

warwick.ac.uk/lib-publications

Manuscript version: Author’s Accepted Manuscript
The version presented in WRAP is the author’s accepted manuscript and may differ from the
published version or Version of Record.

Persistent WRAP URL:
http://wrap.warwick.ac.uk/136512

How to cite:
Please refer to published version for the most recent bibliographic citation information.
If a published version is known of, the repository item page linked to above, will contain
details on accessing it.

Copyright and reuse:
The Warwick Research Archive Portal (WRAP) makes this work by researchers of the
University of Warwick available open access under the following conditions.

Copyright © and all moral rights to the version of the paper presented here belong to the
individual author(s) and/or other copyright owners. To the extent reasonable and
practicable the material made available in WRAP has been checked for eligibility before
being made available.

Copies of full items can be used for personal research or study, educational, or not-for-profit
purposes without prior permission or charge. Provided that the authors, title and full
bibliographic details are credited, a hyperlink and/or URL is given for the original metadata
page and the content is not changed in any way.

Publisher’s statement:
Please refer to the repository item page, publisher’s statement section, for further
information.

For more information, please contact the WRAP Team at: wrap@warwick.ac.uk.

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Warwick Research Archives Portal Repository

https://core.ac.uk/display/323057997?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://go.warwick.ac.uk/lib-publications
http://go.warwick.ac.uk/lib-publications
http://wrap.warwick.ac.uk/136512
mailto:wrap@warwick.ac.uk

NP-Hardness of Circuit Minimization for Multi-Output Functions

Rahul Ilango∗

MIT

Bruno Loff†

University of Porto

Igor C. Oliveira‡

University of Warwick

February 21, 2020

Abstract

Can we design efficient algorithms for finding fast algorithms? This question is captured
by various circuit minimization problems, and algorithms for the corresponding tasks have
significant practical applications. Following the work of Cook and Levin in the early 1970s, a
central question is whether minimizing the circuit size of an explicitly given function is NP-
complete. While this is known to hold in restricted models such as DNFs, making progress with
respect to more expressive classes of circuits has been elusive.

In this work, we establish the first NP-hardness result for circuit minimization of total
functions in the setting of general (unrestricted) Boolean circuits. More precisely, we show
that computing the minimum circuit size of a given multi-output Boolean function f : {0, 1}n →
{0, 1}m is NP-hard under many-one polynomial-time randomized reductions. Our argument
builds on a simpler NP-hardness proof for the circuit minimization problem for (single-output)
Boolean functions under an extended set of generators.

Complementing these results, we investigate the computational hardness of minimizing com-
munication. We establish that several variants of this problem are NP-hard under deterministic
reductions. In particular, unless P = NP, no polynomial-time computable function can approx-
imate the deterministic two-party communication complexity of a partial Boolean function up
to a polynomial. This has consequences for the class of structural results that one might hope
to show about the communication complexity of partial functions.

∗rilango@mit.edu. This work was supported in part by an Akamai Presidential Fellowship.
†bruno.loff@gmail.com. The author is the recipient of FCT postdoctoral grant number SFRH/BPD/116010/

2016. This work is partially funded by the ERDF through the COMPETE 2020 Programme within project POCI-
01-0145-FEDER-006961, and by National Funds through the FCT as part of project UID/EEA/50014/2013.
‡igor.oliveira@warwick.ac.uk. This work was supported in part by a Royal Society University Research Fel-

lowship.

1

ISSN 1433-8092

Electronic Colloquium on Computational Complexity, Report No. 21 (2020)

Contents

1 Introduction 3
1.1 Results . 3

1.1.1 NP-hardness of circuit minimization . 3
1.1.2 NP-hardness of communication minimization 7

1.2 Techniques . 8
1.2.1 Circuit complexity . 8
1.2.2 Communication complexity . 12

1.3 Further related work . 13

2 Preliminaries 15

3 Warm-up: NP-hardness for arbitrary generators and partial functions 16
3.1 Notation . 16
3.2 A reduction from r-Bounded Set Cover to MDCP . 16
3.3 A reduction from MDCP to Partial-MCSP . 18
3.4 Search-to-decision reduction for Partial-MCSP . 19

4 Main result: NP-hardness of circuit minimization for multi-output functions 20
4.1 Definitions . 20
4.2 A reduction from r-Bounded Set Cover to Multi-MCSP 21
4.3 Search-to-decision reduction for Multi-MCSP . 25

5 On the NP-hardness of communication minimization problems 27
5.1 Background . 27
5.2 A reduction from Graph Coloring to Partial-MCCP 30
5.3 Consequences of the reduction . 30

A The connection between average-case Partial-MCSP and learning 37

2

1 Introduction

The Minimum Circuit Size Problem (MCSP) asks for the size (number of gates) of the smallest
Boolean circuit that computes a given Boolean function f : {0, 1}m → {0, 1}, where f is represented
as a string of length n = 2m. Researchers have investigated this problem and its variants from sev-
eral angles since the early stages of complexity theory (see [Tra84] for some historical perspective).
In particular, over the last two decades there has been a significant interest in understanding
the computational hardness of circuit minimization. This is motivated in part by the discovery
of connections between this problem and a variety of areas, including complexity theory [KC00],
learning theory [CIKK16], cryptography and circuit complexity [RR97], and proof complexity (see
e.g. [Kra11, Part VIII]). In addition, Boolean circuit minimization is of high practical relevance,
and a number of textbooks and monographs have been written about heuristics and other applied
aspects of this problem (cf. [McC65, Sch01, HS06]).1

Despite considerable efforts to understand the computational complexity of circuit minimization,
its NP-hardness status has remained wide open. While there is strong evidence that finding optimal
circuits is intractable (see Section 1.3), some researchers have suggested that circuit minimization
problems such as MCSP might be NP-intermediate (that is, neither in P nor NP-complete). There
is a vast literature on MCSP and this question, and we review the references more directly related
to our work in Sections 1.2 and 1.3 below.

1.1 Results

We investigate the natural variant of MCSP where the input function f : {0, 1}n → {0, 1}m is
allowed to have multiple output bits. Our main contribution is a proof that the circuit minimization
problem for such multi-output functions is NP-hard with respect to randomized reductions. This is
the first NP-hardness result for the circuit minimization of total functions that holds with respect to
the class of general (unrestricted) Boolean circuits. Previous NP-hardness results for total functions
were known when the computational model is considerably restricted, for instance with respect to
DNFs [Lev73, Mas79] (also known as two-level minimization; see e.g. [UVS06]) and DNFs extended
with parity gates at the bottom layer [HOS18].

There are well-known connections between computation and communication (see e.g. [KN97]),
and in the second part of this work we explore the complexity of minimizing communication cost
with respect to deterministic protocols. Among other contributions, we establish the first NP-
hardness result for this model, in the setting that the input communication problem is described
by a partial Boolean matrix in {0, 1, ∗}n×n. In a remarkable paper, Kushilevitz and Weinreb
[KW09] had previously established the intractability of this problem over total Boolean matrices,
but their techniques require cryptographic assumptions. Our proof extends to a stronger hardness
of approximation result, and this has interesting consequences for communication complexity.

We now describe in more detail each of our NP-hardness results and their implications.

1.1.1 NP-hardness of circuit minimization

First, let us fix some notation and terminology. A Boolean circuit consists of fan-in two AND
gates, fan-in two OR gates, and NOT gates. The input gates are labelled by variables x1, . . . , xn.

1The problem is also referred to as Boolean function or Boolean algebra minimization, logic synthesis, circuit
synthesis, logic minimization, circuit optimization, or multi-level minimization in different communities.

3

We measure the size of a Boolean circuit C, denoted |C|, using the number of AND, OR, and
NOT gates in the circuit. (While this is the convention adopted here, our techniques are robust to
modifications of the circuit size measure and of the gate types in the circuit.)

We now introduce the circuit minimization problems considered in our work.

Multi-output Boolean functions. In practice, one is often interested in computing Boolean
functions f that have multiple output bits. Indeed, the vast majority of computations, such as
addition, multiplication, encryption schemes, error-correcting codes, solutions to search problems,
etc., have multiple outputs. In this case, MCSP can give a misleading picture of the circuit complex-
ity of f . For example, if f is the problem of multiplying two n×n matrices over F2, then computing
any specific choice of one of the n2 output bits of f requires a circuit with Ω(n) gates, which seems
to suggest a lower bound of Ω(n3) on matrix multiplication. Of course, it is widely-known that one
can beat the O(n3) time algorithm for matrix multiplication quite significantly!

This motivates the study of circuit minimization for multi-output Boolean functions. We begin
by fixing our notion of multi-output computation. The components of a multi-output Boolean
function f : {0, 1}n → {0, 1}m are the single-output functions that compute the ith output bit of
f for i ∈ [m]. We say a Boolean circuit C computes a multi-output Boolean function f if for each
component fi of f , there is a gate or input wire in C that computes fi.

Definition 1. Multi-MCSP is defined as follows:

– Input. Positive integers n, m, and s represented in unary, and a (multi-output) Boolean
function f : {0, 1}n → {0, 1}m represented by a string of length m · 2n.

– Output. The input is accepted if and only if there exists a Boolean circuit C of size at most
s that computes f .

Note that Multi-MCSP is in NP,2 and that this problem is at least as hard as MCSP.

Partial Boolean functions. Despite the fundamental nature of MCSP, in several natural scenarios
arising from practical or theoretical considerations one does not really care about the output of a
Boolean function on every string of length n.3 For instance, for a problem on graphs, one might be
interested only in graphs that are planar. In such situations, it becomes relevant to understand the
complexity of the corresponding function on a subset of inputs. This is more naturally captured
by a different formulation of MCSP, where irrelevant or inessential inputs of the Boolean function
are omitted. In other words, while MCSP refers to total Boolean functions, it is equally natural to
consider circuit minimization over partial Boolean functions.

Definition 2. Partial-MCSP is defined as follows:

– Input. A positive integer n represented in unary, a collection P of pairs (xi, bi), where xi ∈
{0, 1}n and bi ∈ {0, 1}, and a positive integer s.

– Output. The input is accepted if and only if there exists a Boolean circuit C of size at most
s such that C(xi) = bi for every pair (xi, bi) ∈ P.

2If the parameter s is large then the answer is trivial.
3Such inputs are associated with “don’t care” values in the applied literature.

4

Note that, like Multi-MCSP, Partial-MCSP is in NP and is at least at hard as MCSP.

Boolean functions over an arbitrary set of generators. We also consider circuit minimization
for (single-output, total) Boolean functions f : {0, 1}m → {0, 1} under an arbitrary set of generators.

To explain, let V be a finite set, called the ground set, and B = {Bi}i∈[m] a family of nonempty
sets Bi ⊆ V called generators, and let A ⊆ V . Then we let D(A | B) denote the minimum number
of unions, intersections, and complements that are required to construct A from the sets in B. More
precisely, the complement of a set U ⊆ V is defined as V \ U , and we represent a construction of
A from B as a sequence B1, . . . , Bm, E1, . . . , E` of sets in V such that E` = A and each set Ej is
either the union or intersection of two previously generated sets, or the complement of a previously
generated set. We assume for convenience that D(B | B) = 0 if B ∈ B. We refer to D(A | B) as the
discrete complexity4 of A with respect to B.

It may then be seen the minimum number of AND, OR and NOT gates needed for a Boolean
circuit to compute a Boolean function f : {0, 1}m → {0, 1} is exactly D(f−1(1) | B), where
V = {0, 1}m, and B = {x1, . . . , xm} ⊆ {0, 1}m contains the input variables x1 . . . , xm, seen as
subsets of {0, 1}m (i.e.. xi is the set of strings w ∈ {0, 1}m such that wi = 1). So computing the
discrete complexity D(A | B), for given A and B, generalizes the task of computing the minimum
circuit size, by allowing for the consideration of generator sets B other than {x1, . . . , xm}.

Another possibility is to consider circuit complexity over a family B of generators over a ground
set V other than the set of binary strings. For example, the graph complexity [see Juk12, §1.7] of a
given bipartite graph G = (U × V,E), with E ⊆ U × V , is D(E | B), where B contains all product
sets A × B with A ⊆ U and B ⊆ V . So computing the discrete complexity D(A | B), for given a
given A and B, also generalizes the task of computing graph complexity.

In analogy to MCSP, we now introduce the Minimum Discrete Complexity Problem (MDCP).

Definition 3. MDCP is defined as follows:

– Input. A positive integer n represented in unary describing the size of the ground set V = [n],
a target set A ⊆ V , a family B of nonempty subsets of V , and an integer s.

– Output. The input is accepted if and only if D(A | B) ≤ s.

It is easy to see that MDCP is in NP and that it is more general than MCSP. Our hardness
result for MDCP, discussed below, also holds under the assumption that the ground set V is a
hypercube {0, 1}m and that the collection B contains the sets generated by x1, . . . , xm.

NP-hardness of MDCP, Partial-MCSP, and Multi-MCSP. Note that establishing the hardness of
these problems is necessary before proving hardness of MCSP. This is because instances of MCSP
can be easily converted into instances of each one them.

By adapting techniques from [Ila19], it is not hard to show that MDCP is NP-hard under random-
ized reductions. Moreover, this result almost immediately implies the NP-hardness of Partial-MCSP,
since there is a simple way of converting the circuit minimization of Boolean functions under an ar-
bitrary set of generators into a problem about partial Boolean functions (see Section 3.3). We note
that previous works in learning theory [HJLT96, ABF+08] implicitly contain a substantially simpler

4This general setting was already considered in [PRS88], see also §1.7.2 of Jukna’s book [Juk12]. By Stone’s
representation theorem for Boolean algebras, discrete complexity can be seen as the investigation of circuit complexity
with respect to an arbitrary Boolean algebra.

5

proof that Partial-MCSP is NP-hard, even under deterministic reductions. Unfortunately, there is
strong evidence that this simpler proof has limitations. For instance, if it could be adapted to show
deterministic NP-hardness of MDCP for instances extending the hypercube, then EXP 6= ZPP. This
follows from an argument analogous to [MW15].

Proving the NP-hardness of circuit minimization for total functions seems to require a more
sophisticated argument. We are able to combine the technique that we use to show NP-hardness
of MDCP and Partial-MCSP with several new ideas to establish the following result.

Theorem 1. Multi-MCSP is NP-hard under many-one randomized polynomial time reductions.

We explain the insights leading to the proof of Theorem 1 in Section 1.2. The final argument
is not overly technical, though it took us considerable time to discover the right conceptual ingre-
dients. Could it be the case that MCSP admits a randomized NP-hardness that relies on a clever
modification of existing techniques? As far as we know, the existence of a “standard” randomized
reduction would not imply a breakthrough such as a complexity class separation.

The hardness results mentioned above come with certain features and consequences that might
be of independent interest. We discuss them next.

Search-to-decision reductions for circuit minimization. The formula satisfiability problem
(SAT) admits a well-known search-to-decision reduction. In other words, if one can easily check
if a formula is satisfiable, then it is not much harder to find a satisfiable assignment, whenever
one exists. As a consequence of the NP-completeness of SAT, all NP-complete problems must
have search-to-decision reductions. On the other hand, designing a search-to-decision reduction for
MCSP is open. We refer to [CIKK16, Hir18] for recent developments in this direction which can be
interpreted as weak search-to-decision reduction for MCSP.

A corollary of Theorem 1 is that the search version of Multi-MCSP and its decision version
are computationally equivalent under polynomial-time randomized reductions. Inspired by this
consequence, we further investigate this phenomenon, and in Section 4.3 we describe a natural
deterministic search-to-decision reduction for Multi-MCSP. Additionally, we show in Section 3.4
that Partial-MCSP has a simple deterministic search-to-decision reduction. These search-to-decision
reductions rely on ideas employed in our NP-hardness proofs. This suggests that establishing the
NP-hardness of MCSP and obtaining a corresponding search-to-decision reduction might be closely
related tasks.

Satisfiability versus Learning. It is known that the appropriate average-case formulation5

of Partial-MCSP captures the complexity of learning general Boolean circuits under the uniform
distribution using random examples. This follows by a combination of the ideas in [Vad17] and
[BL93], and for completeness we provide a proof of this equivalence in Appendix A. Consequently,
we can base the hardness of learning Boolean circuits on the assumption NP * RP if and only if the
existence of an efficient algorithm for average-case Partial-MCSP implies the existence of an efficient
(worst-case) algorithm for Partial-MCSP (see Appendix A for details). We refer to [BT06, ABX08]
for more information about learning algorithms and average-case versus worst-case assumptions.

5Here one needs to distinguish, for a random choice of polynomially many inputs xi, whether the labels bi are ran-
domly generated or are consistent with a fixed circuit of size at most s. We say that an algorithm solves Partial-MCSP
on average (for a given choice of the size parameter s) if the distinguishing probability of this experiment is noticeable
on every circuit of size at most s.

6

It seems interesting that the worst-case and average-case complexities of a natural problem
connect to satisfiability and learning, respectively. Further investigating these relations might be a
fruitful research direction.

1.1.2 NP-hardness of communication minimization

Let f : [n]×[n]→ {0, 1, ∗} be a partial Boolean function. The two-party communication problem
of computing f is defined as follows. Alice is given x ∈ [n], Bob is given y ∈ [n], and they are
promised that f(x, y) is defined. Their goal is to exchange the minimum number of bits in order
to compute f(x, y). We refer to Section 5.1 for definitions, and to [Kus97] for more information
about communication complexity in general.

Note that many communication problems of interest are captured by partial Boolean functions,
such as Gap-Hamming-Distance (see e.g. [CR12]) and Unique-Disjointness (cf. [GP18]).

We are primarily interested in the computational hardness of estimating the communication
cost of optimal deterministic protocols for a given function f : [n] × [n] → {0, 1, ∗}. This function
will be naturally represented by an n×n matrix M ∈ {0, 1, ∗}n×n, so that M [x, y] = f(x, y) ∈ {0, 1}
if f(x, y) is defined over the input pair (x, y), and M [x, y] = ∗ otherwise. In order to state our main
result in the context of communication complexity, we introduce the Minimum Communication
Complexity Problem for partial Boolean functions.

Definition 4. Partial-MCCP is defined as follows:

– Input. A positive integer n represented in unary, a matrix M ∈ {0, 1, ∗}n×n representing a
partial Boolean function f : [n]× [n]→ {0, 1, ∗}, and a positive integer s.

– Output. The input is accepted if and only if there exists a two-party deterministic protocol
for computing f whose communication cost is at most s.

Note that Partial-MCCP is in NP, as the full communication matrix is represented as part of the
input, and any non-trivial protocol for f can be described by a string of length polynomial in n.6

We prove that computing communication complexity and several related measures is NP-hard
under deterministic reductions.

Theorem 2. Partial-MCCP is NP-hard under many-one deterministic polynomial time reductions.
Furthermore, analogous results hold with respect to leaf complexity, partition number, cover number,
and the smallest number of nodes in a DAG-like protocol of a partial Boolean function.

Our hardness results are actually significantly stronger: we show that all these complexity
measures are hard to approximate in the context of partial Boolean functions. The NP-hardness
of approximating communication cost will be discussed in more detail below. The remaining four
measures — leaf complexity, partition number, cover number, and the smallest number of nodes in
a DAG-like protocol — are NP-hard to approximate up to a factor of n1−ε (for any fixed ε > 0),
which is essentially optimal.

We note that in the setting of NP-hardness results for MCSP with respect to restricted classes
of circuits, such as DNF [AHM+08] and DNF-XOR [HOS18], a successful strategy has been to first
establish hardness of a variant of the problem where the input is the full truth table of a given

6In contrast to this definition, note that the NP-hardness result for circuit minimization of partial Boolean functions
refers to functions succinctly described by a list of its {0, 1}-valued entries.

7

partial function. This is then followed by a reduction to the case of total functions. We leave as
an open problem whether Partial-MCCP can be reduced to minimizing communication complexity
of total matrices.

Hardness of approximating communication cost and its consequences. Our complexity-
theoretic results have implications for the theory of communication complexity. In order to make
the discussion more concrete, we first consider an example.

The log-rank conjecture of Lovász and Saks [LS88] states that the deterministic communication
complexity of a total Boolean function f : [n]× [n]→ {0, 1}, denoted D(f), is characterized up to
a polynomial by the logarithm of the rank (over R) of the corresponding communication matrix
Mf . It is a basic, well-known fact that D(f) ≥ log(rkMf) (cf. [KN97]). If we do not allow for a
super-constant additive error term, the log-rank conjecture says that there is a universal constant
c > 0 such that 1

cD(f)1/c − c ≤ log(rkMf) for every total function f .
In the context of our work, the significance of this conjecture is that, if true, it would provide

an algorithm (compute the rank and take the logarithm) for approximating the deterministic com-
munication complexity of a given total Boolean function. This algorithm runs in time polynomial
in the communication matrix, which means that computing such an approximation of D(f) is not
NP-complete, unless P = NP. While the status of the log-rank conjecture remains unclear,7 there
may be other algebraic or analytic quantities that approximately capture communication cost.

Similar considerations can be made about the communication complexity of partial Boolean
functions. More generally, we would like it if there were some polynomial-time computable function
r that would estimate the communication complexity up to a polynomial, in the sense that for some
constant c > 0 and for every large enough n, any partial function f : [n]× [n]→ {0, 1, ∗} satisfies

1

c
· D(f)1/c − c ≤ r(Mf) ≤ c · D(f)c + c.

However, we are able to prove a strong negative result in this direction. We establish that
there is no function r as we just described, under the assumption that P 6= NP. This result is a
consequence of the techniques behind the proof of Theorem 2, which also imply certain hardness of
approximating results for communication complexity. In more detail, we prove that it is NP-hard
to approximate D(f) up to a sub-exponential function of D(f). (This result makes sense because
D(f) might be a constant independent of n.) Additionally, we prove that it is NP-hard to estimate
D(f) with an additive error term of (1−Ω(1)) log n, or within a fixed but arbitrary constant factor.
We refer to Section 5.3 for the precise statements.

1.2 Techniques

1.2.1 Circuit complexity

The proof of Theorem 1 builds on insights from several works on the complexity of circuit
minimization, including the references [AHM+08], [MW15] [HOS18], and [Ila19].

In [AHM+08], the authors provide a new proof that DNF-MCSP is NP-hard, i.e., the variant of
MCSP where the circuit complexity of the input function is measured with respect to DNF size.

7In a recent paper, Chattopadhyay et al. [CMS19] (see also [SdW18, ABT18]) showed that an analogous conjecture
for randomized communication complexity is false.

8

Their proof employs a deterministic reduction from a set cover problem. More precisely, in the r-

Bounded Set Cover Problem (cf. [GJ79]), we are given a collection S of subsets of [n]
def
= {1, . . . , n},

and the goal is to cover [n] with the minimum number of such sets. We are also promised that each
set S ∈ S has size at most r. The argument of [AHM+08] relies on the NP-hardness of solving this
problem on certain structured inputs.

Extending the techniques of [AHM+08], a more recent work [HOS18] established that (DNF-
XOR)-MCSP is NP-hard under deterministic reductions. Crucial for the argument of [HOS18] to go
through is the stronger result proved by [Tre01] showing that r-Bounded Set Cover is NP-hard even
to approximate (the proof in [Tre01] relies on ideas from [Fei98]). In particular, for any constant-
factor approximation parameter α, there exists a parameter r independent of n such that computing
an α-approximation of the optimal cover size in r-Bounded Set Cover is NP-hard. Intuitively, this
hardness of approximation result provides more flexibility when implementing a reduction from a
cover problem to a circuit minimization problem.

Note that the results discussed above rely on the weakness of the circuit classes (DNF and
DNF-XOR) to establish the NP-hardness of the corresponding circuit minimization problems. In
particular, structural properties of these low-depth circuits are explored in crucial ways. On the
other hand, hardly anything is known about the limitations of unrestricted Boolean circuits. For
instance, while exponential lower bounds are known against DNF-XOR circuits [CS16], the strongest
known explicit lower bounds against general Boolean circuits are of the form cn for a small constant
c (cf. [IM02, FGHK16]). Perhaps this explains in part why many researchers have been pessimistic
about the possibility of extending such techniques to show NP-hardness of circuit minimization for
more expressive classes of Boolean circuits.

Moreover, some results (see [MW15], [HP15], and [Ila19, Appendix B]) strongly suggest that
designing deterministic reductions for circuit minimization problems that refer to general circuits
might be a challenging task. Formally, [MW15] proved that if MCSP is NP-hard under polynomial-
time deterministic many-one reductions, then EXP 6= ZPP. In other words, it is not possible
to design a deterministic reduction showing NP-hardness of MCSP without a breakthrough in
complexity theory. While it is not immediately clear to us if this connection applies to problems
such as Multi-MCSP, given these results it is more natural to focus on randomized reductions.

In sharp contrast to previous works, which have considered the NP-hardness of circuit mini-
mization for restricted circuit classes, [Ila19] has recently established the NP-hardness of MCSP for
unrestricted circuits with oracle gates. In more detail, let MOCSP (Minimum Oracle Circuit Size
Problem) be the problem where we are given a parameter s and total functions f : {0, 1}n → {0, 1}
and g1, . . . , gt : {0, 1}m → {0, 1}, and the goal is to decide if f can be computed by a circuit with
at most s AND, OR, NOT, and ORACLE gates, where each ORACLE gate can compute any one
of the functions gi. Perhaps surprisingly, [Ila19] was able to exploit the presence of arbitrary oracle
gates to show that MOCSP is NP-hard under randomized reductions.

While computations with oracles might behave very differently than normal computations,8 this
result gave us some optimism, and it was the starting point of our investigation. Our techniques
build on the reduction of [Ila19], which relies in part on ideas from [AHM+08] and [HOS18].

Similarly to [HOS18] and [Ila19], we will also employ the NP-hardness of approximating r-
Bounded Set Cover. Our proofs are technically not very involved, and we focus here on some key
conceptual ideas. We refer to Sections 3 and 4 for details.

8For instance, it is well known that there exist oracles A and B such that PA 6= NPA and PB = NPB , respectively
[BGS75].

9

First, we sketch the proof that MDCP is NP-hard. Building on this argument, we discuss the
NP-hardness of Multi-MCSP under many-one polynomial-time randomized reductions (Theorem 1).

Hardness of circuit minimization under arbitrary generators (MDCP). We are given a
collection S = {S1, . . . , Sm} of sets Si ⊆ [n], where each set Si has size at most r. The goal is
to compute from S and [n] an input instance of MDCP whose complexity approximates the cover
complexity of [n] with respect to S.

One can view the cover complexity of [n] with respect to S as measuring the complexity of “gen-
erating” the set [n] from the sets in S using only union operations. In more detail, let cover([n],S)
denote the smallest possible number of sets in S required to cover [n]. It is easy to see that, if
cover([n],S) ≤ `, then [n] can be generated from the sets in S using at most ` fan-in-two union
operations. Similarly, it is not hard to see that if [n] can be generated using ` fan-in-two union
operations when starting from sets in S, then a trivial upper bound is that cover([n],S) ≤ 2`. In
other words, the minimum number of fan-in-two union operations necessary to generate [n] from
sets in S gives a 2-approximation for cover([n],S).

The discussion above shows that cover([n],S) = Θ(D∪([n] | S)), where DO(A | B) denotes the
minimum number of O-operations sufficient to generate A from B when only set operations in O
are allowed. It is not hard to see that intersections are not helpful when generating the entire
“ground set” [n]. More precisely, one can easily argue that cover([n],S) = Θ(D{∪,∩}([n] | S)) by
simply replacing intersections by unions. This simple argument and the hardness of approximating
set cover can be used to show thatit is NP-hard to compute circuit complexity.

We consider next the case of non-monotone operations, which are also present in discrete com-
plexity. Note that when negations (complementations) are allowed, the argument sketched above
completely breaks down: by taking the complement of a single set in S, one might be able to cover
most of [n]. In order to handle this issue, a new ingredient seems necessary. Instead of translating
the cover problem given by ([n],S) into a direct instance D([n] | S), we employ a more involved
construction based on an idea from [Ila19]. (Intuitively, the construction inoculates the power of
negations.) In more detail, we map each element i ∈ [n] to a block Bi of size n2 inside the larger
ground set V = [n3]. This induces a partition of V into B1, . . . , Bn. A set Sj ∈ S = {S1, . . . , St} is
mapped to the union of the blocks Bi with i ∈ Sj . We now consider a certain set A ⊆ [n3] with nice
properties, and use the previously described map to create an instance D(A |WS1 , . . . ,WSt), where
each WSj is the intersection of A with the union of the sets Bi with i ∈ Sj . (By construction, a
cover of [n] by sets in S provides a way to write any set A as a union of its corresponding sets WSj .)
For a random set A (and for this reason we can only get a randomized reduction), we are able
to show that with high probability the discrete complexity D(A |WS1 , . . . ,WSt) approximates the
cover complexity cover([n],S). Roughly speaking, this is true because a random set A is so complex
that taking negations of the sets WSj does not really help to considerably reduce its complexity,
and the best way to generate A is essentially to use a cover of [n] by sets in S as a recipe. This
allows us to prove that computing discrete complexity is NP-hard under randomized reductions.

Hardness of circuit minimization for multi-output Boolean functions. Next, we try to
adapt the NP-hardness result for discrete complexity to Multi-MCSP. Loosely summarizing, the
discrete complexity reduction works as follows (continuing with the notation from before):

(1) Randomly convert a set cover problem ([n],S) into an essentially equivalent set cover problem

10

(A,WS1 , . . . ,WSt) on a larger ground set in a way that (with high probability) the randomness
inoculates against there being way of building A from WS1 , . . . ,WSt that is significantly better
than the naive method of unioning over an optimal set cover.

(2) Compute how hard it is to build A from WS1 , . . . ,WSt by outputting D(A |WS1 , . . . ,WSt).

We translate each of these two steps into a Multi-MCSP version separately. For the first step,
we translate the sets (A,WS1 , . . . ,WSt) into the truth tables (T, TS1 , . . . , TSt) corresponding to the
sets’ characteristic functions, and then replace the notion of building a set from other sets by the
notion of computing a function on some input given the values of other functions on that input. In
detail, the Multi-MCSP version of Step (1) becomes

(1’) Randomly convert a set cover problem ([n],S) into an essentially equivalent set cover problem
(A,WS1 , . . . ,WSt) on a larger ground set in a way that (w.h.p.) the randomness inoculates
against the existence of a circuit C satisfying T (x) = C(x, TS1(x), . . . , TSt(x)) that is signifi-
cantly smaller than the naive method of computing

∨
S∈S0 TS(x) where S0 ⊆ S is an optimal

cover.

The main technical challenge for the Multi-MCSP reduction comes from the lack of a simple transla-
tion for Step (2). To some degree, this is because there is a “type mismatch” between the problems
of computing discrete complexity, where you have a notion of computing “from,” and the problem
of Multi-MCSP, where there is no notion of computing “from,” only a notion of computing “in
addition to.” Perhaps the closest Multi-MCSP analogue to how hard it is to compute T “from”
TS1 , . . . , TSt is the quantity

∆
def
= CC(T • TS1 • · · · • TSt)− CC(TS1 • · · · • TSt)

where the notation f1•. . .•fk denotes the multi-output function whose components are the functions
f1, . . . , fk. Informally, the quantity ∆ corresponds to how much harder is it to compute T along
with TS1 , . . . , TSt than it is without T .9

However, this quantity does not really compute what we want it to compute. For example, if
there is an optimal circuit for computing TS1 • · · · • TSt that also computes T at some gate (which
might be possible), then ∆ = 0. But a solution to a non-trivial set cover problem is never zero!
One might hope that we could use randomness again to inoculate against these possibilities, but
we have not yet figured out how to do so.

Our key idea for overcoming this barrier is to add additional output functions in order to force
TS1 , . . . , TSt to be computed in a way such that (with high probability) none of the gates used for
computing TS1 , . . . , TSt compute T or even help very much in computing T . These new outputs
will correspond to the functions we want computed “along the way” to computing TS1 , . . . , TSt .

The actual implementation of this idea is rather subtle, but here is an, admittedly sketchy,
outline. Let D be the circuit that computes TS1 • · · ·•TSt by just computing each of these functions
individually via their naive DNF formula. Our random choice of T can be shown to ensure that
none of the functions computed by gates in D “help too much in computing T .” Next, define
the Evaluation Function induced by D, denoted Eval-D, to be the multi-output function whose
components are all those functions which are either computed by a gate in D or an input wire in
D. Finally, the Multi-MCSP version of Step (2) will be

9The above definition of ∆ brings to mind the chain rule for Kolmogorov complexity K(x | y) = K(xy)−K(y) +
O(1), so one may think intuitively of ∆ as measuring the “complexity”, or “entropy”, of T given TS1 . . . TSt .

11

(2’) Compute how hard it is to compute T at some input from the values of TS1 , . . . , TSt at that

input by outputting ∆′
def
= CC(T • Eval-D)− CC(Eval-D).

Since any circuit for computing Eval-D can be converted into a circuit for T • Eval-D using at
most t gates (since T = TS1 ∨ · · · ∨ TSt), the parameters in our reduction can be set so that the
overwhelming number of gates in an optimal circuit for T •Eval-D are functions that are computed
in D which we know do not “help too much in computing T .” We can then show that the quantity
∆′ approximates how hard it is to compute T on some input given the values of TS1 , . . . , TSt on
that input, which in turn, by Step (1’), approximates the size of an optimal cover in (n,S).

1.2.2 Communication complexity

The intractability of computing deterministic communication complexity is known under certain
cryptographic assumptions [KW09]. However, it is unclear how to exploit the techniques in their
work to prove a hardness result under a worst-case assumption (see also [KW09, Remark 4.4]).

While in the context of circuit minimization we have explored reductions from variants of the
set cover problem, the proof of Theorem 2 relies on a reduction from graph colorability. The NP-
hardness of approximating the chromatic number of a given graph G is now well established (see
[LY94, Has96, FK98, Zuc06]): it is NP-hard to approximate χ(G) up to a factor of n1−ε, where n
is the number of nodes in G, and ε > 0 is an arbitrary constant.

Our reduction from graph colorability to Partial-MCCP is elementary, and we describe it next.
Given a graph G = ([n], E), where E ⊆

(
[n]
2

)
, we construct from it a partial function fG : [n]× [n]→

{0, 1, ∗}, such that the complexity of fG under any of the measures considered in Theorem 2 will give
us an approximation on χ(G). The partial function fG is given by fG(i, j) = 1 if i = j, fG(i, j) = 0 if
{i, j} ∈ E, and fG(i, j) is undefined otherwise. Note that the matrix MG ∈ {0, 1, ∗}n×n encoding fG
is easily constructed from the input graph G. This completes the description of the communication
problem output by the reduction.

For the reader familiar with standard notions from communication complexity, we briefly explain
why the communication complexity of fG (denoted by D(fG)) provides information about χ(G).
First, it is not hard to show that the 1-cover number of MG is exactly the chromatic number of G.
Using the relation between 1-cover number and deterministic communication complexity, this shows
that D(ff) ≥ χ(G). On the other hand, it can be shown that there is a deterministic protocol for
MG which has no more than 2 ·χ(G) leaves in its protocol tree. Moreover, this protocol is balanced,
and this provides a useful upper bound on D(f). Theorem 2 will then follow from these two claims.

While this reduction and the aforementioned n1−ε-inapproximability results for graph coloring
allow us to derive strong hardness of approximation results for communication measures such as leaf
complexity and partition number, there is a significant loss with respect to computing D(f). This
happens because in the worst-case D(f) is only logarithmically related to the other measures. As
a consequence, these results are insufficient to establish the consequences described in the second
part of Section 1.1.2. To achieve that, we rely on more recent results on the hardness of graph
coloring for a different regime of parameters. In more detail, we make crucial use of the works
of Huang [Hua13] and Wrochna and Živný [WŽ19]. They established that, for any large enough
constant k, it is NP-hard to distinguish k-colorable graphs from graphs that are not g(k)-colorable,
where the function g is exponential in k. This translates to new hardness results for approximating
D(f), and we refer to Section 5.3 for more details.

12

1.3 Further related work

In this section we provide additional pointers to works and research directions related to our
results.

Circuit minimization of Boolean functions (MCSP). The circuit minimization problem for
single-output Boolean functions with respect to a circuit class C (denoted by C-MCSP) is known
to be NP-complete when C ∈ {DNF,DNF-XOR}. Hardness of DNF-MCSP was first established
by Masek [Mas79], with alternate proofs appearing in [Czo99, AHM+08]. This result has also
been extended to an almost tight hardness of approximation result for DNF-MCSP (see [KS08]).
The NP-hardness result for (DNF-XOR)-MCSP is more recent [HOS18]. We are not aware of NP-
hardness results for C-MCSP for stronger classes. We refer to [Rav13] for more information on
circuit minimization for restricted computational models, and for pointers to several related works.

In the case of general Boolean circuits, MCSP is known to be hard for NC1 (and for slightly
stronger classes) under non-uniform AC0 reductions [OS17, GII+19]. Moreover, it has been proved
that any function in P can be approximated with noticeable advantage by AC0 circuits containing
a single oracle gate that decides MCSP [OS17]. Other works have established that every problem
in the complexity class SZK (including graph isomorphism) is efficiently reducible to MCSP (see
[AD14, AGvM+18]). Interestingly, it has been proved under a cryptographic assumption that
a version of MCSP with a large gap between positive and negative instances is NP-intermediate
[AH17].

Several works have shown that establishing the NP-hardness of MCSP with respect to certain
classes of reductions would have significant implications to our understanding of algorithms and
complexity. For some restricted notions of reduction, hardness results cannot be established even
for very simple subclasses of P (see [MW15]). We refer to [KC00, MW15] and subsequent papers
[HP15, HW16, AH17, AIV19] for more information about this line of work. We discussed the
influence of these works in our results in Section 1.2.

It is widely known that if solving MCSP is feasible then modern cryptography is insecure [PV88,
RR97]. The hardness of MCSP also plays a fundamental role in circuit complexity via the notion of
natural proofs [RR97], and more recently in connection to hardness magnification [OPS19, MMW19]
(see the paragraph on unconditional lower bounds below). As mentioned above, MCSP is closely
related to learning algorithms, and we refer to [CIKK16] and to Section A for more details.10 The
hardness of MCSP and C-MCSP is also connected to questions in proof complexity (cf. [Kra11,
MP17]). For several relations between MCSP and complexity theory, we refer to [KC00].

As mentioned in Section 1.2, it is known that that an extension of MCSP to circuits with oracle
gates is NP-hard under randomized reductions [Ila19]. A different formulation of MCSP with oracles
has been investigated in [AHK17, HW16, IKV18].

Note that many results discussed above also apply to circuit minimization for partial and multi-
output functions, since the corresponding problems generalize MCSP.

Partial Boolean functions (Partial-MCSP) and learning algorithms. The circuit minimization
problem for partial Boolean functions with respect to DNF size was shown to be NP-hard by Levin

10Indeed, the opening question in our abstract is also naturally captured by investigations about the power and
limitations of learning algorithms. Modern results in complexity theory and learning theory show that circuit mini-
mization and learning are directly related tasks.

13

in his seminal work [Lev73].11 A proof of this NP-hardness result can be found for instance in
[UVS06]. Kearns and Valiant [KV94a] showed cryptographic hardness for (Formula)-Partial-MCSP,
and a proof that Partial-MCSP is NP-complete under deterministic reductions is implicit in [HJLT96]
and [ABF+08].

The complexity of Partial-MCSP plays a crucial role in learning theory. More precisely, the
search version of C-Partial-MCSP for a concept class C has long been known to be hard with respect
to problems in computational learning theory ([BEHW87]; see also [KV94b, Chapter 2]). In other
words, an efficient algorithm for the search version of C-Partial-MCSP implies that C(poly) is PAC
learnable in polynomial time (this is often referred to as the “Occam’s Razor” principle). This
has led to numerous learning algorithms, since the problem is known to be solvable by non-trivial
algorithms if C is simple enough (for example, in the case of decision lists [Riv87]). Other works
have established NP-hardness results for slightly more complex classes C, such as decision trees
[HJLT96]12, or neural networks with a fixed topology [Jud87, BR92].

More recently, [Vad17] proved that an efficient algorithm for C-Partial-MCSP also implies PAC
learnability. Indeed, he showed that these two tasks are equivalent when one considers a relaxation
of worst-case C-Partial-MCSP. (In Section A, we adapt his result to the case of learnability under
the uniform distribution.) A certain robust variant of Partial-MCSP is also known to be tightly
connected to learnability in the agnostic case (see [KL18] for more details).

Ko [Ko90] considers the problem MINLT (which roughly corresponds to a variant of Partial-MCSP
based on Turing machines rather than circuits) and shows that there exist oracles O such that
MINLTO is not complete for NPO under polynomial-time Turing reductions.

Multi-output Boolean functions (Multi-MCSP) and circuit minimization in practice.
There have been quite a few developments on the theoretical aspects of multi-output circuit min-
imization, and some of these works have had an impact on the practice of circuit minimization.
Indeed, chip designers are interested in (and have developed many heuristics for) solving the circuit
minimization problem for multi-output (partial) Boolean functions under different input represen-
tations. The problem has a long history (see e.g. Karnaugh [Kar53] for two-level minimization and
Roth and Karp [RK62] for multi-level minimization), and we refer to a textbook such as [HS06] for
details.

Regarding theoretical hardness results, Boyar, Matthews, and Peralta [BMP08] show that the
multi-output minimization problem for computing linear forms (computing Ax where A is a fixed
matrix and x is the input vector) in the restricted model of “linear straight-line programs” (where
operations consist of taking linear combinations of inputs) is NP-hard.

Unconditional complexity lower bounds for MDCP, Partial-MCSP, and Multi-MCSP. Re-
sults from the emerging area of hardness magnification (see e.g. [OPS19, MMW19]) show that
weak unconditional lower bounds for MCSP and related problems against a variety of computa-
tional models can be magnified to complexity separations as strong as P 6= NP. It is worth noting
that Partial-MCSP has played a crucial role in the proof of earlier results in this area, both in circuit
complexity [OS18, Theorem 1] and in proof complexity [MP17, Proposition 4.14]. Motivated in

11This result corresponds to Problem 2 in the English translation of Levin’s paper, which can be found in the
appendix of [Tra84].

12Note that this NP-hardness result for decision trees is for partial functions, represented by a list as in Definition
2. For total functions, the problem is solvable in polynomial time by a simple dynamic programming algorithm.

14

part by hardness magnification, it is now known that most combinatorial circuit lower bounds es-
tablished in complexity theory can be shown to hold for MCSP as well (see [GII+19, CKLM19] and
references therein). All these results immediately imply state-of-the-art lower bounds for MDCP,
Partial-MCSP, and Multi-MCSP, since the instances of MCSP easily embed into these problems.

Hardness of estimating communication complexity. It has long been known that computing
the non-deterministic communication complexity of a given total function is NP-hard [Orl77]. We
refer to a subsequent work [LY94] for an inapproximability result.

In the setting of deterministic communication complexity, which is the main focus of our re-
sults, the following was known. In [KW09], Kushilevitz and Weinreb proved under cryptographic
assumptions that one cannot efficiently compute the communication complexity of a given total
two-player function f : [n] × [n] → {0, 1}. In more detail, if one assumes that there are pseudo-
random function generators in NC1 which fool polynomial size distinguishers, then it is hard to
estimate communication complexity with an approximation ratio of ≈ 1.1. On the other hand, if
one assumes that there are pseudorandom function generators in NC secure against distinguishers
of sub-exponential size, then the hardness result is improved to an approximation ratio of order
n1/2.

To our knowledge, previously to our work no result was known on the hardness of estimating
deterministic communication complexity under worst-case assumptions.

2 Preliminaries

We let [n] denote the set {1, . . . , n}.
We will use the NP-hardness of approximating Set Cover with respect to sets of bounded size

[Tre01]. A weaker version of the result from [Tre01] is sufficient.
We say that sets S1, . . . , S` cover a set T if T ⊆ S1 ∪ · · · ∪ S`. For a collection of sets S and a

set T , we use cover(T,S) to denote the minimum number of sets in S necessary to cover T .

Definition 5 (r-Bounded Set Cover Problem). For a positive integer r, the r-Bounded Set Cover
Problem is defined as follows:

– Input. A positive integer n represented in unary, and a collection S of nonempty subsets of
[n]. We are promised that

⋃
S∈S S = [n] and that |S| ≤ r for each S ∈ S.

– Output. The value cover([n],S).

For convenience, we defined the r-Bounded Set Cover Problem as an optimization problem
instead of decision problem.

Theorem 3 (Hardness of approximating r-Bounded Set Cover [Tre01]). For every constant α ≥ 1
there exists r ∈ N such that approximating the r-Bounded Set Cover Problem within a factor of α
is NP-hard. More precisely, for every L ∈ NP, there exists a polynomial-time algorithm that, on
input x, outputs a parameter k and an instance (1m,S) of the r-Bounded Set Cover Problem such
that if x ∈ L then cover([m],S) ≤ k, and if x /∈ L then cover([m],S) > α · k.

15

3 Warm-up: NP-hardness for arbitrary generators and partial
functions

We establish in this section the NP-hardness of MDCP, and as an easy corollary, provide a
self-contained proof of the NP-hardness of Partial-MCSP. The argument consists of two steps: a
randomized (approximate) reduction from r-Bounded Set Cover to MDCP, and a deterministic
reduction from MDCP to Partial-MCSP.

3.1 Notation

Recall that we consider a generalization of Boolean circuit complexity originally proposed and
investigated in a particular context by [PRS88]. Let V be a finite set (also referred to as the
ground set). Given a family B = {Bi}i∈[m] of nonempty sets Bi ⊆ V (also referred to as the
family of generators) and a set A ⊆ V , we let D(A | B) denote the minimum number of unions,
intersections, and complements that are required to construct A from the sets in B. More precisely,
the complement of a set U ⊆ V is defined as V \ U , and we represent a construction of A from B
as a sequence B1, . . . , Bm, E1, . . . , E` of sets in V such that E` = A and each set Ej is either the
union or intersection of two previously generated sets, or the complement of a previously generated
set. We assume for convenience that D(B | B) = 0 if B ∈ B. We refer to D(A | B) as the discrete
complexity of A with respect to B.

3.2 A reduction from r-Bounded Set Cover to MDCP

We will use instances of MDCP with a particular structure. This makes the second reduction
from MDCP to Partial-MCSP more transparent.

Let V be a ground set, and B = {B1, . . . , Bn} be a collection of nonempty subsets of V . For
an element v ∈ V , we use v↑ ∈ {0, 1}n (the “lifted” version of v) to denote the string with the

property that v↑i = 1 if and only if v ∈ Bi. We say that a collection B is complete (with respect
to V) if the following holds: if a, b ∈ V and a↑ = b↑ then a = b. In other words, distinct elements
of V have different liftings with respect to B. Our reduction from r-Bounded Set Cover to MDCP
will always produce a family of generators that is complete.

Let r be a large enough constant, so that say 10-approximating r-Bounded Set Cover is NP-

hard. Given an instance (1n,S) of this problem, the reduction proceed as follows. Fix V
def
= [n3].

Partition V into n blocks V1, . . . , Vn, where |Vi| = n2 for each i ∈ [n]. Given a set A ⊆ V , we let

Ai
def
= A∩Vi. Now view V as the set {0, 1}3 logn, and for each j ∈ [3 log n], let Bj = {v ∈ V | vj = 1}.

For convenience, we let F def
= {B1, . . . , B3 logn}. Note that any family B of generators that contains

F is complete with respect to V .

Let A−i def
= {A1, . . . , Ai−1, Ai+1, . . . , An}. We say that a set A is critical if, for every i ∈ [n],

D(A | F ∪ A−i) > n · log n.

It is not hard to show that a uniformly random set A ⊆1/2 V is typically critical.

Lemma 1. Let A ⊆1/2 V be sampled by letting v ∈ A independently with probability 1/2 for each
v ∈ V . Then,

Pr
A

[A is critical]→ 1 as n→∞.

16

Proof. For a fixed i ∈ [n], we argue below that

Pr
A

[D(A | F ∪A−i) ≤ n · log n] = o(1/n).

The lemma follows by a union bound.
Note that, conditioning on the choice of A1, . . . ,Ai−1,Ai+1, . . . ,An, the set Ai is still a uni-

formly distributed subset of Vi. Moreover, after we fix F and A−i, any construction of a set
E ⊆ V from F ∪A−i using s operations can be described by a binary string of length at most
O(s · (log s+log n)). Since |Vi| = n2, the probability that the discrete complexity of A (conditioned
on the choice of A1, . . . ,Ai−1,Ai+1, . . . ,An) given F ∪A−i falls below s = n · log n is at most

2O(s·(log s+logn))

2n2 = o(1/n).

Since this holds for any choice of A1, . . . ,Ai−1,Ai+1, . . . ,An, the desired probability upper bound
holds.

We assume from now on that we have efficiently produced a critical set A. (Our randomized
reduction will always be correct on a critical set.) Note that so far we have only inspected the input
1n from (1n,S). Our approximate reduction outputs a triple (1n

3
, A,BS), where A is generated as

above, and whose family BS is defined as follows. For each set S ∈ S, let WS
def
=
⋃

i∈S Ai. Now set

BS
def
= F ∪ {WS | S ∈ S}.

Clearly, the triple (1n
3
, A,BS) can be efficiently computed from (1n,S).

We argue next that computing D(A | BS) allows us to 2-approximate cover([n],S).

Lemma 2. If cover([n],S) = ` then D(A | BS) ≤ `.

Proof. Let S1, . . . , S` be a cover of [n] using sets from S. Then, by construction of the sets WS , we
get that A = WS1 ∪· · ·∪WS`

. In particular, it is possible to construct A using at most ` operations
(unions) starting from the sets in BS .

Lemma 3. If D(A | BS) = ` then cover([n],S) ≤ 2`.

Proof. Let t
def
= |S|, and suppose that E1, . . . , E` represent a construction of A = E` from sets in

BS . For convenience, we write BS = F ∪{WS1 , . . . ,WSt}. In order to prove Lemma 3, we need the
following simple claim.

Claim 1. E1, . . . , E` depend on at most 2` sets from {WS1 , . . . ,WSt}.

This claim holds simply because each set Ej depends on at most 2 other sets. One may replace
2` by ` + 1 by arguing more carefully, that any `-node directed acyclic graph with fan-in 2 and
a single sink node has at most ` + 1 source nodes. But this tighter bound is unnecessary for our
purpose.

Continuing with the proof of Lemma 3, and relabelling some indexes if necessary, we assume for
convenience of notation that the construction of A from BS depends only on F ∪ {WS1 , . . . ,WS2`

}.
In other words,

D(A | F ∪ {WS1 , . . . ,WS2`
}) ≤ `.

17

Since WSj =
⋃

i∈Sj
Ai and |Sj | ≤ r, we get that D(WSj | {Ai}i∈Sj) ≤ r. In turn, by composing

constructions, we obtain that

D(A | F ∪ {Ai}i∈S1 ∪ · · · ∪ {Ai}i∈S2`
) ≤ ` · r.

We can assume that r < log n for a large enough n. In addition, notice that if ` > n then the
statement of Lemma 3 is trivial, since by assumption S always covers [n] and as a consequence
cover([n],S) ≤ n. But from r < log n and ` ≤ n it follows that the expression above can be upper
bounded by n · log n. Given that A is critical, it must be the case that the sets S1, . . . , S2` cover
[n]. In other words, cover([n],S) ≤ 2`, which completes the proof.

Consequently, it immediately follows from Lemmas 1, 2, and 3 and from Theorem 3 that MDCP
is NP-hard to compute under polynomial-time randomized reductions.

3.3 A reduction from MDCP to Partial-MCSP

Let (1n, A,B, s) be an input to MDCP. We can assume from the properties of the previous
reduction that B is complete. We will also assume without loss of generality that A is nonempty.
We create an instance of Partial-MCSP as follows.

For every v ∈ V , where V = [n], we consider the corresponding lifted vector v↑ ∈ {0, 1}k
described above, where B = {B1, . . . , Bk} and each Bi ⊆ V is nonempty. We let

V ↑
def
= {v↑ | v ∈ V } ⊆ {0, 1}k and A↑

def
= {a↑ | a ∈ A} ⊆ V ↑.

Consider the partial Boolean function fA : V ↑ → {0, 1} defined by fA(x) = 1 if and only if x ∈ A↑.
The reduction outputs the tuple (1n,P, s), where

P def
= {(x, fA(x)) | x ∈ V ↑}.

It is easy to see that this tuple can be efficiently computed from the input (1n, A,B). In order to
establish the correctness of this reduction, it suffices to prove the following lemma.

Lemma 4. The partial Boolean function fA : V ↑ → {0, 1} agrees with a Boolean circuit of size at
most s if and only if D(A | B) ≤ s.

Proof. The lemma is intuitively clear, since the lifting operation ↑ induces a bijection between V =
[n] and V ↑ ⊆ {0, 1}k. (This is the case because by assumption B is complete.) For completeness,
we provide more details below.

Let A ⊆ V be an arbitrary nonempty set, and assume that B is complete. If the circuit size of
fA is 0, then it must be the case that this circuit is simply xi for some i ∈ [k]. But then v ∈ A iff

fA(v↑) = 1 iff v↑i = 1 iff v ∈ Bi. Equivalently, A = Bi. By convention, we have D(Bi | B) = 0. The
other direction is analogous. This establishes the base case corresponding to s = 0.

Suppose now that C is a Boolean circuit of size s > 0 that agrees with fA over V ↑. Replace
each input variable xi of C by the set Bi ∈ B, and each Boolean operation AND, OR, and NOT
in C by the corresponding set operation ∩, ∪, and complementation. We claim that this induces a
construction of A from B.

In order to see this, fix any element v ∈ V . More generally, we claim that the i-th gate of
C outputs 1 on v↑ if and only if the i-th set Ei constructed under this transformation contains

18

the element v. For the input gates, this follows from the discussion above. To prove this for the
i-th gate gi, assume that the result holds for x1, . . . , xk, g1, . . . , gi−1 (viewed as subsets of V ↑), and
consider the corresponding construction B1, . . . , Bk, E1, . . . , Ek (these are subsets of V) induced by
the transformation. Then it easily follows from the induction hypothesis that gi(v

↑) = 1 if and
only if v ∈ Ei, regardless of the Boolean operation performed at gi over the preceding gates. For
instance, if gi = gi1 AND gi2 for i1, i2 < i, then gi(v

↑) = 1 iff gi1(v↑) = 1 and gi2(v↑) = 1 iff v ∈ Ei1

and v ∈ Ei2 iff v ∈ Ei1 ∩ Ei2 = Ei.
Obtaining an upper bound on the circuit complexity of fA from an upper bound on D(A | B)

can be done using the reverse transformation. This completes the proof of Lemma 4.

Composing the reductions above completes the proof of NP-hardness of Partial-MCSP.

3.4 Search-to-decision reduction for Partial-MCSP

Recall that in Search-Partial-MCSP we are given (1n,P), where P = {(xi, bi)}i∈[t] for some t ∈ N,
xi ∈ {0, 1}n, and bi ∈ {0, 1}. The goal is to output a circuit C of minimum size that is consistent
with P. In this section, we show that this problem can be solved in deterministic polynomial-time
using an oracle APartial-MCSP that solves Partial-MCSP. We assume that APartial-MCSP outputs the
optimal circuit size s ∈ N (a simple binary search suffices to obtain this value using oracle calls to
Partial-MCSP).

We describe a recursive procedure B with access to APartial-MCSP that solves Search-Partial-MCSP.
The input to B is of the form (1`,Q), where Q is a collection of input pairs in {0, 1}`×{0, 1}. The
initial call to B that solves Search-Partial-MCSP will be of the form B(1n,P). For convenience, we
rely on a polynomial-time sub-routine Consistent(Q, C) that returns true if and only if circuit C
over input variables y1, . . . , y` is consistent with Q.

Algorithm B:

Input. A pair (1`,Q).

Output. A minimum size circuit C over y1, . . . , y` that is consistent with Q.

1. If Consistent(Q, yi) holds for some i ∈ [`], return the circuit represented by input variable yi.

2. Otherwise, for each operation ? ∈ {∨,∧,¬}, and for each appropriate choice of one or two
operands from {y1, . . . , y`}:

2.1. Let Q+ extend each pair (y, b) ∈ Q to a pair (y+, b) ∈ {0, 1}`+1 × {0, 1}, where the new
coordinate corresponds to the result of the operation. Moreover, let D(y1, . . . , y`) be a depth-1
circuit of size 1 corresponding to the same operation.

2.2. IfAPartial-MCSP(1`+1,Q+) < APartial-MCSP(1`,Q), invokeB(1`+1,Q+). Let C+(y1, . . . , y`+1)

be the circuit returned by this call. Return the description of C(y1, . . . , y`)
def
= C+(y1, . . . , y`, D(y1, . . . , y`)).

We sketch next the proof that B(1`,Q) runs in polynomial time, and that it always returns a
consistent circuit of minimum size. Let s = APartial-MCSP(1`,Q). The proof of correctness is by
induction on s, i.e., the induction hypothesis is that the algorithm is correct on every input pair
(1`,Q) whose circuit complexity is at most s.

If s = 0, then an input variable yi must be consistent with Q. In this case, algorithm B correctly
returns such a circuit in step (1) above. Assume now that s ≥ 1 and that the induction hypothesis

19

holds for any input whose complexity is at most s − 1. For the induction step, let (1`,Q) be an
input to Search-Partial-MCSP for which APartial-MCSP(1`,Q) = s. Since s > 0, using any bottom
layer gate in any optimal circuit for Q, it follows that there is at least one Boolean operation whose
corresponding set Q+ defined in step (2.1) will pass the test performed in step (2.2). Now consider
any recursive call in step (2.2), which might not necessarily come from a bottom gate in an optimal
circuit for Q. By the induction hypothesis, a circuit C+ consistent with the corresponding collection
Q+ and of size at most s − 1 is returned. Clearly, the resulting circuit C obtained from C+ and
from the corresponding circuit D is consistent with Q and has size at most s. This completes the
induction step, and the proof of correctness of B.

For the running time, note that on every instance (1`,Q) ofB we have s = APartial-MCSP(1`,Q) ≤
O(` · |Q|). Consequently, at most s nested recursive calls are made. In each call, Consistent(Q, yi)
can be computed in time O(|Q| · (`+ s)). We also consider in the worst case all possible operations
over a set of at most ` + s input coordinates, and there are at most O(` + s)2 such operations.
Consequently, B runs in time at most O(s · (|Q| · (`+ s) + (`+ s)2)) = O(` · |Q|)3.

4 Main result: NP-hardness of circuit minimization for multi-
output functions

4.1 Definitions

Multi-output Functions, Concatenations, and Truth Tables. For a multi-output Boolean
function f : {0, 1}n → {0, 1}m, the components of f are the single-output functions f1, . . . , fm
where fi : {0, 1}n → {0, 1} is defined so fi(x) equals the ith output bit of f(x).

For a multi-output Boolean function f , we let the circuit complexity of f , denoted CC(f), be
the minimum size of any circuit computing f .

For strings x, y ∈ {0, 1}?, we let x•y denote the concatenated string. We identify a multi-output
Boolean function f : {0, 1}n → {0, 1}m with the concatenated string T1•· · ·•Tm ∈ {0, 1}m·2

n
where

T1, · · · , Tm are the truth tables of the components f1, . . . , fm respectively.
If f : {0, 1}n → {0, 1}m1 and g : {0, 1}n → {0, 1}m2 are Boolean functions with the same

number of inputs, we define the concatenated Boolean function f • g : {0, 1}n → {0, 1}m1+m2 given
by f • g(x) = f(x) • g(x).

We also use the symbol to indicate concatenation in a similar way that
∑

acts for addition.
For example, if T1, . . . , Tm are truth tables of functions with the same number of inputs, then we
use the notation i∈[m] Ti to indicate T1 • · · · • Tm.

The Evaluation Function and Multi-output Computation. Each circuit C induces a multi-
output Boolean function we call the Evaluation Function of C, denoted Eval-C, that computes the
outputs of each of the gates in C. In more detail, for a circuit C that takes n inputs and has
s gates, the evaluation function induced by C, denoted Eval-C : {0, 1}n → {0, 1}s+n, is given by
x1 • · · · • xn • g1 • · · · • gs where xi is the function computed by the ith input wire of C and gj is
the function computed by the jth gate in C (for this to be well-defined, we need to fix an ordering
of the gates of C, but, for our purposes, any ordering will do).

Using the Evaluation Function, an equivalent definition of multi-output circuit computation to
the one given in the introduction is that a Boolean circuit C computes a (multi-output) Boolean
function f if and only if every component of f is a component of Eval-C.

20

Windows of Truth Tables. Given a truth table T of length n and a subset S ⊆ [n], we define
the S-window of T , denoted T〈S〉, to be the truth table of length n that (informally) “sees” T on
the elements of S and zeroes everywhere else. Rigorously,

T〈S〉(x) =

{
T (x) if x ∈ S,

0 otherwise.

Canonical DNF Circuits For each (single output) Boolean function f : {0, 1}n → {0, 1}, it will
be useful to fix an algorithm that outputs a single “canonical” Boolean circuit for computing f .

For our purposes, many algorithms are possible, but, for concreteness, we will define the canon-
ical circuit of a Boolean function f : {0, 1}n → {0, 1} to be the naive DNF formula for f , denoted
DNFf , given by

DNFf
def
= ((x1 = y1

1) ∧ · · · ∧ (xn = y1
n)) ∨ · · · ∨ ((x1 = yt1) ∧ · · · ∧ (xn = ytn))

where

• y1, . . . , yt are the YES inputs of f in lexicographical order,

• x1, . . . , xn index the bits of the input string x,

• yj1, . . . , y
j
n index the bits of yj for each j ∈ [t],

• and for i ∈ [n] and j ∈ [t], (xi = yji) is syntax for

{
xi if yji = 1,

¬xi if yji = 0.

It is easy to see that DNFf can be computed in polynomial-time given the truth table of f .
Moreover, reading the above definition of DNFf from left to right gives a natural way of defining

the kth gate in DNFf , whereby the kth gate corresponds to the kth gate symbol appearing in the
above formula. This fact will later be useful in our analysis.

Lifting Sets Our reduction will use a way to lift subsets into subsets on larger ground sets.
To do this, we will first define a canonical partition of [m] into n parts for m ≥ n. Let Pm,n =
(Pm,n

1 , . . . , Pm,n
n) be the partition of [m] into n parts given by

Pm,n
i = {j ∈ [m] : j ≡ i mod n}.

From this partition, we can now lift subsets as follows. Let n ≤ m ∈ N. Let S ⊆ [n]. The m-lift
of S, denoted Sm, is the set given by

Sm def
=
⋃
i∈S

Pm,n
i .

4.2 A reduction from r-Bounded Set Cover to Multi-MCSP

In order to show that Multi-MCSP is NP-hard, we give a probabalistic polynomial-time many-
one reduction with one-sided error from a constant approximation of r-Bounded Set Cover to
Multi-MCSP.

21

In fact, for convenience, our reduction will be from the optimization version of approximating
r-Bounded Set Cover to the optimization version of Multi-MCSP (computing CC), but it will be
easy to see that our reduction can be converted into the desired reduction for the corresponding
decision problems.

Let r be a large enough constant, so that say 10-approximating r-Bounded Set Cover is NP-
hard. Given an instance (1n,S) of this problem, the reduction proceeds as follows. Let m = O(n3)
be the least power of two greater than n3. Let T be a uniformly random truth table of length m.
I.e., T is a binary string in {0, 1}m, representing a function from {0, 1}logm to {0, 1}. Compute the
truth table of

g
def
=

S∈S
Eval-DNFT〈Sm〉 .

Let k be the number of distinct components of g that are not functions computed by an input gate,
that is,

k
def
= |{gi : gi is a component of g and gi 6= xj for all j ∈ [logm]}|.

The reduction then outputs 13

∆
def
= CC(T • g)− k.

First, we argue that this procedure runs in polynomial time. The only two steps that may raise
concern are whether we can compute the truth table of g efficiently and whether we can compute
k efficiently.

To show that the truth table of g can be computed efficiently, it suffices to show that for each
S ∈ S, the truth table of Eval-DNFT〈Sm〉 can be computed in time polynomial in n. Computing
T〈Sm〉 can be done in time O(m + |T |) = O(m) and outputs a truth table of length m. The
canonical DNF of the truth table T〈Sm〉 can be computed in time polynomial in |T〈Sm〉| = m, and
the resulting DNF has logm inputs and size at most O(m logm). Finally, computing the Evaluation
Function of a circuit with logm inputs and O(m logm) gates can be done in time O(m3) by just
evaluating the circuit on every input. Hence, putting these all together, computing the truth table
of Eval-DNFT〈Sm〉 can be done in time polynomial in m = O(n3).

To see that we can compute k efficiently, realize that we have already computed the full truth
table of g and that removing any components computed by one of the logm input wires along with
any duplicate components takes time at most quadratic in the length of the truth table of g.

Now, we will argue for the correctness of the reduction. We will show that

cover([n],S)/4− 4 ≤
(with high probability

using Lemma 6)

∆ ≤
(unconditionally
using Lemma 5)

cover([n],S),

and thus, with high probability ∆ computes a 10-approximation of r-Bounded Set Cover when n
is sufficiently large.14 Moreover, this computation has one-sided error since the upper bound holds
unconditionally.

Thus, after proving Lemmas 5 and 6, we will have shown that there is a randomized polynomial-
time many-one reduction with one-sided error from 10-approximating r-Bounded Set Cover to
Multi-MCSP.

Before proving Lemmas 5 and 6, we make the following observation about computing g.

13For the decision problems, we can determine if there is a 10-approximate set cover of size ` by outputting
Multi-MCSP(T • g, k + `), which computes whether ∆ ≤ `.

14Since cover([n],S) ≥ n/r (using that the sets in S have cardinality at most r), we will actually get that, for each
ε > 0, ∆ gives a 4 + ε approximation with high probability when n is sufficiently large.

22

Proposition 1. If a circuit C computes g, then there are k distinct gates in C that compute
components of g. Moreover, CC(g) = k.

Proof. We begin by proving the first statement, which also implies the lower bound CC(g) ≥ k.
Suppose C is a circuit that computes g. Then every distinct component of g has a (necessarily
distinct) input wire or gate from C that computes that component. Therefore, since g has k
distinct components that are not computed by an input wire, C must have at least k distinct gates
computing components of g.

Next, we sketch the proof of the upper bound CC(g) ≤ k. Let C be the circuit built as follows.
For each S ∈ S, iterate through the gates g in DNFT〈Sm〉 in topological order. Let � ∈ {∧,∨,¬}
be the gate type of g. If g computes a function that is already computed by C, then ignore it.
Otherwise, add a � gate to C that takes as input(s) those gate(s) in C that compute the function(s)
which are fed as inputs to g in DNFT〈Sm〉 (we are guaranteed to find such gates in C since we are
iterating in topological order).

By construction, C computes g. (Recall that g = S∈S Eval-DNFT〈Sm〉 , and our construction
ensures C computes every function computed by a gate in DNFT〈Sm〉 for any S ∈ S.) Moreover,
our construction maintains that every gate in C computes a component of g that is not computed
by any other gate or input wire. Thus, since g has at most k unique components not computed by
input wires, C has at most k gates.

One consequence of Proposition 1 is that ∆ = CC(T • g)− CC(g). With this fact, we can prove
our two main lemmas.

Lemma 5. If cover([n],S) = `, then ∆ ≤ `.

Proof. Let S1, . . . , S` be a cover of [n] using sets from S. Then, by construction, we have that
T = T〈Sm

1 〉 ∨ · · · ∨ T〈Sm
` 〉. Since T〈Sm

1 〉, . . . , T〈Sm
` 〉 are components of g, this implies that

∆ = CC(T • g)− CC(g) ≤ `

as desired.

Lemma 6. Let ` be the largest integer such that cover([n],S) ≥ 4`. Then, ∆ > ` with high
probability.

Proof. Our strategy will be as follows. We say that the choice of T is bad if, for that choice of T ,
∆ ≤ `. We will then upper bound the number of bad T by showing such T have short descriptions.

Fix some bad T . Then ` ≥ ∆ = CC(T • g) − k, so CC(T • g) ≤ ` + k. Since there is a circuit
C computing T • g using at most ` + k gates and k of the gates in C must compute the unique
components of g (using Proposition 1), it follows that there is a circuit D that takes (log(m) + k)-
inputs and has at most ` gates such that

D(x, g1(x), . . . , gk(x)) = T (x)

for all x ∈ {0, 1}logm where g1, . . . , gk are the unique components of g. Moreover, since D has only
` gates of fan-in 2, it uses at most 2` of the components of g in the circuit. Thus, after a possible
relabeling of g1, . . . , gk, we can assume D takes at most (log(m) + 2`)-inputs and that

D(x, g1(x), . . . , g2`(x)) = T (x).

23

Hence, to describe T , we just need to have a description for D as well as a description for
g1, . . . , g2`. Indeed, this will be the last step in our eventual description of T . We present the
eventual description now so as to guide the reader. Our proof will subsequently proceed working
through this description from bottom to top.

1. Given

• a subset J ⊆ [n] of size at most ≤ n(1− 1
2r)

• for each j ∈ J a partial truth table encoding (j, Vj) ∈ [n]× {0, 1}m/n+1

• r-bounded subsets S1, . . . , S2` ⊆ [n] whose union is J ,

• gate numbers u1, . . . , u2` ∈ [2m logm],

• and a circuit D of size ` with (n+ 2`) inputs

2. For j ∈ J , let T〈Pm,n
j 〉 be the function whose values on Pm,n

j in lexicographic order are given

by the binary string Vj and is zero everywhere else

3. For i ∈ [2`], let T〈Sm
i 〉 =

∨
j∈Si⊆J T〈P

m,n
j 〉

4. For i ∈ [2`], let gi be the function computing by the uith gate of DNFT〈Sm
i
〉

5. Let T (x) = D(x, g1(x), . . . , g2`(x))

Step 4: Describing the gi. Since g1, . . . , g2` are components of g and g = S∈S Eval-DNFT〈Sm〉 ,
there exist u1, . . . , u2` and S1, . . . , S2` such that each gi is the uith gate of DNFT〈Sm

i
〉 for i ∈ [2`].

Moreover, each ui ≤ 2m logm by the trivial upper bound on the number of gates in a canonical
DNF.

Step 3: Describing the T〈Sm
i 〉. Next, we focus on encoding T〈Sm

i 〉 for some i. Since Sm
i =⋃

j∈Si
Pm,n
j (by construction of Sm

i), we have (by construction of T〈Sm
i 〉) that T〈Sm

i 〉 =
∨

j∈Si
T〈Pm,n

j 〉.

Thus, to compute T〈Sm
i 〉 for all i ∈ [2`], it suffices to know S1, . . . , S2` as well as T〈Pm,n

j 〉 for all

j ∈ J def
=
⋃

i∈[2`] Si.

Step 2: Describing T〈Pm,n
j 〉 for j ∈ J . The key to our encoding is to realize that |J | cannot be

too large, and thus, we do not need to know T〈Pm,n
j 〉 for all j ∈ [n]. Since cover([n],S) ≥ 4`, and J

is the union of 2` sets from S, it follows that |J | ≤ n− 2`. Moreover, we have that

n/r ≤ cover([n],S) < 4`+ 4

where the first inequality comes from the sets in S having cardinality at most r and the second
inequality comes from the definition of `. Thus,

|J | ≤ n− 2` < n− n

2r
+ 2 = n(1− 1

2r
) + 2.

Moreover, we can encode T〈Pm,n
j 〉 for j ∈ J very efficiently. To describe T〈Pm,n

j 〉, it suffices

to describe j and then give the list of values of T〈Pm,n
j 〉 on the set Pm,n

j in lexicographic order.

Since |Pm,n
j | ≤ m/n+ 1 (essentially by construction), we can encode this list of values by a string

Vj ∈ {0, 1}m/n+1 (where we pad this string with extra zeroes if |Pm,n
j | < m/n+ 1).

24

Step 1: Counting the bits in the description. Now, we count the number of bits in our
description of T . Describing J requires n-bits. For j ∈ J , each partial truth table encoding (j, Vj)
requires at most 2 logn+m/n+ 1 bits. Using that |J | ≤ n(1− 1

2r), we get that all these encodings
require at most n(1− 1

2r)(2 log n+m/n+1) bits. Encoding the r-bounded subsets S1, . . . , S2` ⊆ [n]
requires at most 2n` ≤ n2 bits (here we use the fact that 4` ≤ n since cover([n],S) = 4`). Encoding
the gate numbers u1, . . . , u2` requires at most 4` log(2m logm) = O(n log n) (using that 4` ≤ n and
that m = nO(1)). Finally, describing a circuit with ` gates and (n + 2`) input bits where 4` ≤ n
requires O(n log n) bits. Putting this all together and using that m = O(n3), we get that T can be
described using

n+ (n(1− 1

2r
) + 2)(2 log n+m/n+ 1) + n2 +O(n log n) = (1− 1

2r
)m+O(n2) = (1− Ω(1))m

bits. Thus, the number of bad T is upper bounded by 2(1−Ω(1))m, so the probability that T is bad
is at most 2−Ω(m).

4.3 Search-to-decision reduction for Multi-MCSP

A similar “bottom-up” search-to-decision reduction to the one for Partial-MCSP works for
Multi-MCSP. Recall, in the Search-Multi-MCSP problem, the goal is a to output a Boolean cir-
cuit C of minimum size computing a (multi-output) Boolean function f .

We will now describe a deterministic polynomial-time procedure to solve Search-Multi-MCSP
using an oracle to Multi-MCSP. In our algorithm, we will assume access to an oracle that computes
CC, the exact circuit complexity of a (multi-output) Boolean function, but one can compute CC
efficiently using an oracle to Multi-MCSP. Finally, our algorithm will work recursively and actually
solve a slightly stronger problem.

Our algorithm makes use of the Evaluation Function Eval-C defined in Subsection 4.1, where
our precise notion of multi-output computation can also be found. Additionally, we say a circuit
C is a subcircuit of a circuit D if D can be obtained by adding gates to C.

Algorithm E:

Input. The truth table of a multi-output Boolean function f with n inputs and a circuit C
with n input variables x1, . . . , xn and s gates g1, . . . , gs.

Output. A minimum-sized circuit D computing f among circuits containing C as a subcircuit.

1. If C computes f , then return C.

2. Otherwise, for each operation ? ∈ {∨,∧,¬}, and for each appropriate choice of one or two
operands from {x1, . . . , xn, g1, . . . , gs}:

2.1. Let C+ be the circuit obtained by adding a ? gate to C with the chosen operands.

2.2. If CC(Eval-C+) > CC(Eval-C) and CC(f • Eval-C+) = CC(f • Eval-C), then output
E(f, C+).

If Algorithm E works as claimed, then it is easy to see that invoking E on a multi-output
Boolean function f and an empty circuit yields the desired search-to-decision reduction.

We now sketch the proof that E runs in polynomial-time and returns the claimed output on

input (f, C). We argue by induction on the quantity s
def
= CC(f •Eval-C)−CC(Eval-C) (intuitively,

s is the minimum number of gates that need to be added to C in order to compute f).

25

If s = 0, then it must be that C computes f . (By a similar argument to Proposition 1,
CC(Eval-C) is exactly the number of distinct components of Eval-C not computed by input wires. It
follows that any function computed by a gate in an optimal circuit for Eval-C must be a component
of Eval-C and therefore be computed by C.) Thus, Algorithm E correctly returns C in step (1).

Now assume that s ≥ 1. Let D be a circuit computing f of minimum-size among circuits
containing C as a subcircuit.

Claim 2. There is a gate in D whose function that computes a function h such that h is not
computed in C and such that h can be computed by applying an operator ? ∈ {∨,∧,¬} to operand(s)
solely from the set {x1, . . . , xn, g1, . . . , gs}.

Proof. Imagine labeling as depth-0 all the input variables and gates in D whose functions are
computed in C. Next, inductively define all other gates to have depth one more than the maximum
depth of their input gates. Since D computes f and C does not, there is at least one gate in D with
positive depth. Therefore there must be one gate with depth-1. Any gate with depth-1 satisfies the
property that it is not computed in C and can be computed by adding a single operator to C.

As a consequence of this, we get that some C+ will pass the test in Step (2.2).

Claim 3. At least one choice of operator and operand(s) in Step (2.1) will pass the test in Step
(2.2).

Proof. Let h be the function guaranteed by Claim 2 that is computed by some choice of apply some
operator ? ∈ {∨,∧,¬} to some operand(s) solely from the set {x1, . . . , xn, g1, . . . , gs}, and let C+

be the circuit obtained by adding this gate to C. Since h is not computed by C and C+ is obtained
by adding a gate to C, it follows that CC(Eval-C+) > CC(Eval-C). Next, since h is computed by D
and C is a subcircuit of D, it follows that every function computed by a gate in C+ is computed
by a gate in D. Thus, we have that CC(f • Eval-C+) ≤ |D|. Combining this with the optimality of
D and the fact that C is a subcircuit of C+, we have that

CC(f • Eval-C) ≤ CC(f • Eval-C+) ≤ |D| = CC(f • Eval-C).

Therefore, CC(f • Eval-C+) = CC(f • Eval-C), and so C+ passes the test in Step (2.2).

Now, let C+ be any circuit that passes the test in Step (2.2). Then the quantity

s+ = CC(f • Eval-C+)− CC(Eval-C+) < CC(f • Eval-C)− CC(Eval-C) = s

using the test conditions in Step (2.2). Thus, by the inductive hypothesis, E(f, C+) returns a
circuit D that is a minimum sized circuit for f among circuits containing C+ as a subcircuit.
Since C+ contains C as a subcircuit, it follows that D also contains C as a subcircuit. Moreover,
|D| = CC(f •Eval-C+) = CC(f •Eval-C) (by a test condition). Hence, D is a minimum-sized circuit
for f among circuits containing C as a subcircuit, as desired.

Finally, we argue that Algorithm E runs in polynomial-time on input (f, C1). Let T be the
truth table of f . Then a lower bound on the input length is m = |T |+ |C1|. We will show that E
runs in time polynomial in m.

First, we upper bound the number of recursive calls c. Let (f, C1), . . . , (f, Cc) denote the
successive inputs to E made by the recursive calls where (f, C1) is the original input. Using
induction on the two test conditions in Step (2.2), we have that

CC(Eval-Cc) ≥ CC(Eval-C1) + c− 1

26

and that
CC(f • Eval-Cc) = CC(f • Eval-C1).

On the other hand, we have that

CC(f • Eval-C1) ≤ CC(Eval-C1) +O(|T | log |T |)

as witnessed by the circuit that uses trivial DNFs to compute each component of f individually
and a minimum-sized circuit for Eval-C1 to compute Eval-C1. Putting these facts together, we get
that

CC(Eval-C1) + c− 1 ≤ CC(Eval-Cc)

≤ CC(f • Eval-Cc)

= CC(f • Eval-C1)

≤ CC(Eval-C1) +O(|T | log |T |),

so the number of recursive calls c = O(|T | log |T |) = O(m2).
Next, we analyze the computation required in recursive call i ∈ [c]. Since Algorithm E adds at

most one gate to C in each recursive call and i ≤ c, we have by induction that

|Ci| ≤ |C1|+ c− 1 = O(|C1|+m2) = O(m2).

Therefore, the computation in Step (1) of checking whether Ci computes T can be done in time
O(|T ||Ci|) = O(m3) (by just evaluating Ci on all inputs). Next, trying all possible operands on all
pairs of input variables and circuit gates from Ci in Step (2) takes at most O((|Ci|+n)2) = O(m4)
time. Lastly, it is easy to see that Steps (2.1) and Steps (2.2) run in O(m) time. Thus, each recursive
step of Algorithm E runs in time O(m4) and there are O(m2) recursive calls, so Algorithm E runs
in time O(m6).

5 On the NP-hardness of communication minimization problems

5.1 Background

Hardness of graph coloring. Our NP-hardness reduction is from the chromatic number problem:

Definition 6 (Chromatic number). A coloring of an undirected graph G, is a partition of the
vertices such that no edge has both endpoints in the same part. The chromatic number of a graph
G, denoted χ(G), is the smallest number of parts of a coloring of G.

The NP-hardness of approximating the chromatic number has been established by a series of
results [LY94, Has96, FK98], culminating in a paper by Zuckerman [Zuc06], where the following
was proven:

Theorem 4 ([Zuc06]). For every constant ε > 0 it is NP-hard to approximate χ(G) for a given
n-vertex graph G, with an approximation ratio better than n1−ε. More precisely, for every L ∈ NP
and ε > 0, there exists a polynomial-time algorithm that, on input x, outputs a parameter k and
an n-vertex graph G such that if x ∈ L then χ(G) ≤ k, and if x /∈ L then χ(G) > n1−ε · k.

27

In the reductions above, the parameter k is Θ(nε). More recent results on the hardness of
approximating chromatic number allow for a different gap, where k is constant as n grows, and we
wish to distinguish graphs which are k-colorable from graphs which are not g(k)-colorable, for a
fast-growing function g : N → N. An original such result with g(k) = kΩ(log k) was shown by Khot

[Kho01], which was later improved to g(k) = 2Ω(k1/3) by Huang [Hua13]. The latest result, by
Wrochna and Živný [WŽ19], achieves g(k) =

(
k
bk/2c

)
:

Theorem 5 ([WŽ19]). Let k ≥ 4 be a natural number. For every L ∈ NP, there exists a polynomial-
time algorithm that, on input x, outputs an graph G such that if x ∈ L then χ(G) ≤ k, and if x /∈ L
then χ(G) >

(
k
bk/2c

)
.

Communication complexity of relations and partial functions. We will need the following
definitions.

Definition 7. We will call a two-player communication relation, or simply a relation, to any
subset F ⊆ X × Y × Z, where X ,Y,Z are finite sets, such that, for every (x, y) ∈ X × Y, there
exists at least one z ∈ Z with (x, y, z) ∈ F .

Given a relation F ⊆ X × Y × Z, and a pair (x, y) ∈ X × Y, we let

F (x, y) = {z ∈ Z | (x, y, z) ∈ F} 6= ∅.

The matrix with X -indexed rows and Y-indexed columns, whose (x, y) entry is F (x, y), is called the
communication matrix of F .

Given a relation F ⊆ X × Y × Z, a rectangle R = A×B ⊆ X × Y, and an element z ∈ Z, we
say R is z-monochromatic for F , if (x, y, z) ∈ F for all (x, y) ∈ R. We say R is monochromatic
for F if there exists a z ∈ Z with R being z-monochromatic for F .

A partial two-player function is a relation f ⊆ X ×Y ×Z such that, for every (x, y) ∈ X × Y,
either |f(x, y)| = 1, in which case we say f is defined at (x, y), or f(x, y) = Z, in which case we
say f is undefined at (x, y). If f is defined at (x, y), we write f(x, y) = z in place of f(x, y) = {z},
and if f is undefined at (x, y), we write f(x, y) = ∗, instead of f(x, y) = Z.

Definition 8 (P(F)). Given a relation F ⊆ X × Y × Z, a partition of F is a family Π of
monochromatic rectangles for F , such that every (x, y) ∈ X ×Y appears in exactly one rectangle of
Π. The partition number of a relation F ⊆ X × Y × Z, denoted P(F) is the smallest possible size
of a partition of F .

Definition 9 (C(F)). Given a relation F ⊆ X×Y×Z, a cover of F is a family Γ of monochromatic
rectangles for F , such that every (x, y) ∈ X × Y appears in at least one rectangle of Γ. The cover
number of a relation F ⊆ X × Y × Z, denoted C(F) is the smallest possible size of a cover of F .

In the context of Boolean-valued functions, the usual notion of cover number [see Juk12, §4.2,
p. 97], and related notion of non-deterministic communication complexity, only require that the 1s
of the communication matrix are covered.

Definition 10 (C1(F)). Given a partial two-player function f : X ×Y → {0, 1}, a 1-cover of F is
a family Γ of 1-monochromatic rectangles for F , such that every (x, y) ∈ X ×Y having f(x, y) = 1
appears in at least one rectangle of Γ. The 1-cover number of f , denoted C1(F) is the smallest
possible size of a 1-cover of F . We then define the non-deterministic communication complexity
of f to be N(f) = dlogC1(f)e.

28

Definition 11. A protocol π over X × Y is a rooted tree:

• Each node v is associated with a rectangle π−1(v) = A×B ⊆ X × Y.

• Each non-leaf node v, with π−1(v) = A×B, is labeled by either (a) a partition A = A0 ∪· A1

of A, in which case we say it is Alice’s node or (b) a partition B = B0 ∪· B1 of B, in which
case we say it is Bob’s node.

• The rectangle associated with the root is X × Y.

• If a non-leaf node v of Alice has π−1(v) = A × B and is labeled by a partition A = A0 ∪· A1

of A, then for each c ∈ {0, 1} there will be a unique child vc of v, with π−1(vc) = Ac × B;
similarly for Bob’s nodes.

Definition 12 (L(F), D(F)). Let F ⊆ X ×Y ×Z be a relation, and π a protocol over X ×Y. We
say that π is a protocol for F if, for any leaf ` of π, the rectangle π−1(`) is monochromatic for F .
We then let L(F) be the smallest possible number of leaves in a protocol for F , and we let D(F) be
the smallest possible depth of a protocol for F .

Note that the rectangles associated with the leaves of a protocol for F form a partition of F ,
any partition of F is a cover of F , and any cover of F contains a 1-cover of F , and hence we get
the following:

Lemma 7. For any relation F ⊆ X × Y × Z, L(F) ≥ P(F) ≥ C(F), and for a partial two-player
function f : X × Y → {0, 1}, C(f) ≥ C1(f).

Definition 13. A DAG-like protocol γ over X × Y is a directed acyclic graph:

• γ has a single source node, called the root, and one or more sink nodes, called leaves.

• Each node v is associated with a rectangle γ−1(v) = A×B ⊆ X × Y.

• Each non-leaf node v, with γ−1(v) = A×B, is labeled by either (a) a partition A = A0 ∪· A1

of A, in which case we say it is Alice’s node or (b) a partition B = B0 ∪· B1 of B, in which
case we say it is Bob’s node.

• The rectangle associated with the root is X × Y.

• If a non-leaf node v of Alice has γ−1(v) = A × B and is labeled by a partition A = A0 ∪· A1

of A, then for each c ∈ {0, 1} there will be an edge from v to a node vc of γ, which must be
such that Ac ×B ⊆ γ−1(vc); similarly for Bob’s nodes.

Definition 14 (S(F)). Let F ⊆ X×Y×Z be a relation, and γ a DAG-like protocol over X×Y. We
say that γ is a DAG-like protocol for F if, for any leaf ` of γ, the rectangle γ−1(`) is monochromatic
for F . We then let S(F) be the smallest possible number of nodes in a DAG-like protocol for F .

Note that: (1) a protocol with k leaves is a DAG-like protocol with 2k − 1 nodes, (2) the
rectangles associated with the leaves of a DAG-like protocol form a cover of F , and (3) any DAG
with 1 source node, k sink nodes, and maximum out-degree 2 has at least 2k − 1 nodes in total.
Hence:

Lemma 8. S(F) ≤ 2L(F)− 1 and S(F) ≥ 2C(F)− 1.

29

5.2 A reduction from Graph Coloring to Partial-MCCP

Let us be given a graph G = ([n], E) with E ⊆
(

[n]
2

)
, and consider the partial two-player Boolean

function fG : [n]× [n]→ {0, 1, ∗}, given by

fG(i, j) =

1 if i = j,

0 if {i, j} ∈ E,
∗ if {i, j} /∈ E.

By fG(i, j) = ∗ we mean that fG(i, j) is undefined, which is to say Alice and Bob may output any
value when given (i, j) as input.

Theorem 6. We have L(fG) ≤ 2χ(G) and C1(fG) = χ(G).

Proof. To show that L(fG) ≤ 2χ(G), consider the simple protocol where Alice and Bob have agreed
on a coloring of G, so Alice begins by sending the color of her vertex, and Bob replies whether the
color of his vertex is the same. If the two colors match, they output 1, and otherwise they output
0.

This is a protocol for f , since a valid coloring of G will only color i and j by the same color if
i = j, or {i, j} /∈ E, in which case 1 is a valid output. If i and j are colored differently, then i 6= j,
and so 0 is a valid output. This protocol has 2χ(G) leaves.

To show that C1(fG) ≤ χ(G), we cover the diagonal by 1-monochromatic rectangles; each such
rectangle corresponds to a color c, and is the smallest rectangle containing all diagonal entries (i, i)
for vertices i of G that are colored c.

Now suppose we have any positive cover Γ for f . The diagonal entries must be covered by
1-monochromatic rectangles of Γ, so consider the coloring of G which colors vertex i ∈ [n] by
the 1-monochromatic rectangle which covers (i, i). By our choice of f , any two diagonal entries
belonging to the same 1-monochromatic rectangle are not connected by an edge of G. And so this
gives us a valid coloring of G, which implies that χ(G) ≤ |Γ|.

5.3 Consequences of the reduction

We may now take Theorems 6 and 4, together with Lemmas 7 and 8, to obtain:

Corollary 1. For any constant ε > 0, it is NP-hard to approximate L(f), P(f), C(f), C1(f) and
S(f), for a given partial function f : [n]× [n] → {0, 1, ∗}, with an approximation ratio better than
n1−ε.

Observe that this hardness of approximation result with a ratio of n1−ε is very close to optimal,
since all aforementioned measures for a partial two-player function f : [n] × [n] → {0, 1, ∗} are
upper-bounded by 2n. Improving upon this might still be possible, and we leave it as an open
problem.

Now notice that the protocol given in the proof of Theorem 4 is balanced. For this reason,
its depth is logarithmic in the number of leaves. Thus, since computing L(f) is hard up to an
approximation ratio of n1−ε, it follows that computing the communication complexity D(f) for
a given partial function f : [n] × [n] → {0, 1, ∗} is hard, even if we allow for an additive error
term of (1 − ε) log n. Since D(f) ≤ log n, this implies that we cannot approximate D(f) with an
approximation ratio better than ≈ 1

ε , which we can take as an arbitrarily large constant. The same
reasoning applies to non-deterministic communication complexity.

30

Corollary 2. For any constant ε > 0, it is NP-hard to approximate D(f) or N(f), for a given partial
function f : [n] × [n] → {0, 1, ∗}, with an error term smaller than (1 − ε) log n. For any constant
c > 1, it is NP-hard to approximate D(f) or N(f), for a given partial function f : [n]×[n]→ {0, 1, ∗},
with an approximation ratio better than c.

Let us now prove that, assuming P 6= NP, there is no polynomial-time computable approximate
characterization of the communication complexity of a partial Boolean function. This is captured
by a more general result, which is an immediate consequence of the reduction presented in Section
5.2 and Theorem 5.

Theorem 7. Let λ, η : R≥0 → R≥0 be functions such that η(1 + log x) < λ(0.99x) for all suffi-
ciently large x. Moreover, assume that these functions are non-decreasing for every large enough
x. Then, if P 6= NP, there is no polynomial-time computable function r, which accepts as input the
communication matrix Mf ∈ {0, 1, ∗}n×n of a partial Boolean function f : [n]× [n]→ {0, 1, ∗}, and
for every large enough n outputs a value r(Mf) such that

λ(D(f)) ≤ r(Mf) ≤ η(D(f)).

Proof. Suppose that functions λ, η, and r exist as described in the statement of the theorem. Let
L be any language in NP, and assume that k is a sufficiently large constant. For any x ∈ {0, 1}n,
let Gx be the corresponding graph given by Theorem 5. Then let fx = fGx be as defined in
Section 5.2 above, and let Mx be the communication matrix of fx. If x ∈ L, we then have by
Theorem 6 that k ≥ χ(Gx) ≥ 1

2L(fx), and because the protocol for fx that witnesses this fact is
balanced, we get 1 + log k ≥ D(fx). Hence η(1 + log k) ≥ η(D(fx)) ≥ r(Mx). If, on the other hand,
y /∈ L, then we have 20.99k <

(
k
bk/2c

)
< χ(Gy) = C1(fy) ≤ L(fy), and thus 0.99k < D(fy). Then

λ(0.99k) ≤ λ(D(fy)) ≤ r(My). But since λ(0.99k) > η(1 + log k) using our assumptions on these
functions and on k, it follows that r(My) > r(Mx). As a consequence, the polynomial time function
r can be used to distinguish positive and negative instances of L. Since L is an arbitrary language
in NP, we get that P = NP. This completes the proof.

Acknowledgements

Igor C. Oliveira would like to thank Ján Pich and Rahul Santhanam for discussions on the
complexity of circuit minimization for partial Boolean functions. Bruno Loff would like to thank
Eric Allender for posing a question that inspired some results in this work, and the Higher School of
Economics for inviting him to the conference “Randomness, Information, Complexity”, in honor of
Alexander Shen and Nikolay Vereshchagin’s 60th birthday, where said question was asked. Rahul
Ilango would like to thank Eric Allender, Marco Carmosino, Russell Impagliazzo, Michael Saks,
Rahul Santhanam, and Ryan Williams for their encouragement, suggestions, and helpful discus-
sions.

References

[ABF+08] Misha Alekhnovich, Mark Braverman, Vitaly Feldman, Adam R. Klivans, and Toni-
ann Pitassi. The complexity of properly learning simple concept classes. Journal of
Computer and System Sciences, 74(1):16–34, 2008.

31

[ABT18] Anurag Anshu, Naresh Goud Boddu, and Dave Touchette. Quantum log-approximate-
rank conjecture is also false. arXiv:1811.10525, 2018.

[ABX08] Benny Applebaum, Boaz Barak, and David Xiao. On basing lower-bounds for learn-
ing on worst-case assumptions. In Symposium on Foundations of Computer Science
(FOCS), pages 211–220, 2008.

[AD14] Eric Allender and Bireswar Das. Zero knowledge and circuit minimization. In In-
ternational Symposium on Mathematical Foundations of Computer Science (MFCS),
pages 25–32, 2014.

[AGvM+18] Eric Allender, Joshua A. Grochow, Dieter van Melkebeek, Cristopher Moore, and
Andrew Morgan. Minimum circuit size, graph isomorphism, and related problems.
SIAM Journal on Computing, 47(4):1339–1372, 2018.

[AH17] Eric Allender and Shuichi Hirahara. New insights on the (non-)hardness of circuit
minimization and related problems. In International Symposium on Mathematical
Foundations of Computer Science (MFCS), pages 54:1–54:14, 2017.

[AHK17] Eric Allender, Dhiraj Holden, and Valentine Kabanets. The minimum oracle circuit
size problem. Computational Complexity, 26(2):469–496, 2017.

[AHM+08] Eric Allender, Lisa Hellerstein, Paul McCabe, Toniann Pitassi, and Michael E. Saks.
Minimizing disjunctive normal form formulas and AC0 circuits given a truth table.
SIAM Journal on Computing, 38(1):63–84, 2008.

[AIV19] Eric Allender, Rahul Ilango, and Neekon Vafa. The non-hardness of approximating
circuit size. In International Computer Science Symposium in Russia (CSR), pages
13–24, 2019.

[BEHW87] Anselm Blumer, Andrzej Ehrenfeucht, David Haussler, and Manfred K. Warmuth.
Occam’s razor. Information Processing Letters, 24(6):377–380, 1987.

[BFJL93] Avrim Blum, Merrick L. Furst, Michael J., and Richard J. Lipton. Cryptographic
primitives based on hard learning problems. In International Cryptology Conference
(CRYPTO), pages 278–291, 1993.

[BGS75] Theodore P. Baker, John Gill, and Robert Solovay. Relativizations of the P =? NP
question. SIAM Journal on Computing, 4(4):431–442, 1975.

[BL93] Dan Boneh and Richard J. Lipton. Amplification of weak learning under the uniform
distribution. In Conference on Learning Theory (COLT), pages 347–351, 1993.

[BMP08] Joan Boyar, Philip Matthews, and René Peralta. On the shortest linear straight-line
program for computing linear forms. In International Symposium on Mathematical
Foundations of Computer Science (MFCS), pages 168–179, 2008.

[BR92] Avrim L. Blum and Ronald L. Rivest. Training a 3-node neural network is np-complete.
Neural Networks, 5(1):117 – 127, 1992.

32

[BT06] Andrej Bogdanov and Luca Trevisan. Average-case complexity. Foundations and
Trends in Theoretical Computer Science, 2(1), 2006.

[CIKK16] Marco L. Carmosino, Russell Impagliazzo, Valentine Kabanets, and Antonina
Kolokolova. Learning algorithms from natural proofs. In Conference on Computa-
tional Complexity (CCC), pages 10:1–10:24, 2016.

[CKLM19] Mahdi Cheraghchi, Valentine Kabanets, Zhenjian Lu, and Dimitrios Myrisiotis. Cir-
cuit lower bounds for MCSP from local pseudorandom generators. Electronic Collo-
quium on Computational Complexity (ECCC), 26:22, 2019.

[CMS19] Arkadev Chattopadhyay, Nikhil S Mande, and Suhail Sherif. The log-approximate-
rank conjecture is false. In Symposium on Theory of Computing (STOC), pages 42–53.
ACM, 2019.

[CR12] Amit Chakrabarti and Oded Regev. An optimal lower bound on the communication
complexity of gap-Hamming-distance. SIAM Journal on Computing, 41(5):1299–1317,
2012.

[CS16] Gil Cohen and Igor Shinkar. The complexity of DNF of parities. In Innovations in
Theoretical Computer Science (ITCS), pages 47–58, 2016.

[Czo99] Sebastian Czort. The complexity of minimizing disjunctive normal form formulas.
Master’s Thesis, University of Aarhus, 1999.

[Fei98] Uriel Feige. A threshold of lnn for approximating set cover. Journal of the ACM,
45(4):634–652, 1998.

[FGHK16] Magnus Gausdal Find, Alexander Golovnev, Edward A. Hirsch, and Alexander S. Ku-
likov. A better-than-3n lower bound for the circuit complexity of an explicit function.
In Symposium on Foundations of Computer Science (FOCS), pages 89–98, 2016.

[FK98] Uriel Feige and Joe Kilian. Zero knowledge and the chromatic number. Journal of
Computer and System Sciences, 57(2):187–199, 1998.

[GII+19] Alexander Golovnev, Rahul Ilango, Russell Impagliazzo, Valentine Kabanets, Anton-
ina Kolokolova, and Avishay Tal. AC0[p] lower bounds against MCSP via the coin
problem. Electronic Colloquium on Computational Complexity (ECCC), 26:18, 2019.

[GJ79] Michael R. Garey and David S. Johnson. Computers and Intractability: A Guide to
the Theory of NP-Completeness. W. H. Freeman, 1979.

[GP18] Mika Göös and Toniann Pitassi. Communication lower bounds via critical block sen-
sitivity. SIAM Journal on Computing, 47(5):1778–1806, 2018.

[Has96] Johan Hastad. Clique is hard to approximate within n1−ε. In Symposium on Founda-
tions of Computer Science (FOCS), pages 627–636, 1996.

[Hir18] Shuichi Hirahara. Non-black-box worst-case to average-case reductions within NP. In
Symposium on Foundations of Computer Science (FOCS), pages 247–258, 2018.

33

[HJLT96] Thomas R. Hancock, Tao Jiang, Ming Li, and John Tromp. Lower bounds on learning
decision lists and trees. Information and Computation, 126(2):114–122, 1996.

[HOS18] Shuichi Hirahara, Igor Carboni Oliveira, and Rahul Santhanam. NP-hardness of min-
imum circuit size problem for OR-AND-MOD circuits. In Computational Complexity
Conference (CCC), pages 5:1–5:31, 2018.

[HP15] John M. Hitchcock and Aduri Pavan. On the NP-completeness of the minimum circuit
size problem. In Conference on Foundation of Software Technology and Theoretical
Computer Science (FSTTCS), pages 236–245, 2015.

[HS06] Gary D. Hachtel and Fabio Somenzi. Logic synthesis and verification algorithms.
Springer, 2006.

[HS17] Shuichi Hirahara and Rahul Santhanam. On the average-case complexity of MCSP
and its variants. In Computational Complexity Conference (CCC), pages 7:1–7:20,
2017.

[Hua13] Sangxia Huang. Improved hardness of approximating chromatic number. In Inter-
national Conference on Approximation Algorithms for Combinatorial Optimization
Problems (APPROX), pages 233–243, 2013.

[HW16] Shuichi Hirahara and Osamu Watanabe. Limits of minimum circuit size problem as
oracle. In Conference on Computational Complexity (CCC), pages 18:1–18:20, 2016.

[IKV18] Russell Impagliazzo, Valentine Kabanets, and Ilya Volkovich. The Power of Natural
Properties as Oracles. In Computational Complexity Conference (CCC), volume 102,
pages 7:1–7:20, 2018.

[Ila19] Rahul Ilango. AC0[p] lower bounds and NP-hardness for variants of MCSP. Electronic
Colloquium on Computational Complexity (ECCC), 26:21, 2019.

[IM02] Kazuo Iwama and Hiroki Morizumi. An explicit lower bound of 5n− o(n) for boolean
circuits. In International Symposium on Mathematical Foundations of Computer Sci-
ence (MFCS), pages 353–364, 2002.

[Jud87] J. Stephen Judd. Learning in networks is hard. In International Conference on Neural
Networks (ICNN), volume 2, pages 685–692, 1987.

[Juk12] Stasys Jukna. Boolean function complexity: advances and frontiers, volume 27.
Springer, 2012.

[Kar53] Maurice Karnaugh. The map method for synthesis of combinational logic circuits.
Transactions of the American Institute of Electrical Engineers, Part I: Communication
and Electronics, 72(5):593–599, 1953.

[KC00] Valentine Kabanets and Jin-yi Cai. Circuit minimization problem. In Symposium on
Theory of Computing (STOC), pages 73–79, 2000.

34

[Kho01] Subhash Khot. Improved inapproximability results for maxclique, chromatic number
and approximate graph coloring. In Symposium on Foundations of Computer Science
(FOCS), pages 600–609, 2001.

[KL18] Pravesh K. Kothari and Roi Livni. Improper learning by refuting. In Innovations in
Theoretical Computer Science (ITCS), pages 55:1–55:10, 2018.

[KN97] Eyal Kushilevitz and Noam Nisan. Communication Complexity. Cambridge University
Press, 1997.

[Ko90] Ker-I Ko. On the complexity of learning minimum time-bounded Turing machines.
SIAM Journal on Computing, 20(5):962–986, 1990.

[Kra11] Jan Kraj́ıcek. Forcing with Random Variables and Proof Complexity. Cambridge
University Press, 2011.

[KS08] Subhash Khot and Rishi Saket. Hardness of minimizing and learning DNF expressions.
In Symposium on Foundations of Computer Science (FOCS), pages 231–240, 2008.

[Kus97] Eyal Kushilevitz. Communication complexity. In Advances in Computers, volume 44,
pages 331–360. Elsevier, 1997.

[KV94a] Michael J. Kearns and Leslie G. Valiant. Cryptographic limitations on learning boolean
formulae and finite automata. J. ACM, 41(1):67–95, 1994.

[KV94b] Michael J. Kearns and Umesh V. Vazirani. An Introduction to Computational Learning
Theory. MIT Press, 1994.

[KW09] Eyal Kushilevitz and Enav Weinreb. On the complexity of communication complexity.
In Symposium on Theory of Computing (STOC), pages 465–474, 2009.

[Lev73] Leonid Levin. Universal sequential search problems. Problemy Peredachi Informatsii,
9(3):115–116, 1973.

[LS88] László Lovász and Michael Saks. Lattices, mobius functions and communications
complexity. In Symposium on Foundations of Computer Science (FOCS), pages 81–
90, 1988.

[LY94] Carsten Lund and Mihalis Yannakakis. On the hardness of approximating minimiza-
tion problems. Journal of the ACM, 41(5):960–981, 1994.

[Mas79] William J. Masek. Some NP-complete set covering problems. Unpublished Manuscript,
1979.

[McC65] Edward J. McCluskey. Introduction to the theory of switching circuits. McGraw-Hill,
1965.

[MMW19] Dylan M. McKay, Cody D. Murray, and R. Ryan Williams. Weak lower bounds
on resource-bounded compression imply strong separations of complexity classes. In
Symposium on Theory of Computing (STOC), 2019.

35

[MP17] Moritz Müller and Ján Pich. Feasibly constructive proofs of succinct weak circuit
lower bounds. Electronic Colloquium on Computational Complexity (ECCC), 24:144,
2017.

[MW15] Cody D. Murray and Richard Ryan Williams. On the (non) NP-hardness of computing
circuit complexity. In Conference on Computational Complexity (CCC), pages 365–
380, 2015.

[OPS19] Igor Carboni Oliveira, Ján Pich, and Rahul Santhanam. Hardness magnification near
state-of-the-art lower bounds. In Conference on Computational Complexity (CCC),
2019.

[Orl77] James Orlin. Contentment in graph theory: covering graphs with cliques. Indagationes
Mathematicae, 80(5):406–424, 1977.

[OS17] Igor Carboni Oliveira and Rahul Santhanam. Conspiracies between learning algo-
rithms, circuit lower bounds, and pseudorandomness. In Computational Complexity
Conference (CCC), pages 18:1–18:49, 2017.

[OS18] Igor Carboni Oliveira and Rahul Santhanam. Hardness magnification for natural
problems. In Symposium on Foundations of Computer Science (FOCS), pages 65–76,
2018.

[PRS88] Pavel Pudlák, Vojtech Rödl, and Petr Savický. Graph complexity. Acta Informatica,
25(5):515–535, 1988.

[PV88] Leonard Pitt and Leslie G. Valiant. Computational limitations on learning from ex-
amples. Journal of the ACM, 35(4):965–984, 1988.

[Rav13] Netanel Raviv. Truth table minimization of computational models. CoRR/arXiv,
abs/1306.3766, 2013.

[Riv87] Ronald L. Rivest. Learning decision lists. Machine Learning, 2(3):229–246, 1987.

[RK62] J. Paul Roth and Richard M. Karp. Minimization over boolean graphs. IBM Journal
of Research and Development, 6(2):227–238, 1962.

[RR97] Alexander A. Razborov and Steven Rudich. Natural proofs. Journal of Computer and
System Sciences, 55(1):24–35, 1997.

[Sch01] Christoph Scholl. Functional decomposition with applications to FPGA synthesis.
Kluwer Academic Publishers, 2001.

[SdW18] Makrand Sinha and Ronald de Wolf. Exponential separation between quantum com-
munication and logarithm of approximate rank. arXiv:1811.10090, 2018.

[Tra84] Boris A Trakhtenbrot. A survey of Russian approaches to perebor (brute-force search)
algorithms. Annals of the History of Computing, 6(4):384–400, 1984.

[Tre01] Luca Trevisan. Non-approximability results for optimization problems on bounded
degree instances. In Symposium on Theory of Computing (STOC), pages 453–461,
2001.

36

[UVS06] Christopher Umans, Tiziano Villa, and Alberto L. Sangiovanni-Vincentelli. Complex-
ity of two-level logic minimization. IEEE Trans. on CAD of Integrated Circuits and
Systems, 25(7):1230–1246, 2006.

[Vad17] Salil P. Vadhan. On learning vs. refutation. In Conference on Learning Theory
(COLT), pages 1835–1848, 2017.

[WŽ19] Marcin Wrochna and Stanislav Živnỳ. Improved hardness for H-colourings of G-
colourable graphs. arXiv:1907.00872, 2019.

[Yao82] Andrew Chi-Chih Yao. Theory and applications of trapdoor functions (extended ab-
stract). In Symposium on Foundations of Computer Science (FOCS), pages 80–91,
1982.

[Zuc06] David Zuckerman. Linear degree extractors and the inapproximability of max clique
and chromatic number. In Symposium on Theory of Computing (STOC), pages 681–
690, 2006.

A The connection between average-case Partial-MCSP and learning

A few years ago, [CIKK16] established an equivalence between solving MCSP on average and
learning Boolean circuits under the uniform distribution using membership queries.15 In this section,
we describe a similar equivalence between the average-case complexity of Partial-MCSP and learning
Boolean circuits under the uniform distribution using random examples. The result is implicit in
the work of [Vad17], and similar ideas have appeared in the literature before (see e.g. [BFJL93]).
Here we simply translate these ideas to the language of circuit minimization.16

First, we formalize the learning model. For a Boolean function f : {0, 1}n → {0, 1}, an example
oracle EX (f) for f is a procedure that when invoked returns a pair (x, f(x)) consisting of a uniformly
distributed string x ∈ {0, 1}n and its label f(x). We say that a circuit C is ε-close to a function
f if Prx[C(x) 6= f(x)] ≤ ε. A randomized algorithm A learns a class of Boolean functions F with
accuracy ε and confidence δ if, for every f ∈ F of the form f : {0, 1}n → {0, 1}, when A is given
access to an example oracle EX (f),

Pr
A, EX (f)

[AEX (f)(1n) outputs a circuit C that is ε(n)-close to f] ≥ 1− δ(n).

The confidence parameter δ(n) can be easily boosted without a significant increase of running
time. In particular, a learner that succeeds with probability at least 1/poly(n) can be transformed
into a learner that fails with probability at most 1/poly(n) with just a polynomial overhead in the
running time (cf. [KV94b]). For this reason, the discussion below will concentrate on the accuracy
parameter ε, implicitly assuming that δ(n) = 1/n.

We will focus on the class F = SIZE[s] that corresponds to Boolean functions computable by
(unrestricted) Boolean circuits of size at most s, where s : N→ N. For simplicity, we focus on the
regime where s = poly(n).

15See [HS17] for a discussion on the average-case complexity of MCSP and its connection to natural proofs [RR97].
16Note that [Vad17] considers learnability in the PAC model (i.e. with respect to arbitrary distributions), while

here we focus on learnability under the uniform distribution.

37

Next, we make precise the notion of average-case complexity of Partial-MCSP. We say that a
randomized algorithm B solves Partial-MCSP (over dimension n) on average with advantage γ for
a size parameter s using t samples if, for every f ∈ SIZE[s] of the form f : {0, 1}n → {0, 1}, we
have:∣∣∣ Pr

B, {zi}i∈[t]
[B(1n, z1, f(z1), . . . , zt, f(zt)) = 1]− Pr

B, {zi}i∈[t], b
[B(1n, z1, b1, . . . , z

t, bt)) = 1]
∣∣∣ ≥ γ(n),

where b ∈ {0, 1}t and z1, . . . , zt ∈ {0, 1}n are independent and uniformly random, and t = t(n).

Theorem 8. The following implications hold.

(1) For every c, d ∈ N there exists ` ∈ N such that if SIZE[nc] can be learned in time O(nd)
with accuracy ε = 1/10, then Partial-MCSP over dimension n can be solved on average in
polynomial time with advantage γ(n)→n 1 for s(n) = nc using t(n) = n` samples.

(2) If for every c ∈ N there exists ` ∈ N such that Partial-MCSP over every dimension n can be
solved on average in polynomial time with advantage γ = 1/10 for s(n) = nc using t(n) = n`

samples, then for every a ∈ N the class SIZE[na] can be learned in polynomial time with
accuracy ε(n) = 1/n.

In other words, Theorem 8 says that polynomial-size Boolean circuits over {0, 1}n can be learned
in polynomial time using random examples if and only if Partial-MCSP over {0, 1}poly(n) can be
solved on average in polynomial time.

Proof Sketch. We start with the proof of (1). Let `
def
= nd+1 + n. Assuming the existence of a

learning algorithm A for SIZE[nc] with accuracy ε = 1/10 and confidence δ = 1/n, the algorithm B
for average-case Partial-MCSP employs A as a sub-routine, and computes as follows. Given 1n and

a sequence (z1, a1), . . . , (zt, at) in {0, 1}t·(n+1), where t(n)
def
= n`, B uses the first nd+1 pairs (zi, ai)

to simulate the answers to the oracle calls made by A to its example oracle. Let C be the circuit
output by AEX (·)(1n) after its computation. B uses the last n input pairs (zi, ai) to compute the
fraction α ∈ [0, 1] of such pairs for which C(xi) 6= ai. Finally, B outputs 1 if and only if α ≤ 1/3.
Note that B runs in polynomial time under the assumption that A runs in time O(nd).

Let f ∈ SIZE[nc]. In this case, PrB, {zi}i∈[t] [B(1n, z1, f(z1), . . . , zt, f(zt)) = 1] ≥ 1 − 2/n, since

with probability at most 1/n algorithm A fails to output a circuit C that is (1/10)-close to f , and by
a standard concentration bound with probability at most 1/n we have α > 1/3. On the other hand,
it is not hard to see by a standard concentration bound that PrB, {zi}i∈[t], b[B(1n, z1, b1, . . . , z

t, bt)) =

1] ≤ 1/n, since in this case no matter the circuit C output by A, the last n input pairs of B contain
random bits bi that are uncorrelated with C. This shows that B has advantage γ(n)→n 1.

In order to prove (2), it is enough to conclude that for every a ∈ N there is ` ∈ N such that the
class SIZE[na] can be learned to accuracy ε(n) = 1/2−1/n`+1 in polynomial time. This claim follows
from a result of [BL93, Section 2] showing in particular that, when learning general polynomial-size
Boolean circuits under the uniform distribution from random examples, one can boost the accuracy
parameter from ε(n) = 1/2−1/poly(n) to ε(n) = 1/poly(n) with only a polynomial overhead in the
running time. (From the discussion above, we also know that it is sufficient to achieve confidence
δ(n) = 1− 1/poly(n).)

Proceeding with the proof of (2), we describe a learning algorithm A for SIZE[na] with accu-
racy ε(n) = 1/2 − 1/100n` using an algorithm B that solves Partial-MCSP over dimension n on

38

average in polynomial time with advantage γ = 1/10 for s(n) = nc using t(n) = n` samples. The
argument relies on Yao’s connection between pseudorandomness and (un)predictability [Yao82],
which is established using a hybrid argument. We provide below a self-contained presentation of
the argument.

By assumption, for every f ∈ SIZE[na],∣∣∣ Pr
B, {zi}i∈[t]

[B(1n, z1, f(z1), . . . , zt, f(zt)) = 1]− Pr
B, {zi}i∈[t], b

[B(1n, z1, b1, . . . , z
t, bt)) = 1]

∣∣∣ ≥ 1/10.

For i ∈ {0, 1, . . . , t}, consider the distribution Di supported over {0, 1}t·(n+1) obtained by sampling
a string x1, b1, . . . , x

i, bi, . . . , x
t, bt, where each xj is a random n-bit string, and each bj is set to

f(xj) if j > i and to a random bit otherwise. For convenience, let pi
def
= PrB,w∼Di [B(1n, w) = 1].

The inequality above implies that

∣∣∣ t−1∑
i=0

(pi − pi+1)
∣∣∣ ≥ 1/10.

Consequently, for some index j ∈ {0, 1, . . . , t− 1} that might depend on f ,∣∣∣ Pr
B,w∼Dj

[B(1n, w) = 1]− Pr
B,w∼Dj+1

[B(1n, w) = 1]
∣∣∣ ≥ 1/10t.

The only distinction between the distributions Dj and Dj+1 is that, for a random xj+1 ∈ {0, 1}n,
one generates the pair (xj+1, f(xj+1)), while the other generates the pair (xj+1, bj+1), where bj+1 is
a random bit. Note that the other coordinates of these two distributions are identically distributed
and can be generated using the randomness of the learner and its example oracle EX (f). For this
reason, once one knows the index j+ 1, it is possible to use B (or its negation) to predict the value
of f on a random input with advantage Ω(1/t) over a random guess.

It is not difficult to show that this can be used to design a randomized learning algorithm A
that, with probability Ω(1/t) over its internal randomness and EX (f), outputs a circuit that is
ε-close to f , where ε(n) = 1/2 − 1/100t. Finally, the running time of A is polynomial under the
assumption that B runs in polynomial time.

A consequence of this result is that we can base the hardness of learning on the worst-case
assumption that NP * RP if and only if the existence of an efficient algorithm for average-case
Partial-MCSP implies the existence of an efficient (worst-case) algorithm for Partial-MCSP. In order
to see this, note that NP ⊆ BPP if and only if NP ⊆ RP (using a search-to-decision reduction).
Now the inclusion NP ⊆ BPP is equivalent to the easiness of (worst-case) Partial-MCSP by Theorem
1, while Theorem 8 establishes an equivalence between learnability and solving Partial-MCSP on
average.

Finally, we remark that the connection between learning and Partial-MCSP described here gen-
eralizes to any circuit class C that can efficiently compute the parity function. (This is necessary
in order to apply the uniform distribution boosting procedure from [BL93].) In other words,
C-Partial-MCSP is easy on average if and ony if C can be efficiently learned under the uniform
distribution from random examples.

39

ECCC ISSN 1433-8092

https://eccc.weizmann.ac.il

