208 research outputs found

    EXTENDING THE SHEBA PROPAGATION MODEL TO REDUCE PARAMETER-RELATED UNCERTAINTIES

    Get PDF
    Heliophysics is the branch of physics that investigates the interactions and cor-relation of different events across the Solar System. The mathematical modelsthat describe and predict how physical events move across the solar system (ie.Propagation Models) are of great relevance. These models depend on parame-ters that users must set, hence the ability to correctly set the values is key toreliable simulations. Traditionally, parameter values can be inferred from dataeither at the source (the Sun) or arrival point (the target) or can be extrapo-lated from common knowledge of the event under investigation. Another way ofsetting parameters for Propagation Models is proposed here: instead of guess-ing a priori parameters from scientific data or common knowledge, the model isexecuted as a parameter-sweep job and selects a posteriori the parameters thatyield results most compatible with the event data. In either case (a priori anda posteriori), the correct use of Propagation Models requires information toeither select the parameters, validate the results, or both. In order to do so, itis necessary to access sources of information. For this task, the HELIO projectproves very effective as it offers the most comprehensive integrated informationsystem in this domain and provides access and coordination to services to mineand analyze data. HELIO also provides a Propagation Model called SHEBA,the extension of which is currently being developed within the SCI-BUS project(a coordinated effort for the development of a framework capable of offering toscience gateways seamless access to major computing and data infrastructures)

    A WORKFLOW-ORIENTED APPROACH TO PROPAGATION MODELS IN HELIOPHYSICS

    Get PDF
    The Sun is responsible for the eruption of billions of tons of plasma andthe generation of near light-speed particles that propagate throughout the solarsystem and beyond. If directed towards Earth, these events can be damaging toour tecnological infrastructure. Hence there is an effort to understand the causeof the eruptive events and how they propagate from Sun to Earth. However, thephysics governing their propagation is not well understood, so there is a need todevelop a theoretical description of their propagation, known as a PropagationModel, in order to predict when they may impact Earth. It is often difficultto define a single propagation model that correctly describes the physics ofsolar eruptive events, and even more difficult to implement models capable ofcatering for all these complexities and to validate them using real observational data.In this paper, we envisage that workflows offer both a theoretical andpractical framerwork for a novel approach to propagation models. We definea mathematical framework that aims at encompassing the different modalitieswith which workflows can be used, and provide a set of generic building blockswritten in the TAVERNA workflow language that users can use to build theirown propagation models. Finally we test both the theoretical model and thecomposite building blocks of the workflow with a real Science Use Case that wasdiscussed during the 4th CDAW (Coordinated Data Analysis Workshop) eventheld by the HELIO project. We show that generic workflow building blocks canbe used to construct a propagation model that succesfully describes the transitof solar eruptive events toward Earth and predict a correct Earth-impact tim

    MOSAiC Science Plan

    Get PDF
    The Multidisciplinary drifting Observatory for the Study of Arctic Climate (MOSAiC) is an international Arctic research initiative that is broadly motivated by the dramatic changes in the Arctic climate system over the last few decades, highlighted by significant losses of sea ice, and generally deficient model representations of the important processes responsible for, and responding to, these changes. The ultimate goal of the initiative is to enhance understanding of central Arctic coupled atmosphere-­‐ice-­‐ocean-­‐ecosystem processes to improve numerical models for sea ice forecasting, extended-­‐range weather forecasting, climate projections, and climate change assessment

    Snow observations from Arctic Ocean Soviet drifting stations: legacy and new directions

    Get PDF
    The Arctic Ocean is one of the most rapidly changing regions on the planet. Its warming climate has driven reductions in the region's sea ice cover which are likely unprecedented in recent history, with many of the environmental impacts being mediated by the overlying snow cover. As well as impacting energetic and material fluxes, the snow cover also obscures the underlying ice from direct satellite observation. While the radar waves emitted from satellite-mounted altimeters have some ability to penetrate snow cover, an understanding of snow geophysical properties remains critical to remote sensing of sea ice thickness. The paucity of Arctic Ocean snow observations was recently identified as a key knowledge gap and uncertainty by the Intergovernmental Panel on Climate Change's Special Report on Oceans and Cryosphere in a Changing Climate. This thesis aims to address that knowledge gap. Between 1937 and 1991 the Soviet Union operated a series of 31 crewed stations which drifted around the Arctic Ocean. During their operation, scientists took detailed observations of the atmospheric conditions, the physical oceanography, and the snow cover on the sea ice. This thesis contains four projects that feature these observations. The first two consider a well known snow depth and density climatology that was compiled from observations at the stations between 1954 & 1991. Specifically, Chapter two considers the role of seasonally evolving snow density in sea ice thickness retrievals, and Chapter three considers the impact of the climatological treatment itself on satellite estimates of sea ice thickness variability and trends. Chapter four presents a statistical model for the sub-kilometre distribution of snow depth on Arctic sea ice through analysis of snow depth transect data. Chapter five then compares the characteristics of snow melt onset at the stations with satellite observations and results from a recently developed model

    Toward Regional Characterizations of the Oceanic Internal Wavefield

    Get PDF
    Many major oceanographic internal wave observational programs of the last 4 decades are reanalyzed in order to characterize variability of the deep ocean internal wavefield. The observations are discussed in the context of the universal spectral model proposed by Garrett and Munk. The Garrett and Munk model is a good description of wintertime conditions at Site-D on the continental rise north of the Gulf Stream. Elsewhere and at other times, significant deviations in terms of amplitude, separability of the 2-D vertical wavenumber - frequency spectrum, and departure from the model's functional form are noted. Subtle geographic patterns are apparent in deviations from the high frequency and high vertical wavenumber power laws of the Garrett and Munk spectrum. Moreover, such deviations tend to co-vary: whiter frequency spectra are partnered with redder vertical wavenumber spectra. Attempts are made to interpret the variability in terms of the interplay between generation, propagation and nonlinearity using a statistical radiative balance equation. This process frames major questions for future research with the insight that such integrative studies could constrain both observationally and theoretically based interpretations

    Advances in understanding and parameterization of small-scalephysical processes in the marine Arctic climate system: a review

    Get PDF
    The Arctic climate system includes numerous highly interactive small-scale physical processes in the atmosphere, sea ice, and ocean. During and since the International Polar Year 2007–2009, significant advances have been made in understanding these processes. Here, these recent advances are reviewed, synthesized, and discussed. In atmospheric physics, the primary advances have been in cloud physics, radiative transfer, mesoscale cyclones, coastal, and fjordic processes as well as in boundary layer processes and surface fluxes. In sea ice and its snow cover, advances have been made in understanding of the surface albedo and its relationships with snow properties, the internal structure of sea ice, the heat and salt transfer in ice, the formation of superimposed ice and snow ice, and the small-scale dynamics of sea ice. For the ocean, significant advances have been related to exchange processes at the ice–ocean interface, diapycnal mixing, double-diffusive convection, tidal currents and diurnal resonance. Despite this recent progress, some of these small-scale physical processes are still not sufficiently understood: these include wave–turbulence interactions in the atmosphere and ocean, the exchange of heat and salt at the ice–ocean interface, and the mechanical weakening of sea ice. Many other processes are reasonably well understood as stand-alone processes but the challenge is to understand their interactions with and impacts and feedbacks on other processes. Uncertainty in the parameterization of small-scale processes continues to be among the greatest challenges facing climate modelling, particularly in high latitudes. Further improvements in parameterization require new year-round field campaigns on the Arctic sea ice, closely combined with satellite remote sensing studies and numerical model experiments.publishedVersio

    Shear-wave attenuation anisotropy: a new constraint on mantle melt near the Main Ethiopian Rift

    Get PDF
    The behaviour of fluids in preferentially aligned fractures plays an important role in a range of dynamic processes within the Earth. In the near-surface, understanding systems of fluid-filled fractures is crucial for applications such as geothermal energy production, monitoring CO2 storage sites, and exploration for metalliferous sub-volcanic brines. Mantle melting is a key geodynamic process, exerting control over its composition and dynamic processes. Upper mantle melting weakens the lithosphere, facilitating rifting and other surface expressions of tectonic processes. Aligned fluid-filled fractures are an efficient mechanism for seismic velocity anisotropy, requiring very low volume fractions, but such rock physics models also predict significant shear-wave attenuation anisotropy. In comparison, the attenuation anisotropy expected for crystal preferred orietation mechanisms is negligible or would only operate outside of the seismic frequency band. Here we demonstrate a new method for measuring shear-wave attenuation anisotropy, apply it to synthetic examples, and make the first measurements of SKS attenuation anisotropy using data recorded at the station FURI, in Ethiopia. At FURI we measure attenuation anisotropy where the fast shear-wave has been more attenuated than the slow shear-wave. This can be explained by the presence of aligned fluids, most probably melts, in the upper mantle using a poroelastic squirt flow model. Modelling of this result suggests that a 1% melt fraction, hosted in aligned fractures dipping ca. 40° that strike perpendicular to the Main Ethiopian Rift, is required to explain the observed attenuation anisotropy. This agrees with previous SKS shear-wave splitting analysis which suggested a 1% melt fraction beneath FURI. The interpreted fracture strike and dip, however, disagrees with previous work in the region which interprets sub-vertical melt inclusions aligned parallel to the Main Ethiopian Rift which only produce attenuation anisotropy where the slow shear-wave is more attenuated. These results show that attenuation anisotropy could be a useful tool for detecting mantle melt, and may offer strong constraints on the extent and orientation of melt inclusions which cannot be achieved from seismic velocity anisotropy alone

    Convective processes in the polar atmospheric boundary layer: a study based on measurements and modeling

    Get PDF
    Climate change is especially pronounced over the Arctic Ocean, where the atmosphere warmed twice as fast as in lower latitudes in the last few decades. This warming is associated with a rapid decline of the Arctic sea ice cover. For future predictions of changes in the Arctic climate system, profound knowledge of all processes influencing the surface energy budget in polar regions is essential. The focus of this thesis lies on improving our current understanding of convective processes and the related turbulent fluxes in the polar atmospheric boundary layer (ABL) over both the sea ice covered regions and over the open ocean at the sea ice edge. A major part of the analysis is based on aircraft measurements from the campaign STABLE, which was carried out over the pack ice in the northern Fram Strait in March 2013. These results are supplemented by modeling studies using a simple boxmodel and a one-dimensional mesoscale model. For the first time, comprehensive aircraft measurements over leads were conducted during the campaign STABLE. They are used to study the formation of convective plumes over leads and their impact on the polar ABL. It is found that the conditions over four wide leads are highly variable with respect to turbulent fluxes, as well as to the mean variables temperature, humidity, and wind. In one of the cases large entrainment fluxes exceeding 30 % of the surface fluxes are observed. The convective plumes over leads have a large influence on the vertical profiles of sensible heat and momentum fluxes, which are non-linear downstream of the leads with a distinct flux maximum in the core of the convective plumes. For the first time, it it shown based on measurements that the plume also affects the wind field by diminishing low level jets in the region influenced by the plume. In addition to the small scale impact of individual leads the regional impact of lead ensembles is studied using long transect flights. The analysis shows that near-surface atmospheric temperatures are clearly related to the ice concentration in the considered region. The impact of a heterogeneous sea ice cover and of the related surface temperature changes on atmospheric temperatures is also analysed using a Lagrangian box model. The model uses reanalysis winds as well as sea ice concentration and surface temperature from satellites as input data. The box model is used to calculate the evolution of the near-surface air temperature along backward-trajectories, which are then compared to measured temperatures at three different Arctic sites. The results suggest that a large amount of the observed air temperature variability can be attributed to heterogeneous surface temperatures and that the characteristic length of the upstream region influencing air temperatures at a specific location is 200 km. Convection during cold air outbreaks at the sea ice edge has a much stronger impact on the polar ABL than convective plumes over leads. Dropsonde measurement of four cold air outbreaks during STABLE are used to analyse the downstream development of meteorological variables and the ABL growth. Two of the considered cases are influenced by the size of the Whaler's Bay polynya north of Svalbard, which was unusually large in the three winters from 2012 to 2014 compared to the previous 20 years. The analysis of the dropsonde measurements shows that the unusual ice conditions lead to strong atmospheric convection in a region north of Svalbard that was typically ice-covered in the last decades. This leads to extreme convective ABL heights and modifies local temperature conditions considerably. Convective processes in the ABL have to be parametrised in climate models. Therefore, in addition to the measurements, the performance of three different sensible heat flux parametrisations is tested in a 1D mesoscale model and results are compared to those of a large eddy simulation model (LES). Both the considered counter-gradient and eddy-diffusivity mass-flux (EDMF) approach reproduce the shape of the temperature profile of the LES better than a classical mixing length approach. A sensitivity analysis shows that the EMDF approach is the least sensitive to changes of the vertical grid spacing, which can be attributed to the derivation of the ABL height using a diagnostic equation of the updraft velocity. The sensitivity of the counter-gradient closure to the grid spacing can be significantly reduced when the updraft velocity equation of the EDMF approach is included and used to derive the ABL height

    Microphysical Properties of Single and Mixed-Phase Arctic Clouds Derived from AERI Observations

    Full text link
    A novel new approach to retrieve cloud microphysical properties from mixed-phase clouds is presented. This algorithm retrieves cloud optical depth, ice fraction, and the effective size of the water and ice particles from ground-based, high-resolution infrared radiance observations. The theoretical basis is that the absorption coefficient of ice is stronger than that of liquid water from 10-13 mm, whereas liquid water is more absorbing than ice from 16-25 um. However, due to strong absorption in the rotational water vapor absorption band, the 16-25 um spectral region becomes opaque for significant water vapor burdens (i.e., for precipitable water vapor amounts over approximately 1 cm). The Arctic is characterized by its dry and cold atmosphere, as well as a preponderance of mixed-phase clouds, and thus this approach is applicable to Arctic clouds. Since this approach uses infrared observations, cloud properties are retrieved at night and during the long polar wintertime period. The analysis of the cloud properties retrieved during a 7 month period during the Surface Heat Budget of the Arctic (SHEBA) experiment demonstrates many interesting features. These results show a dependence of the optical depth on cloud phase, differences in the mode radius of the water droplets in liquid-only and mid-phase clouds, a lack of temperature dependence in the ice fraction for temperatures above 240 K, seasonal trends in the optical depth with the clouds being thinner in winter and becoming more optically thick in the late spring, and a seasonal trend in the effective size of the water droplets in liquid-only and mixed-phase clouds that is most likely related to aerosol concentration
    corecore