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Abstract 

 

 Subchondral bone cysts (SBCs) are voids that can occur in the bones of young horses, 

especially horses intended for performance. Believed to be caused by trauma or osteochondrosis, 

these defects most often occur in the medial femoral condyle (MFC). Current treatments for 

equine SBCs have poor outcomes and have not improved over the last several decades. The gold 

standard for surgical treatment consists of cyst debridement and grafting. However, radiographic 

healing is not often reported, and when it is, only 20% of horses exhibit full radiographic 

healing. A novel treatment strategy has been recently introduced that places a lag screw across 

the SBC and has demonstrated high rates of radiographic healing. However, the mechanics of 

how a transcondylar lag screw could enhance SBC healing are unknown. 

 The goals of this study were to determine a plausible mechanism of SBC initiation and 

growth, as well as understand the mechanics of the transcondylar lag screw. A finite element 

modeling approach has been taken to examine the mechanics associated with SBCs. Using CT 

scans from young Thoroughbred horses, several finite element models have been developed for 

this study. The results of this study show that high-impact loading from gallop can cause stresses 

high enough to initiate bone damage in a healthy equine stifle joint. Additionally, once a small 

defect has manifested, stresses rise even higher and further damage is likely. Medial meniscus 

stress also increases with a MFC SBC, which suggests that secondary injury to the medial 

meniscus may be due to a disrupted load path through the MFC. Furthermore, it was determined 

that the transcondylar screw is able to heal SBCs by providing enough mechanical stimulus to 

the adjacent bone to promote bone formation. Not only is the stimulus for growth present, but the 

screw also aligns third principal stresses transverse to trabecular orientation across the cyst. This 

encourages bone to form across the void, as opposed to trabecular thickening, which results in 
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the sclerosis typically seen in MFC SBCs. Lastly, it was determined that larger cysts respond 

best to the transcondylar screw. Full penetration of the screw into the cystic cavity provides the 

highest bone-forming stimulus, and also best aligns stresses across the void. 

 This work demonstrates that trauma can initiate SBCs and that the transcondylar screw 

provides a unique mechanism to enhance healing. Since humans are susceptible to a wide range 

of bone defects that exhibit similar characteristic of an equine SBC, it is believed that there is 

huge potential for translational applications. 
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Motivation 

 

Radiographic abnormalities (RAs) develop in the stifle joint in 40% of young racehorses. 

These abnormalities typically occur in the medial femoral condyle and may affect performance 

or cause lameness. Most commonly, clinicians observe femoral bone, flattening of the femoral 

condyles, and/or a subchondral bone cyst (SBC).  

While some believe osteochondrosis is the primary cause of SBC initiation and 

development, histologic examination of an SBC reveals evidence of trauma, such as degenerated 

bone and cartilage, woven bone, fibroplasia, disorganized granulation tissue, and capillary 

proliferation. When an SBC has been identified, clinicians aim to reduce inflammation and 

promote bone regeneration. Common conservative treatments, such as reduced exercise or 

corticosteroid shots, have low reported efficacy. More invasive treatments involve debridement 

of the SBC and subsequent filling of the void with cancellous bone or a combination of 

biological substances. The arthroscopic debridement treatment was developed over 40 years ago, 

and because most clinicians believe this treatment to be the obvious solution, the development of 

treatment strategies has been stagnant. Unfortunately, complete radiographic recovery is reported 

to be less than 20% with convalescent periods reaching as long as 24 months.  

While these poor outcome metrics might lead clinicians to alter their strategies, the lack 

of information on stifle joint mechanics with and without a SBC makes it difficult to assess new 

options. However, obtaining experimental mechanics data of the stifle is impractical. The major 

obstacles are the expenses of both conventional acquisition equipment and maintenance of live 

specimens. Most of all, it is impossible to make direct empirical observations of these metrics 

without joint access, which would require the removal of critical structures and therefore 

compromise the health of the horse.  
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As an alternative to experimentally collecting data, we have developed a robust 3-D finite 

element model of the equine stifle joint to date. To our knowledge, our model is the most 

accurate and comprehensive equine stifle model available.  

 Understanding the mechanics of an SBC far exceed the immediate impact in equine 

populations. SBCs are also prevalent among human populations and pose similar health issues, 

such as pain or the inability to load the affected leg. Knee osteoarthritis (OA) is the most 

common form of OA and will develop in 50% of people by the age of 85. More often found in 

women, SCLs are reported in over 30% of all knee OA cases. Adolescents also develop SBCs 

usually as a result of sport-related trauma. As such, the need for safe and effective treatment is 

imperative. And, as in equine populations, not much is known about human SBCs, especially 

their mechanical consequences on surrounding bone and soft tissues. With the anatomical 

similarities to human knees and the spontaneous occurrence of SBCs, the equine stifle is an 

advantageous animal model for the study of human SBCs.  

Recently, a novel treatment has been developed in horses that places a lag screw across 

the MFC and has demonstrated an improved convalescent period (4 months) and consistent post-

treatment SBC healing (80%). The effectiveness of the screw may be due to its mechanical 

influence on the adjacent bone, which suggests that MFC biomechanics are critical in 

understanding SBC development. Besides our own preliminary work, very little research has 

been done on MFC biomechanics in the equine stifle, and a woeful lack of understanding has 

played a significant role in stagnant therapy success. Therefore, studying MFC biomechanics, as 

well as how they are perturbed by a SCL, will provide clinicians with the resources to better 

understand stifle joint injury and may provide compelling evidence for the use of a transcondylar 

screw. 
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Extending upon our previous work, the primary objectives of this study are to provide 

both a detailed exploration of equine stifle joint mechanics with and without SBCs and a 

thorough evaluation of the lag screw treatment. This information will provide clinicians with a 

way to visualize healthy and unhealthy contact mechanics, identify possible equine stifle joint 

pathologies, and understand how the lag screw may enhance the healing of an SBC. 

Additionally, another primary objective of the study is to identify what sizes and shapes best 

respond to the lag screw treatment strategy. This would provide clinicians with a predictive 

measure of success before surgery. 

Specific Aim 1 

 

To determine MFC mechanics in an extended (155o) equine stifle joint with and without an SBC. 

The current goal was to investigate stresses, strains, and contact pressures in the MFC without an 

SBC, assess SBC initiation potential, and further examine stresses and strains once an SBC has 

manifested. Additionally, stresses, strains, and contact pressures from the tibial cartilage and 

medial meniscus were of interest to determine how their mechanics are perturbed with an SBC. 

Research question 

 

Can overload and trauma explain SBC initiation? How are the mechanics in the joint affected 

once an SBC has manifested? How do the soft tissue mechanics in the stifle joint change with an 

SBC? 

Hypothesis 

 

At the gallop, stresses in the MFC are high enough to suggest damage if bone remodeling is 

unable to sustain the high-impact loading. When an SBC is present, stress concentrations will 

occur around the cystic boundary, which may cause further damage and subsequent SBC growth. 
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Since load cannot pass through a void, the medial meniscus and tibial cartilage will experience 

local stress concentrations, which may lead to secondary injury. 

Stress, strain, and contact pressure data at extension will provide new knowledge on stifle 

joint mechanics during impact loading and how these mechanics are perturbed with an SBC 

defect in the MFC. This information will provide clinicians with the understanding of SBC 

mechanics, which may lead to improved treatment strategies and preventative measures for 

SBCs. 

Specific Aim 2 

 

To evaluate the effect of a transcondylar lag screw on the bone remodeling stimulus in bone 

surrounding an SBC in the equine MFC. The current goal was to use a developed theory of bone 

remodeling to assess the mechanical stimulus a transcondylar lag screw imposes on the bone 

surrounding an SBC. 

Research Question 

 

How does a transcondylar lag screw enhance the healing of an SBC in an equine MFC? How do 

different factors of the treatment strategy, such as amount of screw compression, angle of entry, 

and allowable joint load, affect bone remodeling? 

Hypothesis 

 

A transcondylar lag screw will provide necessary mechanical stimulus to the bone surrounding 

an SBC to promote bone formation. The stimulus will increase with increasing screw 

compression and allowable joint load. The angle of entry should allow the screw to fully 

penetrate the SBC, if possible. 
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Currently, the transcondylar screw’s mechanism of healing is unknown. Understanding 

how the screw works and validating the model’s predictions against known clinical outcomes 

will allow for other screw configurations to be tested, and much more can be learned on how to 

best implement this treatment strategy. This information will also serve to provide evidence for 

(or against) the use of the transcondylar screw. There is no consensus in the field as to the best 

treatment for SBCs, even though the transcondylar screw appears to be the most effective 

treatment to date. With more surgeons adopting the screw treatment strategy, the <20% 

radiographic healing statistic may finally be replaced with the much more promising 80% 

radiographic healing statistic. 

Specific Aim 3 

 

To evaluate the impact of cyst size and shape on the bone remodeling stimulus provided by a 

transcondylar lag screw. The current goal was to use a 3k factorial analysis to assess how the 

height, width, and depth of an SBC affects the bone remodeling stimulus from a transcondylar 

lag screw. It was of importance to understand which sizes and shapes of SBCs are worth 

operating on and to hypothesize ways in which non-responsive SBCs can be treated. 

Research question 

 

Which spatial characteristic of the SBC has the most influence on the transcondylar screw’s 

efficacy? Can smaller cysts be treated in the same way as larger cysts? 

Hypothesis 

 

Height will have the most influence on the efficacy of the transcondylar screw’s ability to 

promote bone formation. The screw should be able to penetrate fully into the cyst, and the height 
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will determine if this is possible. Smaller cysts will not respond sufficiently to the current 

transcondylar lag screw treatment. 

The CT scan used in aims 1-2 is of a healthy joint. In order to investigate SBCs in the 

MFC, the sclerosis and cyst have been artificially implemented using assumed densities and 

simple spherical geometries. Spherical geometries are not common in small and medium-sized 

cysts. One of the major criticisms of our past work has been that these artificial characteristics of 

the model do not represent what is seen clinically, and the results obtained may not reflect 

reality. Moreover, a single cyst size and shape will be tested in aim 2, whereas cysts come in 

many different sizes and shapes. Not surprisingly, it is of clinicians’ interest to understand the 

types of cyst that will respond positively to the screw treatment strategy. By using a cystic CT 

scan, and varying the cyst dimensions following the observations of Walker et al. [27], the model 

will overcome these shortcomings and provide relevant and useful information to the medical 

field. Additionally, a regression analysis of the 3k factorial study will provide early insight into 

which dimension(s) contribute most to the variability in bone healing stimulus surrounding the 

SCL. 
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1. Introduction 
 

1.1 Equine Subchondral Bone Cysts 

 

 In the last 25 years, young racehorses, particularly Thoroughbreds, have been under 

much radiographic scrutiny. The reason - radiographic abnormalities are quite common in young 

racehorses with reports citing occurrence as high as 42%.1 Horse breeders and trainers are 

becoming more aware of the high incidence, and therefore, radiographs are becoming more 

common throughout the young horse’s early years. By the time of a horse sale for a 2-year-old 

Thoroughbred, 4 scans would likely have occurred. The reason for this well-intentioned 

radiographic scrutiny? Detect these abnormalities early and begin to treat them.  

 One such abnormality, and arguably the most insidious, is a subchondral bone cyst 

(SBC). SBCs are often referred to as a subchondral lucency because these defects are diagnosed 

through radiographs that show a non-dense lucency where dense bone would normally reside 

(Figure 1.1, left). Subchondral bone cysts are the cause of significant pain and lameness in a 

horse. In high-performance horses, either sport or work related, these cysts can result in a 

complete loss of intended function causing both financial and emotional turmoil for the owner, 

as well as quality of life for the horse. Furthermore, untreated, or improperly treated, SBCs can 

lead to a complete degradation of the stifle joint causing irreversible damage. As such, 

prevention, early detection, and treatment for subchondral bone cysts is of utmost importance to 

the horse trainer. 

 Equine subchondral bone cysts were first described in the fetlock of the horse in a 1968 

study by Pettersson et al.2 Early detection mechanisms were limited, and the true extent of 

subchondral bone cysts were not fully understood. Over the next decade, advancements in 
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radiographic technology made it possible to survey other joints. By the 1980’s, sufficiently 

powerful portable radiographic machines were available, and clinicians began to examine other 

joints in the horse, which allowed for a more in-depth examination of causes of lameness. In 

particular, subchondral bone cysts were found most commonly in the medial femoral condyle 

(MFC), although have been described in all diarthrodial joints.3,4 Histologic examination of 

SBCs shows just how severe the defect can be (Figure 1.1, right). Examiners have found 

fibroplasia, capillary proliferation, fibrous tissue, as well as crushed bone, woven bone, and 

disorganized areas of granulation tissue within the cystic cavity.5,6 These examinations reveal 

clues of trauma, which has given researchers an early insight into the etiology of these bone 

cysts. 

 

Figure 1.1. Medial femoral condyle subchondral bone cyst. Left) Radiograph of a subchondral 

bone cyst present in the medial femoral condyle of a young Thoroughbred. Right) Histological 

examination of a subchondral bone cyst in the medial femoral condyle. 

Coming in all different sizes and shapes, early research efforts found it difficult to discern 

their etiology and what exactly constituted a “bad” or “mild” SBC. Initially, attributed to White 
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et al., cysts were defined as being in either 1 of 2 categories: Type 1) a dome shaped cyst that 

was most commonly coupled with a flattened femur, and Type 2) a circular cyst with a narrow 

stem-like opening that communicated with the tibial cartilage surface.5 Fortunately, imaging 

technology continued to improve, and clearer radiographs from different angles provided more 

data for cystic classification. At last, clinicians were able to characterize SBCs in a more 

consistent and meaningful manner. In 2014, Santschi et al. devised a grading scheme that 

classifies SBCs into 1 of 6 categories, or grades, ranging from a flattening of the MFC to large 

cysts in both the femur and tibia with cartilage degeneration (Figure 1.2).7 
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Figure 1.2. Classification of subchondral cystic lesions of the medial femoral condyle as 

described by Santschi et al. Grade 1 = flattening or a small defect in the subchondral bone of the 

central MFC, Grade 2 = a <10 mm height dome-shaped lucency, Grade 3 = a condylar lucency 

with no evidence of a cloaca in the subchondral bone, Grade 4 > 10 mm large dome shape 

extending to the articular defect, Grade 5 > 10 mm lucency with a narrow cloaca at the articular 

surface, Grade 6 = a combination of Grade 4 or Grade 5 SCL and other lucencies in the caudal 

MFC or proximal medial tibial plateau. Reprinted from The American College of Veterinary 

Surgeons, 2014; 44:281-288 with permission.  

 What makes subchondral bone cysts all the more egregious is their relatively high 

prevalence rate. In a 2017 study that examined radiographs from 1962 Thoroughbred yearlings 

from 2005-2013, subchondral lesions were identified in 23% of the horses.8 Quarter horses are 

even more prone to developing subchondral bone cysts, but limited data is available for a 
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prevalence estimation.9 Even in the 2017 study, the authors state that the 23% incidence rate is a 

conservative estimate for the true incidence of SBCs occurring in Thoroughbreds. With such a 

high population of horses affected, SBCs are a high-priority research topic in the veterinary 

community. Yet, little elucidation has been made into their etiology, and treatment options have 

stagnated over the past few decades. The stagnation in treatment options recently inspired the 

development of a novel surgical technique that has shown promising early results.7 This study, 

which became the foundation of this body of work, may prove to revolutionize SBC treatments 

in both animals and humans alike. Discussed later (see Novel Treatment), the first step in 

determining the best surgical technique is to better understand SBC etiology, which could 

provide clues as to how they should be managed and treated. 

1.2 Equine Subchondral Bone Cyst Initiation 

 The etiology of equine SBCs is still debated, even though they’ve been medically 

described since the 1960s.2 There are several theories that explain the initiation of equine SBCs, 

but two theories in particular have received the most attention: 1) developmental failure of 

ossification (osteochondrosis) and 2) mechanical trauma. These two theories will be discussed 

further and a hypothesis made by the author of the primary cause. 

1.2.1 Osteochondrosis 

 Osteochondrosis describes a focal interruption in the process of endochondral 

ossification.10-12 In a healthy, developing bone, specialized growth cartilage located at the growth 

plate or at the end of appendicular long bones divides, grows, matures, and eventually ossifies 

into primary bone. When the blood supply that nourishes the growth cartilage is perturbed, the 

cartilage cannot properly ossify (Figure 1.3), strength is compromised, and the poorly developed 

bone becomes susceptible to injury.13,14 As a consequence, these osteochondrotic areas can 
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fracture and may cause a free-floating fragment, known as osteochondrosis dissecans (OD) 

(Figure 1.4). Laboratory results have demonstrated this phenomenon. Cell necrosis occurring 

with a perturbed blood supply that shows similarities to spontaneous osteochondrosis has been 

reproduced experimentally.15-17 However, characteristics of OD are not particularly evident in 

traditional cases of SBC (compare Figures 1.3 and 1.4 with 1.1). Nonetheless, bilateral SBC 

cases and SBCs having the proclivity to manifest in younger horses does suggest that 

developmental issues may be at fault. 

 

Figure 1.3. Medial femoral condyle from 50 kg pig with multiple areas of necrotic cartilage 

(arrowheads) associated with delayed endochondral ossification. Taken from Journal of 

Orthopaedic Research, 1991; 9:317-329 with permission. 
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Figure 1.4. Osteochondrosis dissecan in the equine medial femoral condyle. Discernible flaps, or 

broken off pieces of bone, are staple findings for osteochondritis dissecans. A) MR imaging 

findings in the coronal plane. B) MR imaging findings in the transverse plane. C) CT image in 

the transverse plane. Note the visual difference in these images compared to Figure 1.1. Adapted 

from Osteoarthritis Cartilage, 2013; 21(11):1638-1647 with permission. 

 Osteochondrosis dissecans occur in developing horses and have been observed clinically 

for a number of years. The question is not whether they occur, but rather if they are the cause of 

subchondral bone cysts? There is strong evidence that would suggest osteochondrosis dissecans 

are not the primary cause of SBCs. The first piece of evidence comes from the growing 

recognition that older horses may develop subchondral bone cysts. Since older horses are well 

beyond development, there cannot be a disturbance in the blood supply to growth cartilage 

because growth cartilage is no longer present. Equine osteochondrosis dissecans also tend to 

occur in the trochlear ridge (Figure 1.5) and not in the primary weight-bearing portions of bones, 

such as the medial femoral condyle. Furthermore, histological analysis of SBCs reveals crushed 

trabecular bone, and rarely is a single broken section of the condyle found in the void. 
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Figure 1.5. Medial-lateral radiographs of two different equine stifle joints with osteochondritis 

dissecans in the trochlear ridge (arrows). Images courtesy of Dr. Elizabeth Santschi. 

1.2.2 Mechanical Trauma 

 As an alternative to osteochondrosis being the primary cause of equine SBC initiation, 

mechanical trauma and overload has been suggested. A key, almost obvious, piece of evidence to 

support this arises from the observation that SBCs are most common in high weight-bearing 

sites, such as the equine MFC. Additionally, those that are most prone to develop SBCs are those 

that participate in high-impact loading. Young horses intended for racing or work, and as will be 

described later, human adolescent athletes, older populations with osteoarthritis, and young 

military recruits tend to be the most affected population.4,10,18-23  

Equine researchers first addressed mechanical trauma in the 1980s, shortly after 

osteochondrosis was proposed. In a 1983 study by Jeffcott and Kold, subchondral bone cysts in 

the medial femoral condyle were examined for clues as to their pathogenesis. One of the most 

important findings from that study was that the cartilage in and around the defect did not have 

significant degeneration commonly observed in osteochondrosis dissecans of the lateral trochlear 

ridge.6 If SBCs in the MFC are caused by osteochondrosis, which leads to osteochondrosis 
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dissecans, one would expect appreciable cartilage degeneration consistent with improper blood 

supply. Other important findings included the presence of trabecular microfractures in the 

subchondral bone plate, flattening on the MFC prior to cystic development, as well as sclerosis 

in the MFC (Figure 1.6). These findings suggest forceful impacts are ultimately responsible for 

SBC development. The authors then hypothesized that continued loading would cause collapse 

of the bone, thus initiating a subchondral lesion. 

 

Figure 1.6. Likely progression of a subchondral bone cyst. A) condylar flattening with sclerosis 

suggesting mechanical trauma. B) Small defect with a sclerotic rim. C) Large subchondral bone 

cyst surrounded by sclerosis with collapse of the articular cartilage, a clearly defined cloaca, and 

a smooth lining. D) Degenerated bone, undefined cloaca, and often with concurrent cartilage 

degeneration. Adapted from Equine Veterinary Journal, 1983; 15(4):304-311 with permission. 
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 Kold et al. continued to investigate the trauma hypothesis, and in 1986, they were able to 

experimentally create SBCs by creating a linear cartilaginous defect in the weight-bearing 

portion of the medial femoral condyle.24 Yovich and Stashak’s study in 1989 corroborated the 

mechanical trauma hypothesis by demonstrating that SBCs could form from an intra-articular 

defect in the equine elbow.25 Additionally, McIlwraith showed that a subchondral defect could 

lead to the development of subchondral bone cysts.11 With the mounting evidence implicating 

trauma, the author believes mechanical damage is the primary cause of SBC initiation.  

In addition to the work done by the veterinary community, studies in humans have 

corroborated the mechanical trauma theory.26-28 Predating the equine research, Ondrouch 

proposed trauma as the cause for osteoarthritic SBCs in 1963.29 Durr et al. convincingly 

demonstrated that altered mechanics due to osteoarthritis causes significant stress increases in the 

subchondral bone. These increased stresses may cause stress-induced bone damage and 

subsequent resorption.30 However, as with equine research, SBC development from a healthy 

joint has not been exclusively researched. 

1.2.3 Summary 

Perhaps, a happy medium exists in which both mechanical trauma and a developmental 

failure in the ossification process contribute to SBC initiation.31 Mechanical trauma could 

contribute further deformation and damage to the thickened cartilage that failed to fully ossify in 

the endochondral ossification process. While this theory is certainly plausible, it is difficult to 

explicitly test for this phenomenon and little work has been done to lend additional support. 

However, this theory along with osteochondrosis alone, does not account for older horses 

developing SBCs. 
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 Both osteochondrosis and mechanical trauma have been shown to induce bone cysts. As 

such, it remains hotly debated as to which pathology best explains the larger occurrence of 

SBCs. Mechanical trauma best explains the affected populations; however, little work had been 

done to show how a healthy bone could develop such a defect. Most of the work has been done 

using a cartilage defected model, or with direct lesions to the subchondral bone. Research into 

the development of a cyst from a healthy joint may provide the missing piece of evidence to 

affirm mechanical trauma’s role in SBC initiation. Accordingly, one of the primary objectives of 

this research was to determine if a subchondral defect could form in a healthy joint given a 

horse’s typical daily loading. Chapter 2 delves into this research question. 

1.3 Subchondral Bone Cyst Growth and Progression 

1.3.1 Hydraulic Theory 

Not only is there disagreement about how SBCs start, but also about what causes 

subsequent SBC growth and development. Once an initial defect has manifested, two theories 

have been proposed to explain their continual progression. In the first theory, known as the 

hydraulic theory, synovial fluid pushed into the cavity is responsible for cyst enlargement.24,32 

First proposed by Freund in 1940 investigating human SBCs, it was initially believed that 

forceful intrusion of synovial fluid caused further damage to the surrounding bone.33 Many years 

later, in a 2011 study by Cox et al., it was demonstrated that fluid pressure could actually cause 

stress-shielding and that bone may resorb away due to a lack of mechanical stimulus.34 Thus, the 

intrusion of fluid was implicated as the culprit of growth. Two major problems arise with this 

hydraulic theory of cyst progression. One, it does not explain cyst growth in SBCs without an 

opening to the joint. If there is no joint communication, it would be difficult for synovial fluid to 

intrude into the void. Secondly, it does not explain the sclerosis observed in all stages of SBC 
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development (Figure 1.7). Sclerosis, or densification of focal bone, would be a functional 

adaptation response to increased stress.35 If synovial fluid is causing stress-shielding in the bone 

surrounding the cyst, one would not expect this bone to be sclerotic. Instead, the bone would be 

of lower density until completely resorbed away or damaged. Nonetheless, the presence of fluid 

in subchondral bone cysts has been repeatedly observed, and researchers are hesitant to ignore its 

role in SBC progression. 

 

Figure 1.7. Radiographs of three different subchondral bone cysts illustrating the ubiquitous 

presence of sclerosis (black arrows) in developing SBCs. Sclerosis is a functional adaptation to 

increased loading. Therefore, sclerosis suggests increases in stress in the surrounding bone. 

Images courtesy of Dr. Elizabeth Santschi. 

1.3.2 Mechanical Trauma 

Trauma and overload with initial cyst development have been implicated as the primary 

reason cysts continue to develop. This mechanism is supported by the work of McErlain et al and 

Frazer et al.26,36 Stress concentrations occur on the cystic boundary and would explain the 

sclerosis, as well as further damage if the stresses are high, or the bone remodeling cannot keep 

up with the compounding microfractures. Since the horse is not lame at the initial onset of the 

cystic lesion, the horse continues regular, high-impact loading on the joint. As such, the already 
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compromised bone is highly susceptible to further damage. This theory is further supported by 

the understanding that conservative treatment of rest tends to halt cyst progression. If stress-

shielded bone resorption accounted for the expansion of the cyst, then rest would further unload 

the bone and one would expect the hole to continue to grow. However, if mechanical trauma 

grows the void, then reducing the mechanical forces on the compromised bone would halt cyst 

progression, as observed clinically. 

1.3.3 Inflammation 

In both theories of initiation and continued growth, the detrimental effects of 

inflammation factors are recognized. Factors such as interleukin-6 and prostaglandin E3 have 

been reported in SBCs and are known to increase bone resorption, as well slow healing.37,38 

Interestingly, recent research has uncovered some of the beneficial effects of inflammation in 

bone healing, especially in trabecular bone. Bernhardsson found evidence that supports 

monocytes’ role in osteogenesis in cancellous bone after injury.39 Sandberg also demonstrated 

that depleting macrophages hamper cancellous bone healing.40 Certainly more research is needed 

in the role of the immune system in healing cancellous bone injuries. 

1.3.4 Summary 

Again, as is the case with SBC initiation, more research is needed to better understand 

SBC progression. If we can better understand SBC initiation and progression, rational treatment 

and preventative strategies can be implemented. Accordingly, similar to the previously stated 

research objective of cyst initiation, Chapter 2 addresses the possibility of subsequent cyst 

development from trauma given an existing defect in the subchondral bone. 
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1.4 Traditional Treatments 

Treatment strategies for SBCs fall into one of two categories: conservative and non-

conservative treatment. Depending on the severity of the defect, age of the horse, and the 

owner’s preference, the veterinary surgeon will elect which categorical option to take. The 

general distinction between the two options is that conservative treatments do not require 

surgery, whereas non-conservative treatment strategies require some form of surgical 

intervention. Since conservative treatment is easier, it is often recommended that a horse undergo 

conservative treatment first and then elect for a surgical option if the results are not 

satisfactory.41  

 With conservative treatment, the main focus is directed towards anti-inflammation and/or 

rest. The two most common conservative treatments are strict rest and arthroscopic injection of 

corticosteroids. In an early study by Jeffcott and Kold, 25 horses with SBCs were given strict 

field rest. Success, determined as return to soundness, was observed in 14 of 25 (56%) and on 

average, had a 6-month convalescence period.18 Unsatisfied with these results, surgeons 

developed anti-inflammation techniques to aid in recovery and have experienced much improved 

outcomes. In 2008, Wallis et al. developed a technique that injects corticosteroids into the cystic 

lining, ensuring that the substrate is not lost into the void cavity. In their study, they reported 

success, determined as return to their athletic function without lameness, in 35 out of 52 horses 

(67%).42 This study, inspired by a 1999 study with a similar technique,43 demonstrated that 

conservative treatment strategies are not only viable, but can be quite successful relative to the 

more invasive, non-conservative treatments.  

 Non-conservative, or surgical, treatment strategies have become the most common 

method for addressing SBCs. Surgical treatment strategies, intuitively, make the most sense. 
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SBCs are voids filled with evidence of trauma, such as crushed bone, inflammation, etc. It is then 

reasonable, almost obvious, to develop treatment strategies that clean out (debride) the cyst 

and/or fill it with some sort of graft or biological stimulus to replace bone and/or improve 

healing (Figure 1.8). As such, in the 1980s, clinicians began arthroscopic debridement surgeries 

and elected to fill the void with cancellous bone grafts.5,24 Over time, cancellous bone grafts fell 

out of favor, and more complex biological stimuli grafting became the gold standard treatment, 

such as autologous chondrocytes and IGF-1 grafts.44 Though these surgeries are intended to heal 

an SBC, success rates have not improved notably over the past several decades. In fact, 

conservative treatment involving the corticosteroid injection into the cyst lining produces similar 

success rates. Though the success rates may be similar, 67% is still not as high as surgeons 

would like, and the next answer/treatment strategy remained elusive for several more years. 

 

Figure 1.8. Surgical debridement and bone graft procedure. Reprinted from the Equine 

Veterinary Journal, 2012; 44:606-613 with permission. 
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1.5 Novel Treatment 

Dr. Elizabeth Santschi introduced a novel surgical strategy in 2015 that did not involve 

any form of debridement or grafting.7 Instead, Dr. Santschi placed a transcondylar lag screw 

across the void in a proximodistal oblique fashion (Figure 1.9). Astonishingly, the lag screw 

treatment resulted in a >80% success rate with some of the healed horses not having responded 

to the corticosteroid injection treatment. Additionally, convalescence time averaged just 4 

months. Lag screwing is less expensive, more successful, and an easier surgery to perform 

compared to the gold standard of SBC debridement and grafting. So why, several years later, are 

clinicians still not convinced of its efficacy, and why is the best treatment strategy still hotly 

debated? 
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Figure 1.9. Illustration depicting the transcondylar screw surgery developed by Dr. Elizabeth 

Santschi. A lag screw is inserted across (proximoblique) the defect with compression applied 

across the void (shown in red). 

  It should be noted that many have, in fact, adopted the surgery and enjoyed high success. 

However, two possible reasons may explain the overall community’s reluctance to adopt the 

transcondylar screw treatment. One, there is a lack of understanding as to why lag screwing 

would heal a bone cyst. Historically, bone screws are used to fix broken bones or to attach an 

implant to a bone. A SBC is neither a broken bone nor does it appear to warrant any form of 

implant. So, understandably, clinicians ask, why a lag screw across the cyst? The second reason 

that may promote reluctance is that anecdotal cases of low success and horses not responding at 
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all to the treatment have been noted. Though Dr. Santschi has demonstrated an 80+% success 

rate, many believed she was simply lucky.  

The use of a transcondylar lag screw to treat SBCs is new enough that, to the author’s 

knowledge, peer-reviewed research into its mechanisms do not exist. Therefore, a healthy view 

of skepticism into its capability and place in the surgical community is justified. The lack of 

research should compel us to dig deeper into the transcondylar lag screw. With the highest 

recorded success rates and the pronounced radiographic healing, that we work to understand why 

the treatment works and explore how to improve it. Accordingly, one of the primary objectives 

of this research was to determine how a TCS could elicit radiographic healing. In the later 

chapters of this dissertation, most notably chapter 3, the transcondylar lag screw is tested under 

much scrutiny. Its mechanism of healing is hypothesized, tested, and validated against existing 

clinical data. 

To address the second concern of irreproducibility and lackluster results from others, the 

clear mechanism of TCS healing must be identified. If the mechanism is understood, then 

variations of the lag screw technique can be tested to see if improved healing is predicted. It must 

be remembered that there is no established standard as to how exactly the lag screw treatment 

should be administered. What sized/shaped cysts respond to it? What material should the screw 

be? At what angle should the screw insert into the cavity? How much compression should be 

applied across the screw? Various combinations of the above may result in wildly different 

results. Perhaps lackluster results are due to a combination of such factors that do not promote 

healing. Therefore, another primary objective of this research is to assess controllable surgery 

variables, as well as certain non-controllable variables such as cyst size and shape, to determine 

the most effective lag screw technique. In the later chapters of this dissertation, most notably 
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chapters 3 and 4, variables, both controllable and non-controllable, will be tested and compared 

for effectiveness. 

 It is clear that more information is needed before one can have confidence in the 

transcondylar lag screw to treat SBCs. Additionally, there is no question that more information is 

needed regarding SBC etiology. Therefore, this body of work focuses on addressing these two 

concerns: why do SBCs develop, and how can a transcondylar lag screw treat them? 

1.6 Finite Element Analysis 

 Both major objectives (SBC etiology and treatment) of this research could be caused by 

mechanics as the primary driver. SBC initiation and subsequent development are hypothesized to 

occur due to mechanical trauma and lag screwing’s efficacy is hypothesized to be due in part to 

its mechanical interaction with the bone. Thus, intra-osseous stresses are of utmost concern. 

Unfortunately, intra-osseous stresses and strains are difficult, if not impossible, to obtain through 

experimental means. Lack of instrumentation, difficult access to the joint space of a live equine 

stifle joint (knee), and limitations with existing technologies (i.e. using strain gauges for highly 

curved surfaces) all inhibit experimental analysis of SBCs. Finite element analysis (FEA) is a 

computational technique that can be used to investigate intra-osseous mechanics and overcome 

existing challenges of experimentation. 

 Finite element analysis was first developed by Courant,45 a mathematician. The finite 

element method is a class of numerical techniques to approximate solutions to boundary value 

partial differential equations (PDEs). Demonstrating high accuracy compared to closed-solution 

problems, the finite element method quickly found a place in engineering practice as a tool to 

approximate non-closed solutions. By the 1950’s, both civil and aerospace engineers had 

recognized its utility in structural mechanics and were utilizing FEA to solve complex 
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engineering problems. Today, an overwhelming number of researchers use FEA across a wide 

breadth of industries and academic disciplines. With computational power exponentially 

increasing over the past several decades, FEA has become one of the most ubiquitous tools in an 

engineer’s kit to solve some of today’s greatest challenges. 

 Developing a finite element model typically consists of four distinct steps: 1) geometry, 

or domain, development, 2) discretization of the domain into a finite number of elements, 3) 

assigning material properties to each element, and 4) applying boundary conditions. These steps 

will be further outlined below. 

1.6.1 Domain 

 Geometry, or domain, development is incredibly important in developing a robust 

solution to an engineering problem. A working knowledge of continuum mechanics 

demonstrates that the geometry of a structural problem has profound influence on the response of 

the system. The slightest changes in size and shape can result in substantial changes in the 

calculated output. The magnitude of this effect has recently been quantified. Recent work has 

begun to quantify response changes due to geometrical differences highlighting the importance 

of geometric consideration.46,47 In summary, the geometry that one develops for finite element 

analysis is especially important, and careful considerations should be taken when developing a 

finite element model. 

 In the biomechanics discipline of engineering, the domain one wishes to develop is most 

often an anatomical structure, such as an articular joint. In order to achieve high geometric 

fidelity, medical image data is often used as opposed to creating idealized structures. Magnetic 

Resonance (MR) imaging and Computed Tomography (CT) are the two most common medical 

imaging technologies that aid finite element model development for use in biomechanics. By 
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using medical image data, one can identify, and segment, each anatomical structure directly from 

the image data. However, the two imaging technologies do not yield the same image data, and 

one may be more suitable than the other to answer a specific question. With MR imaging, soft 

tissue boundaries are more readily identifiable because MR imaging measures the response from 

water molecules undergoing an energy transition. Since soft tissues are saturated with water, 

these structures are more readily observed than less hydrated tissues, such as bone. In contrast, 

CT imaging reveals denser structures, such as bone, more readily than soft tissues. In a recent 

study, it was found that CT imaging is far superior in bone fidelity compared to MR imaging.48 

In fact, MR imaging can greatly underestimate the volume of bone. SBCs are defects that affect 

bones, and thus, high bone fidelity is especially important. As such, this study utilizes CT image 

data as the medical imaging technology of choice to ensure high bone fidelity and provide a 

robust foundation for calculating bone stresses and strains. 

1.6.2 Discretization 

 In the second step of developing a finite element model, the geometry, or domain of the 

problem, is discretized into a finite number of elements – hence the name finite element method. 

For an ideal PDE, an analytical solution can be achieved that provides the response for any time 

and space in the problem domain. This is a continuous solution. However, real-world physical 

problems rarely have such an analytical solution, which is where the finite element method can 

be of use. In the finite element approximation, instead of a continuous response (displacement or 

temperature, for example) being calculated, the response is approximated at specific points, or 

nodes. It is then this step in the finite element model development process where these nodes are 

specified in the domain.  
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 Two key considerations should be assessed when discretizing a domain. How should the 

nodes be connected (which element type), and how many total nodes are needed? For 3-D 

structural mechanics problems, especially biomechanics problems, two types of elements are 

most common to establish node connectivity: tetrahedra and hexahedra (Figure 1.10). 

Hexahedral elements were considered to be the superior element choice for several decades due 

to their numerical stability compared to tetrahedral elements. The finite element method was 

developed before the boom of computing capabilities. With very little memory and low clock 

speed, finite element problems had to be set-up with the most efficiency possible. Linear (first-

order) elements were therefore more attractive, and furthermore, hexahedral elements could 

achieve the same, if not better, accuracy compared to tetrahedral elements with a fraction of the 

number of elements used. This legacy stuck, and many researchers still believe that hexahedral 

elements are vastly superior.49 However, with the enormous growth in computing power, 

tetrahedral elements have become the default option for many biomechanics related problems. 

Quadratic element can have similar accuracy as linear hexahedral elements, even for surface 

contact problems.50 
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Figure 1.10. A) Femur mesh using tetrahedral elements. B) femur mesh using hexahedral 

elements. Generally, less hexahedral elements are required to achieve a similar level of accuracy 

to a solution as a high-density tetrahedral mesh. However, it should be noted that more nodes 

equate to higher geometric fidelity. Adapted from Medical Engineering & Physics, 2006; 

28(9)916-924 with permission. 

Tetrahedral elements have a distinct advantage over hexahedral elements: their capability 

of conforming to any geometry. Automatic meshing algorithms today have not quite mastered 

the ability to mesh a geometry with hex elements but can easily do so with tetrahedra. As 

discussed earlier, the geometry of the problem is critical to accuracy. Therefore, the ability to 

generate a mesh that is true to the native geometry is paramount. Only tetrahedral elements can 

do this automatically and reliably. Moreover, the shortcomings of tetrahedral elements have been 

overcome with the advent of higher computing power.50-52 Higher-order elements, finer meshes, 

and special element formulations have allowed researchers to use tetrahedral elements in 

problems that would have previously yielded less accurate results. Even still, caution should be 

taken when using tetrahedral elements, especially for bending dominated problems. But in 
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typical biomechanical simulations, tetrahedral elements are most commonly used mainly due to 

their geometry conforming capabilities. 

Once the element type has been identified, likely tetrahedral elements, the question of 

mesh refinement arises. How many nodes, and consequently elements, are needed? 

Theoretically, an infinite number of nodes would yield the most accurate results, as the solution 

begins to look like a continuous solution generated from analytical analysis. Computationally, 

this is obviously inefficient. A trade-off arises then between accuracy and efficiency. To find the 

balance, engineers can perform what is known as a convergence analysis. The more nodes added, 

the more the solution can be accurately represented. However, if enough nodes are in the model, 

adding more nodes produces a negligible improvement in the accuracy in the solution. Finding 

the point in which adding more nodes yields a negligible change in the solution is what 

researchers try to achieve with mesh convergence. To do this, a mesh is generated, a finite 

element problem established, and the output is calculated. The mesh is further refined (typically 

reducing element size by 50%), and the output is again calculated. The process is repeated until 

the output changes less than a present criterion, typically 5%. Of course, relatively large changes 

in element size should occur, as a small change in element edge length may not change the 

solution more than 5%, even though the mesh may be far from converged. In summary, 

tetrahedral elements are most common and in order to overcome their numerical hurdles, a large 

number of elements should be used, or quadratic (second-order) tetrahedral elements should be 

used, and element size should be determined by mesh convergence. 
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1.6.3 Material Properties 

 In the third step of finite element analysis, material properties are assigned to each 

element in the model. Material properties are assigned according to the structure the elements are 

representing. For example, bone elements would be assigned bone properties, whereas cartilage 

properties would be assigned much softer, cartilage-like properties. In a subject-specific model, 

material properties would ideally be obtained by characterizing the very tissue from the subject 

using mechanical testing procedures. However, this is not possible for in vivo studies and is 

often not feasible for ex vivo studies due to the time required, resources, equipment, specimen 

availability, tissue preparation, and even limitations in the mechanical testing itself. As such, 

material properties are often obtained from the literature as a best-estimate for the model. A few 

precautions can be taken that ensure more confidence in the final output.  

Since physiology is unique person-to-person, or animal-to-animal, a single material 

property cannot possibly be guaranteed to represent the physical response in question. Either a 

mean value can be used, most often reported in the literature from material testing studies, or one 

can perform a sensitivity analysis. A sensitivity analysis is highly recommended even if a mean 

value is taken from literature. In a sensitivity analysis, a material property is set at a low value of 

the reported spectrum for that certain material, a medium value, and a high value. However much 

the output changes determines how sensitive the model is to that material property. It is then up 

to the researcher to decide how best to handle the sensitivity for their specific purpose of the 

model. Either a range can reported for the output, or more testing (in-house) of the material 

properties may be necessary. In comparative studies, material sensitivity is less important if the 

goal of the model is to simply qualitatively report how a different parameter changes the output. 
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The appendix of this work shows various sensitivity analyses performed for one of the models 

used. 

A newer branch of mechanics has recently arisen that combines statistics with finite 

element analysis. Known as probabilistic finite element analysis, uncertainties, especially in 

material properties, can be handled in a statistical way that gives a probability of a certain 

outcome occurring.53 For example, given all the uncertainty in what types of weather a bridge 

may encounter, a probability of failure can be computed. In this approach, the uncertainty is 

correctly accounted for, and engineers would not have to make the most conservative designs by 

accounting for the worst-case scenario. If the worst-case scenario is impossibly unlikely, much 

time and resource may be wasted trying to design for such. Probabilistic finite element analysis 

is a rising star in handling issues of material uncertainty, as well as boundary condition 

uncertainty, in mechanics problems. 

1.6.4 Boundary Conditions 

In the final step of creating a finite element model, boundary conditions are established. 

Boundary conditions include the loading, zero-displacement nodes, zero-rotation elements, etc. 

Typically, in biomechanics problems, these boundary conditions are chosen using kinematic and 

kinetic data found experimentally. Boundary conditions are also useful for “tying down” a model 

and prevent rigid body motion in the model.  

For example, if one wishes to model the knee joint during running to predict intra-

osseous stresses of the femur, it would be important to have motion data of the joint and a good-

estimate of the joint reaction forces throughout the gait cycle. For other problems where 

kinematic and kinetic data does not exist, sensitivity analyses are useful as noted earlier. Also, 

posing the problem as comparative reduces the influenced of boundary conditions and material 
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properties. Keeping all parameters equal except the parameter being tested, the quantitative 

changes in the output data are meaningful. Knowing the comparative response of a system is 

often useful before resources are expended to determine and apply detailed and complex 

dynamic boundary conditions. 

Other considerations for creating a well-posed finite element problem are boundary 

conditions for contact between separate bodies in the system. In addition, discrete structures, like 

springs, may be used to model continuum structures, and may be needed in the model to assure 

stability between bodies.  

1.6.5 Summary 

In this study, several finite element models have been utilized and details of their 

development can be found in the later chapters of this dissertation. Developing a finite element 

model to investigate subchondral bone cyst initiation and development in and of itself will 

provide novel data for researchers developing ways to prevent SBC growth. Technologies and 

preventative measures that reduce the likelihood of SBC formation could prove to be the greatest 

mitigation to the problem. Until that time, rationale for effective treatment strategies needs to be 

established for equine surgeons. The proposed development of a finite element model to 

investigate the transcondylar screw surgery could be the definitive step in establishing 

(supporting) such a rational surgery. However, the benefits do not stop with equine surgeons. 

There is much reason to be encouraged and optimistic that equine SBC treatment techniques 

could be translated into an even bigger problem: human bone lesions. The horse stifle joint is 

anatomically similar to the human knee and humans suffer a wide range of subchondral lesions. 

There is no consensus for optimal treatments, and the need for improved options is pressing.  

 



36 
 

1.7 Human Subchondral Bone Lesions 

 In horses, subchondral bone cyst is the common lexicon, as most bone lesions 

demonstrate similar symptoms and presentations. In humans, the characterization is less 

transparent, and more labels have been developed in attempt to separate the different “types” that 

clinicians treat. Some of these bone lesions are strikingly similar to equine SBCs, whereas others 

appear to be more unique to the human species. A prominent theme will arise as these defects are 

discussed - a consensus for optimal treatments has not been reached. In each of these described 

bone defects, there is much room for improving treatment. 

1.7.1 Unicameral Bone Cysts 

 Unicameral bone cysts (UBCs) are benign, fluid-filled cavities most often occurring in 

long bones (i.e. humerus, femur) believed to be caused by trauma or circulatory obstruction and 

fluid accumulation.54 These cysts primarily affect children as most cases are reported in 

adolescents between the ages of 3 and 14 years old.55-57 Males are twice as likely to develop a 

UBC compared to females.57 While considered benign on their own, UBCs can lead to 

catastrophic failure of the bone. A UBC can expand over time and weaken the local bone. As the 

local bone weakens, fracture risk escalates, and the asymptomatic child may experience severe 

traumatic fracture (Figure 1.11). 
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Figure 1.11. Frontal radiograph of a humeral fracture as a consequence of a large unicameral 

bone cyst. Adapted from Clinical Orthopaedics and Related Research, 2009; 467(11)2949-2954 

with permission. 

 Currently, there is no consensus on the best treatment for unicameral bone cysts. Many 

techniques exist but success rates are often low, success is not standardized for each 

surgeon/technique, and treatment options must be balanced against fracture risk. Injection 

techniques appear to be the least successful, although early reports misleadingly showed high 

success rates. First described by Scaglietti, methylprednisolone injections were administered to 

young patients with UBCs and a 90% rate was reported as “favorable”.58 However, “favorable” 

cysts included those that did not exhibit radiographic healing. Moreover, these results have not 

been repeated by others and high recurrence rates have been reported.59,60 Other injection 
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mediums were developed such as autologous bone marrow and demineralized bone marrow, but 

these techniques failed to produce promising results.61-65 

 With poor results coming from injection techniques, surgeons began developing more 

invasive techniques. Once considered the gold standard of treatment, curettage and bone grafting 

does not show much more benefit than injection techniques (50% even with a repeat 

surgery).66,67 Calcium sulfate pellets for grafting slightly improved the healing rate to 66% but 

did not address the high recurrence rate of 25%.68 Recognition of the fluid’s presence in the cyst 

increased, and surgeries began to develop to address UBCs from a different perspective – 

draining the fluid. Using needles, curettes, or intramedullary nails, fluid can be drained, and 

native marrow contents can then fill into the cavity. Healing rates improved to 80% when this 

technique was combined with biological injection agents.69 However, these success rates reflect 

partial healing and not complete healing. Convalescent times are high, recurrence rates are high, 

and multiple surgeries are often required. 

 Unicameral bone cysts will spontaneously heal as the child reaches skeletal maturity. 

Therefore, clinicians must carefully assess fracture risk and determine whether or not surgical 

intervention is necessary. When the surgeon deems invasive intervention necessary, failure rates 

between 10-30% leave many children still at serious risk of catastrophic fracture. The induced 

cost, wasted time and opportunity, and risk of secondary infection exacerbate the problem of 

high failure rates. Surgeries should promote bone growth to refill the localized void caused from 

the UBC. Clearly, more reliable treatment options are needed. 
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1.7.2 Aneurysmal Bone Cysts 

 Aneurysmal bone cysts (ABCs) are less common than UBCs, but still primarily affect 

younger populations.70,71 Similar in radiographic appearance and location, ABCs are benign, 

osteolytic lesions that are most common in long bones such as the femur and tibia.72 These bone 

cysts are more aggressive in their expansion and are often associated with pain – making them 

more readily detected as children become symptomatic. Microscopic examination of these cysts 

reveals more than just fluid cavities observed in UBCs. Blood filled membranes separated by 

septa, and immature trabecular bone interwoven throughout the septa comprise the typical 

findings of an ABC.73 The primary concern of ABCs are osteolysis and their aggressive growth, 

which can quickly expand into the cortical bone creating a high risk of fracture. 

 Treatment options are more limited for ABCs, and none guarantee a cure. Failure rates 

are reported between 15-30% with multiple procedures usually administered. In a less invasive 

treatment, sclerotherapy, absolute alcohol is injected into the cyst.74 Surgical options include 

curettage, grafting, and at the most extreme case, wide resection.75,76 With each treatment option 

available, except for wide resection, recurrence rates remain high, although cryotherapy can help 

reduce the risk.  

 For both UBCs and ABCs, some form of drainage or curettage makes sense considering 

the volume of material inside the cysts that inhibit proper bone formation. Once the cysts have 

been drained or cleaned, a surgical technique that encourages bone growth would return the bone 

back to its healthy state and significantly reduce the rate of recurrence. Therefore, these bone 

cysts are logical candidates for a compressive screw treatment that has been shown to promote 

bone growth. 
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1.7.3 Osteochondritis Dissecans 

 Osteochondritis dissecans (OD) is a painful condition that most commonly affects the 

medial femoral condyle, the patella, and the lateral femoral condyle in children. Researchers 

have estimated it to be a relatively common occurrence affecting 15-30 children per 100,000 

with males twice as prone.77 Children may first experience pain and swelling in their knee and 

clinical radiographs reveal subchondral lesions. Human studies have implicated poor blood 

supply to developing cartilage, as well as trauma as primary causes for OD. It should be noted 

that for humans, subchondral bone cysts are described distinctly separate from OD, and this 

separation is evident from the presentation alone.  

 Early detection of OD is paramount for a positive prognosis. As the condition progresses, 

subchondral bone can detach from the bone (Figure 1.12), become unstable, and eventually lead 

to degeneration of the entire joint. With early detection, conservative treatment has been found to 

be successful. Patients are directed to avoid excess weight-bearing on the affected joint. 

However, as the condition progresses, either by a lack of detection or by a poor response to 

conservative treatment, prognosis worsens. Surgical options thus aim to maintain joint congruity, 

establish stable fixation of unstable fragments, repair osteochondral defects, and provide 

complete healing and pain relief.78,79 



41 
 

 

Figure 1.12. frontal radiograph revealing an unstable OD lesion in the lateral aspect of the medial 

femoral condyle. Adapted from Journal of the American Academy of Orthopaedic Surgeons, 

2006; 14(2):90-100 with permission. 

 With stable lesions, those that have not separated from the joint, most surgeons are 

confident in a positive outcome of complete healing. By drilling vascular channels 

arthroscopically, blood can access the damage region and provide much needed vascularity to 

promote healing.79,80 Kocher et al. reported an excellent healing outcome by transarticular 

drilling in 29 out of 30 treated lesions (97.5%).81 Another similar study performed by Hayan et 

al. reported success rates in 95% of their patients.82 In a much larger study, Edmonds et al. 

reported 98% of their 59 patients had radiographic healing at 36 months by treating epiphyseal 

OD with articular drilling.83 As such, articular drilling is the treatment of choice, and little is 

needed in the advancement of treating stable OD lesions. 
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However, there is less consensus for the best treatment of unstable OD lesions – lesions 

that have broken off from the subchondral plate with a loss of integrity of the overlaying 

cartilage. Accordingly, there is much more room for improvement with currently available 

treatments. Currently proposed treatments for unstable lesions primarily focus on fixation and/or 

bone grafting techniques. The most common choices include countersunk screws, Herbert 

(headless) screws, bioabsorable screws, and pins.79 The limited studies that have looked at these 

techniques do not report the same high successes as those seen in stable lesions. 

Several studies have reported relatively high success rates, although complications with 

these treatments make surgeons slightly weary of their current utility. Kocher et al. reported an 

85% healing rate using various methods of fixation and concluded one wasn’t any better than the 

others.84 Adachi et al. reported the most encouraging study with healing rates of 97% using 

bioabsorbable screws combined with multiple nonthreaded pins – although a large number of 

these lesions occurred in the lateral femoral condyle. Also, the OD lesions in this study were of 

“sufficient quality to enable fixation”.85 In a less successful study, Webb et al. reported overall 

healing rates at 75% in a study of 20 patients requiring internal fixation.86 

Even with the relatively high reported rates of healing, the necessity for quality bone 

make them narrowly effective, and the complications incurred make them less attractive for 

establishing a consensus of treatment. For example, these surgeries typically require a secondary 

surgery to remove the implanted hardware, which has resulted in harmful wire migration, 

damage to the adjacent cartilage, and implant fracture. Bioresorbable screws could absolve the 

requirement of a second surgery.87 In ODs that have poorer quality lesions, bone grafting has 

been suggested but this technique has resulted in a progressively deteriorating outcome with 

longer follow-ups.88 
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 Surgeons have become acutely aware that fixation only provides the means to an end – 

stimulating healthy subchondral bone repair via compression. In order to achieve this 

compression, the broken lesion is fixed congruent to the subchondral bone, and compressive 

screws are inserted proximally into the bone to avoid further damage to cartilage. An interesting 

solution could be to capitalize on the knowledge of compression aiding subchondral bone repair. 

If the contents of the lesion have to be excised, then perhaps a low success rate bone graft is not 

necessary if proper compression could be applied to the adjacent bone to stimulate native 

growth. Since the patient would be in pain and swelling may persist, regular joint loading would 

be difficult. But a compressive treatment could provide a solution because that would stimulate 

bone formation without external joint loading. Or, a bone graft could be combined with a 

transverse compressive screw. The relatively high rate of occurrence of OD and lack of high-

quality treatment options make this defect a high-priority candidate for the transcondylar screw 

treatment to “trick” the bone into formation to handle the screw-induced stresses, and thus 

healing. 

1.7.4 Subchondral Bone Cysts 

 The actual distinction for a “subchondral bone cyst” in humans is typically reserved for 

lesions that occur secondary to osteoarthritis (although, children are still affected as discussed 

later). These lesions are so common, in fact, SBCs are considered to be a symptom of 

osteoarthritis with occurrence rates reported as high as 57%89 with more conservative estimates 

of 30%.21  An estimated 1 in 2 people over the age of 65 will develop some form of 

osteoarthritis.90 Shockingly, there is very little done to address subchondral bone cysts in patients 

with OA. This is especially shocking because SBCs are associated with increased knee pain,91 

joint disability,92 and increased cartilage degradation – ultimately increasing the risk for joint 



44 
 

replacement.93 In 2010, an estimated 4.7 million individuals were living with a knee replacement 

and 2.5 million individuals with a hip replacement.94 Using historical data from 1969 to 2010, 

researchers concluded that the incidence of total joint replacement is rising, and younger patients 

are receiving them.94 Total joint replacements generally last 15-20 years, and it’s alarming that 

younger individuals are requiring these surgeries. With so much money poured into joint 

replacements, and SBCs increasing the risk for joint replacement, why has so little been done to 

address SBCs independent of total joint replacement? 

 Even in children, SBCs pose a problem, especially amongst young athletes and young 

military recruits. A 2011 study demonstrated the higher propensity of active individuals to 

develop osteoarthritis at a young age making these individuals more susceptible to SBCs.95 

Idiopathic lesions can also occur in young individuals, especially in the ankle (Figure 1.13).96 

For younger individuals, more attention is given to treating these cysts and several surgical 

options exist. Debridement, bone marrow stimulation, retrograde drilling, internal fixation, 

cancellous bone grafting, osteochondral autograft transfer, autologous chondrocyte implantation, 

and allograft transplantation are all treatments that have been attempted.96 These treatments have 

varying levels of success with most reports showing an average of 80% success rate.96 Even so, 

these success rates include radiographic findings 3-4 years later of edema-like signals in the bone 

– suggesting an incomplete healing and an elevated risk for recurrence.97 Subchondral bone cysts 

in humans present a major opportunity for translatable research using the equine stifle joint. The 

hundreds of billions of dollars spent on osteoarthritis, the lack of available treatment options, and 

poor long-term healing rates in younger patients all point to the need for more effective 

treatments. 
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Figure 1.13. Coronal CT scans (upper row) with corresponding schematic diagrams (lower row) 

showing the ankles of three young patients (26-37 years). a) Cystic lesion in the talar body with a 

small opening in the subchondral bone plate. Black lines illustrate the nerve endings in the 

subchondral bone – may explain severe pain associated with these cysts. b) The subchondral 

bone cyst has extended to the subtalar joint. c) Similar cyst to (a), but sclerosis around the cyst is 

visible emphasizing the functional adaptation that has occurred. Adapted from Knee Surg Sports 

Traumatol Arthrosc, 2010; 18:570. Copyright C.N. van Dijk et al. 
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1.7.5 Other Bone Defects 

Not only are the aforementioned bone defects candidates for a novel surgery, but many 

other bone defects exist that require better, more reliable treatment options.98 These defects 

include, but are not limited to: 

Brodie abscesses (Figure 1.14) – a variant of subacute osteomyelitis seen as radiographic 

lucencies surrounded by a sclerotic margin. Treatments include curettage, bone grafting, and 

antibiotics. Brodie abscesses are especially problematic in developing countries, and simple, 

effective treatments are necessary where access to high-grade medical equipment is limited.99 

 

Figure 1.14. Brodie abscess in the distal femur from an AP radiograph. Taken from Current 

Problems in Diagnostic Radiology, 2007; 36(3)124-141 with permission. 
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Intraosseous ganglion cysts (Figure 1.15) – cystic lesions that contain gelatinous material that 

typically affect populations in their middle-ages.100 Treatment of choice includes curettage 

coupled with bone grafting. 

 

Figure 1.15. Intraosseous ganglion cyst revealed using a lateral radiograph of the upper fibula. 

Taken from Current Problems in Diagnostic Radiology, 2007; 36(3)124-141 with permission. 
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Fibrous dysplasia (Figure 1.16) – benign fibro-osseous lesions that can result in fracture. 

Treatments are limited to changes in diet, exercise, and therapeutic medications, such as 

bisphosphonates.101 

 

 

 

Figure 1.16. Fibrous dysplasia shown using an anteroposterior radiograph of the right femur. 

Taken from Current Problems in Diagnostic Radiology, 2007; 36(3)124-141 with permission. 
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1.8 Summary 

 In this body of work, a finite element model of the equine stifle joint will be further 

developed from Frazer et al.’s previous work.36 This model will be leveraged to study equine 

subchondral bone cyst initiation and development, as well as determine transcondylar screw 

mechanics to assess whether or not there is a mechanical basis for the treatment being more 

beneficial than other existing treatments. Humans and animals alike stand to gain immensely 

from a better understanding of SBCs and their treatment options. In Chapter 2, subchondral bone 

cyst initiation and development will be studied with the hypothesis that trauma and mechanical 

forces are the primary etiology. In Chapters 3 and 4, the transcondylar screw surgery will be 

examined with the hypothesis that its mechanism of healing is in part due to the bone stimulating 

stress it exerts on the adjacent bone. Chapter 5 will conclude with the optimistic outlook that we 

now have a more thorough grasp of subchondral bone cyst etiology and perhaps more 

importantly, we now have a candidate treatment option to consider for human and equine bone 

defects alike – the trans-cyst lag screw. 
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2.1 Abstract 

 

Objectives: To predict bone and medial meniscal stresses and contact pressures in an equine 

stifle with a medial femoral condyle (MFC) intact or with a 2 cm3 subchondral bone void, under 

varying degrees of internal femoral rotation.   

Study design: Finite element model (FEM) of a cadaveric equine stifle loaded to 8000N. 

Methods: The FEM was made from a CT of the right, extended stifle of a yearling. The CT was 

segmented into relevant anatomic structures and meshed into 4-node tetrahedrons. Bone material 

properties were assigned based on Hounsfield units, soft tissue properties were estimated from 

published data, and the model was loaded to 8000 N in 155° extension. 

Results: The main stresses found in the intact MFC were in compression, with very small areas 

of shear and tension. Adding a 2 cm3 MFC void increased peak compression stress 25%, shear 

50% and tension 200%. A MFC void also increased tension and shear placed on the medial 

meniscus by 30%. Under load, internal femoral rotation (IFR) of 2.5° and 5° increased MFC 

peak stresses 8-21%.         

Conclusions: A 2 cm3 MFC void in an equine stifle FEM increased stress in the bone and 

meniscus. Internal femoral rotation slightly increased predicted bone stress.    

Clinical significance: Increases in bone and meniscal stress predicted in a MFC with a void 

provide evidence to understand the persistence of voids and mechanism of damage to the medial 

meniscus.    
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2.2 Introduction 

 

Subchondral bone cysts (SBC) of the medial femoral condyle (MFC) of the horse cause 

stifle lameness. There are multiple treatment methods, resulting in confusion about the ideal 

therapeutic strategy.1 Recently, a novel treatment using a transcondylar screw has been reported 

that results in faster and more complete healing of subchondral bone in the MFC.2 However, the 

procedure was developed using clinical observations without experimental data. The goal of the 

transcondylar screw is to alter the mechanical environment of the MFC to support bone 

formation, but normal bone stresses and those around a MFC SBC are not known. As direct 

measurements of bone stress in the equine stifle is impossible, a finite element model (FEM) was 

constructed to provide a better understanding of the mechanics of the equine MFC when intact 

and with a SBC and provide possible improvements in treatment.  

 Currently, there is very little data on normal equine stifle kinematics and mechanics due 

to the technical difficulties of instrumenting and imaging the in vivo stifle. Published studies 

regarding some aspects of stifle mechanics are limited to cadaveric specimens describing tibial 

pressure maps,3,4 bone density,5 ligament strain,6 and articular surface contact.7 Cadaveric studies 

are useful, but are limited by a lack of muscle activity, the removal of some structures to apply 

instrumentation, inherent technology limitations (pressure sensors and strain gauges), and the 

difficulty in safely applying in vivo loads. 

A FEM is a computational method used to investigate joint mechanics and local stresses. 

Finite element modeling constructs an in silico model based on digital anatomic information 

from computed tomography or magnetic resonance imaging.8-10 When the structure consists of 

several components (bone, cartilage, ligaments, menisci, etc.) like the stifle joint, discrete 

anatomic structures are segmented from the digital anatomic information using visible 
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boundaries, tissue density (Hounsfield units) and known anatomical relationships. The 

segmentation volumes are discretized into finite elements and material properties are assigned to 

structures based on either measured values or published data. Additionally, boundary conditions 

are limits put on the model for displacement/rotation or applied forces. Finite element modeling 

has been used in a small number of equine mechanics studies, largely of the distal limb and 

teeth.11-14 An initial project from our group is the only publication of a finite element model of 

the proximal equine limb15, and this study aims to refine that model and enhance our 

understanding of the equine stifle joint. 

However, because little is known about the kinematics of the loaded equine stifle, the in 

vivo kinematics must be estimated for computational studies. The normal human femoro-tibial 

joint can be very useful to help understand equine stifle kinematics, however there are substantial 

anatomic and biomechanical differences between species, probably due to the high load on the 

equine stifle, and a bipedal versus quadrupedal stance. Due to a lack of good kinematic data for 

the loaded equine stifle, many of these factors must be estimated. After the model geometry is 

developed, loads can be applied to estimate internal stresses within structures. Validity of the 

outputs relies on the accuracy of the model relative to the mechanical behavior of biologic 

structures and the appropriateness of the external loading conditions relative to physiologic 

loading conditions. 

Our first finite element model of the stifle was constructed from CT data from a yearling 

Thoroughbred and was developed to estimate changes in bone stress associated with the 

development of an SBC.15 The model was loaded to 3000 N, in 155º extension, and allowed 

translation but not internal femoral rotation (IFR). The present model was tested in 3 varying 

degrees of rotation because IFR occurs during flexion in the human knee16, dog stifle17, and has 
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been described in stripped, unloaded equine cadaver stifles, although described as tibial external 

rotation.7   

The initial objectives of this study were to enhance the previous model by allowing IFR 

and to increase the load to 8000 N to approximate ground reaction force loads measured during 

gallop.18,19 Our specific goals were to predict the impact of a 2 cm3 MFC void on bone and 

medial meniscus stresses and on tibial contact pressures.  
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2.3 Methods 

 

2.3.1 Segmentation and Discretization 

 

A three-dimensional computed tomography (CT) scan (kVp-140; filter-body; 0.625 slice 

thickness; X-ray tube current 170 mAs; exposure 1320 s) was obtained of a stifle joint from a 

yearling Thoroughbred without stifle disease euthanized for reasons unrelated to this study 

(Figure 2.1A). The limb was removed at the coxofemoral joint and positioned in 155° of joint 

extension; the entire limb was scanned, cranial surface up with soft padding to stabilize the limb. 

No effort at other positioning was performed. The CT scan was segmented using ScanIP 

(Simpleware, United Kingdom) under supervision from a veterinary surgeon to include the 

femur, tibia, patella, femoral/tibial/patellar cartilage, three distal patellar ligaments, and the 

lateral and medial menisci (Figure 2.1B).15 In summary, the bones were segmented by using an 

automatic HU threshold filter. The bones were completely filled once the filter identified bone 

boundaries. It was assumed that cartilages were 2 mm thick. As such, the bones were copied and 

subsequently dilated by 2 mm to create a uniform cartilage. The cartilage on the axial portions of 

the medial femoral condyle were thickened to 2.5-3 mm, as observed clinically. The menisci and 

patellar ligaments were manually segmented using a soft-tissue window to identify tissue 

boundaries. The posterior cruciate ligament (PCL), medial collateral ligament (MCL), lateral 

collateral ligament (LCL), and the anterior cruciate ligament (ACL) have been added to the 

model using one-dimensional nonlinear springs. 

Two versions of the model were tested: an intact MFC and an MFC with a 2 cm3 void. 

The bone void is the primary anatomic characteristic of a MFC SBC and the volume is the 

average volume of 6 clinical MFC SBC measured from CT images.5 A 10 cm3 spherical region 
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of interest (ROI) was created in the MFC where all stress measures were extracted. The three-

dimensional segmentation (Figure 1C-D) was discretized into 4-node tetrahedral elements 

(C3D4) and imported into ABAQUS 6.14-2 (SIMULIA, Providence, RI). Mesh convergence 

was achieved for all outputs by iteratively reducing element size resulting in ~1,800,000 

elements with an average edge length of 1 mm for soft tissues, 0.75 mm in the ROI, and 1-5 mm 

for other bone elements, with larger elements in areas distant from the ROI and contact zones 

(Figure 2.2).   

 

 

Figure 2.1. A) Unsegmented frontal plane slice from the CT scan. B) Segmentation of image A 

with the femur and tibia shown in tan, cartilages shown in green, and the menisci shown in blue. 

C) Caudal to cranial view of the 3-D, non-discretized stifle joint geometry. D) Cranial to caudal 

view of the 3-D, non-discretized stifle joint geometry showing the patella and surrounding 

cartilage in green and the patellar ligaments in yellow. 

 

 

 



69 
 

 

Figure 2.2 Frontal plane caudal to cranial view of the stifle joint revealing the element sizes 

determined by mesh convergence. Elements in the ROI, soft tissues, and contact zones are most 

refined. 
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2.3.2 Material Properties 

 

 Linear, elastic constitutive relationships were used to define bone, cartilage, and patellar 

ligament tissue properties. Such properties were appropriately used since the purpose of this 

study was to examine instantaneous material responses during compressive loading; therefore, 

more complex, time-dependent material definitions were not necessary.20-22 Bone was modeled 

as a heterogeneous structure using a conversion from Hounsfield units to local Young’s Modulus 

with 20 unique moduli levels resulting in a modulus range of 50 MPa to 21,000 MPa.15 Bone 

moduli in the MFC ranged between 300-750 MPa consistent with moduli in the human MFC, as 

these values have been reported to be around 400 MPa.22,23 With overall bone density being 

slightly higher in an equine MFC,24 a higher modulus would be expected with the highest values 

at the subchondral bone plate. The patellar ligaments were the only ligaments modeled with 3D 

elements, to allow for ligament-bone contact and wrapping, as well as providing a naturally 

occurring cranial constraint. Patellar ligaments were assigned a modulus of 300 MPa.25 

The PCL, ACL, MCL, and LCL insertions were located as detailed by Aldrich et al.26 and 

were modeled as non-linear springs using Equation 1.  

 

In this piecewise function, k is the ligament stiffness parameter and εi is a ligament stiffness 

transition parameter assumed to be 0.03.23,27 The force-displacement relationship is quadratic up 

until the value of 2εi at which point the relationship becomes linear. This force-displacement 
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equation produces values consistent with those reported by Rich et al.28 Each meniscus was tied 

to their anatomical insertion points (menisco-tibial ligaments), and the outer edge of each 

meniscus was partially constrained to the tibial plateau using springs to simulate the natural 

constraint from the joint capsule, since there was no joint capsule in the model.29 Meniscal 

properties were adopted from Donahue et al,23 and cartilage properties were adapted from 

Malekipour et al.30 A summary of the material properties used in this study can be found in Table 

2.1. The void was not given any material properties and was modeled as a 2 cm3 oblong void 

with a narrow opening in the distal MFC (Figure 2.3; black arrow).5  

Table 2.1. Summary of the 3-D material properties used in this study. 

Structure Type Young's Modulus (MPa) Poisson's Ratio 

Bone Isotropic 50-21,000 0.3 

Menisci Anisotropic 
Radial and Axial = 20 

Circumferential = 120 

Radial and Axial = 0.3 

Circumferential = 0.45 

Cartilage Isotropic 50 0.45 

Patellar 

Ligaments 
Isotropic 300 0.3 
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Figure 2.3. Frontal plane caudal to cranial view of the stifle joint revealing the 2 cm3 void in the 

distal MFC. Articular cartilage is dark blue, menisci are light blue, and the ROI is green. 

M=medial, L=lateral. 

2.3.3 Loading Conditions and Analysis 

 

Rotation in the sagittal plane (flexion angle) was constrained to 155° (extension). 

Preliminary investigations of unconstrained frontal plane rotation resulted in valgus angulation 

and a significant increase in lateral tibial peak pressures. This is not consistent with the known 
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human knee kinematics31,32 or equine clinical experience, as equine lateral femorotibial injury is 

uncommon.33 As a result, frontal plane rotation was constrained in the present model. 

For each simulation, a compressive force of 8000 N was uniformly distributed on the 

proximal femur that acted normal to a transverse section of the femur, and a uniformly 

distributed tensile force of 1000 N was placed on the patella parallel to the femoral long axis to 

simulate quadriceps contraction. There is no available data for these forces in the horse at the 

gallop. We chose 8000 N for the femoral load because it is similar to the ground reaction force 

measured in the forelimb of galloping horses.18,19 The patellar tension load was chosen because 

at 8000 N load without patellar tension, the joint dislocated due to cranial translation of the 

femur. Providing 1000 N of proximal patellar tension limited cranial femoral translation. When 

load was applied with patellar tension, the femur was allowed to translate in all three anatomical 

directions, and the distal aspect of the tibia was fully constrained. Frictionless, surface-to-surface 

contact was defined between each articulating surface, and the contact gap was closed using a 

penalty function with a default penalty stiffness assigned by ABAQUS. See the visual 

representation of the boundary conditions on the finite element mesh in Figure 2.4. 

The amount of rotation of the tibia (external relative to the femur) and femur (internal 

relative to the tibia) in the horse is not known,17 but there is evidence it exists.7 This study tested 

3 levels of IFR (0°, 2.5° and 5°), each with and without a subchondral bone cyst. In each of the 

three variations, stifle joint varus/valgus angulation and joint flexion were constrained. In the 

first setup, IFR was fully constrained. In the second setup, IFR was partially constrained to 2.5° 

by using a 630 N-m/rad rotational spring on the proximal femur. In the third and final setup, the 

femur was fully free to internally rotate under the 8000 N load. 
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For each simulation, the stress distribution and peak stresses (compression, tension, 

shear) were extracted from the ROI and medial meniscus. Compression was defined as the third 

principal stress, as long as the value was negative. If the value was positive, it was not 

recorded. Tension was defined as the first principal stress, as long as the value was positive. If 

the value was negative, it was not recorded. Shear was defined as tresca stress: 1/2*(first 

principal stress - third principal stress). We also examined the contact pressure distribution and 

peak contact pressure on the medial and lateral tibial cartilage and the medial meniscus. Peak 

stress and contact pressure were defined as the average of the 99th percentile to omit numerical 

outliers introduced by the FEM. We also examined the contact pressure distribution and peak 

contact pressure on the medial and lateral tibial cartilage and the medial meniscus. Peak stress 

and contact pressure were defined as the average of the 99th percentile to omit numerical outliers 

introduced by the FEM. 
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Figure 2.4. Caudolateral 3D view of the finite element mesh and boundary conditions. A normal 

compressive force of 8000 N was uniformly distributed across the proximal aspect of the femur, 

and a normal tensile force of 1000 N parallel to the direction of force from the quadriceps muscle 

on the patella was uniformly placed across the proximal patella. The distal tibia was fully 

constrained. Patellar ligaments (orange) are visible in the left of the image. Cartilage is dark blue 

and the menisci are green. Also visible is the LCL and the PCL in yellow, modeled as one-

dimensional, nonlinear springs.  
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2.4 Results 

 

2.4.1 Effect of a Subchondral MFC Void  

 

2.4.1.1 Bone stresses 

 

In the loaded intact MFC model the major bone stress was compression. Peak stress 

occurred at the articulation between the MFC and tibia, and smoothly decreased radially 

outwards from the central point of contact (Figure 2.5). Tensile stress in the intact MFC was low 

and uniformly distributed (Figure 2.6), but substantial shear stress was present in the intact MFC 

over a small area in the contact region with the tibia (Figure 2.7). Adding a 2 cm3 void in the 

central aspect of the distal MFC increased all MFC peak bone stresses measured (tension, 

compression and shear; Table 2.2). Peak compressive stress increased the least (about 25%), and 

peaks occurred at the articulation and decreased proximally (Figure 2.5). Peak shear stress with a 

void increased about 50% at the site of MFC and tibial articulation (Figure 2.7). Peak tensile 

stress increased about 200%, and peaks occurred at the proximomedial and distolateral aspects of 

the void (Figure 2.6).  However, all tensile stresses were low. 
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Table 2.2. Peak bone stresses in the MFC ROI for each rotational condition with and without a 2 

cm3 void. The increase in peak stress with a void is noted parenthetically as a percent change 

from the intact model for that degree of rotation. All values are in MPa. IRF=internal rotation of 

the femur (with respect to the tibia).  All stresses were increased in the void model, and shear 

exceeded trabecular bone yield stress in some combinations. 

Model/Rotation Tension (MPa) Compression (MPa) Shear (MPa) 

Intact/0°IRF 1.2 15.4 11.9 

Void/0°IRF 
3.6 

(200%) 

18.9 

(23%) 

18.6 

(57%) 

Intact/2.5° IRF 1.4 16.7 13.0 

Void/2.5° IRF 
3.8 

(171%) 

20.8 

(25%) 

20.4 

(57%) 

Intact/5° IRF  1.4 18.2 14.1 

Void/5° IRF 
3.9 

(179%) 

22.9 

(26%) 

22.4 

(59%) 
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Figure 2.5. Compression map of six tested models/conditions in the medial femoral condyle. 

Maps are in the frontal plane, centered on the femorotibial extension impact zone, and the view 

is caudal to cranial. Top row: intact models, bottom row: void models. L=lateral, M=medial, and 

joint surface is at the bottom of each image. In the intact MFC, peak compression occurred at the 

central articulation with the tibia. In the MFC with a void, compressive stresses increased (23-

26%) cranially on the interior surface of the void, though stresses were still well below 

compressive yield strength. Internal femoral rotation increased compressive stresses 8-21%. 

 

 

 

 



79 
 

 

Figure 2.6. Tensile map of six tested models/conditions. Maps are in the frontal plane, centered 

on the femorotibial extension impact zone, and the view is caudal to cranial. Top row: intact 

models, bottom row: void models. L=lateral, M=medial, and joint surface is at the bottom of 

each image. In the intact MFC, very little tension is predicted. In the MFC with a void, tension 

was focally increased at the proximomedial and distolateral aspects of the void. Internal femoral 

rotation had a minimal impact on tensile stress. 
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Figure 2.7. Shear stress map of six tested models/conditions. Maps are in the frontal plane, 

centered on the femorotibial extension impact zone, and the view is caudal to cranial. Top row: 

intact models, bottom row: void models. L=lateral, M=medial, and joint surface is at the bottom 

of each image. In the intact MFC, a small focal area of shear stress is present at the articulation. 

In the MFC with a void, shear stress was increased in size and magnitude (57-59%) at the distal 

aspect of the void and was elevated on the cranial-lateral interior surface of the void. Increasing 

internal femoral rotation increased the magnitude (9-20%) and region of high shear stress, and 

caused peak shear stresses to exceed the shear yield strength. 
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2.4.1.2 Peak contact pressure and peak meniscal stresses 

 

The MFC void model as compared to the intact model increased peak contact pressures 

(PCP) on the lateral tibia approximately 10% and decreased PCP approximately 12% on the 

medial tibia (Table 2.3).  PCP in the intact model occurred on the central cartilage of the medial 

tibia, but in the MFC void the high contact stress region was smaller and more axial toward the 

medial intercondylar eminence (Figure 2.8).  The void in the MFC resulted in 24-31% increase 

in tension and 23-29% increase in shear in the medial meniscus (Table 2.4), though the pattern of 

stress in the meniscus was similar with and without a cyst.  

Table 2.3. Peak contact pressure (MPa) on tibial cartilage. For each model/condition, the highest 

peak contact pressure is in bold. IRF= internal rotation (femur). The change in peak stress in the 

void model with IRF is noted parenthetically as a percent change from the intact model. Note 

that the void reduced peak medial contact pressure and increased peak lateral contact pressure. 

Model/Rotation Lateral (MPa) Medial (MPa) 

Intact/0°IRF 15.8 20.0 

Void/0°IRF 
17.4 

(10.1%) 

17.3 

(-13.5%) 

Intact/2.5° IRF 15.3 21.7 

Void/2.5° IRF 
16.9 

(10.5%) 

18.9 

(-12.9%) 

Intact/5° IRF  14.8 23.8 

Void/5° IRF 
16.4 

(10.8%) 

21.0 

(-11.7%) 
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Figure 2.8. Tibial contact pressure maps (MPa) for intact model (top row) and void model 

(bottom row). In the void model, contact pressure decreased (11-14%) on the medial tibial 

condyle and increased slightly on the lateral condyle (10-11%). Medial contact pressures 

increased with IFR. 
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Table 2.4. Peak tensile and shear stresses in the medial meniscus for the six tested 

models/conditions. The increase in peak stress in the void model is noted parenthetically as a 

percent change from the intact model.  Both the void and increasing IRF increased tension and 

shear stress in the medial meniscus. 

 

 

 

 

 

 

 

 

 

 

 

 

Model/rotation Tension (MPa) Shear (MPa) 

Intact/0°IRF 8.2 8.9 

Void/0°IRF 
10.7 

(30%) 

11.5 

(29%) 

Intact/2.5° IRF 9.0 10.4 

Void/2.5° IRF 
11.8 

(31%) 

12.9 

(24%) 

Intact/5° IRF  10.5 12.6 

Void/5° IRF 
13.1 

(24%) 

15.5 

(23%) 
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Figure 2.9. Medial meniscus shear stress map for femoral contact surface with 2.5o IFR. Shear 

stress is increased in area and magnitude (23-29%) in the meniscal body when a void was added 

to the MFC. L=lateral, M=medial, Cr=cranial, Ca=caudal. 

2.4.2 Effect of Internal Femoral Rotation 

 

Complete constraint of long axis femoral internal rotation at 8000 N load required an 

external rotation reaction torque of 37 N-m. Allowing the femur to freely internally rotate 

resulted in a maximum of 5° IFR and was restricted by the interaction of the medial tibial 

eminence with the MFC.  The general trend was that increasing IFR increased MFC bone stress 

(Figures 2.5-2.7) medial tibial cartilage pressure, lowered lateral tibial contact pressure (Figure 

2.8), and increased medial meniscus stress (Figure 2.9).  The 5° IFR resulted in the highest 

predicted MFC bone and medial meniscus stress, the highest medial tibial contact pressure, and 

the lowest lateral tibial contact pressure (Tables 2.2-2.4).  
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2.4.2.1 Bone stresses and peak contact pressure 

 

Constraining femoral rotation to 2.5° by use of a rotational spring resulted in an  

8-16% increase in MFC bone stresses, and allowing free IFR resulted in a 17-18% increase in 

bone stresses compared to fully constrained (Table 2.2).  Allowing 2.5-5° IFR decreased PCP on 

the lateral tibia by 3-7% and increased PCP on the medial tibia 9-21% in both models and had 

minimal impact on PCP location (Table 2.3). IFR also resulted in a mild increase in contact 

pressure on the caudal region of the meniscus (Figure 2.8).  

2.4.2.2 Peak meniscal stresses 

 

Allowing femoral rotation of 2.5° by use of a rotational spring resulted in a 10% increase 

in peak medial meniscus tension and a 12-17% increase in peak shear stress, considering models 

with and without a void.  Allowing free IFR (5°) resulted in increases of 22-28% in peak medial 

meniscal tension and 35-42% in peak medial meniscal shear stress. Peak meniscal shear and 

tensile stress occurred in the axial aspect in the central part of the meniscus (Figure 2.9). 

2.5 Discussion 

 

 This study supports the mechanism proposed by Frazer et al. for cystic development and 

resistance to treatment.15 As such, cystic development and treatment resistance may be explained 

by mechanics in the MFC, especially shear stress. Shear stress can be especially damaging, as 

trabecular bone is weakest in shear.34-38 The shear yield stress of equine MFC bone is unknown, 

but a reasonable estimation can be made using clinical observation and previous human studies. 

Clinical observations show that the MFC bone is trabecular and its material properties are quite 

variable depending on anatomic site, bone density, and other factors.39 In a study of a human 
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trabecular bone, Sanyal et al. proposed the relationship to quantify yield strength of human 

trabecular bone in shear:  

Yield Strength (Shear) (MPa) = 63 X1.67 

where X represents bone volume fraction (BVF).38 Equine trabecular bone in the MFC has a 

BVF in the range of 0.4-0.5,40 resulting in a shear yield strength of 13-20 MPa. The predicted 

peak shear in the intact MFC (11.9MPa) at the central articulation of the tibia approaches this 

value and was exceeded at the distal axial aspect of the void (18.6 MPa with IFR and 20.4-22.4 

MPa with IFR). This suggests that shear stress may be one of the mechanisms of SBC 

development and would create a hostile environment for bone healing once a SBC has formed.  

For periodic, inadvertent higher loads, the bone in the intact femur may be damaged, initiating a 

cyst.  The elevated stresses around the cyst, may lead to cyst persistence and/or growth. 

 Meniscal injury has been associated with equine medial femorotibial disease including 

MFC SBCs both before and after treatment.41,42 This is the first report examining the mechanical 

impact of a MFC void on the equine meniscus. We believe that the changes in the meniscus 

stress that occur with an MFC SBC may explain some meniscal injuries, as our model predicts 

about a 30% increase in peak tension and shear on the meniscus when an MFC void was present. 

This increase in stress occurs in the meniscal body, a common location of injury42 (Figure 2.9), 

and may be exacerbated when the loaded stifle is flexed.2 Two previous studies have measured 

contact pressure ex vivo on the proximal tibia under the equine medial meniscus,3,4 but do not 

agree on the shape of the pressure maps. The present results are most similar to Bonilla et al, 

predicting substantial abaxial pressure in the middle of the meniscus that is increased when an 

MFC void is present. If the increase in stress is magnified when joint flexion is allowed as was 
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demonstrated ex vivo,3 this may provide a mechanism for meniscal damage in horses with MFC 

SBCs.  

This study also examined long-axis internal femoral rotation. Sagittal rotation (joint 

flexion) was constrained to consider outcomes in stifle extension, a likely position when MFC 

damage occurs. Preliminary finite element results allowing frontal plane rotation (varus/valgus 

angulation) produced increased pressure in the lateral femoro-tibial joint and were at odds with 

clinical stifle lameness33,42 and anatomic observations, and so varus/valgus rotation was 

constrained. This decision is supported by a kinematic analysis of an unloaded, nearly complete 

equine stifle that suggest that frontal plane rotation is limited in terminal extension.7 The valgus 

rotation in our preliminary test could be the result of uniform femoral loading (versus a higher 

medial load). Also, there is not any pre-tension present in the collateral ligaments, and they do 

not provide substantial resistance to varus/valgus rotation. However, long axis rotation, 

specifically automatic (passive) internal femoral rotation (IFR) during terminal extension, has 

been well-described in man,16,31 has been noted in canines,17 and was noted passively ex vivo in 

the equine stifle.7 Internal femoral rotation is the result of anatomy, specifically of the curve of 

the femoral condyle and the attachments and fiber orientation of the cruciate ligaments. It 

appears that IFR may exist in the horse, but the magnitude of rotation is unknown, so models 

were tested at 0° IFR (constrained), 2.5° IFR, and 5° IFR (unconstrained). 

Even though the amount of IFR in terminal extension in the equine stifle joint is 

unknown, a reasonable estimation can be made using our model, clinical evidence, and data from 

human studies. The reaction torque needed to completely constrain IFR was 37 N-m. This high 

reaction torque would have to be provided by soft tissues (ligaments, muscles, fascia, etc.) not 

included in the model. Allowing IFR reduces this burden supporting the conclusion that IFR is 
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present in terminal extension for the horse as is present in human knees.16 Our model predictions 

of increases in medial compartment stress and decreases in lateral compartment stress with 

increasing IFR is are consistent with clinical observation that medial compartment injuries are 

more common. Thus, clinical observation in combination with our model supports the conclusion 

that IFR exists in the stifle joint. The magnitude of IFR is not known, but 5° appears to be the 

upper boundary based on predicted bone-on-bone contact. A lower rotation angle closer to 2.5° 

seems to be a more reasonable estimate. 

The authors acknowledge the limitations associated with this study. The CT was obtained 

in an unloaded specimen, and only one stifle joint was used to construct the model, and results 

could be dependent on specific stifle geometry. The lack of in vivo equine kinematic information 

reduced our focus to the MFC ROI bone stress, meniscal stress and proximal tibial pressure 

maps. To attempt to simulate stifle kinematics, we substituted some structures with linear springs 

to mimic their mechanics and eliminated most muscle action, except an estimation of the 

proximal tension on the patella. Additionally, assumptions have been made about material 

properties and equine kinematics, and data from human and animal studies have been used to fill 

in the gaps. Future work in obtaining kinematic data of the stifle joint and equine soft tissue 

properties would be very beneficial to further refine/validate this model. However, we believe 

the assumptions made in this study are reasonable to develop a preliminary understanding of 

stifle joint mechanics and the mechanical impact of MFC SBCs. Furthermore, due to the 

comparative nature of the study, our results are still useful for drawing conclusions as to how 

joint mechanics are altered with a SBC. 

 

 



89 
 

2.6 Conclusion 

 

In the equine stifle finite element model, the intact MFC loaded to 8000 N largely 

experienced compressive stress with shear stress present at the distal aspect. Removing long-axis 

rotation constraints resulted in internal femoral rotation and increases bone and meniscal stress in 

the medial femorotibial joint. Adding a 2 cm3 MFC void substantially increased shear stress in 

the periphery that can exceed the yield strength of trabecular bone (13-20 MPa).37 The void also 

increased tension and shear in the medial meniscus. The changes in tissue stresses and joint 

contact pressures predicted in the medial femorotibial joint with a MFC void suggest that under 

continued strenuous activity joint mechanics promote void persistence and meniscal injury. 

Future work will evaluate treatment strategies building on the present finite element model. 
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3.1 Abstract 

 

Objective: To predict the bone formation stimulus of a transcondylar screw across an equine 

subchondral bone cyst (SBC) in an equine medial femoral condyle (MFC).   

Study design: Finite element modeling (FEM) of an equine MFC with a 2 cm3 SBC under 

several transcondylar screw conditions.  

Methods: The FEM was constructed using computed tomographic imaging of a yearling 

Thoroughbred and analyzed using ABAQUS v6.14. The transcondylar screw was modeled as a 

4.5mm stainless steel cylinder. The region of interest was the centrodistal MFC and bone 

stimulus was calculated. The stimulus threshold for bone formation (BFT) was >60 MPa and is 

presented as the percentage of total bone surface area (BFA) and frontal plane maps. Principal 

compressive stress vectors were also determined. Tested variables are daily cycles, load, and 

screw compression and position.   

Results: At 750 cycles and 900 N load, <3% of the BFA exceeded the BFT.  Increases in BFA 

>BFT occurred proportionally with load, screw compression and daily cycles (steps). 

Compressive stress was oriented vertically on the SBC surface without a screw but aligned with 

the long axis of well-placed lag screws. Screw placement through the void also increased the 

number and magnitude of compressive vectors. 

Conclusions: A lag screw across an SBC increases BFA on the surface and reorients the 

compression vector to the screw axis. Increasing screw compression, load and steps per day 

increase the bone formation stimulus. 

Clinical significance: This study supports the use of a lag screw thorough a MFC SBC to 

promote bone formation. 
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3.2 Introduction 

 

 Subchondral bone cysts (SBCs) occur in the growing bones of young horses, most 

commonly in the medial femoral condyle (MFC).1-4 SBCs can result in lameness and cause 

secondary injuries such as meniscal and cartilage damage. Traditional treatments of SBC aim to 

reduce local inflammation and promote bone healing by use of rest, anti-inflammatory agents, 

cyst debridement and regenerative substances.1-8 Reported success rates vary greatly and reflect 

only reductions in short-term lameness. Radiographic healing rates of SBC after treatment are 

rarely reported, and when they occur, are described as a reduction in SBC size rather than 

complete healing.8  

A finite element model (FEM) of an equine SBC has been developed to investigate 

stresses and strains in the equine stifle joint. The model predicts shear exceeding yield in the 

boundary of an MFC SBC at high load.9 The FEM also predicts increases in stress in the medial 

meniscus with an SBC due to altered load transfer. This finding is consistent with clinical 

information revealing secondary injuries to the meniscus and proximal tibia which reduce 

treatment success rates.10,11 Therefore, incomplete healing or enlargement of the SBC after 

treatment may impact long-term soundness. It is likely that substantial radiographic healing of an 

SBC will provide a more durable reduction in lameness. A recent report using a transcondylar 

lag screw across the void has shown high success rates in both lameness resolution and 

radiographic healing.12 Although the transcondylar screw treatment has been in clinical use for 

several years, its mechanical impact is unknown.  

Most of the information available on the mechanics of bone healing describes fracture 

healing and focuses on dense cortical bone. SBCs are surrounded by porous trabecular bone and 

while the different fracture environments result in variations in the cellular events during 
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healing,13 it appears that the biomechanical principles of healing are similar.14 Because the 

architecture of trabecular bone is largely dictated by the applied mechanical forces,15 the 

biomechanical environment of an MFC SBC must be insufficient to promote trabecular bone 

formation. The transcondylar screw is believed to promote healing by altering that environment.  

Characteristics of the transcondylar screw such as neutral versus lag placement and screw 

position can vary between surgeons, so testing several screw conditions in the FEM should 

provide a better understanding of how the screw may influence healing. The prediction of BFA 

can be calculated and includes several variables including load and daily cycles (steps)16,17 and 

was added to the FEM. Because trabecular bone realigns itself to the peak loading direction,18 

the direction of the principal stress was determined to determine if the screw altered the principal 

stress to predict the orientation of trabeculae.   

We hypothesize that the FEM will predict that a lag screw placed across the SBC will 

stimulate bone growth on the surface of the SBC, and that the screw position will affect the area 

stimulated. Furthermore, we hypothesize that the lag screw will alter the direction of the 

principal stress on the MFC. 
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3.3 Materials and Methods 

 

Previous work has developed a finite element model of an equine stifle joint in extension 

with a 2 cm3 void in the MFC under gallop ground reaction force loading. 9,19 This initial model 

served as the baseline model for the present study and details model construction, material 

properties and loads.9,19 The present study added a 5 mm radius of sclerotic bone on the 

periphery of the SBC with a density of 1.0 g/cc and was given a corresponding modulus of 3770 

MPa using the density-modulus relationship, 

 𝐸 = 3770 ∗ 𝜌3 (Eq. 1)20 

Cartilage material properties were lowered to 8 MPa from the previous model to better represent 

the tissue response at lower loads and strain rates experienced in a post-operative environment. 

All model testing and calculations were performed in ABAQUS v6.14-2 (SIMULIA, Providence, 

Rhode Island). 

3.3.1 Criteria for Effectiveness 

 

In order to evaluate the efficacy of various surgical treatment strategies, Beaupre, Carter, 

and Orr’s theory of bone remodeling was adopted.16,17 In this theory, a tissue stimulus (Ψ) is 

calculated that predicts bone resorption, bone apposition, or no net bone change. Ψ is calculated 

using the following equation: 

 

Ψ = (∑ 𝑛𝑖 ∗ 𝜎𝑏𝑖

𝑚

𝑑𝑎𝑦

)

1
𝑚

 

(Eq. 2) 
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where 𝑛𝑖 is the number of cycles per day (for given load, i), 𝜎𝑏𝑖
 is a true bone tissue-level 

effective stress for load i, and m is an empirical constant assumed in these simulations to be 621. 

Tissue level effective stress, 𝜎𝑏𝑖
, is defined as: 

 
𝜎𝑏𝑖

=
𝜌𝑐

2√2 ∗ 𝐸 ∗ 𝑈   

𝜌𝑎
2

 

 

(Eq. 3) 

where ρc is the tissue density of cortical bone (assumed to be 1.92 g/cc), ρa is the local apparent 

density of the tissue, E is the local elastic modulus, and U is the local strain energy density. The 

theory is based on the idea of an “error” between the tissue stimulus and an attractor state, a 

theoretical equilibrium value that bone is trying to achieve. Using previous studies of bone’s 

response to loading, Beaupre et al. determined that the attractor state was 50 MPa. The error term 

is then Ψ – 50 MPa. If this error is positive, bone apposition occurs. If the error is negative, bone 

resorption occurs. Furthermore, they defined a “dead zone”. The dead zone is a range of Ψ in 

which there is neither bone resorption nor apposition. They determined this dead zone to be ± 

20% of the attractor stimulus. Therefore, the dead zone lies between 40-60 MPa. Thus, values of 

Ψ greater than 60 MPa predict bone apposition, and values of Ψ less than 40 MPa predict bone 

resorption.  

 As a complement to using Beaupre, Carter, and Orr’s theory of bone remodeling, third 

principal stress (compression), σIII, directions were calculated by ABAQUS for various screw 

conditions   Third principal stresses are important for understanding the direction of trabecular 

remodeling. As such, the bone remodeling theory predicts the answer to the question, “will bone 

form?”, and the third principal stress vectors can answer the question, “in which direction?”  
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3.3.2 Screw Construction 

 

 For all model variations that included a transcondylar lag screw, a simplified screw was 

made in ScanIP v7.0 (Simpleware, United Kingdom) that did not possess any microstructure, 

such as threading. A 40 mm in length, 4.5 mm diameter cylinder was constructed and smoothed 

into a cone-like tip at the axial end. The head of the screw was 6 mm in diameter and constructed 

by dilating the abaxial end of the screw. The axial portion (tip) of the screw was tied to the bone, 

and the abaxial portion (head) was in frictionless contact with the bone. This choice of constraint 

was used to simulate the thread engagement of a lag screw on the far side of the cyst. The screw 

was given a modulus of 200 GPa to represent stainless-steel. 

3.3.3 Effect of Compression 

 

 Compression was applied axially along the screw. This was performed by running a pre-

step analysis prior to applying a joint load. In this pre-step, the elements in the middle aspects of 

the screw (inside of the SBC) were removed (Figure 3.1). Six connector elements were then 

inserted to connect the exposed surfaces of the screw. The connector elements were given a pre-

tension and ABAQUS solved this initial configuration. Upon completion of the compression, the 

elements were put back into place. Previous pilot experiments using artificial bone (Sawbones, 

Vashon, WA) of 30 pcf solid polyurethane foam (E = 400 MPa) of 15 mm thickness revealed 

that a lag screw would generate a peak compression at 1.5-2 Nm torque of 700 N. However, the 

compression generated across the lag screw diminished rapidly and plateaued around 60% of the 

peak compression. As such, a conservative estimate of post-surgery compression of 300 N was 

chosen for the stainless-steel lag screw treatment. 

 



103 
 

 

 

Figure 3.1. Left) Caudocranial radiographic projection of a yearling Thoroughbred with a 

proximodistal oblique transcondylar lag screw. Right) Caudal frontal planar view of the finite 

element stifle model. Bone is white, cartilage is blue, the region of interest is green, and the 

menisci are light blue. The screw is grey, and the red lines indicating the section removed to 

apply the axial compression. The axial end of the screw was tied to the bone and the screw head 

was in frictionless contact on the abaxial aspect. 
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3.3.4 Effect of Daily Cycles (steps) 

 

 Furthermore, this study investigated the effects of increasing the cycles per day (cpd) by 

adjusting 𝑛𝑖 in Equation 2. Three 𝑛𝑖 values were chosen as 750, 3000, and 6000 cycles per day. 

Preliminary results from a pedometer placed on 2 stall-confined Thoroughbred yearlings after 

screw placement reveals less than 1000 steps (cycles) daily, and that 10 minutes of hand-walking 

adds about 1000 more steps (unpublished data). 

3.3.5 Effect of Load 

 

 Three different magnitudes of load were placed on the proximal femur to simulate 

different activities. Stall confinement was estimated to be 900 N by taking the average weight of 

a yearling (368 kg) and dividing by 4. The second magnitude was 1800 N, to estimate hand-

walking or confinement in a small area such as a round pen, and the third magnitude was 3000 N 

to estimate light exercise in a paddock. These three joint loads estimate primary loads in the first 

two months of a typical post-surgery protocol.  

3.3.6 Effect of Screw Placement 

 

All screws were placed from abaxial to axial in the MFC. Three screw placements were 

tested: a proximodistal oblique transcondylar (PDO) screw that passed through the central void 

(Figure 1), a horizontal screw that intersected the proximal aspect of the void, denoted as 

proximal horizontal (PH), and lastly, a horizontal screw that passed through the central cavity of 

the void, denoted as distal horizontal (DH). Although the distal horizontal placement is not 

feasible in an MFC as it would contact articular cartilage and meniscus, it can be used in other 

joints such as the equine cubital joint.22 
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3.3.7 Boundary Conditions and Analysis 

 

The compressive load on the proximal femur was applied evenly and varied from  

0-3000 N. A tensile force at the quadriceps attachment on the proximal patella was applied to 

prevent unrealistic femoral anterior translation and was scaled from the previous study to 100 N.9 

The proximal aspect of the femur was constrained in varus-valgus (0°) and flexion/extension 

rotation (155°). The tibia was fully constrained, and femoral translation was allowed, and 

internal rotation was allowed and did not exceed 2.5°. Frictionless contact was defined between 

all articulating surfaces using general contact in ABAQUS. On the interior surface elements of 

the SBC, stress stimulus was predicted and the percentage of the available surface area 

exceeding 60 MPa was calculated (BFA). Peak strain values were also calculated to determine 

whether yield strains were exceeded in any of the tested surgical interventions.  
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3.4 Results 

 

For all models tested, maximum strains did not exceed yield (2%). 

3.4.1 Impact of screw compression and daily cycles (steps) 

 

At 900 N model load and varying screw compression and CPD, BFA with Ψ above 

threshold (>60 MPa), did not exceed 1% until 300 N of screw compression was provided and 

only exceeded 10% at 6000 cpd (Table 3.1). BFA mapping (900 N load and 750 cpd) reveals that 

the greatest increases in BFA were located around the screw outside the void (Figure 3.2). At 

900 N load, 300 N screw compression, and varied cpd, BFA mapping reveal Ψ above threshold 

at the void articular surface at 3000 cpd which enlarged at 6000 cpd (Figure 3.3).  

Table 3.1: Percentage of bone formation area (BFA) on the inner surface of the void at 900N 

load predicted to experience Ψ above the apposition threshold (60 MPa) with only the void, with 

a proximodistal oblique (PDO) hole through the void and with a stainless steel screw (SSS) in 

the PDO position with varying compression and cycles (steps). 

 

 

 

 

 

900 N load 

Model BFA% 750 cycles BFA% 3000 cycles BFA% 6000 cycles 

Void only 0 0 0 

Void/PDO hole 0 0 0 

Void/ SSS 0 N 0 0 0 

Void/SSS 75 N 0 0 1 

Void/SSS 150 N 0 1 1 

Void/SSS 300 N 2 7 11 
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Figure 3.2. Bone formation stimulus (Ψ ) maps in the MFC region of interest with varying screw 

compression. Conditions for all trials were 750 cycles per day and 900 N load to estimate stall 

confinement. Top row: caudal to cranial view, bottom row: cranial to caudal. The screw point is 

axial. The void surface area exceeding the bone formation threshold (60 MPa) is negligible for 

all screw compressions tested.  

 

Figure 3.3. Bone formation stimulus (Ψ ) maps in the MFC region of interest with varying cycles 

per day. Conditions for all trials were 300 N compression on the screw and 900 N load to 

estimate handwalking. Top row: caudal to cranial view, bottom row: cranial to caudal. Cycles 

per day (cpd) >750 has a proportional increase in surface stimulation and exceeds the bone 

formation threshold (60 MPa) at the articular surface and extends proximally at 6000 cpd. 
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3.4.2 Impact of load 

 

At 1800 N model load without screw compression, BFA with Ψ above threshold was 

<10% for all cpd tested  (Table 3.2). BFA increased with increasing screw compression and cpd 

but only exceeded 10% at the highest cpd and screw compression. Increasing model load to 3000 

N predicted BFA >10% for most trials (Table 3.3) indicating larger areas of bone formation 

stimulus. However, computation of the third principal stress vector (σIII, compression) at 3000 N 

without a lag screw reveals a proximal to distal alignment with the direction of compression 

(Figure 3.4). Adding a lag screw with 300 N compression alters σIII to align with the screw axis 

(medial to lateral), increases the magnitude of stress, and multiplies the vectors, most notably at 

the joint margin.   

Table 3.2: Percentage of bone formation area (BFA) on the inner surface of the void at 1800 N 

load predicted to experience Ψ above the apposition threshold (60 MPa) with only the void, with 

a proximodistal oblique (PDO) hole through the void and with a stainless steel screw (SSS) in 

the PDO position with varying compression and numbers of daily cycles (steps). 

 

 

 

 

 

 

 

 

 

1800 N load 

Model BFA% 750 cycles BFA% 3000 cycles BFA% 6000 cycles 

Void only 0 1 4 

Void/PDO hole 1 2 7 

Void/ SSS 0 N 1 3 9 

Void/SSS 75 N 1 5 12 

Void/SSS 150 N 2 9 20 

Void/SSS 300 N 9 25 39 
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Table 3.3: Percentage of bone formation area (BFA) on the inner surface of the void at 3000 N 

load predicted to experience Ψ above the apposition threshold (60 MPa) with only the void, with 

a proximodistal oblique (PDO) hole through the void and with a stainless steel screw (SSS) in 

the PDO position with varying compression and numbers of daily cycles (steps). 

 

 

 

 

 

 

 

 

 

 

3000 N load 

Model BFA% 750 cycles BFA% 3000 cycles BFA% 6000 cycles 

Void only 5 19 31 

Void/PDO hole 20 53 66 

Void/ SSS 0 N 24 59 72 

Void/SSS 75 N 30 63 75 

Void/SSS 150 N 37 68 78 

Void/SSS 300 N 50 76 84 
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Figure 3.4. Top row: Bone formation stimulus (Ψ ) maps (cranial to caudal view) in the MFC 

region of interest at 3000 N model load and 6000 cpd with no screw, proximodistal oblique 

(PDO) hole, and PDO lag screw (300 N screw compression). Bottom row: Third principal stress 

vectors (σIII) on the surface of the void at same load and screw conditions. Without screw 

compression, σIII is mostly <15 MPa and primarily oriented vertically. With screw compression, 

σIII exceeds 15 MPa in multiple sites, aligns with the screw, and crosses the void. L=lateral, 

M=medial.  

 

3.4.3 Impact of screw position  

 

Three screw positions were tested: PDO, proximal horizontal (PH) and distal horizontal 

(DH). All models had 1800N load and screws had 300N compression. The BFA at 750 cpd was 

< 10% for all screw positions (Table 3.4), but increased with increasing cpd. The BFA for the 

PDO screw was 25-30% higher than PH or DH screws at 3000-6000 cpd. Analysis of σIII for the 

3 screw positions shows alignment with the PDO and DH screws, especially at the joint margin. 
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Use of a PH screw does not change σIII except at the most proximal portions of the cyst near the 

screw (Figure 3.5).  

Table 3.4. Percentage of bone formation area (BFA) on the inner surface of the void at 1800 N 

load predicted to experience Ψ above the apposition threshold (60 MPa) using a proximodistal 

oblique (PDO), a proximal horizontal screw (PH), and a distal horizontal (DH) screw with 

varying daily cycles (steps). The screws were modeled as 4.5 mm cylinders of stainless steel 

with a 6 mm head and a tapered point. 

 

 

 

 

 

1800 N load 

Model BFA% 750 cycles BFA% 3000 cycles BFA% 6000 cycles 

PDO 9 25 39 

PH 8 20 29 

DH 7 19 31 
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Figure 3.5. Top row: Bone formation stimulus (Ψ ) maps (cranial to caudal view) in the MFC 

region of interest at 1800 N model load and 3000 cpd with a proximodistal oblique(PDO) screw, 

a distal horizontal (DH) screw, and a proximal horizontal (PH) screw with 300 N compression. 

Bottom row: third principal stress vectors (σIII) on the surface of the void at same load and screw 

conditions.  All screw placements stimulate bone formation, but only the PDO and DH screws 

alter the principal stresses to align with the screw across the void. In the PH placement, principal 

stresses primarily have a proximal to distal orientation, except for a few vectors at the proximal 

and distal aspect of the cyst. L=lateral, M=medial.  
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3.5 Discussion 

 

Traditional surgical treatments for equine SBC are directed primarily towards reducing 

inflammation within the SBC and secondarily to promote bone formation through the use of 

bone substitutes or biologic substances and do not address SBC biomechanics. Radiographic 

healing of SBC after these traditional treatments is not often described but was less than 20% in 

a study that filled the debrided void with bone graft or bone substitutes.8 Higher rates of an 

unspecified reduction in cyst size are reported, but cyst enlargement occurred in about 30% of 

patients.8 We believe a major goal of treatment should be bone healing in the SBC at the joint to 

provide a foundation for attachment of remaining hyaline cartilage, prevention of contact of joint 

fluid with damaged bone, and load transfer. The transcondylar screw treatment of MFC SBC 

focuses on altering the biomechanical environment of the SBC to promote bone healing.12  

Trabecular bone healing begins with the arrival of mesenchymal cells, followed by the 

formation of primary woven bone on the surface of a fracture with a random orientation, which 

subsequently assumes a more organized structure and forms new trabeculae.23 When the injury is 

an osteochondral defect, new bone forms from the circumference during healing.24 

Biomechanical analysis of trabecular bone healing is in early stages, but appears to be similar to 

diaphyseal healing, and is optimized within a range of bone strain.15 The elevated bone strains 

predicted by the FEM9,19 are likely a factor in the poor bone healing of SBC observed clinically. 

The changes in bone strain caused by the transcondylar screw in this model suggest that the 

screw helps to change the stress and strain environment to promote healing.  

Increasing PDO screw compression at all loads and cycles per day resulted in increases in 

BFA, suggesting that drilling a forage hole or placing a screw without compression are less 

effective in stimulating bone formation. Similarly, increasing joint load and cycles per day 
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increased BFA. The 900 N load was selected to model 25% of the bodyweight of a yearling and 

750 cycles per day estimated activity when stall confined. The small increases in BFA without a 

screw even at the highest cycles per day (unlikely to be achieved in stall confinement) is in 

accordance with clinical experience that rest is not often successful in healing MFC SBC.1 The 

presence of a small area experiencing tissue stimulus above the BFT at the joint surface may 

explain the incomplete bone formation frequently seen at the joint surface of SBC over time 

(Figure 3.6A). However, BFA above BFT for >20% of the SBC area were predicted at 1800 N 

load (infrequently) and frequently at 3000 N. Clinical experience indicates that SBC in these 

horses do not heal with regularity, indicating that tissue stimulus alone may be insufficient to 

predict SBC healing.     

To further characterize the mechanical impact of the lag screw, the compression stress 

vector was calculated at 3000 N and 6000 cycles per day and was determined to be parallel to the 

compression on the long axis of the bone without a screw and found to align with the lag screw 

with screw compression. Without a screw the bone formation stimulus is vertical on the 

periphery of the SBC and is likely the mechanism for SBC marginal sclerosis (Figures 3.5A and 

3.6A). This vector corresponds to the main trabecular orientation which is already adapted to 

sustain compressive loads. As such, although the model predicts bone formation, the bone 

formation that occurs is peripheral sclerosis around the cyst. However, with a screw, the stimulus 

is multiplied and directed across the MFC. Providing compression across a fracture has been 

advocated for decades as a method to promote fracture healing by increasing interfragmentary 

forces and adding stability to a fixation, but compression across a void to promote healing is a 

new strategy. The transverse compression combined with the general stress stimulus appears to 

promote bone formation across the void (Figure 3.6B). The ability of trabecular bone to adjust 
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and realign to the peak loading direction has been reported.18 Further support for this mechanism 

is provided by the increased number and magnitude of horizontal vectors at the joint surface 

which is where the earliest bone healing occurs after screw placement (Figure 3.6B).  

 

 

 

 

 

 

 

 

 

 

 

Figure 3.6. Caudal to cranial radiographs of an equine MFC before placement of proximodistal 

lag screw (A) and 60 days post-surgery (B). Before surgery, the incomplete healing of the SBC 

at the joint resulting in an apparent stoma is apparent followed after screw placement by more 

substantial healing at the joint and circumferential healing toward the center of the void. 

Our experience with the transcondylar screw for the treatment of SBC and evaluation of 

scores of radiographs from other surgeons indicated that screw position is associated with 

clinical success. Specifically, it appeared that if the screw position was horizontal and proximal, 

SBC healing was less likely than with PDO screw placement (Figure 3.7). This model predicts 

that some additional bone remodeling stimulus is present with a proximal horizontal screw, but 

the principal stresses remain vertical (Figure 3.5). This reinforces the use of the PDO screw to 

orient the principal stress across the SBC. The distal horizontal screw configuration also orients 
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the principal stress across the SBC but cannot be used with a standard screw in a MFC SBC due 

to interference of the screw head with the meniscus and abaxial cartilage surface. A headless 

dual-pitch screw could be used but may not provide sufficient compression across the SBC. 

However, horizontal screw placement is effective in the treatment of SBC in other joints such as 

the equine cubital joint,22 and these results suggest that a screw close and parallel to the joint 

surface will provide the necessary bone formulation stimulus for healing.  

 

Figure 3.7. Caudo-cranial radiographs of an equine stifle at A) 365 days after placing a proximal 

horizontal transcondylar screw, and B) 180 days after removing the first screw and placing a 

proximodistal oblique (PDO) screw. The horizontal screw did not result in loss of sclerosis on 

the SBC periphery nor formation of trabecular bone, and the lameness was still present. Six 

months after placing the PDO screw the sclerosis has reduced, a trabecular bone pattern is 

present in the void and the stifle lameness was eliminated.    

For all screw conditions, bone remodeling stimulus increases with increasing steps per 

day. This finding is consistent with anecdotal evidence early in the clinical use of the screw that 

horses allowed early exercise appeared to heal sooner than stall confined horses. The number of 
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CPD used in this study estimated stall confinement (750 cpd), light exercise such as handwalking 

or round pen turn out (3000 cpd) or pasture exercise (6000 cpd). Our present postoperative 

recommendations for horses < Grade 3 lame are stall confinement for 2 weeks after screw 

placement followed by handwalking for two weeks, followed by 4 weeks turnout in a small 

paddock or round pen. In the early stages of SBC healing, controlled exercise appears to be 

superior to at liberty exercise as a small number of horses have reinjured their MFC if heavy 

exercise commences before sufficient articular bone formation.  

 There are several limitations of this study. All the tested configurations were 

manipulations of a single finite element model of a healthy stifle joint. The SBC and the sclerotic 

region surrounding the void were assumed from clinical averages but are idealized. Stifle 

boundary conditions are estimated due to the lack of equine stifle kinetic data. The screw does 

not include threads or the micro-interactions between the threading and the bone, however, tie 

constraints are believed to provide a reasonable estimation of screw mechanics.25 Finally, the 

bone remodeling theory was based on non-equine data and are therefore approximations. 

However, the comparative trends found in this study should remain consistent with parameter 

changes. 

In conclusion, the results from this computational study support the use of a 

proximodistal oblique transcondylar lag screw to treat SBCs in the equine MFC and illustrate the 

likely mechanisms promoting bone formation and healing. Providing controlled exercise after 

surgery appears to improve the biomechanical environment for bone formation in the MFC.  
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4.1 Abstract 

 

Equine subchondral bone cysts (SBCs) develop most often in the medial femoral condyle 

(MFC) of yearlings intended for performance. A novel treatment strategy using a transcondylar 

lag screw has shown high rates of lameness reduction and radiographic healing. Using finite 

element analysis, our lab has determined that the transcondylar screw (TLS) enhances healing by 

providing mechanical stimulus to the adjacent bone, as well as aligning principal stresses across 

the void. In this study, we have investigated the effects of different cyst sizes and shapes on bone 

formation stimulus using a TLS. Using a 3k factorial analysis, height, width, and depth of the 

cyst were varied using a published range of cyst parameters. We found that full screw 

penetration into the cyst creates the highest bone formation stimulus. Additionally, full screw 

penetration ensures that third principal stresses align transverse to the trabecular orientation 

around the cyst. Height and depth have the most influence as to whether a screw can fully 

penetrate or not. As such, larger cysts respond well to the TLS, whereas smaller cysts do not. We 

recommend the use of the TLS to treat SBCs that allow screw penetration. For smaller cysts, 

more techniques need to be developed, such as a headless screw surgical technique to address the 

limitation of the existing TLS surgery. 
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4.2 Introduction 

 

 Equine subchondral bone cysts (SBCs) develop most often in the medial femoral condyle 

(MFC) of yearlings intended for performance.1-4 SBCs often cause lameness and can cause 

secondary injuries to the meniscus and tibial cartilage.5 Typical SBC treatment strategies involve 

rest, cyst debridement, and intracystic arthroscopic injection of corticosteroids to reduce 

inflammation.6-14 Reported treatment success rates vary from 35-70% and have not improved 

over the past several decades.15 Success is most often determined by return to soundness and 

reduction in lameness, and radiographic evidence of MFC SBC healing is not often reported. 

Radiographic healing of SBC should achieve long-term lameness reduction and return to 

function without risk of reinjury or secondary injury.  

A novel surgical technique using a transcondylar lag screw (TLS) across an MFC SBC 

has been described16 and has shown success in lameness resolution and radiographic healing of 

MFC SBC. Using finite element modeling (FEM), our lab has investigated the mechanics of 

MFC SBC17,18 and the transcondylar lag screw procedure (submitted for review). The FEM 

predicts that several types of bone stress are elevated in an MFC SBC under normal loading. 

After placing a TLS, the model indicated that 300 N of screw compression stimulated bone 

formation on the inner surface of the SBC and altered third principal stress vectors to change the 

direction of surface compression to align with the screw axis. As third principal stresses 

influence trabecular alignment and growth,19,20 we hypothesized that the TLS stimulates bone 

formation on the inner SBC surface and directs bone formation across the void. However, the 

previous work used a single idealized SBC with a 2 cm3 volume, which lacked some 

characteristics of the clinical condition.  
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Most equine MFC SBC occur in a similar location but vary in size and shape,21 and 

clinical experience has indicated that cyst size and shape can affect the bone healing with a TLS. 

Developing a FEM from a CT scan of a clinical SBC that includes concurrent MFC changes and 

subsequently manipulating SBC sizes and shapes may provide information about SBC size and 

shape and bone formation stimulus after TLS placement. Our objective was to test SBC of 

several sizes and shapes in a newly developed equine stifle FEM with a TLS to determine how 

cyst size affects bone formation stimulation. A 3k factorial analysis was implemented to 

manipulate the three spatial dimensions of the cyst (height, width and depth) and identify the 

impact of these parameters on bone formation stimulus. Additionally, several smaller cysts not 

included in the 3k factorial analysis were tested to identify a minimum size in which the screw 

demonstrates efficacy. Finally, the native cystic geometry of the model (from the original CT 

scan) along with an additional stifle joint model developed using another CT scan of a cystic 

MFC was used to compare against the 3k factorial regression results. 
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4.3 Methods  

 

4.3.1 Image Acquisition 

 

Computed tomographic scans of a femorotibial joints from 2 live horses with an SBC in the 

MFC that had not been treated surgically were included in the study. These images have been 

previously published to describe the anatomy of MFC SBC and include details of the CT 

acquisition and owner permission.21   

4.3.2 Segmentation and Meshing 

 

The first set of CT images were imported into ScanIP (Simpleware, United Kingdom) for 

segmentation and meshing (Figure 4.1). Segmentation was performed to include the femur, tibia, 

patella, articular cartilages, menisci, and the patellar ligaments. The cortical bone was 

automatically segmented using a threshold filter and subsequent manual filling was performed 

for the trabecular bone. The femoral and tibial cartilage was assumed to be 2.5 mm thick, so a 

uniform dilation was performed on the bones for cartilage segmentation. The menisci were 

segmented by identifying visible tissue boundaries in the CT scan and using best judgement with 

the aid of available cadaveric menisci and supervision from a professor of equine surgery. The 

patellar ligaments were visible in the CT images and manually segmented.  

The transcondylar lag screw was made by creating a 38 mm length cylinder with a radius 

of 2.25 mm. The axial end of the screw was smoothed into a conal shape and the abaxial end was 

dilated outside of the condyle to create a 6mm screw head. The resulting 3-D geometry of the 

stifle joint and the transcondylar screw was meshed into 4-node tetrahedra and imported into 

ABAQUS v6.14-2 (SIMULIA, Providence, Rhode Island) for further model development 

(Figures 4.2-4.3). This model served as the baseline for the 3k factorial analysis. 
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Figure 4.1. Left: image slice from the CT scan used to create the finite element model for the 3k 

factorial analysis. SBC circled in red. Middle: Segmented structures using ScanIP. Bone is 

shown in tan, cartilage is blue, menisci are green, 5 mm of sclerosis is yellow, and the screw is 

shown in orange. Right: Model imported into ABAQUS for finite element analysis. Note – the 

SBC geometry was manipulated for the 3k factorial analysis, and the shown, native SBC size and 

shape was tested later as a means of comparison to the regression results. 
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Figure 4.2. Medial view of the finite element model used in this study. 
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Figure 4.3. Left: Cranial plane showing the mesh refinement in the MFC (including the sclerotic 

region in yellow), TCS (orange), soft tissues (cartilage, blue; meniscus, green), and proximal 

tibia. Right: Cranial view of the tibia, sclerotic region around the cyst, and the TCS. 

4.3.3 Material Properties 

 

 Linear elastic material properties were assigned to all 3-D solid structures used in this 

study. Bone was modeled as a heterogenous material with 20 unique bone material properties 

based upon its Hounsfield units (HU). Phantom data from the CT scanner was used to match HU 

to density. Density was mapped to its modulus using the Equation 1.  

 𝐸 = 3770 ∗ 𝜌3 (Eq. 4)22 

Soft tissue properties were adapted from earlier studies involving both human and equine 

data.17,23-32 With the uncertainty associated with soft tissue properties, sensitivity analyses were 

performed. It was determined that a reasonable range of material properties does not significantly 

change the results. Low loading combined with the transcondylar screw only affecting the bone 

stress both contribute to the non-sensitivity of soft tissue properties. 
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 The ACL, PCL, LCL, and MCL were modeled as 1-D non-linear springs and their 

insertions were identified from Aldrich et al.18,28,33-35 Each outer meniscal rim was connected to 

ground using 10 springs (2 N/mm) to simulate the restraint on excessive meniscal translation 

from the joint capsule.36 A summary of material properties can be found in Table 4.1. 

Table 4.1. Summary of the material properties used in the study. 

Structure Type Young's Modulus (MPa) Poisson's Ratio 

Bone Isotropic 100-18,000 0.3 

Menisci Anisotropic 

Radial and Axial = 20  

Circumferential = 120 

Radial and Axial = 0.3  

Circumferential = 0.45 

Cartilage Isotropic 8 0.45 

Patellar 

Ligaments 

Isotropic 300 0.3 

ACL, PCL, 

LCL, MCL 

Non-linear 

Springs 

- - 

 

4.3.4 Boundary Conditions 

 

900 N of uniform pressure was applied on the proximal surface of the femoral 

metaphysis. This pressure was determined by taking the weight of an average weight of a 

yearling (368 kg) and dividing it by its four limbs. This amount of load approximates the first 

few weeks of stall-confinement. The quadriceps tensile force on the superior aspect of the patella 

to prevent unrealistic femoral anterior translation was scaled from our previous study to 100 N. 

The proximal aspect of the femur was constrained in varus-valgus (0°) and flexion/extension 
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rotations (155°). The tibia was fully constrained, and femoral translation and internal rotation 

were allowed (unconstrained). Frictionless contact was defined between all articulating surfaces 

using general contact in ABAQUS. For each model, 2 analyses were run: 0 N of compression 

across the transcondylar screw and 300 N of compression across the transcondylar screw. The 

axial end of the screw was tied to the bone, and the abaxial end was in frictionless contact with 

the bone. In our previous study (in review), it was found that at 900 N joint load, 0 N of 

compression (a neutral screw) did not have any effect on BFA compared to no screw at all 

(baseline). Therefore, for time efficiency, the screw was left in at 0 N of compression as the 

baseline value. 300 N of compression was chosen after an in-house experiment demonstrated that 

300 N of compression was a conservative estimate of how much force is generated during 

surgical implantation of the screw. 

4.3.5 3k Factorial Study Design 

 

 A range of cyst sizes and shapes have been described, characterized by height 

(proximal/distal in the frontal plane), width (medial/lateral in the frontal plane), and depth 

(cranial/caudal in the sagittal plane).21 These dimensions varied between 2-26 mm (height), 2-20 

mm (width), and 2-14 mm (depth in the sagittal plane). To model these ranges, a 3k factorial 

study with k = 3 was constructed with heights of 2, 14, and 26 mm, widths 2, 8, and 14 mm, and 

depths of 2, 10, and 20 mm creating a total of 27 cyst sizes. Three of these cysts are shown in 

Figure 4. For cysts with 14 and 26 mm in height, the cyst was narrowed at the joint margin, as 

seen clinically (Figure 3). Bone properties were adjusted based on cyst size, and a 5 mm radius 

of sclerosis was assumed around each cyst, with a density of 1.0 g/cc (Figures 4.1,4.3, and 4.5; 

yellow). Additionally, in cysts with heights of 2 mm, the cystic region in the scan that was not 

covered by the artificial sclerosis had to be filled in as a separate part. This was done to ensure 
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that when bone material properties were mapped to bone elements according to their Hounsfield 

Unit, the cystic region of the scan was not given a low modulus (Figure 4.5; purple). This 

artificially created bone region in the cyst space was a given a density of 0.4 g/cc, which was the 

average density of the trabecular bone in the non-cystic lateral condyle and matched the 

surrounding density in the MFC. The main objective of this factorial analysis was to determine 

the spatial dimension that accounts for the most variation in TCS efficacy. 

4.3.6 Additional Models 

 

 In addition to the 3k factorial study design, several dome shaped cysts were analyzed with 

equal dimensions in each spatial direction of 4, 6, 8, 10, and 12 mm. Due to the large range of 

reported spatial dimensions, more information regarding smaller cysts was warranted. We 

hypothesized that height would be the most influential characteristic in TCS efficacy, and it was 

of clinical significance to then determine the height (or another characteristic) in which the TCS 

begins to be beneficial. Dome-shaped cysts are a common appearance of cysts early in 

formation.  

Finally, an additional model was developed from the other actual cystic CT scan. This 

model was developed using the same procedures as detailed above. Using the original model 

with the true cystic geometry and the additional cystic model, comparisons could be made 

against the factorial study results. These models had cyst height, width, and depth dimensions of 

1) 15, 8.5, and 8 mm; 2) 4.5, 4.5, and 5.5 mm. 
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Figure 4.4 Cranial planes revealing 3 different sized cysts used in the study. Left: 2 mm height, 2 

mm width, and 2 mm depth. Middle: 14 mm height, 8 mm width, and 10 mm depth. Right: 26 

mm height, 14 mm width, and 20 mm depth. These cysts were made by manipulating the cyst 

shown in Figures 4.1 and 4.3. 

 

Figure 4.5. Cranial plane showing the artificial bone segmentation that occurred for 2 mm height 

cysts (purple). The purple region appears radiolucent in the CT scan and had to be filled in with a 

separate part from bone as to not give it too low of a modulus when properties were mapped 

using Hounsfield Units.  
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4.3.7 Bone Formation Area 

 

In our previous study, Beaupre, Carter, and Orr’s theory of bone remodeling was utilized 

to predict SBC healing and will be employed again for this analysis.37,38 In summary, a tissue 

stimulus (Ψ) is calculated that predicts bone resorption, bone apposition, or no net bone change. 

Ψ is calculated using the following equation: 

 

Ψ = (∑ 𝑛𝑖 ∗ 𝜎𝑏𝑖

𝑚

𝑑𝑎𝑦

)

1
𝑚

 

(Eq. 5) 

 

where 𝑛𝑖 is the number of cycles per day (for a given load) assumed to be 3000, 𝜎𝑏𝑖
 is a true 

bone tissue-level effective stress, and m is an empirical constant assumed to be 6.39 𝜎𝑏𝑖
 is defined 

as: 

 

 
𝜎𝑏𝑖

=
𝜌𝑐

2√2 ∗ 𝐸 ∗ 𝑈   

𝜌𝑎
2

 

 

(Eq. 6) 

 

where ρc is the tissue density of cortical bone (assumed to be 1.92 g/cc), ρa is the apparent 

density of the local tissue, E is the local elastic modulus, and U is the local strain energy density. 

The theory is based on the idea that an “error” between the tissue stimulus,Ψ, and an attractor 

state, an equilibrium value that bone is trying to achieve, drives bone remodeling. Using previous 

studies of bone’s response to loading, Beaupre et al. determined that the equilibrium state was 
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between 40 and 60 MPa. If the error between the tissue stimulus and the attractor state is 

positive, bone apposition is predicted. If the error is negative, bone resorption in predicted. Thus, 

values of Ψ greater than 60 MPa predict bone apposition, and values of Ψ less than 40 predict 

bone resorption. Ψ was calculated on the interior surface elements of the SBC, and a percentage 

of the available surface area exceeding 60 MPa was calculated as the bone formation area (BFA). 

BFA was calculated at baseline (0 N of compression) and again after 300 N of compression was 

applied across the screw. The difference between the two analyses was calculated as the final 

output to quantify the efficacy of the screw. Multivariate regression analysis was performed 

using the factorial study data to identify the spatial characteristics that best explain the variance 

in the results. 

4.3.8 Third Principal Stress Vectors 

 

 In addition to calculating the bone formation area generated from a transcondylar screw 

at 900 N joint load, third principal stress vectors were plotted for a small (2x2x2 mm, for height, 

width, and depth), medium (14x4x10mm), and large cyst (26x14x20mm). The goal was to 

determine if the realignment of the stresses with the screw axis would occur for each SBC size. 

 

 

 

 

 

 



137 
 

4.4 Results 

 

4.4.1 3k factorial study 

 

In general, using a TLS with 300 N of compression increases BFA in taller and deeper 

cysts (Table 4.2). Before TLS compression, BFA is <10% in 24/27 (88%) models and was < 

20% in the remaining 3. After TLS compression, BFA is <10% in 11/27 (41%) models and 

>20% in 10/27 models (37%). After TLS compression, BFA on average increased  3% for SBC 

2 mm in height, increased a mean of 16% (range 6-31%) for SBC 14 mm high, and increased a 

mean of 22% (5-34%) for SBC 26 mm high. Mapping of bone formulation stimulus with TLS by 

cyst height reveals that the 2 mm high SBC (Figure 4.6A) is not contacted by the TLS and the 

TLS produces a very small area of bone formation stimulus near the screw, but not near the cyst. 

At 14 mm high, the screw crosses the top of the cyst (Figure 4.6B) increasing BFA, and at 26 

mm in height, (Figure 4.6C) still greater BFA is stimulated. Regression analysis of cyst 

dimensions revealed that cyst height had the largest effect on BFA stimulated by the TLS. Cyst 

height accounted for 56% of the variation in BFA (p < 0.001), cyst depth accounted for 12% of 

the variation (p < 0.005), and cyst width had negligible effect. The coefficient of multiple 

determination is 0.68 when accounting for all three variables. Residual plots of height and depth 

demonstrate that the unaccounted variance is stochastic and cannot be further refined using the 

spatial predictors. An F-Test shows significance for the regression model (F < 1.03E-06). 
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Table 4.2. Bone formation area (BFA) calculated with 3k factorial study design ordered by 

decreasing BFA percent change after 300 N of compression was applied across the transcondylar 

lag screw (TLS). A neutral screw (0 N of compression) is equivalent to using no screw at all with 

a small joint load of 900 N. 

SBC 

height 

SBC 

width  

SBC 

Depth 

BFA %  

0 N TLS 

Compression  

BFA %  

300 N TLS 

Compression 

% 

Increase 

BFA 

26 2 10 0 34 34 

26 2 20 0 34 34 

14 14 20 17 48 31 

26 14 20 1 30 29 

26 8 10 0 28 28 

14 14 10 1 28 27 

26 14 10 1 25 24 

26 8 20 1 23 22 

14 8 20 6 26 20 

14 8 10 1 16 15 

26 8 2 0 15 15 

14 2 2 0 14 14 

14 2 10 0 12 12 

14 2 20 0 10 10 

14 14 2 0 9 9 

26 14 2 0 8 8 

14 8 2 0 6 6 

26 2 2 0 5 5 

2 14 20 19 22 3 

2 2 20 6 7 1 

2 2 10 4 5 1 

2 8 20 4 5 1 

2 14 2 1 2 1 

2 14 10 12 12 0 

2 8 10 3 3 0 

2 2 2 0 0 0 

2 8 2 0 0 0 
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Figure 4.6. Bone remodeling stimulus for three selected cyst sizes. A) 2, 2, 2 mm height, width, 

and depth. B) 14, 8, 10 mm height, width, and depth. C) 26, 14, 20 mm height, width, and depth. 

As a larger area of the screw can penetrate the cyst cavity, more appositional stimulus is 

achieved on the inner surface of the void. L = lateral, M = medial. 

4.4.2 Equal dimension dome-shaped cysts 

 

 Dome-shaped cysts up to 8 mm parameter lengths demonstrate a 0% increase in BFA 

using a TLS screw. At 10 mm, the BFA increased by 4% and BFA with 12 mm increased by 5% 

(Table 4.3). At 10 and 12 mm, the screw is able to partially penetrate the cavity but still does not 

cleanly cross through the cyst (Figure 4.7). At the typical screw position chosen, the entire screw 

does not cross through the cyst until the SBC is 14 mm in height, and the factorial study shows 

larger increases in BFA at this height.  
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Table 4.3. Equal dimension cyst analyses results listed from least BFA % difference to greatest. 

At 10 mm height, the compression across the lag screw begins to make a measurable difference. 

Height Width Depth 

BFA % 

Before 

BFA % 

After 

% 

Difference 

4 4 4 0 0 0 

6 6 6 2 2 0 

8 8 8 1 1 0 

10 10 10 2 6 4 

12 12 12 2 7 5 
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Figure 4.7. Cranial cross-sections showing proximal-distal/oblique screw holes with different 

sized cysts (shown as height-width-depth : % BFA increase). As more of the screw is able to 

penetrate into the cavity of the void, % BFA increases. Different planar cuts are used for each 

cyst to show the screw hole and are not through the centroid of the cyst. 

4.4.3 Two comparative cystic CT models 

 

 The natural cyst models demonstrated predictable results based on the previous 

regression analysis (Figure 4.8). For the larger 15.5 mm height cyst, a TLS with 300 N of 

compression generated a 9% increase in BFA. For the smaller 4.5 mm height cyst, no measurable 
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BFA was generated. The screw was able to penetrate the cavity of the larger cyst whereas the 

screw passed over the proximal aspect of the smaller cyst. 

 

Figure 4.8. Bone-formation stimulus for two natural cysts with 900 N joint load, 300 N of screw 

compression, and 3000 cycles per day. Left) 15.5 mm height cyst with the cranial planar cut 

occurring just cranial to the screw to show the cyst’s necking at the joint margin. For this cyst, 

most of the stimulus occurs in the proximal portions of the cyst. Right) 4.5 mm height cyst that 

does not have any communication with the joint space. The forage hole can be clearly seen for 

this cranial cross-section. The ROI has been enlarged for this cyst to show the stimulus that 

occurs in the abaxial portions of the forage hole. L = lateral, M = medial. 

4.4.4 Third Principal Stress Vectors 

 

 Cyst size influences the screw’s ability to realign stresses to be transverse to the MFC. 

With cystic penetration from the screw, third principal stress vectors are higher in magnitude and 

are aligned with the screw axis (Figure 4.9). With smaller cysts, there is negligible difference in 
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third principal stress direction and magnitude before and after 300 N of compression is applied 

across the screw. 
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Figure 4.9. Third principal stress vectors without screw compression (left column) and after 300 

N of compression across the TLS (right column) for three different sized cysts. The figure shows 

the 3-D elements with facets that form the inner lining of the cyst. 

A) large cyst with 26, 14, 20, height, width, and depth, respectively. 

B) medium cyst with 14, 14, 10, height, width, and depth, respectively. 

C) small cyst with 4, 4, 4, height, width, and depth, respectively. 

L = lateral, M = medial. 
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4.5 Discussion 

 

In our previous work (in review), a plausible mechanism was identified that enables a TLS to 

elicit a healing response in a subchondral void. The screw provides mechanical stimulus into the 

surrounding bone and aligns third principal stress vectors to be transverse to the existing 

trabecular orientation. In that study, a single cyst was used, and the question of cyst specificity 

arose. Anecdotal evidence suggests that the transcondylar screw treatment benefits larger cysts 

more than smaller cysts. As such, this study investigated the issue of cyst specificity and tested 

the hypothesis that larger (taller) cysts respond more favorably to the TLS.   

Compared to existing treatments, the screw is unique in that it substantially alters the 

biomechanical environment in the trabecular bone surrounding SBCs. It seems reasonable that 

the screw should penetrate the cavity and have a defined entrance to and exit from the cyst. If the 

screw achieves this positioning, one would expect larger stresses to be generated in the cyst inner 

surface upon axial compression of the screw. This would occur because of bending stresses taken 

on by the surface of the cyst. Also, less stress is in the inner surface of the cyst when the screw is 

above the cyst because the intact bone carries the load. The results from this study appear to 

confirm the importance of screw penetration into the cystic cavity. 

The two spatial characteristics of the cyst that make full penetration possible are height and 

depth. Since the PDO screw position is constrained by the regional anatomy, as the screw head 

cannot contact the cartilage or meniscus, cyst height is especially important. At 14 mm in height, 

given the screw placement, full penetration of the screw into the cyst is made possible and large 

increases in BFA are observed. When the screw goes above the cyst, it has little effect on the 

BFA (Figure 4.6A). Cyst depth (anterio-posterior) had a moderate impact on BFA in this study 

but may have had a larger effect if the screw position was not held constant. Given a constant 
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screw position in the MFC, a smaller depth does not ensure that the screw would cross the 

cavity. As the depth increased, the screw was more likely to penetrate, or able to penetrate to a 

greater extent, and the BFA increased accordingly. In clinical application, a surgeon would have 

more control in aiming the screw to account for the depth but less control to accommodate the 

height. It is important that the screw not damage the subchondral bone or soft tissue. 

Cyst width (medial-lateral) does not have a substantial effect on BFA increases when using a 

TCS. If the cyst is high enough and deep enough, it will pass through a cyst regardless of the 

medial-lateral width. However, the width at the joint margin appears to have substantial effect on 

BFA, although not explicitly tested for in this study. In the 3k factorial study, cysts with heights 

of 14 mm and 26 mm were narrowed at the joint margin, as observed clinically. This narrowing 

causes more load to be carried to the central portions of the distal condyle. With less area 

carrying the load, stress increases. Figure 4.7 illustrates this effect. With the narrowing at the 

joint margin, large areas of bone formation are predicted at the joint margin compared to the 12-

12-12 cystic dimensions. In the 12-12-12 cyst, bone at the joint margin is not present to undergo 

these large stresses, and there is no extra stimulus generated at the cystic rim. 

We hypothesized that smaller cysts (more specifically, lower cysts) would not respond as 

well to the TCS compared to larger cysts. This was based off poorer clinical outcomes when 

treating smaller/lower cysts. Our study confirms this hypothesis, and a traditional TCS does not 

stimulate bone formation in small cysts. The stress generated from axial compression in the 

screw is not able to affect the bone below the screw. With more joint load, BFA would increase, 

however, our previous study shows that third principal stress vectors are not across the cyst if the 

screw is above the void. Not only is the stimulus not present at lower joint loads, but the stress 

alignment is not preferential for bone growth across the void even if enough load were present to 
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stimulate formation. Consequently, sclerosis is more likely to form rather than radiographic 

healing.  

In order to reach lower cysts, a lower and more horizontal screw would be required, but the 

screw head would interfere with the medial meniscus. It may be possible to reach and stimulate 

bone formation in such cysts with a dual pitch headless screw, if enough compression can be 

achieved across the cyst. However, 300 N of compression appears to be crucial in order to elicit 

the high BFA response. Experimental testing would be required before the dual pitch screw 

could be further considered as a viable clinical option. 

There are several limitations to this study. The model was not subject-specific and was not 

validated using directly measured kinetic data. Equine kinetic data is scarce, and validation is 

therefore difficult. As such, sensitivity analyses were performed on the material properties and 

boundary conditions, and the qualitative conclusions of this study were not affected. Also, our 

previous study addressed the effect of joint loading, and it was found that joint loading has a 

significant impact on BFA. This study only uses a 900 N load only, which corresponds to the 

loads expected the first few weeks post-surgery. Higher loads would generate larger BFA. In the 

factorial study, a single stifle model was used for all 27 cyst configurations. Consequently, the 

sclerotic region was assumed around all of the cysts, and for the lower cysts, the artificial bone 

region had to be present. In order to help address this limitation, the two natural cyst models 

were used to confirm the results from the factorial study. Also, the bone remodeling theory 

framework is based on limited samples that do not include equine data. While absolute values are 

not definitive, the relative values of stress stimulus between models clearly indicate the relative 

effectiveness of the lag screw for various sized cysts. 
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In conclusion, this study found that a transcondylar screw should be very effective in treating 

larger cysts. The TLS increases stress stimulus in the bone around the cyst to promote bone 

apposition and directs compression across the cyst. If full penetration of the screw through the 

cyst is possible, it is recommended that the transcondylar screw be used to treat subchondral 

bone cysts. Future work should investigate the use of a dual-pitch headless screw for 

lower/smaller cysts. 
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5. Conclusion 
 

5.1 Summary 

 In this study, finite element analysis provided a detailed look at the mechanics of 

subchondral bone cysts (SBCs). Specifically, intra-osseous stresses were analyzed in the medial 

femoral condyle (MFC) of a healthy stifle joint to predict whether or not an SBC could form 

from daily loading. Furthermore, these stresses were analyzed once a defect was already in place 

in the MFC to predict further damage and SBC progression. Finally, the mechanics of the 

transcondylar screw (TCS) treatment were examined. Evidence has been provided to support the 

TCS as a uniquely effective surgical technique for equine SBC treatment. 

5.2 Major Findings and Conclusions 

5.2.1 Mechanics Associated with an Equine Subchondral Bone Cyst 

 Chapter 2 addressed mechanics in the equine stifle joint with and without a SBC. The 

initial findings from the study were that intra-osseous stresses in a healthy MFC during high-

impact (ground reaction force during gallop) could initiate an SBC. Shear stresses above yield 

strength were found on the surface of the MFC where SBCs most often develop, and these high 

stresses extended several millimeters into the subchondral bone. The study continued by creating 

a void in the MFC to create a simulated SBC. With high-impact loading, shear stresses increased 

substantially above yield, and the potential for further SBC progression was made evident. These 

findings support the trauma hypothesis and SBCs forming with mechanical overload in the 

absence of cartilage degeneration. 

 In addition to the increased intra-osseous stresses that occur with an SBC, increased shear 

stresses in the medial meniscus were found. These increased stresses occur along the inner rim of 
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the meniscus, an area prone to secondary injury with a MFC SBC. This finding highlights the 

altered load path that occurs when load cannot properly transfer through the condyle into the 

articulation with the tibial plateau. Instead of load passing through the void, the load must be 

transferred around the cyst, creating higher stresses in the cystic boundary and into the medial 

meniscus. Therefore, a major conclusion from this study confirms that treatment strategies 

addressing SBCs in the medial femoral condyle should seek to improve radiographic healing in 

order to restore proper load transfer. Return to soundness as a metric for surgical success does 

not protect against future reinjury or secondary injury in the soft tissues of the joint. 

5.2.2 How a Transcondylar Screw Affects Bone Formation in an Equine Subchondral Bone Cyst 

 Chapter 3 investigated the hypothesis that the transcondylar screw treatment achieves 

radiographic healing by providing bone formation stimulus to the adjacent bone of a SBC. Bone 

stimulus was quantified using an existing theory of bone remodeling, and the hypothesis was 

confirmed. The axial compression provided by the screw through the applied torque of 

implantation creates increased, non-damaging stresses in the adjacent bone. Perhaps, equally as 

important, the compression across the SBC aligns third principal stresses to be transverse to the 

trabecular orientation, which encourages growth across the void as opposed to trabecular 

densification (sclerosis). This ability to reorient stresses explains why the TCS achieves 

radiographic healing, while regular post-surgery rehabilitation does not. Further, if the screw is 

placed above the cyst, likelihood of healing is decreased. The TCS is the only available treatment 

for equine SBC that provides this effect. Therefore, the major conclusion from this study 

supports the use of a TCS as the most rational surgical option to veterinarians treating SBCs. 
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5.2.3 Impact of Cyst Size and Shape on Bone Formation Stimulus Using a Transcondylar Screw 

 Chapter 4 extended the work of chapter 3 by further examining the TCS. Chapter 3 

confirmed the effectiveness of the TCS but only for a specific SBC size and shape. Chapter 4 

investigated 30+ additional cyst sizes and shapes and identified the cysts that best respond to the 

TCS treatment. The major finding from this study was that the screw must penetrate the cystic 

cavity to achieve a high bone-formation stimulus, as well as realigning stresses to be transverse 

to trabecular orientation. Therefore, smaller cysts are not as responsive to the current standard of 

TCS implantation. However, at the onset of lameness, cysts are generally large enough to 

achieve screw penetration through the cyst. 

5.3 Future Work 

 While this study has provided substantial findings and conclusions, there is a tremendous 

amount of opportunity for additional research. Based off of the findings from this study, three 

proposed studies could provide further impact in properly treating bone lesions:  

1) Patient-specific modeling of an equine SBC with monitored progress after TCS implantation. 

2) Identify other surgical techniques (TCS variations) to address smaller SBCs.  

3) Translate the findings for human applications. 

5.3.1 Patient-Specific Modeling 

 Chapter 3 provided substantial evidence that the mechanism of healing using the TCS has 

been identified. With clinical results and the finite element modeling predictions in good 

agreement, initial healing of SBCs using a TCS has been demonstrated. The finite element model 

predicts that the strongest stimulus for bone apposition occurs at the joint margin. Clinical 

observations support this finding with SBCs usually healing by closing at the joint margin first. 

Beyond the initial healing, it is unknown how the TCS influences SBC mechanics, nor is it 
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known if the screw is even able to maintain consistent compression after several weeks. By 

carefully tracking the healing progress of an SBC after TCS implantation, more information can 

be gathered to compare against future model predictions. 

 For example, after 4 weeks of TCS implantation, a newer CT scan can be taken of the 

stifle joint to gain a 3-D understanding of the bone growth that has occurred. The model can then 

be updated to put bone back into the void where bone has grown in the live animal. Using this 

updated configuration, the finite element model can then be used to predict the mechanics of the 

SBC after initial healing has already occurred. Due to the deposition of woven bone with little 

trabecular alignment, the healing response may not be as sensitive to direction of loading. 

Therefore, future healing may depend on joint load more so than the TCS. Perhaps, the TCS is 

not even able to generate compression anymore as trabecular creep and remodeling occur. 

Nonetheless, different scenarios can be tested in the model, bone healing response can be 

predicted, and these results can then be compared against updated CT scans of the horse as time 

progresses to better understand how bone and joint mechanics affect healing. 

 The woven bone that initially occurs may cause a cascading effect of more healing for a 

few reasons. 1) it is not as sensitive to the direction of loading, 2) the newly formed bone at the 

joint margin will see a high local mechanical stimulus as the joint loading can now affect this 

part of the MFC and stimulate further apposition, and 3) cellular and chemical agents necessary 

for growth would already be present at the joint margin. With these three factors occurring, the 

model may show that the TCS is no longer providing the primary influence for bone formation. 

Currently, there is clinical support for this hypothesis with anecdotal evidence that removing the 

screw from a partially healed SBC does not inhibit further healing. In addition, more 

sophisticated screw materials could be considered that are resorbed into the body. This would 
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eliminate the need for screw removal (an additional surgery), and the degradation products may 

even be beneficial to bone growth. Immediate future work should investigate the use of novel 

screw materials, such as resorbable magnesium alloys, to treat SBCs. 

 Using time-updated model progressions (simulations) would allow for a much deeper 

understanding in how SBCs continue to heal after the initial healing at the joint margin. With a 

deeper understanding would come further refinements in treatment strategies, further improving 

success rates. 

5.3.2 Small Subchondral Bone Cysts 

 With more and more frequent radiography performed on horses intended for 

performance, the likelihood of identifying early, smaller SBCs increase. The currently 

administered TCS placement does not appear to provide sufficient healing stimulus for these 

smaller defects. While rest and conservative treatment has historically been more successful with 

smaller cysts than larger cysts, the need for improvement still warrants novel treatment options. 

As a preliminary investigation, using the finite element models from chapters 2-4, a theoretical, 

headless screw (e.g. Herbert screw) was placed lower in the MFC in horizontal fashion. This 

configuration showed a substantial increase in bone formation stimulus not exhibited with the 

traditional proximoblique TCS (currently unpublished data). 

 While the early findings are encouraging, too many assumptions were made to validate 

this as a possible treatment option, and more information is needed before this option is 

recommended. For one, the model assumed 300 N of compression could be generated across the 

headless screw. The importance of compression was demonstrated in chapter 3, and the amount 

of compression from a headless screw is unknown. A recent study produced ~100 N of 

compression using a headless screw, much lower than the assumed 300 N.1 Second, the 
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positioning possible for the clinical application has not been determined, and a low, distal 

position was assumed. More work is needed experimentally, computationally, and clinically to 

assess headless screws as a treatment for small SBCs. 

 If more work is spent to develop techniques for smaller and/or difficult to access bone 

lesions, the benefits could be enormous. Clearly, developing variations of the trans-cyst screw 

treatment for use in smaller, lower cysts could reduce the incidence of equine SBC lameness 

substantially. With radiography becoming more frequent in developing horses, the chances to 

discover a small, asymptomatic cyst is higher. Stopping these cysts from further developing and 

jumpstarting the healing process early could have a monumental impact in the equine 

performance industry. Furthermore, smaller and/or difficult to access cysts exist in areas outside 

the equine stifle joint. Bone defects can occur in all equine extremity bones. This would provide 

additional research needed for the eventual translation into human application.  

5.3.3 Human Application 

 This work detailed the mechanical advantage that a trans-cyst screw gives to promote 

bone formation. Its utility and efficacy were clearly described in chapters 3 and 4 for equine 

SBCs. However, the trans-cyst screw treatment’s utility may benefit not only equine SBCs but 

human bone lesions, as well. Described in chapter 1, humans suffer from a wide variety of bone 

lesions that exhibit similar characteristics to equine SBCs. There is no consensus on how best to 

treat these defects, and there is plenty of room for improvement. The trans-cyst screw’s ability to 

stimulate bone formation could be a simple, low-cost, and very effective solution to human bone 

lesion problems worldwide. 

 The same finite element modeling approach could be used with human anatomy to 

determine if enough stimulus from a trans-cyst screw could theoretically be generated to promote 
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bone formation. Considering differences in bone density, expected loading from activity, 

geometry, cyst location, etc., the trans-cyst treatment could be tailored to benefit the wide 

spectrum of human bone lesions. Millions of patients suffering from bone lesions could benefit 

from an effective treatment that promotes bone formation. It is envisioned that the low-cost, low-

risk surgery could readily be applied to human patients. 
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6. Appendix 
 

Sensitivity analysis was performed for several of the models used in Aim 2. These models were tested 

with 1800 N joint load and 3000 cycles per day. For the meniscal values, half represents a half-value 

modulus for the 6 anisotropic moduli, while double represents double-value moduli. The reported 

stresses and strain energy densities (SED) are peak values obtained as the 95% percentile. Also reported 

is the available surface area of the cyst stimulated for bone formation (% BFA). Varying various soft 

tissue parameters, as well as loading conditions did not substantially change the reported result. The 

most influential change was raising the loading angle to 10 degrees. This loading angle doesn’t appear to 

be physiological as the line of loading would extend significantly anterior to the femoral shaft and 

condyles at the distal end of the bone. 

Table 6.1. Sensitivity analysis for the baseline model in Aim 2 – Void only. 

1800 N Load - 2 cm3 void - No Screw - Model Used in Aim 2 

            

  
Tension 
(MPa) 

Compression 
(MPa) 

Shear 
(MPa) 

SED % BFA 

            

Low Cartilage 
(4 MPa) 

0.67 3.27 3.20 7.58E-04 1 

High Cartilage 
(16 MPa) 

0.90 3.78 3.83 1.10E-03 3 

            

Low Meniscus 
(Half) 

0.88 3.67 3.72 1.00E-03 2 

High Meniscus 
(Double) 

0.70 3.35 3.30 8.02E-04 1 

            

Low Load 
Angle (0) 

0.75 3.60 3.49 9.32E-04 1 

High Load 
Angle (10) 

0.96 4.11 4.12 1.20E-03 7 

            

Low Patellar 
Load (50 N) 

0.74 3.60 3.49 9.32E-04 1 

High Patellar 
Load (200N) 

0.76 3.61 3.52 9.34E-04 1 

        
Reported 

Value 
1 
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Table 6.2. Sensitivity analysis for the Drilled Hole model used in Aim 2. 

1800 N Load – 2 cm3 void – Drilled Hole – Model Used in Aim 2 

            

  
Tension 
(MPa) 

Compression 
(MPa) 

Shear 
(MPa) 

SED % BFA 

            

Low Cartilage 
(4 MPa) 

0.82 3.62 3.62 9.44E-04 1 

High Cartilage 
(16 MPa) 

1.09 4.14 4.24 1.30E-03 1 

            

Low Meniscus 
(Half) 

1.06 4.04 4.11 1.20E-03 3 

High Meniscus 
(Double) 

0.85 3.71 3.72 9.95-04 1 

            

Low Load 
Angle (0) 

0.96 3.76 3.84 1.00E-03 2 

High Load 
Angle (10) 

1.23 4.55 4.66 1.50E-03 9 

            

Low Patellar 
Load (50 N) 

1.01 3.94 4.00 1.10E-03 2 

High Patellar 
Load (200N) 

0.80 3.67 3.64 9.69E-04 1 

        
Reported 

Value 
2 
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Table 6.3. Sensitivity analysis for the proximoblique screw model with 300 N of compression 

used in Aim 2. 

1800 N Load - 2 cm3 void - Lag Screw 300 - Model Used in Aim 2 

            

  
Tension 
(MPa) 

Compression 
(MPa) 

Shear 
(MPa) 

SED % BFA 

            

Low Cartilage 
(4 MPa) 

2.66 5.62 6.97 3.10E-03 21 

High Cartilage 
(16 MPa) 

2.75 6.05 7.52 3.50E-03 31 

            

Low Meniscus 
(Half) 

2.73 6.00 7.42 3.50E-03 31 

High Meniscus 
(Double) 

2.67 5.66 7.02 3.10E-03 22 

            

Low Load 
Angle (0) 

2.69 5.81 7.18 3.20E-03 25 

High Load 
Angle (10) 

2.80 5.92 7.40 3.40E-03 30 

            

Low Patellar 
Load (50 N) 

2.75 5.87 7.28 3.30E-03 28 

High Patellar 
Load (200N) 

2.59 5.62 6.92 3.00E-03 20 

        
Reported 

Value 
25 

 


