33 research outputs found

    Extending Conditional Simple Temporal Networks with Partially Shrinkable Uncertainty

    Get PDF
    The proper handling of temporal constraints is crucial in many domains. As a particular challenge, temporal constraints must be also handled when different specific situations happen (conditional constraints) and when some event occurrences can be only observed at run time (contingent constraints). In this paper we introduce Conditional Simple Temporal Networks with Partially Shrinkable Uncertainty (CSTNPSUs), in which contingent constraints are made more flexible (guarded constraints) and they are also specified as conditional constraints. It turns out that guarded constraints require the ability to reason on both kinds of constraints in a seamless way. In particular, we discuss CSTNPSU features through a motivating example and, then, we introduce the concept of controllability for such networks and the related sound checking algorithm

    Managing time-awareness in modularized processes

    Get PDF
    Managing temporal process constraints in a suitable way is crucial for long-running business processes in many application domains. However, proper support of time-aware processes is still missing in contemporary information systems. This paper tackles a particular challenge existing in this context, namely the handling of temporal constraints for modularized processes (i.e., processes comprising subprocesses), which shall enable both the reuse of process knowledge and the modular design of complex processes. In detail, this paper focuses on the representation and support of time-aware modularized processes in process-aware information systems. To this end, we present a sound and complete method to derive the duration restrictions of a time-aware (sub-)process in such a way that its temporal properties are completely speci\ufb01ed. We then show how this characterization of a process can be utilized when reusing it as a subprocess within a modularized process. As a motivating example, we consider a compound process from healthcare. Altogether the proper handling of temporal constraints for modularized processes is crucial for the enhancement of time- and process-aware information systems

    Controlling Time-Awareness in Modularized Processes (Extended Version)

    Get PDF
    The proper handling of temporal process constraints is crucial in many application domains. However, a sophisticated support of time-aware processes is still missing in contemporary information systems. As a particular challenge, temporal constraints must be also handled for modularized processes (i.e., processes comprising subprocesses), enabling the re-use of process knowledge as well as the modular design of complex processes. This paper focuses on the representation and support of time-aware modularized processes. In particular, we present a sound and complete method to derive the duration restrictions of a time-aware (sub-)process in such a way that its temporal properties are completely specified. We then show how this characterization of a process can be utilized when re-using it as a subprocess within a modularized process

    Adaptive Time- and Process-Aware Information Systems

    Get PDF
    For the digitized enterprise the proper handling of the temporal aspects of its business processes is vital. Delivery times, appointments and deadlines must be met, processing times and durations be monitored, and optimization objectives shall be pursued. However, contemporary Process-Aware Information Systems (PAISs)--the go-to solution for the computer-aided support of business processes—still lack a sophisticated support of the time perspective. Hence, there is a high demand for a more profound support of temporal aspects in PAISs. Accordingly, both the specification and the operational support of temporal aspects constitute fundamental challenges for the further development and dissemination of PAISs. The aim of this thesis is to propose a framework for supporting the time perspective of business processes in PAISs. As PAISs enable the design, execution and evolution of business processes, the designated framework must support these three fundamental phases of the process life cycle. The ATAPIS framework proposed by this thesis essentially comprises three major com-ponents. First, a universal and comprehensive set of time patterns is provided. Respective time patterns represent temporal concepts commonly found in business processes and are based on empirical evidence. In particular, they provide a universal and comprehensive set of notions for describing temporal aspects in business processes. Moreover, a precise formal semantics for each of the time patterns is provided based on an in-depth analysis of a large set of real-world use cases. Respective formal semantics enable the proper integration of the time patterns into PAISs. In turn, the latter will allow for the specification of time-aware process schemas. Second, a generic framework for implementing the time patterns based on their formal semantics is developed. The framework and its techniques enable the verification of time-aware process schemas regarding their temporal consistency, i. e., their ability to be successfully executed without violating any of their temporal constraints. Subsequently, the framework is extended to consider advanced aspects like the contingent nature of activity durations and alternative execution paths as well. Moreover, an algorithm as well as techniques for executing and monitoring time-aware process instances in PAISs is provided. Based on the presented concepts, it becomes possible to ensure that a time-aware process instance may be executed without violating any of its temporal constraints. Third, a set of change operations for dynamically modifying time-aware process instances during run time is suggested. Respective change operations ensure that a modified time-aware process instance remains temporally consistent after the respective modification. Moreover, to reduce the complexity involved when applying multiple change operations a sophisticated approximation-based technique is presented. Overall, the developed change operations allow providing the flexibility required by business processes in practice. Altogether, the ATAPIS framework provides fundamental concepts, techniques and algorithms for integrating the time perspective into PAISs. As beauty of this framework the specification, execution and evolution of business processes is supported by an integrated approach

    Dynamic Controllability of Parameterized CSTNUs

    Get PDF
    A Conditional Simple Temporal Network with Uncertainty (CSTNU) models temporal constraint satisfaction problems in which the environment sets uncontrollable timepoints and conditions. The executor observes and reacts to such uncontrollable assignments as time advances with the CSTNU execution. However, there exist scenarios in which the occurrence of some future timepoints must be fixed as soon as the execution starts. We call these timepoints \textit{parameters}. For a correct execution, parameters must assume values that guarantee the possibility of satisfying all temporal constraints, whatever the environment decides the execution time for uncontrollable timepoints and the truth value of conditions, i.e., dynamic controllability (DC). Here, we formalize the extension of the CSTNU with parameters. Furthermore, we define a set of rules to check the DC of such extended CSTNU. These rules additionally solve the problem inverse to checking DC: computing restrictions on parameter values that yield DC guarantees. The proposed rules can be composed into a sound and complete procedure

    Flexible temporal constraint management in modularized processes

    Get PDF
    Managing temporal process constraints in modularized processes is an important task, both during the design, as it allows the reuse of temporal (child) process models, and during the checking of temporal properties of processes, as it avoids the necessity of ‘‘unfolding’’ child processes within the main process model. Taking into account the capability of providing modular solutions, modeling and checking temporal features of processes is still an open problem in the context of process-aware information systems. In this paper, we present and discuss a novel approach to represent flexible temporal constraints in modularized time-aware BPMN process models. To support temporal flexibility, allowed task durations are represented through guarded ranges that allow a limited (guarded) restriction of task durations during process execution if it is necessary to guarantee the satisfaction of all temporal constraints. We, then, propose how to derive a compact representation of the overall temporal behavior of such time-aware BPMN models. Such compact representation of child processes allows us to check the dynamic controllability (DC) of a parent timeaware process model without ‘‘unfolding’’ the child process models. Dynamic controllability guarantees that process models can have process instances (i.e., executions) satisfying all the temporal constraints for any possible combination of allowed durations of tasks and child processes. Possible approaches for even more flexibility by solving some kinds of DC violations are then introduced. We use a real process model from a healthcare domain as a motivating example, and we also present a proof-of-concept prototype confirming the concrete applicability of the solutions we propose, followed by an experimental evaluation

    Temporal and Resource Controllability of Workflows Under Uncertainty

    Get PDF
    Workflow technology has long been employed for the modeling, validation and execution of business processes. A workflow is a formal description of a business process in which single atomic work units (tasks), organized in a partial order, are assigned to processing entities (agents) in order to achieve some business goal(s). Workflows can also employ workflow paths (projections with respect to a total truth value assignment to the Boolean variables associated to the conditional split connectors) in order (not) to execute a subset of tasks. A workflow management system coordinates the execution of tasks that are part of workflow instances such that all relevant constraints are eventually satisfied. Temporal workflows specify business processes subject to temporal constraints such as controllable or uncontrollable durations, delays and deadlines. The choice of a workflow path may be controllable or not, considered either in isolation or in combination with uncontrollable durations. Access controlled workflows specify workflows in which users are authorized for task executions and authorization constraints say which users remain authorized to execute which tasks depending on who did what. Access controlled workflows may consider workflow paths too other than the uncertain availability of resources (users, throughout this thesis). When either a task duration or the choice of the workflow path to take or the availability of a user is out of control, we need to verify that the workflow can be executed by verifying all constraints for any possible combination of behaviors arising from the uncontrollable parts. Indeed, users might be absent before starting the execution (static resiliency), they can also become so during execution (decremental resiliency) or they can come and go throughout the execution (dynamic resiliency). Temporal access controlled workflows merge the two previous formalisms by considering several kinds of uncontrollable parts simultaneously. Authorization constraints may be extended to support conditional and temporal features. A few years ago some proposals addressed the temporal controllability of workflows by encoding them into temporal networks to exploit "off-the-shelf" controllability checking algorithms available for them. However, those proposals fail to address temporal controllability where the controllable and uncontrollable choices of workflow paths may mutually influence one another. Furthermore, to the best of my knowledge, controllability of access controlled workflows subject to uncontrollable workflow paths and algorithms to validate and execute dynamically resilient workflows remain unexplored. To overcome these limitations, this thesis goes for exact algorithms by addressing temporal and resource controllability of workflows under uncertainty. I provide several new classes of (temporal) constraint networks and corresponding algorithms to check their controllability. After that, I encode workflows into these new formalisms. I also provide an encoding into instantaneous timed games to model static, decremental and dynamic resiliency and synthesize memoryless execution strategies. I developed a few tools with which I carried out some initial experimental evaluations

    Temporal and Hierarchical Models for Planning and Acting in Robotics

    Get PDF
    The field of AI planning has seen rapid progress over the last decade and planners are now able to find plan with hundreds of actions in a matter of seconds. Despite those important progresses, robotic systems still tend to have a reactive architecture with very little deliberation on the course of the plan they might follow. In this thesis, we argue that a successful integration with a robotic system requires the planner to have capacities for both temporal and hierarchical reasoning. The former is indeed a universal resource central in many robot activities while the latter is a critical component for the integration of reasoning capabilities at different abstraction levels, typically starting with a high level view of an activity that is iteratively refined down to motion primitives. As a first step to carry out this vision, we present a model for temporal planning unifying the generative and hierarchical approaches. At the center of the model are temporal action templates, similar to those of PDDL complemented with a specification of the initial state as well as the expected evolution of the environment over time. In addition, our model allows for the specification of hierarchical knowledge possibly with a partial coverage. Consequently, our model generalizes the existing generative and HTN approaches together with an explicit time representation. In the second chapter, we introduce a planning procedure suitable for our planning model. In order to support hierarchical features, we extend the existing Partial-Order Causal Link approach used in many constraintbased planners, with the notions of task and decomposition. We implement it in FAPE (Flexible Acting and Planning Environment) together with automated problem analysis techniques used for search guidance. We show FAPE to have performance similar to state of the art temporal planners when used in a generative setting. The addition of hierarchical information leads to further performance gain and allows us to outperform traditional planners. In the third chapter, we study the usual methods used to reason on temporal uncertainty while planning. We relax the usual assumption of total observability and instead provide techniques to reason on the observations needed to maintain a plan dispatchable. We show how such needed observations can be detected at planning time and incrementally dealt with by considering the appropriate sensing actions. In a final chapter, we discuss the place of the proposed planning system as a central component for the control of a robotic actor. We demonstrate how the explicit time representation facilitates plan monitoring and action dispatching when dealing with contingent events that require observation. We take advantage of the constraint-based and hierarchical representation to facilitate both plan-repair procedures as well opportunistic plan refinement at acting time
    corecore