1,939 research outputs found

    PAC Classification based on PAC Estimates of Label Class Distributions

    Full text link
    A standard approach in pattern classification is to estimate the distributions of the label classes, and then to apply the Bayes classifier to the estimates of the distributions in order to classify unlabeled examples. As one might expect, the better our estimates of the label class distributions, the better the resulting classifier will be. In this paper we make this observation precise by identifying risk bounds of a classifier in terms of the quality of the estimates of the label class distributions. We show how PAC learnability relates to estimates of the distributions that have a PAC guarantee on their L1L_1 distance from the true distribution, and we bound the increase in negative log likelihood risk in terms of PAC bounds on the KL-divergence. We give an inefficient but general-purpose smoothing method for converting an estimated distribution that is good under the L1L_1 metric into a distribution that is good under the KL-divergence.Comment: 14 page

    Pac-Learning Recursive Logic Programs: Efficient Algorithms

    Full text link
    We present algorithms that learn certain classes of function-free recursive logic programs in polynomial time from equivalence queries. In particular, we show that a single k-ary recursive constant-depth determinate clause is learnable. Two-clause programs consisting of one learnable recursive clause and one constant-depth determinate non-recursive clause are also learnable, if an additional ``basecase'' oracle is assumed. These results immediately imply the pac-learnability of these classes. Although these classes of learnable recursive programs are very constrained, it is shown in a companion paper that they are maximally general, in that generalizing either class in any natural way leads to a computationally difficult learning problem. Thus, taken together with its companion paper, this paper establishes a boundary of efficient learnability for recursive logic programs.Comment: See http://www.jair.org/ for any accompanying file

    Online Learning: Beyond Regret

    Get PDF
    We study online learnability of a wide class of problems, extending the results of (Rakhlin, Sridharan, Tewari, 2010) to general notions of performance measure well beyond external regret. Our framework simultaneously captures such well-known notions as internal and general Phi-regret, learning with non-additive global cost functions, Blackwell's approachability, calibration of forecasters, adaptive regret, and more. We show that learnability in all these situations is due to control of the same three quantities: a martingale convergence term, a term describing the ability to perform well if future is known, and a generalization of sequential Rademacher complexity, studied in (Rakhlin, Sridharan, Tewari, 2010). Since we directly study complexity of the problem instead of focusing on efficient algorithms, we are able to improve and extend many known results which have been previously derived via an algorithmic construction

    Learning Ordinal Preferences on Multiattribute Domains: the Case of CP-nets

    Get PDF
    International audienceA recurrent issue in decision making is to extract a preference structure by observing the user's behavior in different situations. In this paper, we investigate the problem of learning ordinal preference orderings over discrete multi-attribute, or combinatorial, domains. Specifically, we focus on the learnability issue of conditional preference networks, or CP- nets, that have recently emerged as a popular graphical language for representing ordinal preferences in a concise and intuitive manner. This paper provides results in both passive and active learning. In the passive setting, the learner aims at finding a CP-net compatible with a supplied set of examples, while in the active setting the learner searches for the cheapest interaction policy with the user for acquiring the target CP-net

    Relational Representations in Reinforcement Learning: Review and Open Problems

    Get PDF
    This paper is about representation in RL.We discuss some of the concepts in representation and generalization in reinforcement learning and argue for higher-order representations, instead of the commonly used propositional representations. The paper contains a small review of current reinforcement learning systems using higher-order representations, followed by a brief discussion. The paper ends with research directions and open problems.\u

    NP-hardness of circuit minimization for multi-output functions

    Get PDF
    Can we design efficient algorithms for finding fast algorithms? This question is captured by various circuit minimization problems, and algorithms for the corresponding tasks have significant practical applications. Following the work of Cook and Levin in the early 1970s, a central question is whether minimizing the circuit size of an explicitly given function is NP-complete. While this is known to hold in restricted models such as DNFs, making progress with respect to more expressive classes of circuits has been elusive. In this work, we establish the first NP-hardness result for circuit minimization of total functions in the setting of general (unrestricted) Boolean circuits. More precisely, we show that computing the minimum circuit size of a given multi-output Boolean function f : {0,1}^n ? {0,1}^m is NP-hard under many-one polynomial-time randomized reductions. Our argument builds on a simpler NP-hardness proof for the circuit minimization problem for (single-output) Boolean functions under an extended set of generators. Complementing these results, we investigate the computational hardness of minimizing communication. We establish that several variants of this problem are NP-hard under deterministic reductions. In particular, unless ? = ??, no polynomial-time computable function can approximate the deterministic two-party communication complexity of a partial Boolean function up to a polynomial. This has consequences for the class of structural results that one might hope to show about the communication complexity of partial functions

    Top-Down Induction of Decision Trees: Rigorous Guarantees and Inherent Limitations

    Get PDF
    Consider the following heuristic for building a decision tree for a function f:{0,1}n→{±1}f : \{0,1\}^n \to \{\pm 1\}. Place the most influential variable xix_i of ff at the root, and recurse on the subfunctions fxi=0f_{x_i=0} and fxi=1f_{x_i=1} on the left and right subtrees respectively; terminate once the tree is an Δ\varepsilon-approximation of ff. We analyze the quality of this heuristic, obtaining near-matching upper and lower bounds: ∘\circ Upper bound: For every ff with decision tree size ss and every Δ∈(0,12)\varepsilon \in (0,\frac1{2}), this heuristic builds a decision tree of size at most sO(log⁥(s/Δ)log⁥(1/Δ))s^{O(\log(s/\varepsilon)\log(1/\varepsilon))}. ∘\circ Lower bound: For every Δ∈(0,12)\varepsilon \in (0,\frac1{2}) and s≀2O~(n)s \le 2^{\tilde{O}(\sqrt{n})}, there is an ff with decision tree size ss such that this heuristic builds a decision tree of size sΩ~(log⁥s)s^{\tilde{\Omega}(\log s)}. We also obtain upper and lower bounds for monotone functions: sO(log⁥s/Δ)s^{O(\sqrt{\log s}/\varepsilon)} and sΩ~(log⁥s4)s^{\tilde{\Omega}(\sqrt[4]{\log s } )} respectively. The lower bound disproves conjectures of Fiat and Pechyony (2004) and Lee (2009). Our upper bounds yield new algorithms for properly learning decision trees under the uniform distribution. We show that these algorithms---which are motivated by widely employed and empirically successful top-down decision tree learning heuristics such as ID3, C4.5, and CART---achieve provable guarantees that compare favorably with those of the current fastest algorithm (Ehrenfeucht and Haussler, 1989). Our lower bounds shed new light on the limitations of these heuristics. Finally, we revisit the classic work of Ehrenfeucht and Haussler. We extend it to give the first uniform-distribution proper learning algorithm that achieves polynomial sample and memory complexity, while matching its state-of-the-art quasipolynomial runtime
    • 

    corecore