13 research outputs found

    A Fusion Approach for Multi-Frame Optical Flow Estimation

    Full text link
    To date, top-performing optical flow estimation methods only take pairs of consecutive frames into account. While elegant and appealing, the idea of using more than two frames has not yet produced state-of-the-art results. We present a simple, yet effective fusion approach for multi-frame optical flow that benefits from longer-term temporal cues. Our method first warps the optical flow from previous frames to the current, thereby yielding multiple plausible estimates. It then fuses the complementary information carried by these estimates into a new optical flow field. At the time of writing, our method ranks first among published results in the MPI Sintel and KITTI 2015 benchmarks. Our models will be available on https://github.com/NVlabs/PWC-Net.Comment: Work accepted at IEEE Winter Conference on Applications of Computer Vision (WACV 2019

    On the application of projection methods for computing optical flow fields

    Get PDF
    Detecting optical flow means to find the apparent displacement field in a sequence of images. As starting point for many optical flow methods serves the so called optical flow constraint (OFC), that is the assumption that the gray value of a moving point does not change over time. Variational methods are amongst the most popular tools to compute the optical flow field. They compute the flow field as minimizer of an energy functional that consists of a data term to comply with the OFC and a smoothness term to obtain uniqueness of this underdetermined problem. In this article we replace the smoothness term by projecting the solution to a finite dimensional, affine subspace in the spatial variables which leads to a smoothing and gives a unique solution as well. We explain the mathematical details for the quadratic and nonquadratic minimization framework, and show how alternative model assumptions such as constancy of the brightness gradient can be incorporated. As basis functions we consider tensor products of B-splines. Under certain smoothness assumptions for the global minimizer in Sobolev scales, we prove optimal convergence rates in terms of the energy functional. Experiments are presented that demonstrate the feasibility of our approach

    Optical Flow on Moving Manifolds

    Full text link
    Optical flow is a powerful tool for the study and analysis of motion in a sequence of images. In this article we study a Horn-Schunck type spatio-temporal regularization functional for image sequences that have a non-Euclidean, time varying image domain. To that end we construct a Riemannian metric that describes the deformation and structure of this evolving surface. The resulting functional can be seen as natural geometric generalization of previous work by Weickert and Schn\"orr (2001) and Lef\`evre and Baillet (2008) for static image domains. In this work we show the existence and wellposedness of the corresponding optical flow problem and derive necessary and sufficient optimality conditions. We demonstrate the functionality of our approach in a series of experiments using both synthetic and real data.Comment: 26 pages, 6 figure

    Stochastic uncertainty models for the luminance consistency assumption

    Get PDF
    International audienceIn this paper, a stochastic formulation of the brightness consistency used in many computer vision problems involving dynamic scenes (motion estimation or point tracking for instance) is proposed. Usually, this model which assumes that the luminance of a point is constant along its trajectory is expressed in a differential form through the total derivative of the luminance function. This differential equation links linearly the point velocity to the spatial and temporal gradients of the luminance function. However when dealing with images, the available informations only hold at discrete time and on a discrete grid. In this paper we formalize the image luminance as a continuous function transported by a flow known only up to some uncertainties related to such a discretization process. Relying on stochastic calculus, we define a formulation of the luminance function preservation in which these uncertainties are taken into account. From such a framework, it can be shown that the usual deterministic optical flow constraint equation corresponds to our stochastic evolution under some strong constraints. These constraints can be relaxed by imposing a weaker temporal assumption on the luminance function and also in introducing anisotropic intensity-based uncertainties. We in addition show that these uncertainties can be computed at each point of the image grid from the image data and provide hence meaningful information on the reliability of the motion estimates. To demonstrate the benefit of such a stochastic formulation of the brightness consistency assumption, we have considered a local least squares motion estimator relying on this new constraint. This new motion estimator improves significantly the quality of the results

    Highly accurate optic flow computation with theoretically justified warping

    Get PDF
    In this paper, we suggest a variational model for optic flow computation based on non-linearised and higher order constancy assumptions. Besides the common grey value constancy assumption, also gradient constancy, as well as the constancy of the Hessian and the Laplacian are proposed. Since the model strictly refrains from a linearisation of these assumptions, it is also capable to deal with large displacements. For the minimisation of the rather complex energy functional, we present an efficient numerical scheme employing two nested fixed point iterations. Following a coarse-to-fine strategy it turns out that there is a theoretical foundation of so-called warping techniques hitherto justified only on an experimental basis. Since our algorithm consists of the integration of various concepts, ranging from different constancy assumptions to numerical implementation issues, a detailed account of the effect of each of these concepts is included in the experimental section. The superior performance of the proposed method shows up by significantly smaller estimation errors when compared to previous techniques. Further experiments also confirm excellent robustness under noise and insensitivity to parameter variations

    Lucas/Kanade meets Horn/Schunck : combining local and global optic flow methods

    Get PDF
    Differential methods belong to the most widely used techniques for optic flow computation in image sequences. They can be classified into local methods such as the Lucas-Kanade technique or BigĂŒn\u27s structure tensor method, and into global methods such as the Horn/Schunck approach and its extensions. Often local methods are more robust under noise, while global techniques yield dense flow fields. The goal of this paper is to contribute to a better understanding and the design of differential methods in four ways: (i) We juxtapose the role of smoothing/regularisation processes that are required in local and global differential methods for optic flow computation. (ii) This discussion motivates us to describe and evaluate a novel method that combines important advantages of local and global approaches: It yields dense flow fields that are robust against noise. (iii) Spatiotemproal and nonlinear extensions to this hybrid method are presented. (iv) We propose a simple confidence measure for optic flow methods that minimise energy functionals. It allows to sparsify a dense flow field gradually, depending on the reliability required for the resulting flow. Comparisons with experiments from the literature demonstrate the favourable performance of the proposed methods and the confidence measure

    Optical Flow Estimation in the Deep Learning Age

    Full text link
    Akin to many subareas of computer vision, the recent advances in deep learning have also significantly influenced the literature on optical flow. Previously, the literature had been dominated by classical energy-based models, which formulate optical flow estimation as an energy minimization problem. However, as the practical benefits of Convolutional Neural Networks (CNNs) over conventional methods have become apparent in numerous areas of computer vision and beyond, they have also seen increased adoption in the context of motion estimation to the point where the current state of the art in terms of accuracy is set by CNN approaches. We first review this transition as well as the developments from early work to the current state of CNNs for optical flow estimation. Alongside, we discuss some of their technical details and compare them to recapitulate which technical contribution led to the most significant accuracy improvements. Then we provide an overview of the various optical flow approaches introduced in the deep learning age, including those based on alternative learning paradigms (e.g., unsupervised and semi-supervised methods) as well as the extension to the multi-frame case, which is able to yield further accuracy improvements.Comment: To appear as a book chapter in Modelling Human Motion, N. Noceti, A. Sciutti and F. Rea, Eds., Springer, 202

    Extending the "oriented smoothness constraint" into the temporal domain and the estimation of derivatives of optical flow

    No full text
    Recent experimental results by Schnörr 89 with an approach based on a simplified 'oriented smoothness constraint' show considerable improvement at expected discontinuities of the optical flow field. It thus appears justified to study whether the local gray value variation can be exploited in the temporal as well as in the spatial domain in order to achieve futher improvements at discontinuities in the optical flow field associated with the image areas of moving objects in image sequences. An extension or the oriented smoothness constraint into the temporal domain is presented. In this context, a local estimation approach for the spatiotemporal partial derivatives of optical flow has been developed. This, in turn, is used to compare two approaches for the definition of optical flow

    Correspondence problems in computer vision : novel models, numerics, and applications

    Get PDF
    Correspondence problems like optic flow belong to the fundamental problems in computer vision. Here, one aims at finding correspondences between the pixels in two (or more) images. The correspondences are described by a displacement vector field that is often found by minimising an energy (cost) function. In this thesis, we present several contributions to the energy-based solution of correspondence problems: (i) We start by developing a robust data term with a high degree of invariance under illumination changes. Then, we design an anisotropic smoothness term that works complementary to the data term, thereby avoiding undesirable interference. Additionally, we propose a simple method for determining the optimal balance between the two terms. (ii) When discretising image derivatives that occur in our continuous models, we show that adapting one-sided upwind discretisations from the field of hyperbolic differential equations can be beneficial. To ensure a fast solution of the nonlinear system of equations that arises when minimising the energy, we use the recent fast explicit diffusion (FED) solver in an explicit gradient descent scheme. (iii) Finally, we present a novel application of modern optic flow methods where we align exposure series used in high dynamic range (HDR) imaging. Furthermore, we show how the alignment information can be used in a joint super-resolution and HDR method.Korrespondenzprobleme wie der optische Fluß, gehören zu den fundamentalen Problemen im Bereich des maschinellen Sehens (Computer Vision). Hierbei ist das Ziel, Korrespondenzen zwischen den Pixeln in zwei (oder mehreren) Bildern zu finden. Die Korrespondenzen werden durch ein Verschiebungsvektorfeld beschrieben, welches oft durch Minimierung einer Energiefunktion (Kostenfunktion) gefunden wird. In dieser Arbeit stellen wir mehrere BeitrĂ€ge zur energiebasierten Lösung von Korrespondenzproblemen vor: (i) Wir beginnen mit der Entwicklung eines robusten Datenterms, der ein hohes Maß an Invarianz unter BeleuchtungsĂ€nderungen aufweißt. Danach entwickeln wir einen anisotropen Glattheitsterm, der komplementĂ€r zu dem Datenterm wirkt und deshalb keine unerwĂŒnschten Interferenzen erzeugt. ZusĂ€tzlich schlagen wir eine einfache Methode vor, die es erlaubt die optimale Balance zwischen den beiden Termen zu bestimmen. (ii) Im Zuge der Diskretisierung von Bildableitungen, die in unseren kontinuierlichen Modellen auftauchen, zeigen wir dass es hilfreich sein kann, einseitige upwind Diskretisierungen aus dem Bereich hyperbolischer Differentialgleichungen zu ĂŒbernehmen. Um eine schnelle Lösung des nichtlinearen Gleichungssystems, dass bei der Minimierung der Energie auftaucht, zu gewĂ€hrleisten, nutzen wir den kĂŒrzlich vorgestellten fast explicit diffusion (FED) Löser im Rahmen eines expliziten Gradientenabstiegsschemas. (iii) Schließlich stellen wir eine neue Anwendung von modernen optischen Flußmethoden vor, bei der Belichtungsreihen fĂŒr high dynamic range (HDR) Bildgebung registriert werden. Außerdem zeigen wir, wie diese Registrierungsinformation in einer kombinierten super-resolution und HDR Methode genutzt werden kann

    Variational image fusion

    Get PDF
    The main goal of this work is the fusion of multiple images to a single composite that offers more information than the individual input images. We approach those fusion tasks within a variational framework. First, we present iterative schemes that are well-suited for such variational problems and related tasks. They lead to efficient algorithms that are simple to implement and well-parallelisable. Next, we design a general fusion technique that aims for an image with optimal local contrast. This is the key for a versatile method that performs well in many application areas such as multispectral imaging, decolourisation, and exposure fusion. To handle motion within an exposure set, we present the following two-step approach: First, we introduce the complete rank transform to design an optic flow approach that is robust against severe illumination changes. Second, we eliminate remaining misalignments by means of brightness transfer functions that relate the brightness values between frames. Additional knowledge about the exposure set enables us to propose the first fully coupled method that jointly computes an aligned high dynamic range image and dense displacement fields. Finally, we present a technique that infers depth information from differently focused images. In this context, we additionally introduce a novel second order regulariser that adapts to the image structure in an anisotropic way.Das Hauptziel dieser Arbeit ist die Fusion mehrerer Bilder zu einem Einzelbild, das mehr Informationen bietet als die einzelnen Eingangsbilder. Wir verwirklichen diese Fusionsaufgaben in einem variationellen Rahmen. ZunĂ€chst prĂ€sentieren wir iterative Schemata, die sich gut fĂŒr solche variationellen Probleme und verwandte Aufgaben eignen. Danach entwerfen wir eine Fusionstechnik, die ein Bild mit optimalem lokalen Kontrast anstrebt. Dies ist der SchlĂŒssel fĂŒr eine vielseitige Methode, die gute Ergebnisse fĂŒr zahlreiche Anwendungsbereiche wie Multispektralaufnahmen, BildentfĂ€rbung oder Belichtungsreihenfusion liefert. Um Bewegungen in einer Belichtungsreihe zu handhaben, prĂ€sentieren wir folgenden Zweischrittansatz: Zuerst stellen wir die komplette Rangtransformation vor, um eine optische Flussmethode zu entwerfen, die robust gegenĂŒber starken BeleuchtungsĂ€nderungen ist. Dann eliminieren wir verbleibende Registrierungsfehler mit der Helligkeitstransferfunktion, welche die Helligkeitswerte zwischen Bildern in Beziehung setzt. ZusĂ€tzliches Wissen ĂŒber die Belichtungsreihe ermöglicht uns, die erste vollstĂ€ndig gekoppelte Methode vorzustellen, die gemeinsam ein registriertes Hochkontrastbild sowie dichte Bewegungsfelder berechnet. Final prĂ€sentieren wir eine Technik, die von unterschiedlich fokussierten Bildern Tiefeninformation ableitet. In diesem Kontext stellen wir zusĂ€tzlich einen neuen Regularisierer zweiter Ordnung vor, der sich der Bildstruktur anisotrop anpasst
    corecore