chapter, an introduction to meshless methods is 
presented, with a special focus on radial point interpolation meshless 
methods, such as the Radial Point Interpolation Method (RPIM) and the 
Natural Neighbour RPIM (NNRPIM).  
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1. Introduction 
 
Bone is a structure mainly defined by bone matrix and by bone cells, being these 

bone cells responsible to produce the bone matrix, in which they became 
entrapped. The bone cells that create the bone matrix are the same that 
reabsorb it to allow the replacement of old bone matrix by a newer one. 
These bone cells also act in the bone regeneration and remodelling 
processes. All the bones in the human body form the skeletal system, which 
possesses several vital functions, such as: support, protection, movement, 
storage and blood cell production [13, 54, 111, 124]. 

Bone possesses the intrinsic capacity for regeneration and remodelling, being bone 
remodelling the biological process whereby living bone tissue renews itself 
in the course of life. Regeneration, besides being the repair process in 
response to injury, is as well a process that starts with the skeletal 
development in early life and continues in the form of bone remodelling 
throughout adult life [128].  

One of the most significant activities performed by engineers and scientists is to 
model natural phenomena in order study and simulate them. Much of the 
physical phenomena studied, particularly those related to transient 
continuum mechanics theory (involving both time and space changes), can 
be formulated in terms of algebraic, ordinary or partial differential and/or 
integral equations. These conceptual and mathematical models simulate 
physical events, whether they are biological, chemical, geological, or 
mechanical, they are based on scientific laws of physics. Thus, it is possible 
to formulate constitutive equations and laws ruling distinct phenomena, 
such as heat transfer, stress/strain relations, solid deformations, fluid flow, 
etc. [113]. 

Depending on the importance of the constitutive equations in the studied 
phenomenon they may or not be considered, and their combination results 
in the differential equations that govern the phenomenon. There are many 
phenomena associated with different fields, that can be obtained using the 
same mathematical model and consequently the same differential 
equations [113]. Most real engineering problems cases are characterized 
by very complex equations modelled on geometrically complex regions 
and defined by equations with nonlinear nature, making it virtually 
impossible to achieve an analytical exact solution. For these cases, in order 
to obtain the solutions, numerical approximation methods are preferable. 
The development of computers in recent decades allowed to use these 
methods more efficiently and so, to obtain the solution of many problems 
heretofore unsolvable. Additionally, computer progress as allowed the 
development of new formulations and new algorithms for solving many 
other complex problems [113]. With massive use of computers, it has been 
an increase in the development and use of numerical methods and simulate 
in-silico several biomechanical scenarios. The finite difference method, the 
finite element method, meshless methods, and their variants, are the most 

3.10 Book Chapters 233



3 
Meshless, Bone Remodelling and Bone Regeneration Modelling 

used numerical methods in the analysis of practical engineering problems. 
These methods are created on the idea that the complete system is could be 
analysed as the integrated sum of its different parts. 

 

1.1 Bone Regeneration 

Bone regeneration is a well-arranged series of biological events where the damaged 
bone, with deficiencies or discontinuities, is regenerated to a newly formed 
bone, rescuing its original biomechanical properties. This process is 
affected by a gathering of genetic, environmental, mechanical, cellular, and 
endocrine factors, which in the end allows to obtain a newly formed bone 
properties possessing almost indistinguishable properties from the 
properties of the adjacent old bone. This process results in a bone 
geometry, in the healing site, that usually is the same to its initial shape and 
with the peculiarity of the non-formation of a scar tissue [41, 51]. The most 
common case of bone regeneration is the fracture healing that is divided in 
three main stages, the inflammatory phase, bone repair and bone 
remodelling, that are represented in Fig. 1. During these three stages two 
types of ossification occur, intramembranous and the endochondral 
ossification [64, 118]. 

 

 
Fig. 1 Bone regeneration three main stages 

 
The inflammatory phase, the first stage, starts immediately after the injury, that is 

characterized by the hemorrhage, occurring from the damaged blood 
vessels and leading to the supply suspension of nutrient and oxygen to the 
bone cells. This first inflammatory reaction leads to the fracture 
immobilization in a direct and indirect way. Indirectly, since the pain 
caused leads the individual to protect the injury, and directly by swelling 
hydrostatically in the fracture zone, that keeps it from moving. Just after 
the start of the hemorrhage the blood began to clot and the platelets 
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(trapped in the clot) become activated and start to release growth factors, 
which regulate the processes of bone healing. The supply interruption of 
nutrients and oxygen to the bone cells leads to its dead. Thus, it occurs a 
necrotic process that starts an inflammatory response, which is 
characterized by the migration of macrophages, phagocytes, leukocytes to 
the wound site aiming to remove the necrotic tissue. 

The reparative phase, the second stage, occurs before the inflammatory phase 
subsides, and lasts for several weeks. In this phase, it is developed the 
reparative callus in the fracture site, which in the last phase - the 
remodelling phase - will be replaced by bone. The composition of repair 
tissue and rate of repair may differ depending on where the fracture occurs 
in the bone, the extent of soft tissue damage, and mechanical stability of 
the fracture site [89]. 

In this phase, the fibroblasts, mesenchymal stem cells (MSC’s) and endothelial 
cells, from the periosteum and from the soft tissues surrounding the bone, 
migrate into the healing site. This migration is regulated by growth factors 
released by the activated platelets and by the abovementioned cells. Under 
the effect of different stimuli, MSC’s differentiate into different cells, as 
well as osteoblasts, chondrocytes and fibroblasts. 

In the case that the MSC’s differentiate into osteoblast, they start to synthesize bone 
directly on a pre-existing surface without the mediation of the cartilage 
phase, occurring the intramembranous ossification [118]. With this 
apposition of new bone matrix on a solid surface, it is observed the creation 
of a bone-forming surface that is often referred to as the hard callus [1, 28, 
40].  

In the case that the MSC’s differentiate to chondrocytes, it occurs the endochondral 
ossification, that usually occurs in the middle of the fracture area. With the 
proliferation of chondrocytes, it follows the grow of cartilage tissue, that 
with the maturation of chondrocytes is followed by the calcification of 
cartilage. Chondrocytes are also responsible by the apoptosis and blood 
vessels grow into the cavities that were initially occupied by the 
chondrocytes. The mineralized extracellular matrix of the cartilage tissue 
acts as a scaffold where osteoblasts create woven bone [10]. 

The remodelling phase, the final phase, is characterized by the replacement of the 
woven bone by lamellar bone and by the resorption of excess callus. The 
woven bone is replaced by the osteoclastic resorption and by the 
osteoblastic deposition. This remodelling is a gradual modification of the 
fracture site that adapts itself to the new configuration to get the optimal 
stability under the new mechanical load scenario. 

 

1.2 Bone Remodelling 
Bone remodelling is term usually used for the phase of general growth, 

reinforcement and resorption processes. This remodelling is progressive 
and it is induced in order to adapt the bone morphology to any new external 
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load. Bone remodelling is a complex process performed by the coordinated 
activities of osteoclasts (that resorb bone), osteoblasts (that replace bone), 
osteocytes (within the bone matrix), bone lining cells (covering the bone 
surface) and the capillary blood supply. Together, osteoclasts and the 
osteoblasts cells form temporary anatomical structures, called basic 
multicellular unite (BMU’s), which execute bone remodelling. The 
interactions between osteoblasts and osteoclasts assuring a proper balance 
between bone gain and loss, is known as coupling [115]. 

All the millions BMU present in the skeleton are in different stages, being the life 
span of individual cells that create a BMU much shorter than that BMU 
itself [72, 83, 119]. 

These BMUs are constantly remodelling bone tissue during life, adult and senescent 
skeleton, preventing its premature deterioration and maintaining its overall 
strength. If there is an interruption of this bone remodelling process due to 
a biochemical or cellular link cut, such as osteoporosis or 
hyperparathyroidism, BMUs’ activity might disrupted a metabolic bone 
disease. 

Normal bone remodelling occurs in discrete bone locations, taking 2 to 5 years for 
a discrete location to complete one bone remodelling cycle [112]. Bone 
remodelling can be classified as targeted remodelling, or by random 
remodelling. For instances, if a specific region of the bone is induced to 
remodel due to a structural micro damage, it is said to occur a targeted 
remodelling [30, 104]. In this case remodelling permits the restore the 
micro damage caused by fatigue and/or by shock. 

Bone remodelling a main biological process (possessing a relevant role in the 
mineral homeostasis) by providing calcium and phosphate. Thus, for 
example, if the calcium and phosphate are removed from random locations 
from the skeleton, it occurs a random remodelling [30, 104]. 

Bone balance is defined as the relation between the amount of bone removed and of 
new bone restored in the bone remodelling process. Bone balance can be 
easily modified by diseases, hormonal factors and even by external 
mechanical stimulus. Being bones a major reservoir of body calcium, bone 
are under the hormonal control of Parathyroid hormone (PTH), the most 
important hormone regulating calcium homeostasis and bone remodelling 
[81]. The modification of the bone remodelling behaviour, possessing a 
direct influence in the bone mass, is affected by the effect of PTH, in which 
a continuous increase of the PTH levels decreases bone mass and 
discontinuous PTH administration leads to a increases of bone mass [49, 
78, 96, 116]. 

Also long-term physical activity on a regular basis plays a particularly important 
role in bone remodelling. The mechanical stimulus induced by physical 
exercise can maintain or increase bone strength by increasing bone mass 
or by changing bone structures at micro and macro levels. Two main types 
of exercise are beneficial to bone health: weight-bearing, exercise 
performed while a person is standing so that gravity is exerting a force, and 
resistance exercise, exercises involving lifting weights with arms or legs. 
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Long-term physical activity on a regular basis plays a particularly 
important role in maintaining healthy bones. Exercise can maintain and 
increase bone strength by increasing bone mass or by changing bone 
structures at micro and macro levels [129]. More recently was reported 
that, as the presence of external loads leads to the bone remodelling, the 
absence of load occurring in conditions of disuse, such as during 
immobility, space flight, and long-term bed rest lead to the same processes, 
leads to the opposite result: bone loss and mineral changes [12, 111, 131]. 

Bone remodelling can be divided in five distinct phases occurring in a coordinate 
and sequential way. This five phases are the activation, resorption, 
reversal, formation and the termination. 

The activation phase is characterized by a continuum process occurring in the 
boundaries of the BMU in which it is detected the presence of an inducing 
remodelling signal, that can be of mechanical or hormonal nature [112]. 
Bone cells are exposed to a dynamic environment of biophysical stimuli 
that includes strain, stress, shear, pressure, fluid flow, streaming potentials 
and acceleration, having these parameters the ability to regulate 
independently the cellular responses and influence the bone remodelling. 
The osteocytes located in the cortical bone possess the ability of sensing 
this biophysical stimulus and, using the canaliculi network, they are 
capable to activate the regulation of the proteins sclerostin and RANKL, 
which possess a major role in bone remodelling, [29, 129]. 

The resorption phase is characterized by the formation and activity of osteoclasts 
that create a sealed section where the resorption process occurs. This 
formation and activity of osteoclasts is controlled by osteoblast cells that 
active the movement of mature osteoclasts into a bone remodelling site 
with the expression of CSF-1, RANKL, OPG and by PTH [13, 111, 112, 
121, 123, 124]. 

The reversal phase lasts around 9 days and occurs when the maximum eroded depth 
is achieved, between 60-40 μm. This phase is characterized by transition 
of the activity from osteoclast to osteoblast [83]. The osteoclasts start the 
process of apoptosis and at the same time the bone-lining cells enter the 
lacuna and clean bone matrix remains. This clean up allows the deposition 
of a proteins (collagenous) layer in the resorption pits that form a cement 
line (glycoprotein), which helps the attachment of preosteoblasts that begin 
to differentiate[52, 57, 98] 

The formation phase is the characterized by the formation of new bone. Once 
osteoclasts resorbed a cavity of bone, they are replaced by cells of the 
osteoblast lineage that initiate the bone formation, the preosteoblast. The 
preosteoblast are attracted by the growth factors liberated from the matrix 
that act as chemotactics and, in addition, stimulate its proliferation. 

The preosteoblasts synthesize a cementing substance upon which the new tissue is 
attached and express bone morphogenic proteins (BMP) responsible for 
differentiation. 

Bone resorption liberates TGF-β from the matrix, which is a key protein for 
recruiting mesenchymal stem cells to sites of bone resorption. This 
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recruitment of mesenchymal stem cells and the presence of the bone 
morphogenic proteins (BMP) lead to the differentiation of preosteoblasts 
to osteoblasts. 

The already differentiated osteoblasts synthesize the osteoid matrix and also secrete 
collagen, whose accumulation contributes to the cessation of cell growth. 

The osteoid, the non-mineralized organic portion of the bone matrix, has to be 
mineralized with hydroxyapatite to create a mature bone tissue [79, 129]. 

The termination phase is characterized by the terminal differentiation of the 
osteoblast. Some of the osteoblast transform to lining cells, covering the 
newly formed bone surface, while others osteoblast differentiate into 
osteocytes and remain in the matrix [29, 79, 129]. 

 

1.3 Meshless Methods 

Nowadays, one of the most popular discrete numerical tool is the Finite Element 
Method (FEM), but in the last few years meshless methods, such as 
Smooth Particle Hydrodynamics (SPH) Method [66], Radial Point 
Interpolation Method (RPIM) [92–94], and as Natural Neighbour Radial 
Point Interpolation Method (NNRPIM) [45], came into focus of interest. 

The first meshless method to be developed dates from 1977, when Gingold and co-
workers proposed the smooth particle hydrodynamics (SPH) method [66]. 
The SPH possesses a kernel approximation for a single function 𝑢(𝒙) in a 
domain 𝛺. This method was used for modelling astrophysical phenomena 
without boundaries, such as exploding stars and dust clouds [66]. From 
1997 to now many different methods were developed, using different 
approaches: generalized finite difference method [91], diffuse element 
method (DEM) [103], element free Galerkin method (EFGM) [27], 
meshless local Petrov–Galerkin (MLPG) method [8], point interpolation 
method (PIM) [92–94] and radial point interpolation method (RPIM) [125, 
126]. 

The point interpolation method (PIM) was developed using the Galerkin weak form 
and shape functions that are constructed based only on a group of nodes 
arbitrarily distributed in a local support domain by means of polynomial 
interpolation [92–94]. 

The major advantage of PIM is that the shape functions created possess the 
Kronecker delta function property, which allows to enforcement essential 
boundary conditions using simple numerical techniques, as in the 
conventional finite element method. PIM can use two types of shape 
functions: polynomial basis functions and radial basis functions (RBFs), 
being termed RPIM when using the RBFs [125, 126] 

More recently, new methods were developed, such as the Natural Neighbour Radial 
Point Interpolation Method (NNRPIM) [45], which is based on the 
combination of the natural neighbour finite element method with the radial 
point interpolation method, and Natural Radial Element Method (NREM) 
[22], combining the simplicity of low-order finite elements connectivity 
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with the geometric flexibility of meshless methods. The main advantage of 
the meshless methods is that they do not require elements to discretize the 
problem domain [13]. 

 

  
(a) (b) 

Fig. 2 a) Domain discretization in FEM using elements; b) Domains discretization in meshless 
using unstructured nodes. 

In meshless methods, the problem domain is discretized using an unstructured nodal 
mesh, as can be seen in Fig. 2b), opposing with the domain discretization 
using elements used in FEM, represented in Fig. 2a). In biomechanics this 
discretization flexibility is advantageous, since it permits to discretize the 
problem domain using directly medical images. 

Meshless methods can be divided in approximation meshless methods [44]–[46], 
[50] and interpolation meshless methods [41], [47], [49], [51]–[53]. The 
major advantage of using interpolator meshless methods is the possibility 
to impose directly the essential and natural boundary conditions, since the 
constructed test functions possess the delta Kronecker property. 

They can also be separated in meshless methods that use the strong form solution, 
using directly the partial differential equations governing the studied 
physical phenomenon, and others that uses the weak form solution. The 
weak form stands for a formulation that uses the variational principle to 
minimize the residual weight of the differential equations ruling a 
phenomenon, where the residual is obtained replacing the exact solution 
by an approximated one, affected by a test function. 

The meshless methods start with the problem domain being discretized by a regular 
or irregular node set. This nodal set is not considered a “mesh”, since the 
meshless method do not require any previous information about the nodes’ 
vicinity in order to create the approximation or interpolation functions to 
the unknown variable field function. 

In meshless methods the nodal spatial distribution and nodal density discretization 
affects the performance of the method. Usually, having a denser nodal 
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distributions results in more accurate solutions, however the increase of the 
density of the dense distributions increases the computational costs. 
Furthermore, unbalanced nodal distribution leads to a lower accuracy, 
where location with predictable concentration of stress should have a 
higher nodal density when compared with locations with expected 
smoother stress distributions. 

After discretising the problem domain with the nodal set, a background integration 
mesh is created, which can be nodal dependent or nodal independent. This 
background mesh allows to numerically integrate the weak form governing 
the problem. The most popular integration schemes use the Gauss-
Legendre quadrature technique. However, the majority of the integration 
schemes is nodal dependent, which hinders the “meshless” concept. Thus, 
other techniques comprise integration schemes completely nodal 
independent, as the ones using the Voronoï diagram or the natural 
neighbour mathematical concept [45] [22] . 

After the domain discretization and the construction of the background integration 
mesh, the meshless method has to assure the nodal connectivity, which is 
not predefined by elements as in FEM. Thus, in meshless methods, for each 
point of interest, one must defined areas or volumes acting as influence-
domains. 

Meshless methods and the FEM are discrete numerical methods and so, both require 
the discretization of the problem domain. The FEM discretize the problem-
domain using nodes and elements, where the finite element concept assures 
the nodal connectivity. In the meshless methods, the problem’s domain is 
discretized using only nodes, and consequently, there are no elements, as 
in the FEM assuring that the nodes belonging to the same element interact 
directly between each other and with the boundary nodes of neighbour 
finite elements. Herewith, in the meshless methods it is necessary to define 
the nodal interaction. Such interaction is enforced by means of “influence-
domains”. A given node 𝑖, or interest point, searches for the closest nodes. 
The area or volume in which those closest nodes are contained is called the 
influence-domain of node 𝑖. In the literature it is possible to find several 
techniques to define influence-domains [13]. 

 
 

2. Bone Remodelling and Regeneration Modelling 
 
The models used to simulate the behaviour of the bone regeneration and 

remodelling are based on various concepts and approaches. The models 
can be related to various forms of bone regeneration and remodelling, such 
as models for fracture healing, models for bone regeneration around 
endosseous implants and chemical models predicting the pharmacological 
effect on the remodelling process. As said before, the bone remodelling is 
the last phase of bone regeneration, even so there are models for both 
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processes. This occurs due to the distinct duration of both processes. Bone 
regeneration is a process that last for some mouths, but the regeneration 
(occurring as the last phase of the regeneration or as a natural process on a 
healthy bone) can last the entire bone life.  

It is usually to separate the models into three different classes with respect to the 
essential mechanisms regulating the bone regeneration/regeneration 
process. The classification in mechanical, biological and 
mechanobiological model allows to characterise the model according to 
the nature of the factures influencing the bone regeneration/remodelling 
process. Additionally, this classification permits to create a chronological 
perspective of the mathematical modelling of bone.  

Mechanoregulatory models are govern by laws where the local mechanical 
environment is assumed as the only factor that influences the bone 
regeneration/remodelling. In bioregulatory models only biochemical 
factors are considered in the model, and in the mechanobioregulatory 
models both mechanical and biochemical factors are assumed. Despite 
mechanobioregulatory models are more realistic, when compared to 
mechanoregulatory and bioregulatory approaches, they also are more 
complex, due to the larger number of assumptions involved in their 
formulation. 

The mechanoregulatory were the first to appear, in 1960 by Pauwels [105]. In 1999, 
Adam and co-workers [2, 7], created one of the firsts bioregulatory modes 
to characterize the bone behaviour. Later the mechanobioregulatory 
models appeared as a combination of the mechanoregulatory with the 
bioregulatory. Curiously, the generalisation of the bioregulatory models 
did not stop the developments of the mechanoregulatory models and the 
development of the mechanobioregulatory models did not stop the 
developments of the bioregulatory models.  

2.1 Mechanoregulatory Models  

The first mathematical model related to mechanoregulation of bone remodelling 
describing ‘Wolff’s law’ was developed in 1960 by Pauwels [105], and 
later applied in 1965 [106]. This law defines that a tissue differentiation 
depends on local stresses and strains. Pauwels assumed that deviatoric 
strains stimulate the formation of fibrous tissue and that hydrostatic 
pressure stimulate formation of cartilage.  

In 1964 Frost developed the "Curvature Model" describing the remodelling process 
controlled by strain actions [55]. 

Later in 1976, Cowin and co-workers presented the Adaptive Elasticity model, 
defining bone internal remodelling as the sum of chemical reactions 
between bone matrix and the extracellular fluids, where the rates of these 
chemical reactions depend upon the strain values [37–39, 73]. In 1979, 
Perren presented a model for bone regeneration where was considered the 
influence of the local mechanical environment on the morphology of 
fracture healing, suggesting that a repair tissue can only be formed if the 
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tissue tolerates the local mechanical strain. This approach sustains that 
different bone repair patterns occur when different physical influences are 
present, including strain tolerance [107]. 

In 1986, Carter and co-workers, introduced the “self-optimization” concept, a 
remodelling model that assumed that mechanical stimulus is proportional 
to effective stress field. Thus, stress can be related with trabecular 
orientation and apparent density based on the idea that bone is a self-
optimizing material [33, 35, 56, 127].  

In 1987, Huiskes and co-workers, developed an adaptive remodelling model that 
used the Strain Energy Density (SED) as a feed-back control variable to 
determine shape or bone density adaptations [76].  

Later in 1990 Reiter and co-workers modified Huiskes’ model, introducing the 
effects of overstrain necrosis [114]. Harrigan and Hamilton, in 1992, 
introduced the SED for stress induced remodelling as mechanical stimuli, 
using "Adaptive Elasticity" concept [69–71]. 

In 1997 Pettermann and co-workers (also using a modified Huiskes’ model), 
introduced the anisotropic material behaviour in a regeneration model 
[108]. Prendergast and co-workers considered the biological tissues based 
on a poroelastic (biphasic) material. In this model, the differentiation 
process assumes as feed-back controller the maximal distortional strain and 
relative fluid velocity [110]. 

In 2000, similar to the model developed by Prendergast and co-workers (1997) 
[110], Kuiper and co-workers created a regeneration model to study the 
fracture healing process as a function of applied movement. In this model, 
the shear strain and fluid shear stress regulate bone fracture healing, by 
adding or resorbing tissue and by modifying tissue properties. The model 
was able to control the callus development with the proliferation of 
granulation tissue [82]. Also in 2000 Ament and Hofer [3], developed a 
fuzzy logic formulation that using strain energy density as mechanical 
stimulus modified the behaviour of the tissue differentiation in the process 
of bone regeneration [3]. 

Later on 2002, Lacroix, Prendergast and co-workers extended Prendergast’s work 
(1997) to include mesenchymal cell migration in a regeneration model [84, 
85]. McNamara and Prendergast developed in 2007 four 
mechanoregulated regeneration models where the mechanical stimulus 
was strain, damage, combined strain/damage, and either strain or damage 
with damage-adaptive remodelling prioritised when damage was above a 
critical level. Each model was implemented with both bone lining cell 
(surface) sensors and osteocyte cell (internal) sensors, and it also was 
applied to predict the BMU remodelling on the surface of a bone trabecula 
[99]. 

Also in 2002, Doblaré and García-Aznar proposed a remodelling model based on 
the principles of Damage Mechanics [48]. This model identifies bone voids 
with the cavities or micro cracks of other material damage models, but 
changes some of the standard assumptions in damage-mechanics theory to 
adapt it to the special requirements of living adaptive materials. A 
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remodelling tensor, defined in terms of the apparent density and analogous 
to the standard damage tensor, was proposed to characterize the state of the 
homogenised bone microstructure.  

In 2008, Liu and Niebur, developed and modified version of Lacroix’s regeneration 
algorithm. This version enforces tissue differentiation pathway by 
transitioning from differentiation to bone adaptation [95]. In 2010, 
Mulvihill and Prendergast, using the concepts of the algorithms developed 
by McNamara and Prendergast, 2007, and the concept proposed by Frost 
(1987), developed a new regeneration algorithm where both strain and 
micro-damage work as stimuli for BMU activity and that ON/OFF 
thresholds operate to control osteoclast and osteoblast activation [102]. 

Later in 2012, Belinha et al. [25, 26], developed a material law correlating the bone 
apparent density and the obtained level of stress. Using this new material 
law, it was developed a biomechanical remodelling model, an adaptation 
of Carter’s models for predicting bone density distribution, based on the 
assumption that the bone structure is a gradually self-optimizing 
anisotropic biological material that maximizes its own structural stiffness 
[34, 35, 56, 127]. This model assumes that mechanical stimulus acts as the 
principal driving force in the bone tissue remodelling process [25, 26]. 

2.2 Bioregulatory Models 

In 1999, Adam and co-workers developed a regeneration model where the critical 
size defect in the fracture healing site was defined by a set of a partial 
differential equation (PDE) governing a growth factor concentration [2, 7]. 

By 2001, Bailon-Plaza and Vander Meulen developed a more extended biological 
regeneration model that was defined by a system of PDE’s [10]. In this 
approach the PDE’s system was defined by seven variables: densities of 
MSC’s, of osteoblasts, of chondrocytes, concentrations of chondrogenic 
and osteogenic growth factors, and densities of connective/cartilage 
extracellular matrix and bone extracellular matrix. This model allowed the 
authors to represent the processes of cell differentiation, proliferation, 
migration and death, synthesis and resorption of tissues. This model is 
rather popular due to its generality. This model can be modified, allowing 
the development of several other bioregulatory models [10].  

Later in 2003, Komarova et al., [80] developed a remodelling model describing the 
population dynamics of bone cells accordingly with the number of 
osteoclasts and osteoblasts at a single BMU. The interactions occurring 
among osteoblasts and osteoclasts encouraged by autocrine and paracrine 
allowed the authors to calculate cell population dynamics and changes in 
bone mass at a discrete site of bone remodelling [80]. To condense the net 
effect of local factors on the rates of cell production, this model uses a 
power law approximation that was developed by Herries [74], as effective 
tools for analysis of highly nonlinear biochemical systems. In this model 
all factors leading to a cell response are taken together in a single 
exponential parameter [80]. 
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In 2004, Martin and Buckland-Wright developed a mathematical remodelling 
model to predict the depth of erosion and the duration of the resorption 
phases in healthy adult cancellous bone based wholly on biological 
information. This model uses Michaelis-Menten-like feedback mechanics 
to affect bone resorption [97]. 

Also in 2004, Lemaire and co-workers developed the first mathematical 
remodelling model that includes the RANKL/RANK/OPG pathway, which 
affects the bone remodelling process. This model is based on the idea that 
the relative proportions of immature and mature osteoblasts control the 
degree of osteoclastic activity [87]. 

In 2008, Geris and co-workers extended the work of Bailon-Plaza and Meulen [10], 
by creating a regeneration model that considers angiogenesis. This was 
achieved by separating fibrous tissue and cartilage densities, and by 
defining additional chemotactic and haptotaxis terms for cell migration in 
the governing equations [62, 63]. 

Also in 2008, Pivonka and co-workers, using as base the Lemaire's model [87], 
suggested a new remodelling model where were added four new 
parameters, a rate equation (describing changes in bone volume with time), 
a rate equation (describing release of TGF-β from the bone matrix), the 
expression of OPG and RANKL on osteoblastic cell lines, and a modified 
activator/repressor functions [109]. 

In 2009, Ryser co-workers using as base Komarova’s work, developed a 
mathematical remodelling model of BMU describing changes in time and 
space of the concentrations of proresorptive cytokine RANKL and its 
inhibitor osteoprotegerin (OPG), in osteoclast and osteoblast numbers, and 
in bone mass [117]. 

In 2011, Amor and co-workers adapted the Bailon-Plaza and Vander Meulen model 
[10] for peri-implant osseointegration [4, 5]. This regeneration model 
postulates that intermediate cartilaginous phase is not observed 
experimentally in bone healing occurring near implants, [1, 28, 31, 36] and 
so, the model disregard chondrogenic growth factors, chondrocytes and 
cartilage. The big difference from the original Bailon-Plaza and Vander 
Meulen model, is that the chemotaxis of MSC’s is represented in equations 
and that the density of activated platelets was included.  

2.3 Mechanobioregulatory Models  

In 2002, Lacroix and co-workers, using the models developed by Prendergast [110] 
and by Huiskes [75] developed a new regeneration model considering 
cellular processes together with mechanical factors by incorporating the 
random walk of MSC’s [84, 85].  

Later in 2003, Bailon-Plaza and Meulen, extending their previous work [10], 
created a new regeneration model in which it was predicted the beneficial 
effects of moderate, early loading and adverse effects of delayed or 
excessive loading on bone healing. The mechanical factors were modelled 
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by stimulating and inhibiting the effects of dilatational and deviatoric 
strains [11].  

In 2005, Gómez-Benito and co-workers and García-Aznar and co-workers  
developed a mechanobioregulatory regeneration model as a system of 
PDE’s model that had as main variables cell concentrations of the four 
basic skeletal cells: MSC’s, osteoblasts, fibroblasts and cartilage cells, and 
the four types of skeletal tissues, namely granulation tissue, fibrous tissue, 
cartilage and bone [58, 60, 67]. In this model, it was assumed that the 
fracture site is invaded by proliferating and migrating MSCs in the first 
stage of the bone healing process and that these may differentiate into 
cartilage cells, bone cells or fibroblasts, depending on the value of a 
mechanical stimulus. It was also assumed that very high mechanical 
stimulus causes MSCs to die. In this model the process of bone healing 
was simulated as a process driven by a mechanical stimulus, the second 
invariant of the deviatoric strain tensor [67].  

In 2008, Andreykiv co-workers [6] and Isaksson co-workers [77] developed a 
regeneration model where the biological part allowed the simulation of cell 
migration, proliferation, differentiation, tissue deposition and replacement. 
The mechanical component of the model calculates the mechanical stimuli 
influencing the cellular processes. Cell differentiation, proliferation and 
tissue production in this model are regulated by tissue shear strain and 
interstitial fluid velocity, as proposed by Prendergast and co-workers 
[110].  

In 2014, Hambli [68] developed a remodelling model where the cellular behaviour 
was based on Komarova et al. [80] dynamic law. In this model the 
mechanical stimuli are related with the biological one using strain–damage 
stimulus function controlled by the level of autocrine and paracrine. In 
2010, Geris and co-workers [65], extended their previous bioregulatory 
model [61] by defining dependencies for the model parameters based on 
mechanical stimuli, according to Prendergast and co-workers [110]. This 
model was applied to study impaired fracture healing. The authors checked 
predictions of the model for various mechanoregulatory relations. In this 
model, both angiogenesis and osteogenesis were assumed to be affected by 
the mechanical loading. 

Later in 2015, Yi and co-workers developed a microscale bone remodelling model 
using the equivalent strain as the mechanical stimuli. In this model, the 
mechanical stimuli affects the proliferation and differentiation of the 
osteoblast cells. The influence of the different physiological conditions, 
restricted by Denosumab (a used drug for treating osteoporosis), on the 
formation/resorption rate were also considered [130]. 

In 2016, Lerebours and co-workers [88] developed a multiscale mechanobiological 
remodelling model describing the evolution of a human mid-shaft femur 
scan subjected in osteoporosis and mechanical disuse. In this model, 
hormonal regulation and biochemical coupling of bone cell populations are 
included. This models also includes a mechanical adaptation of the tissue 
and factors that influence the microstructure on bone turnover rate [88]. 
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3. Meshless Methods Applications 

3.1 Meshless Methods and Mechanics 

Many studies where performed using meshless method in order to prove it 
efficiency in many different fields of mechanics. Belinha and Dinis, 2006 
extended the usage of Element Free Galerkin Method (EFGM) in order to 
perform the elasto-plastic analysis of isotropic plates [16]. Later in 2007, 
Belinha and Dinis extended the EFGM to the analysis of anisotropic plates 
and laminates considering a Reissner–Mindlin laminate theory (FSDT) 
[17]. Also in 2007, Dinis and co-workers proposed a new meshless 
method, the natural neighbour radial point interpolation method 
(NNRPIM) based on the combination of the natural neighbour finite 
element method with the radial point interpolation method. In order to 
prove the high accuracy and convergence rate of the proposed method 
well-known 2D and 3D problems were solved and compared with other 
studies and methods [45]. Later in 2008, NNRPIM was extended for the 
analysis of thick plates and laminates [46], being later in 2009 NNRPIM 
extended to dynamic analysis (free vibrations and forced vibrations) of 2D, 
3D and bending plate problems [18]. In 2010, NNRPIM was used in the 
numerical implementation of an Unconstrained Third-Order Plate Theory 
applied to functionally graded plates [42], being later in 2011, using also 
Unconstrained Third-Order Plate Theory applied to laminates [44]. Also in 
2010, Dinis and co-workers developed a unique NNRPIM approach when 
3D thin structures are considered. In order to demonstrate the effectiveness 
of the method, several isotropic and orthotropic thin plates and shells 
problems were solved [43]. Later in 2013, NNRPIM was extended to the 
analysis of composite laminated plates [19] and to the elastostatic analysis 
of thick plates [23]. In 2014, NNRPIM was extended to the analysis of 
laminated plates using Timoshenko theory [100]. In 2015, NNRPIM was 
extended to the field of fracture mechanics [9], and the radial point 
interpolation method (RPIM) to the elasto-static analysis of circular plates 
assuming the 2D axisymmetric deformation theory [53]. Later in 2016 was 
analyse and compared the performance of distinct meshless techniques 
assuming first-order shear deformation theory (FSDT) using FEM, and 
also an approximation meshless method (EFGM) and three interpolation 
meshless methods RPIM, NNRPIM and Natural Radial Element Method 
(NREM) [14]. Also in 2016, NNRPIM was used to simulate the crack 
growth phenomenon in brittle materials [15] 

3.2 Meshless Methods and Biomechanics 

Meshless methods are used in different fields, but are getting an increasing interest 
on the biomechanical field, since the discretization flexibility in meshless 
is advantageous, allowing to discretize the problem domains using directly 
medical images. 
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These biomechanical studies focus in the bone tissue. Belinha and co-workers 
extended the NNRPIM to bone remodelling analysis, developing a 
biomechanical model to predict the bone density distribution [20, 26]. 
Later, some studies using meshless approach were performed in order to 
evaluate the bone response after the insertion of implants. Most of these 
studies focus in dental implants, [21, 50, 122]. More recent studies 
analysed the bone remodelling behaviour after the insertion of a femoral 
stem [24]. 

3.3 Meshless Methods and Bone remodelling 

In the last few years, meshless methods gradually become to enter into bone 
remodelling simulation field [47]. 

García and co-workers in 2000, developed one of the first works using bone 
structures and the meshless methods, studying the bone internal 
remodelling by means of α-shape-based Natural Element Method (α-
NEM). The considered remodelling model is based on the principles of 
Continuum Damage Mechanics [59]. 

Liew and co-workers in 2002, explored stress distribution phenomena in the human 
proximal femur, having in consideration the detrimental effects of 
infarction as well as aging. Liew and co-workers in 2002 concluded that 
meshless methods were efficient numerical techniques suitable for 
biomechanics [90]. 

James and co-workers in 2007, developed a model to analyse osteoporosis process. 
In this model the CT imaging data was linked to the  meshless method in 
order to analyse the mechanical properties of the porous, heterogeneous 
trabecular bone and the property–microstructure relationship [86]. 

Buti and co-workers in 2010 developed a uniform, particle-based, space and 
geometry oriented approach for bone remodelling. The developed 
methodology uses a multi scale approach, at tissue scale and at cell scale. 
This methodology uses a meshless method approach developed by Taddei 
and co-workers in 2008 [120], which is a numerical approach based on a 
direct discrete formulation of physical laws - the Cell Method [32]. 

Recently Belinha and co-workers started to use meshless methods applied to bone 
tissue analysis. Firstly, using  a micro-scale analysis of the bone 
remodelling phenomenon [26], and later using  a macro-scale analysis to 
study innumerable structures as the calcaneus, femur, mandible and the 
maxillary bone [21, 25, 101]. 

In 2016 Belinha and co-workers, using the developed bone remodelling algorithm, 
the developed material law and the developed meshless methods, analysed 
the bone tissue remodelling of the femur due to the insertion of a stem [24]. 

4. Conclusion 
Bone remodelling and bone regeneration are natural processes that are controlled 

very efficiently by the human body, by a combination of mechanical and 
biological factors. Along the years, many mathematical models were 
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developed to simulate these two processes, evolving from simpler models 
(that considered only one type of factors) to the more recent models (that 
combine both mechanical and biological factors) - the mechanobiological 
models. These models in many cases are evolutions of previous models by 
adding more variables. The objective of these more complex models is to 
simulate the natural events in a more precise way. In the case of the 
biological models, it was found in the literature survey that they usually 
are well supported on laboratory experiments using bone tissue. 

As said before, the last phase of the regeneration process is the remodelling phase. 
The models concerning the regeneration process consider the remodelling 
phase, although with a much smaller temporal windows when compared 
with the pure remodelling models. Thus, tell apart both model phases might 
not be immediately. 

Being FEM a mature and widely used method, it is natural that the first remodelling 
and regeneration models where firstly combined with the FEM. 

Meshless methods are discretization techniques similar to FEM. Thus, the same 
fields and studies that have been explored using the FEM, can now be 
explored using meshless methods (and also some topics where the FEM 
cannot be used). 

For the particular case of bone regeneration, in the bibliographic survey the authors 
did not found any study in which meshless methods where applied, which 
creates a research opportunity for meshless methods. 

Taking into account some of the vantages of the meshless methods, such as the fact 
that they do not require elements to discretize the problem domain, and that 
in biomechanics domains with high complexity are very common, it is very 
likely that meshless methods became a standard in biomechanical analysis. 

In the particular case of bone remodelling, the literature shows some relevant recent 
studies combining meshless methods with bone remodelling models. This 
recent interest could be explained by the meshing flexibility of meshless 
methods and by the fact that meshless methods can discretise numerically 
the problem domain using directly the medical images. In addition, 
meshless methods allow to adapt and update the discretization along the 
simulation, for example, by adding or removing nodes (domain) at any 
time-step during the simulation. 
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3.10.2 Contribution IX: Advances in Biomechanics and Tissue Regeneration: 10.

Determination of the Anisotropic Mechanical Properties of Bone Tissue.

The main goal of this contribution was to expand the explanation of the development of the 2D

methodology used to anisotropically define the bone and its combination with the meshless meth-

ods. In this contribution, it was reviewed the fabric concept used in the development of the ho-

mogenisation technique, and it was explained how the image processing tools were able to define

it. The material laws that able to anisotropically define the bone were explained and the methodol-

ogy was validated using two tests: a scale and a rotation test. Two sets of domains that define the

bone, one homogenised set and one heterogeneous, were structurally analysed in order to validate

the methodology.

The complete document can be found in the next pages.



Determination of the anisotropic mechanical properties
of bone tissue using a homogenization technique

combined with meshless methods
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Abstract

Bone has different functional requirements at different scales, from macro-

scale to micro-scale. Bone remodeling has as consequence the change of the bone

morphology at its micro-scale, leading to the change of bone mechanical proper-

ties. The literature shows that it is possible to obtain the fourth rank elasticity

tensor from the fabric tensor. Furthermore, previous studies have demonstrated

that the fabric tensor can be directly correlated with a material image using a

fabric tensor morphologic-based methodology - the mean intercept length ten-

sor (MIL). In this work, the same methodology is applied in order to obtain

the homogenized material elasticity tensor. Thus, the main objective of this

work was to combine a new developed homogenization technique, applying the

fabric tensor concept to medical CT/micro-CT images, with a previously devel-

oped bone tissue material law, allowing to expeditiously define the homogenized

mechanical properties of trabecular bone at its micro-scale, and to reduce the

analysis computational cost.

Keywords: Meshless Methods, Fabric Tensor, Homogenization, Multi-scale

10.1. Introduction

Bones is the main integrant of the skeletal system by witch the body sup-

port, protect and move itself as well as store and produce blood cells. Bone is
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a complex structure that consist of two different tissue types, the cortical bone,

a thin and stiff outer layer, and the trabecular bone, more flexible and a foam-5

like inner structure [1–3]. Bone biomechanics is based on the idea that bone

provides a high load-carrying capacity and that bone tissue is structurally op-

timized for this mechanical function [4, 5]. Considering this purpose, bone has

a mechanism, bone remodeling, that allows its micro-structural integrity to be

continuously maintained. This process can lead to bone removal via osteoclasts10

or bone regeneration via osteoblasts [6–11]. It also occurs in other biological pro-

cess, such as growth, reinforcement, and resorption. Bone remodeling has been

continuously studied, resulting in the development of semi-empirical mathemat-

ical descriptions. These models simulate and predict experimental results using,

for example, computer science methodologies such as Finite Element Methods15

(FEM). The efforts to understand bone remodeling phenomenon lead to a con-

tinuous development of semi-empirical mathematical descriptions, but also lead

to better comprehend bone structure. It was observed that bone has different

functional requirements at different scales, the reason why some authors start

to classify bone as a hierarchical multi-scale material, with different structural20

levels from macro-scale (whole bone) to sub-nanoscale (hydroxyapatite crystals,

constituent of the inorganic phase of bone ) [12–17]. Since the bone has different

functional requirements at different scales, it was necessary to investigate the

mechanical properties of its distinct components and the structural relationships

across different scales [18, 19]. The evolution of the hierarchical bone classifi-25

cation also lead to the evolution of models that allow to study bone biological

and mechanical processes by incorporating a multi-scale approach.

Mechanoregulatory models are defined by laws that only consider the influ-

ence of mechanical factors in the bone remodeling. In bioregulatory models,

only the biochemical factors are considered while in the mechanobioregulatory30

models, both mechanical and biochemical factors are considered. Despite be-

ing more representative in comparison with mechanoregulatory and bioregula-

tory models, mechanobioregulatory models are more complicated due to the

higher number of assumptions and restrictions involved in their formulation.

2
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The mechanoregulatory was the first to appear, in 1960 by Pauwels [20]. In35

1999, Adam and co-workers [21], created one of the firsts bioregulatory modes

to characterize the bone behavior. Later, the mechanobioregulatory models ap-

pear as a combination of the mechanoregulatory with the bioregulatory. The

first mathematical model related to mechanoregulation of bone remodeling that

described the ‘Wolff’s law’ was developed in 1960 by Pauwels [20], that was40

later applied in 1965 [22]. Wolff’s law, developed by Julius Wolff, anatomist

and surgeon, states that bone adapts itself to applied loads. Wolff reported

that the directions of the applied external loads directly influence the direction

of the trabecular bone, by changing trabecular bone physical disposition and

distribution. Today, it is generally accepted that bone remodeling is mainly45

caused by the transient nature of its strain/stress fields, induced by the exter-

nal loads applied in its physical boundary. From 1960 up to now, many other

models were created using novel ideas, or modifying/enhancing existent models

[23–39]. In 2012, Belinha et al. [40] developed a material law that permits to

correlate the bone apparent density with the bone level of stress. Using this new50

material law, a biomechanical remodeling model was developed, as an adapta-

tion of Carter’s models for predicting bone density distribution that assumes

that bone structure is a gradually self-optimizing anisotropic biological mate-

rial that maximizes its own structural stiffness [27, 29, 30, 41]. Peyroteo et

al. [42, 43], developed another model, considering Belinha et al. [40] material55

law as part of a mechanoregulation model. Among many bioregulatory models,

[21, 44–48], one of the most known bioregulatory is the Komarova’s model [45].

Komarova’s model describes the population dynamics of bone cells accordingly

with the number of osteoclasts and osteoblasts at a single basic multicellular

unit (BMU). The development of these mechanoregulatory and bioregulatory60

models lead to the development of mechanobioregulatory modes, being one of

the first versions developed by Lacroix and co-workers in 2002. Using the models

developed by Prendergast et al. [34] and by Huiskes et al. [49], this first model

considered cellular processes together with mechanical factors by incorporating

the random walk of mesenchymal stem cells [35, 36]. One other numerical model65
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was developed by Mousavi and Doweidar [50], that allow to study mesenchymal

stem cells differentiation to osteoblast as well as osteoblast proliferation due to

mechanical stimulations. The latest developed mechanobiological remodeling

model was developed in 2016, where it was included the hormonal regulation

and biochemical coupling of bone cell populations, the mechanical adaptation70

of the tissue and factors that influence the microstructure on bone turnover rate

[51].

One key factor in all of these models is the characterization of the bone me-

chanical properties. The first models considered bone as an isotropic material,

a simplistic approach on the behavior of trabecular bone, disregarding the im-75

portance of orientation in the remodeling process [31, 41, 52, 53]. Later, mod-

els start to considered material density and orientation with bone anisotropic

mechanical properties, taking into account the trabecular architecture features

[38, 54–56]. More recently, some works start to characterize bone mechanical

properties using the fabric tensor concept [57–62]. The fabric tensor is a sym-80

metric second rank tensor that characterizes the arrangement of a multiphase

material, encoding the orientation and anisotropy of the material.

Numerical methods combined with computer science are widely used in a variety

of areas, from civil engineering, mechanical engineer, chemistry up to biome-

chanics. These methodologies allow to study and analyze, in silicio, the be-85

havior of materials and structures, being firstly used in the biomechanics area

in 1972 by Huiskes and co-workers [63], in order to evaluate stresses in human

bones. Today, FEM is one of the most popular discrete numerical method [64]

while other methods like meshless methods start to appear. Meshless meth-

ods evolved, from the first developed meshless method dated form 1977, where90

Gingold et al.[65], proposed the smoothed-particle hydrodynamics (SPH), to

more recent methods such as the Natural Neighbor Radial Point Interpolation

Method (RPIM) [66] and the Natural Radial Element Method (NREM) [67].

The main difference between meshless methods and the finite element method

is the methodology to discretizing the problem domain. Meshless methods, in95

opposition to the FEM, do not use elements to established nodal/element con-

4
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nectivity, and so discretize the problem domain using an unstructured node

set that can be distributed regularly or irregularly. Because of this, meshless

methods can have advantages, such us the capability to discretize high complex

problem domains using information gathered directly from medical images, a100

feature of high importance in the biomechanics field.

In meshless methods, the nodal discretization is constructed just by using

the spatial coordinates of the nodes, allowing to define individually the mate-

rial properties of each node. The concept of influence-domain, equivalent to

elements in FEM, defines how each node interacts with its neighbor by using105

geometrical and mathematical constructions. Only meshless methods that use

nodal dependent constructions of the integration mesh are called truly meshless

methods because they allow to directly define the spatial position and the in-

tegration weight of all integration points only using the spatial positions of the

nodes. The untruly meshless methods use a nodal independent background in-110

tegration mesh to establish the system of equations from the integro-differential

equations ruling the physical phenomenon under study [1]. Meshless methods

are used in many different fields of mechanics, such us laminates [68–78], 2D

and 3D linear elasticity [79], plate and shell bending problems [80], composites

[81, 82], fracture [83–85], etc. Meshless are also widely used in biomechanics.115

They are used, for example, to study the behavior of bone response to the in-

sertion of implants [86–89], to analyze the behavior of soft tissue under stress

[90, 91], to evaluate the behavior of the inner ear [92, 93], and bone remodeling

computational research [42, 43, 86, 87, 94–102].

Some of the models and methodologies presented in this chapter, analyze120

structures like bone, that has an underlying microstructure. The behavior of the

structure at its micro scale significantly influences the behavior of the structure

observed at the macro-scale. Finding the relation across scales, will allow to de-

velop multi-scale models capable to predict the behavior of the macro-scale using

the micro-scale, and vice-versa. Homogenization techniques allow homogenizing125

the mechanical properties of the heterogeneous material under study, thereby

allowing to substitute this material with an equivalent homogeneous material.

5
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This homogenization can be integrated into multi-scale methods allowing to de-

fine, for example, the mechanical properties of highly complex microstructure

as trabecular bone, and replace this microstructure by a simple structure with130

equivalent mechanical proprieties. This simplification allows to relate the multi

scales and simplify the problem complexity, solving it at the macro-scale [103].

The main objective of this chapter is to show how it is possible to combine

a new homogenization technique (applied to the trabecular bone micro scale)

with meshless methods, aiming to achieve a low-cost and efficient multi-scale135

technique.

10.2. Homogenization Technique

In this section, the homogenization technique that allows to expeditiously

define the homogenized mechanical properties of trabecular bone at its micro-

scale is fully described. This technique allows to define the mechanical properties140

of a trabecular bone representative volume element (RVE). In this technique

images generated by micro-CT are used, allowing to acquire information of the

trabecular bone morphology. In this homogenization technique, in order define

the mechanical properties of the trabecular bone RVE, it was used the fabric

tensor concept and a bone tissue phenomenological law. Fabric tensors can145

be obtained by two different methodologies, mechanical based or morphologic

based. In the case of the morphologic based methodology, the information of

the interface between phases of the material is used to obtain the orientation

distribution function (ODF). Micro-CT images provide information about the

changes of the phase of trabecular bone that is required to define the ODF150

data, and so define the fabric tensor. This process is further explained in this

section. First, aiming to define a RVE from a 2D micro-CT, the images must be

segmented. Thus, the obtained RVE describes the local trabecular bone micro

scale morphology and the information regarding the changes of phase of the RVE

are recorded. The image segmentation creates binarized information, ones and155

zeros, that can identify what is bone, ones, and what is void space, zeros. This

6
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binarizations can be obtained using image processing methodologies, such as

Ostu’s method [104]. In Fig. 10.1c an example of the image type that is acquired

using a micro-CT to be used in this methodology is presented. These binary

images, Is, are employed in the methodology developed by Whitehouse [105] to160

define the fabric tensor. This methodology is considered as golden standard in

this kind of application, since there exists a large amount of works sustaining its

appropriateness to predict mechanical properties of trabecular bone [60, 62, 105–

107]. When the ODF data is acquired by this method, disposed on a polar

plot, and fitted into an ellipse, it is possible to obtain parameters that can be165

correlated with the material orientation, allowing to further define the trabecular

bone mechanical properties.

Fabric tensor morphologic based method

In this methodology, the number of interceptions between a parallel family

line in direction ι, the interface between both phases of the material is counted,170

Int (ι). The length of the parallel lines family, h, is also considered. The pa-

rameters h and ι define the ODF, which in this case is called mean interception

length (MIL), Eq. (10.1).

MIL (ι) =
h

Int(ι)
(10.1)

The dimensional information of Is is used to define the size of an image

containing the family of parallel lines with ι = 0◦. Fig. 10.2a represents an175

example of an image containing a family of parallel lines Iι, in this case, with

ι = 0◦. Counting the interceptions of those parallel lines with changes of phase

of RVE, represented by the boundaries of the Is, it is possible to obtain the

orientation-dependent feature.

Rotating the family of parallel line image with ι between 0◦ and 180◦ us-180

ing a defined angle increment, and then counting the interception of the family

of parallel lines with Is, it is possible to obtain the ODF of the Is. The gen-

erated data for ι between ]180◦, 360◦[ is a [0◦, 180◦] data repetition, since the

orientation-dependent feature is not influenced by the direction. For example,

7
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(a) (b) (c)

Figure 10.1: In this figure, the Is used in this work are presented (a) - Benchmark Image

1; (b) - Benchmark Image 2; (c) Trabecular Bone

Fig. 10.2 represent the rotation of Iι between 0◦ and 180◦ with a ι increment185

of 45◦.

To better understand how the ODF data is acquired using Is and Iι, Figs.

10.5, 10.6 and 10.7 are presented. Each image makes reference to one of the

images presented in Fig. 10.1, with ι between 0◦ and 180◦, using an increment of

45◦. In each one of the images, five pixel colors: black, blue, cyan, red and pink190

are presented, as a result of the combination of multiple images information.

The blue pixels represent the correspondent white pixels from the Is image.

The black pixels represent the background of the Is image. This information

is constant in each set of images with origin in the same Is image. The only

pixels that changes in these images are the pixels in red, cyan and pink. The red195

pixels represent the Iι. The creation of this Iι results in five different images,

as can be observed in each set of images, Figs. 10.5, 10.6 and 10.7. The union

of the pink pixels with the cyan pixels represent the intersection of Is with each

one of the Iι images. The methodology to acquire the ODF data only needs

the information of the material phase change, and for this reason, only the cyan200

pixels are used to obtain the ODF data. Counting the number of cyan pixels

that result from combining Is with each Iι, and considering the length of the

parallel family lines, Eq. (10.1), the resulting ODF data is plotted in Fig. 10.3.

Fitting an ellipse into this data, it is possible to obtain the material orienta-

tion of the trabecular RVE. In Fig. 10.4 the fitted ellipses to the corresponding205
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(a) Ipl0
◦ (b) Ipl45

◦ (c) Ipl90
◦ (d) Ipl135

◦ (e) Ipl180
◦

Figure 10.2: Images of parallel lines rotation Iι with an angle increment of 45◦, within the

interval of ι = [0, 180]
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Figure 10.3: Polar plot of ODF data, the red points, from Figs. 10.1a, 10.1b, and 10.1c,

respectively.
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Figure 10.4: Polar plot of ODF data and correspondent fitted ellipse from Figs. 10.1a,

10.1b, and 10.1c, respectively. (a) - θ = 0◦; (b)- θ = 45◦; (c) - θ = 117◦

ODF data present in Fig. 10.3. Considering Wolff’s Law, it is understandable

that this ellipse is aligned with the RVE preferential trabecular directions, it

has the result of the functional requirements of the trabecular bone. From the

fitted ellipse, it is possible to obtain the ellipse minor axis length, βmin, and

major axis length, βmax and θ, the angle of ellipse major axis with the polar210

plot horizontal axis, that for the case of Fig. 10.1c represents the preferential

trabecular direction.
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(a) 0◦ (b) 45◦ (c) 90◦ (d) 135◦ (e) 180◦

Figure 10.5: Grid Lines Rotation Interceptions of Fig. 10.1a

(a) 0◦ (b) 45◦ (c) 90◦ (d) 135◦ (e) 180◦

Figure 10.6: Grid Lines Rotation Interceptions of Fig. 10.1b

(a) 0◦ (b) 45◦ (c) 90◦ (d) 135◦ (e) 180◦

Figure 10.7: Grid Lines Rotation Interceptions of Fig. 10.1c
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Phenomenological material law method

Merging the information obtained using the fabric tensor concept and the

phenomenological material law, it is possible to define the homogenized or-215

thotropic mechanical properties of a RVE. To use the phenomenological mate-

rial law defined by Belinha and co-workers [40], it was required to define the

average apparent density, ρapp. This was achieved by using the binary image

Is information as represented in Eq. (10.2), being the αw the number of white

pixels and αb the number of black pixels.220

ρapp =

(
αw
αb

)
ρcorticalapp (10.2)

Using the ρapp, it is possible to define the axial Young’s modulus, Eaxial. To

define the transverse elastic modulus, Etrasnv, it can be used the relation between

the ellipse minor axis length, βmin, and major axis length, βmax, and the axial

elastic modulus Eaxial, as Eq. (10.3) shows.

Etransv =
(||βmin||Eaxial)

||βmax||
(10.3)

The Poisson’s coefficient, ν, can be calculated according to the mixture the-225

ory using the relation between white and black pixels, as represented in Eq.

(10.4).

ν =
0.0 (αb) + 0.3 (αw)

αt
(10.4)

being αt the total number of pixels of the binary image Is. The shear

modulus, G, can be expeditiously calculated using Eq. (10.5).

G =
Eaxial

2(1 + ν)
(10.5)

Using the homogenized material properties (Eaxial, Etrasnv, ν, and G), it is230

possible to define the constitutive matrix cox′y′ , for the ox′y′ local coordinate

system. Transforming cox′y′ with the transformation rotation matrix T , it is

possible to define the material constitutive matrix in the global axis.
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10.3. Validation

To validate this homogenization technique, some tests are performed, which235

allowed to understand the behavior of the methodology used to acquire the

fabric tensor. Thus, three numerical studies were tested, one concerning the

influence of the size of the RVE, another related to scale analysis, and a third

one concerning the rotation effect of the RVE in the acquisition of the θ ellipse

parameter.240

10.3.1. Scale Study

In order to understand the influence of the size of the RVE, three distinct

models were constructed based on Fig. 10.1a, 10.1b and 10.1c. The models

presented in Fig. 10.8a and 10.8d are benchmark fabricated unitary binary

image with a well-defined material orientation, 0◦ and 45◦, respectively.245

Alternatively, it was also used a realistic trabecular model RVE, represented in

Fig. 10.8g, obtained from 10.1c, a micro-CT binary image. The three models

were repeated rn×rn, being rn = 1, 2, ..., 10. Applying the homogenization

technique to all of the RVE and corresponding repetitions and comparing the

results between each element of the constitute matrix, Fig. 10.9, it is perceptible250

that the scale of the RVE does not affect significantly the acquisition of the

mechanical properties. The small changes visible in Fig. 10.9c occur since the

unitary image, Fig. 10.8g is not periodic, which means that the repetition of

the image result in the creation of new changes of phase.

10.3.2. Rotation Study255

To understand the influence of the rotation in this methodology, the already

presented RVEs were rotated with respect to their initial position using an

increment of 20◦, in the interval between [0◦, 180◦]. For the cases presented

in this chapter, Fig. 10.1, the average difference between the obtained material

orientation and the expected angle was of 5.83◦. This difference can be explained260

by the changes occurring on the source image upon the rotation process, as it

can be observed in Fig. 10.10, where the red circle marks the changes in the
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(a) (b) (c)

Benchmark 1 RVE and respective repetitions rn×rn, being rn = 1, 2, ..., 10

(d) (e) (f)

Benchmark 2 RVE and respective repetitions rn×rn, being rn = 1, 2, ..., 10

(g) (h) (i)

Realistic RVE and respective repetitions rn×rn, being rn = 1, 2, ..., 10

Figure 10.8: Model set used to validate the behavior of the methodology used to define de

fabric tensor.
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Figure 10.9: Constitutive matrix values obtained using a unitary RVE and up to 10 × 10

repetitions. (a): Results for the benchmark 1 RVE with principal direction of 0◦. (b): Results

for the benchmark 2 RVE with principal direction of 45◦. (c): Results for the trabecular RVE.
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(a) (b) (c) (d) (e)

Figure 10.10: Image rotation process and inherent morphologic change, (a): Original Image;

(b): 20◦ rotation; (c): 40◦ rotation; (d): 60◦ rotation; (e): 80◦ rotation.

same region in different rotated images. In Fig. 10.11, it is perceptible that

applying a rotation to the image, the principal direction of the fitted ellipse, θ,

reflects the applied rotation.265
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(a) Benchmark 1 RVE rotation and ODF polar plots.
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(b) Benchmark 2 RVE rotation and ODF polar plots.
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(c) Trabecular RVE rotation and ODF polar plots.

Figure 10.11: Set of images with respective ODF polar plot, and respective rotations with

an increment angle of 20◦, between the interval [0◦, 180◦].
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(a) (b)

Figure 10.12: (a): Discretized homogeneous RVE (11 × 11 nodes uniformly distributed).

(b): Example of a discretized heterogeneous RVE created using micro-CT image information.

10.3.3. Structural application

This homogenization methodology is intended to be used as an improve-

ment of existent methodologies, usually used in highly heterogeneous problem

domains. Thus, it was necessary to compare the structural response of a het-

erogeneous material domain with the structural response of the corresponding270

homogenized material domain, whose mechanical properties were obtained using

the proposed methodology. I,e., to concede the different problem domains used

in this study to be equivalent, the mechanical properties of the homogenous

domain had to be defined using the information of the heterogeneous models

problem domain. This allows defining equivalent models despite the different275

levels of heterogeneousness.

The heterogeneous RVE was defined using a heterogeneous domain, Fig. 10.1c.

This problem domain, Fig. 10.12b, it is complex and it is formed by two dif-

ferent materials, the trabecular bone and void space. The homogeneous RVE,

Fig. 10.12a, was defined by a homogeneous domain, discretized by a set of280

uniformly distributed nodes and integration points, with the same homogenized

material properties acquired using the described methodology. The RVE’s were

constructed with a L × L dimension. To define the problem, it was imposed

a displacement of 0.1 × L at the nodes of the top layer, y = L. The nodes at

x = 0 and x = L were constrained on Ox direction, ū = 0, and the nodes at285

y = 0 and y = L were constrained on Oy direction, v̄ = 0.

Two different numerical approaches, the FEM and the NNRPIM, were used
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the compare the mechanical behavior of these RVEs. The integration mesh con-

structed within the FEM is fundamentally different from the integration mesh

constructed with the NNRPIM formulation, resulting in very different positions290

of the integration points. Thus, in order to compare the stress field obtained

with the two different RVEs, the concept of von Misses homogenized stress, σheff ,

is used. The σheff , defined by Eq. (10.6), allows to combine the stress field in

one scalar value, facilitating the comparison of different models. In this Eq.,

nQ represent the number of integration points, which discretizing the problem295

domain, that do not belong to the vicinity of the domain boundary, typically

2%, avoiding the inaccurate stress concentrations that appear near the domain

boundary.

σheff =
1

nQ

nQ∑

i=1

σ(xi)eff (10.6)

The acquisition of the σheff , obtained for each analyzed RVE, using both FEM

and NNRPIM methodologies, Fig. 10.13, provide the necessary data to validate300

the developed methodology. It is perceptible by this figure that increasing the

level of detail and the size of the heterogeneous RVE, the value of the homog-

enized stress decreases. Thus, when the analysis uses a heterogeneous model

following a 4× 4 repetition, the obtained homogenized stress is very close with

the homogenized stress obtained with the homogeneous RVE, indicating that305

the presented homogenization technique is capable to accurately obtain the ho-

mogenized orthotropic material properties of a trabecular patch. Comparing

the FEM with NNRPIM meshless method, despite the equivalent results in the

homogeneous RVE, the results of heterogeneous RVEs are not so close. This

difference in the results can be explained by the locking effects that occur in the310

FEM.

Each analysis has its own computational cost. In Fig. 10.14, the time-lapse

of each structural analysis is shown. Observing the computational cost of each

analysis, it is possible to understand that the analysis of the homogenized RVE

is much faster than heterogeneous RVEs. Generally, the multi-scale techniques315

use highly discretized RVEs, with a high computational cost associated. As this
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example shows, the proposed homogenization methodology is capable to reduce

the cost of the multi-scale analysis, enabling more demanding simulations.

10.4. Conclusions

The presented methodology allows defining the mechanical properties of a320

micro-CT RVE patch without any a-priory knowledge. Using a morphologic

methodology to acquire de ODF data from the micro-CT RVE, and combining

this data with a phenomenological material law, it was defined a methodology

that allows defining a homogeneous material that it is equivalent to a het-

erogeneous material. The defined material mechanical properties are directly325

related with the trabecular anisotropy encoded in the fabric tensor and with

the material law developed by Belinha et al., 2012 [40]. It was demonstrated

that the methodology is stable and provide good results, even when consider-

ing different RVEs scales and different material principal directions. It was also
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shown that the NNRPIM is capable to produce accurate and smooth micro-scale330

variable fields (at the RVE scale), which allow obtaining accurate final homoge-

nized variable fields. Multi-scale techniques usually use highly discretized RVEs.

The homogenization technique here proposed showed that when combined with

meshless methods it is capable to reduce the cost of the analyzing highly het-

erogeneous domains. Thus, using this methodology in multi-scale analyses will335

allow simulating more complex problems with lower cost. Also, as bone is a

hierarchal material, this methodology might be a powerful tool to understand

the remodeling process, using a multi-scale approach, where the mechanical

properties of trabecular bone can be defined at the micro-scale, considering the

trabeculae architecture.340
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Chapter 4

Conclusion

4.1 General Discussion

The human body is a complex and well-regulated system. To understand this complexity of sys-

tems and, subsystems and processes, it often required to join and use knowledge from different

fields. Bone remodelling is one of these processes that occur in the human body, that benefits

from the multidisciplinary and heterogeneity that exist in the scientific community. Bone re-

modelling benefits the knowhow and perspective of biologists, mathematicians, chemistries, en-

gineers, among others. This lead to exciting improvements of experimental techniques that allow

researchers to obtain a considerable amount of data at several spatial scales that can mathemat-

ically validate the bone remodelling behaviour. To study and analyse these models, that define

biological processes that occur in physical domains, are often used numerical methods, by being

considered as a standard approach in this type of application. Several discrete numerical methods

are available, such as meshless methods. In the first two contributions, Contribution I and II, it

was analysed the behaviour or RPIM and NNRPIM, against the FEM, when applied to biological

structures. The main conclusion of this two contributions was that is common to observe that

FEM analysis available in the literature do not consider the importance of the discretisation level,

and that in many cases the discretisation level in commercial software is automatic. Thus, the

lack of awareness regarding the value of the discretisation level can lead to invalid analyses. It

can be also concluded, re-enforcing work present in the literature, that the RPIM and NNRPIM

results are similar to the results obtained in FEM. Thereby, it can be also concluded that meshless
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methods are capable to produce faster converge rates than the FEM, allowing the usage of sparse

meshes, still capable of providing valid results, and with smoother stress fields, when compared

with the FEM. In this contributions is concluded that since biological structures are different be-

tween different subjects, one must be capable to develop a standardisation procedure to allow the

comparison between the results from the same biological structures between different subjects.

This standardisation, inspired in the Gruen zones, a standardised system widely used to evaluate

stress upon the use of prothesis in the femoral bone, could allow a better understanding of different

studies using different sources of the same biological structure. In general, contribution III, IV, V,

VI and VII, allow to conclude that the developed homogenisation technique permits to define bone

using a homogenous domain with its mechanical proprieties defined using information of medi-

cal images and using the fabric tensor concept, being this domain mechanical characterisation

equivalent to a heterogeneous domain with its mechanical properties defines ignoring the domain

anisotropy. In contribution III, IV and V the methodology was explored in the 2D space, where

it was concluded, that homogenisation technique was capable to define bone mechanical proper-

ties using a methodology that uses medical images information, of a homogenised domain that is

equivalent to a heterogeneous domain with its morphology equivalent to the trabecular bone. In

these contributions, the use of the meshless methods has high importance since the problems that

can occur with discrete numerical methods in highly heterogeneous are attenuated when using

meshless methods that use advanced discretisation methodologies. In these contribution it was

observed that the developed methodology was capable of characterising bone mechanical prop-

erties considering its morphological characteristics, one factor of main importance when taking

into account that this material definition can be used in the bone remodelling studies, and that is

not influenced by the scale of the region of interest, which is used to defined the material me-

chanical properties. The 3D homogenisation methodology, explored in contribution VI and VI,

complemented the 2D methodology, by confirming that the homogenous domains mechanically

defined using the homogenisation technique are mechanically similar to the equivalent heteroge-

neous models. The 3D methodology is likely to be the one applied in the future application, since it

is the one that can consider bone domains representative of real bone structures. One of the mains

advantages of using the proposed homogenisation technique is the possibility of reducing the sub-

jectiveness when creating the geometrical models that define the bone structures. A geometrical
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model defined using medical images, where it is considered the bone as being a simplistic shell,

lead to fewer discretisation errors, medical images interpretation errors, less iterative processes,

when compared to models that consider all the morphologic characteristic of bone, in specific of

the trabecular bone. This simplification in the geometrical creation is balanced by the definition of

the mechanical properties of the model elements, by considering the trabecular bone morphology

and apparent density, as parameters that are acquired using the medical images information, and

are used in the homogenisation methodology. One key factor of this homogenisation methodology

is that it can be used in the existent remodelling simulation models. It is usual to this remodelling

models to have an iterative nature, where at each iteration the bone morphology changes, result-

ing in the remodelling process. Considering the fact that bone mechanical properties change with

bone morphology, its mechanical properties should change in each iteration. When it is not used

a homogenisation technique applied to this morphologic change, a new domain that reflects this

change, has to be created. Using this homogenisation technique, the domain discretisation could be

kept between iterations, but the mechanical properties that reflect the morphological changes (re-

sultant from the remodelling process, which changes the bone macroscale mechanical behaviour),

would be considered. This also has the advantage the homogenisation technique only depends on

the bone morphology and the phenomenological laws, allowing to use this method with no user

interference. If it is considered this iterative simplification in the remodelling process and the fact

that medical images can reflect the specific characteristics of a patient bone, that can be encoded in

the homogenisation technique, this can lead to a better understanding of the mechanical behaviour,

for example, of the insertion of a specific implant into a specific patient. This can lead to a faster

development of patient specific implants where is not just considering bone pre-implantation mor-

phology, but also consider the effect of that implant in the bone morphology, and thus, allowing to

choose the best implant to a specific patient.

4.2 Conclusion and Future Work

The proposed aims and challenges were successfully achieved, leading to a knowledge improve-

ment in the bone remodelling modelling, and the consequent production and publication of re-

search outputs in international journals. The remodelling process it was not directly studied but
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was improved and expanded the knowledge concerning homogenisation methodologies, that are

often used in bone remodelling studies. These methodologies can acquire a main importance on

the development of patient specific implants, by allowing the analysis of the behaviour of specific

implants into a specific bone, with its mechanical properties well translated. Furthermore, with

this methodology it will be possible to create the geometrical models used in the computational

analyses with less human interaction, allowing the automatisation of the process and reducing the

subjectiveness that occurs upon the creation of geometrical models. Concerning the evolution

of this methodology and taking into account the great amount of data created in its processing,

could be of interest to use the latest AI methodologies to develop a tool that could (using the same

assumptions) define bone mechanical properties using its multiscale structure.
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