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Abstract Managing temporal process constraints in a suitable way is crucial
for long-running business processes in many application domains. However,
proper support of time-aware processes is still missing in contemporary in-
formation systems. This paper tackles a particular challenge existing in this
context, namely the handling of temporal constraints for modularized processes
(i.e., processes comprising subprocesses), which shall enable both the reuse of
process knowledge and the modular design of complex processes. In detail, this
paper focuses on the representation and support of time-aware modularized
processes in process-aware information systems. To this end, we present a
sound and complete method to derive the duration restrictions of a time-aware
(sub-)process in such a way that its temporal properties are completely spec-
ified. We then show how this characterization of a process can be utilized
when reusing it as a subprocess within a modularized process. As a motivating
example, we consider a compound process from healthcare. Altogether the
proper handling of temporal constraints for modularized processes is crucial
for the enhancement of time- and process-aware information systems.

Keywords Process-aware Information System, Temporal Constraints,
Subprocess, Process Modularity, Controllability

1 Introduction

It is widely acknowledged that the capability to modularly design process
schemas constitutes an important requirement for creating comprehensible
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and reusable process schemas [31][33]. Thus, the support of complex processes,
which may comprise subprocesses at different levels, is essential for process-
aware information systems (PAIS) as it allows for the reuse of existing process
knowledge from a process repository as well as the modular design of such
processes.

On the other hand, temporal process constraints, such as deadlines and
maximum allowable delays between task executions, must be suitably handled
in many application domains. Even tough this topic has received increasing
attention in the research community during the last years [6][11][17][24][2], a
complete support of time-aware processes is still missing in contemporary PAIS.

At first glance, temporal process constraints and process modularity seem to
be orthogonal features that may be managed in an independent way. However,
when getting to the heart of these two features, it turns out that modularity
in combination with the reuse of time-aware processes requires the ability
to represent the overall temporal behavior of a process [19]. Only then, it
becomes possible to evaluate the temporal constraints of a process containing
time-aware subprocesses in a truly modular way, i.e., without replacing the
subprocess tasks with their (temporal) components. Moreover, one may then
attach temporal information to the process schema when storing it in a central
process repository. This knowledge can, for example, be essential in the context
of business process analysis and optimization [32].

In [19], the issue of representing the temporal properties of a process has
been considered. This paper extends and completes the approach for the
representation and support of time-aware modularized processes, which we
presented in [19]. In particular, we introduce and prove a sound and complete
method to derive the duration restrictions of a time-aware process in such
a way that its temporal properties are completely described. Then, we show
how this characterization of a process can be merged with other temporal
constraints when reusing it as a subprocess of a modularized process. In
accordance with recent research contributions, we focus on the issue of dynamic
controllability (DC) of time-aware processes [6][17]. In general, DC corresponds
to the capability of a PAIS to execute a process schema in a way such that all
allowed durations of all tasks are possible, while still satisfying all temporal
constraints; i.e., DC ensures that it is possible to execute a process schema
without any need to restrict the allowed durations of a task for satisfying all
temporal constraints. In this context, task durations are called contingent as
they are not under the control of the PAIS (i.e., its process engine).

The two main research questions addressed in this paper are:

1. How can the overall temporal behavior of a process be represented (cf.
Sect. 5)? Addressing this issue constitutes a fundamental prerequisite for
providing some kind of modularity from the temporal perspective as well.
Note that without such characterization, it would be necessary to recompute
the temporal features of a subprocess schema each time it is used in a
modularized process. More particularly, this paper focuses on providing a
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formal description of how to represent and derive temporal constraints
for modularized processes. As will be shown, a process duration can be
represented as a kind of range composed of two parts. One part represents
all possible durations, while the second one, which often constitutes a
restriction of the first part, represents the core of durations the PAIS cannot
restrict at runtime. On one hand the duration of the subprocess can be
controlled to some extent due to the nature of the contained temporal
constraints; on the other, it cannot be fully controlled as the contingent
durations of the contained tasks cannot be controlled by the PAIS and must
be guaranteed.
With respect to the informal proposal made in [19], this paper provides a
formal and complete description of how to represent and derive the overall
temporal behavior of a process.

2. How to apply knowledge about the temporal behavior of a process when
reusing its schema as a subprocess inside a modularized process in order
to avoid having to re-analyze the internal constraints of the subprocess (cf.
Sect. 6)? This will, for example, enable us to store time-aware processes
including their overall temporal properties in a process repository and to
reuse them in a truly modular fashion.

In addition to our preliminary work on managing time-awareness in mod-
ularized processes [19], this paper presents all proofs related to the formal
part of the approach. Moreover, we reorganize the structure applied in [19] to
provide a more insightful and detailed discussion of each relevant aspect and
we describe the design and implementation of a proof-of-concept prototype of
the approach (cf. Sect. 7). In detail, the remainder of this work is organized as
follows: Sect. 2 introduces a clinical guideline dealing with the management of
osteoarthritis of the hand, hip and knee as an example of a process schema
with subprocesses and temporal properties. We use this clinical example for
illustration purposes throughout the paper. Sect. 3 extends the discussion of
existing work related to the management of temporal constraints in business
processes. In Sect. 4 we present, in an extended way, the Simple Temporal
Network with Partially Shrinkable Uncertainty (STNPSU) model. In particular,
this model is used for temporal reasoning on subprocesses. In turn, Sect. 5
constitutes the core of the paper. It discusses how to characterize time-aware
processes by mapping them to corresponding STNPSUs extended with the
concept of contingency span. In this context, all relevant concepts are formally
described and formal statements are proven. Sect. 6 then discusses how the
temporal properties of a (sub-)process can be utilized in order to check the
controllability of the overall process without unfolding its subprocesses. As
another novel contribution, Sect. 7 presents the architecture of ATAPIS, which
is an open framework for the design, verification and enactment of modularized
temporal processes. Finally, Sect. 8 summarizes the main results of our work
and gives an outlook on future work.
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Fig. 1 Motivating example: The process for managing osteoarthritis.

2 Motivating Example

As a motivating scenario, we consider a high-level specification of an excerpt
of a clinical guideline related to the management of osteoarthritis of the hand,
hip and knee [16]. A possible schema of this process is depicted in Fig. 1.

After completing the initial Patient Evaluation (task T0: PatEv), two par-
allel branches become activated. The first one is composed of process Non-
Pharmacologic Recommendation (P0: NonPharmR) followed by process Specifi-
cation of Physical Exercises (P1: PhysEx). The second one consists of process
Pharmacologic Recommendation (P2: PharmR) followed by a Treatment Expla-
nation to the patient (task T8: TrExp). As depicted in Fig. 1, P0, P1 and P2
correspond to subprocesses (from a process repository) that comprise other
tasks and may be reused in the context of other clinical processes (e.g., related
to other pathologies). In detail, Non-Pharmacologic Recommendation P0 con-
sists of two parallel branches. The first branch evaluates the patient’s ability to
perform activities of daily live (task T1: ADLsEv) followed by the identification
of needed assistive devices (task T2: DevId). The second branch consists of
giving instructions to the patient related to the use of thermal modalities
(task T3: ThermMod). In turn, the Specification of Physical Exercises (i.e., P1)
consists of the specification of aquatic exercises (task T4: AqEx) followed by
the specification of land exercises (task T5: LndEx). Finally, Pharmacologic
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Recommendation (i.e., P2) consists of the evaluation of contraindications (task
T6: CntrEval) followed by a drug specification (task T7: DrgSp).

We enrich the process schemas with temporal constraints that need to be
obeyed in order to guarantee the clinically successful completion of each step of
the therapy. Furthermore, such temporal constraints will help practitioners (e.g.,
doctors and nurses) in planning their daily work as they can anticipate how
long previous steps will take and how much freedom they have for performing
their tasks. The temporal constraints allow for the temporal characterization
of tasks, edges and gateways according to the concepts introduced in [18]. Note
that the durations of tasks are not completely under the control of the PAIS
as these tasks are carried out by practitioners.

Therefore, task durations are represented as guarded ranges. Such a duration
range may be partially restricted by the system during process execution in
order to ensure successful completion of the processes. For example, task T6
has temporal constraint

[
[1, 2][4, 5]

]
meaning that prior to the execution of the

task its duration may be restricted, but in any case the minimum required
duration must not exceed 2 time units and the maximum duration cannot be
constrained below 4 (e.g., a duration of [3, 5] or [1, 2] would be disallowed). As
another example consider task T7 with temporal constraint

[
[1, 1][7, 7]

]
. The

latter expresses that this task may last 1 to 7 time units, and all possible
durations shall be allowed during process execution. This ensures that the user
executing the task has sufficient flexibility to successfully complete the task.
Constraints on gateways and edges constitute standard temporal constraints,
specifying the possible durations (within a range), which are under the control
of the PAIS (i.e., its process engine).

As already discussed, two challenges emerge in this context.

– The first challenge concerns the representation of the overall temporal
behavior of (sub-)processes. One must be able to describe how a subprocess
like, for example, PhysEx behaves temporally if it shall be reusable inside
any time-aware processes. Note that PhysEx involves physical therapists and
is usually required in the context of many other healthcare processes. For
example, the activities of this (sub-)process with the same internal temporal
constraints might be also required when managing patients that suffer from
multiple sclerosis [15] or sarcopenia (loss of muscular mass and decline in
associated muscular function occurring with aging [8]). Furthermore, the
subprocess is relevant for managing patients with osteogenesis imperfecta
(a pathology caused by a mutation in a gene that affects bone formation,
bone strength, and the structure of other tissues [26]) often undergoing
multiple rehabilitation periods after bone fractures. These three clinical
scenarios only constitute few examples of real-world clinical processes whose
definition could make use of subprocess PhysEx. In general, the designers of
a clinical process schema would benefit from the establishment of a clinical
process library that collects reusable, suitably defined clinical subprocesses.
To allow for the proper reuse of such subprocesses, in turn, their temporal
behavior needs to be part of their overall description. Note that similar
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Category I: Durations and Time Lags
TP1 Time Lags between two Activities
TP2 Durations
TP3 Time Lags between Events

Category II: Restricting Execution
Times
TP4 Fixed Date Elements
TP5 Schedule Restricted Elements
TP6 Time-based Restrictions
TP7 Validity Period

Category III: Variability
TP8 Time-dependent Variability

Category IV: Recurrent Process
Elements
TP9 Cyclic Elements
TP10 Periodicity

Table 1 Process Time Patterns [24]

considerations can be made for other subprocesses as well. For example,
subprocess PharmR is common to many decision-based care processes.

– The second challenge is related to the efficient temporal analysis of the
top-level (i.e., main) process. Ideally, this analysis can be accomplished
without need for unfolding all used subprocesses P0, P1, and P2. Only
then, the temporal analysis can be accomplished effectively and quickly.
In general, the provision of modularized clinical (sub-)processes will allow
checking temporal properties of the main process, while only considering
a reduced number of constraints and tasks/subprocesses. Regarding the
running example, for instance, it should be possible to verify the temporal
properties of the process for managing osteoarthritis patients without need
to consider the internal structure and constraints of PharmR, NonPharmR,
and PhysEx.

3 Related Work

In literature, there is considerable work on the management of temporal
constraints in PAIS [2][7][17][11][12][23][1][10][25]. Issues these approaches are
focusing on include the modeling and verification of time-aware processes.

For each process exhibiting temporal constraints, a time-aware process
schema needs to be defined [17]. In the context of this work, a process schema
corresponds to a directed graph that comprises a set of nodes—representing
tasks and gateways (e.g., AND-Split/Join)—as well as a set of control edges
linking these nodes and specifying precedence relations between them. Each
process schema contains unique start and end nodes, and may be composed of
control flow patterns like sequence, parallel split, and synchronization.

Lanz et al. [24][22] introduced 10 time patterns representing common tempo-
ral constraints of time-aware processes (cf. Tab. 1). In particular, time patterns
facilitate the comparison of existing approaches based on a universal set of
notions with well-defined semantics. While [24] introduced the empirically evi-
denced time patterns informally, [22] additionally provided a formal semantics
for them. Moreover, the need for a sophisticated run-time support for the time
patterns was elaborated in [24].

Marjanovic et al. [25] defined a conceptual model for temporal constraints
on a process schema, which is tailored to check for temporal consistency.
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Considering the time pattern classification (cf. Tab. 1), [25] dealt with time
lags between activities (TP1), activity and process durations (TP2), and fixed
date elements (TP4). Furthermore, [25] proposed a set of rules for verifying
time-aware process schemas, whereas no run-time support was considered.

Eder et al. [10] presented an extended version of the Critical Path Method,
which is known from the project planning domain. In detail, [10] proposed the
use of Timed Workflow Graphs (TWG) for representing the temporal properties
of activities and their control flow relations. Regarding the time patterns, [10]
considered time lags between activities (TP1), activity durations (TP2), fixed
date elements (TP4), and schedule restricted elements (TP5). Note that [10]
presumes that activity durations are deterministic, i.e., activity durations are
the same for all process instances. As for activity durations, in [13][14] authors
discussed a probabilistic approach based on duration histograms to deal with
temporal information about tasks.

Bettini et al. [1] proposed an approach based on Simple Temporal Network
(STN) [9]. In particular, this differs significantly from the aforementioned ones.
In an STN, nodes represent time points, whereas each directed edge a v−→ b
between time points a and b represents a temporal constraint b− a ≤ v with
v being a real value. If v ≥ 0 holds, the constraint represents the maximum
allowable delay between b and a; otherwise (i.e., v < 0), it represents the
minimum time span to be elapsed after b before a may occur. In [1], each
process activity is represented by two nodes of the respective STN, which
correspond to the starting and ending time point of the activity. In turn, the
edges of the STN represent temporal constraints and precedence relations
between the corresponding nodes. Finally, [1] considered time lags between
activities (TP1), activity durations (TP2), and fixed date elements (TP4).

Combi et al. [3][2] proposed a temporal conceptual model for specifying
time-aware process schemas. In this conceptual model, time lags between
activities (TP1), activity durations (TP2), fixed date elements (TP4), schedule
restricted elements (TP5), and periodicity (TP10) are considered. First of all,
[3] shows how to check consistency of time-aware processes at design time,
Furthermore, [3] argues that different strategies for ensuring consistency of a
process instance during run-time may be applied, depending on the considered
kind of consistency of a process schema. In [2], in turn, the authors extended
their work considering also tasks for which the execution time cannot be
decided, but only observed, analyzing the computational complexity of the
dynamic controllability problem (cf. Sect. 1) and proposing a general algorithm
to check for the dynamic controllability of a time-aware process schema.

Zhang et al. [35] addressed the issue of determining whether a business
activity is eligible for relocation in a business process in order to optimize
overall execution performance. Note that even in this case, it is crucial to
characterize the temporal behavior of each activity.

The concept of temporal controllability has been mainly investigated in
the AI area in connection with temporal constraint networks. In [30], Morris
et al. proposed an STN [9] extension, the Simple Temporal Network With
Uncertainty (STNU). Regarding STNUS, it is also possible to specify a new
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kind of constraint, the contingent links. The latter are not under the control of
the system and, hence, the concept of consistency is extended to the concept
of dynamic controllability.

Finally, Combi et al. [6] transferred the concept of dynamic controllability
to time-aware process schemas. Recently, in [4][5] authors extended STNU
to Conditional Simple Temporal Network with Uncertainty (CSTNU), which
additionally consider alternative execution paths.

4 Backgrounds

This work relies on Simple Temporal Network with Partially Shrinkable Un-
certainty (STNPSU), an extension of STNU that enlarges contingent links to
enable a more flexible management of temporal constraints [18]. This section
provides a detailed discussion on STNPSU. Moreover, it presents the definitions
required to understand the formal proofs given in the following sections.

An STNPSU [18] is a directed weighted graph (cf. Fig. 2a) whose nodes
represent time-point variables (timepoints), usually corresponding to the start or
end of activities, and whose edges A [x, y]

B, called requirement links, represent
a lower and an upper bound constraint on the distance between the two
timepoints it connects; e.g., A [x, y]

B represents a constraint expressing that
timepoint B must occur between x and y time units after the occurrence of
A (i.e., x≤B−A≤y). For an STNPSU, it is possible to characterize certain
timepoints as contingent timepoints, meaning that their value cannot be decided
by the system executing the STNPSU; instead, the value is decided by the
environment during run-time. Each contingent timepoint has one incoming
edge, which is called guarded link and drawn as a double line, e.g., A

[
[x, x′][y′, y]

]
C.

A guarded link A
[
[x, x′][y′, y]

]
C consists of a pseudo-contingent duration range

[x, y] augmented with two guards, the lower guard x′ and the upper guard
y′ [18]. A is called the activation timepoint. Before executing a guarded link,
its duration range [x, y] may be modified. However, any modification must
be accomplished in a way respecting the corresponding guards, i.e., x ≤ x′

and y≥y′. When activating a guarded link A
[
[x∗, x′][y′, y∗]

]
C (i.e., when executing

timepoint A), the current value [x∗, y∗] of the duration range becomes a fully
contingent range, which is then made available to the environment for executing
timepoint C. That means, once A is executed, C is guaranteed to be executed
such that C − A ∈ [x∗, y∗] holds. Note that the specific time at which C is
executed is uncontrollable since it is decided by the environment; i.e., it can be
only observed when it happens.

More formally, an STNPSU is a triple (T , C,G), where
– T is a set of timepoints;
– C is a set of requirement links X [u, v]

Y , and
– G is a set of guarded links each having the form A

[
[x, x′][y′, y]

]
C, where A and

C correspond to timepoints, and 0<x≤y<∞, x≤x′, 0<y′≤y.
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Fig. 2 Non-DC STNPSU and corresponding distance graph.

Moreover, if A1

[
[x1, x

′
1][y′1, y1]

]
C1 as well as A2

[
[x2, x

′
2][y′2, y2]

]
C2 are distinct guarded

links in G, C1 and C2 will be distinct timepoints. It is noteworthy that guarded
links may be used to represent two different types of constraints: If x′ < y′ holds,
a guarded link represents a temporal constraint with a partially contingent range.
Particularly, the guarded link then represents a constraint with a contingent
(i.e., unshrinkable) core [x′, y′] ⊆ [x, y]. In turn, if x′ ≥ y′ holds, a guarded
link represents a temporal constraint with a partially shrinkable range with a
guarded core [y′, x′].

Furthermore, each STNPSU is associated with a distance graph D = (T , E),
derived from the upper and lower bound constraints [18][29]. In the distance
graph (cf. Fig. 2b), each link between a pair of timepoints A and B is represented
as two ordinary edges in E : Ay B, representing constraint B ≤ A + y, and
A −x B for representing constraint B ≥ A + x, x, y ∈ R. Moreover, for each
guarded link between a pair of timepoints A and C, E contains two other labeled
edges, called lower and upper case labeled values. A lower case labeled value,
Ac :x′ C, expresses that C cannot be forced to be executed at a time greater
than x′ after A, i.e., it is not possible to add a constraint A −x′′ C, x′ < x′′ to
the network. In turn, an upper case labeled value, A C :−y′ C, expresses that C
cannot be forced to be executed at a time less than y′ after A, i.e., it is not
possible to add a constraint Ay′′ C, y′′ < y′ to the network.

These two kinds of labels are fundamental for determining the dynamic
controllability of the network as explained in the following. Note that these
two representations of an STNPSU can be used interchangeably.

An STNPSU is denoted as dynamically controllable (DC), if there exists a
strategy for executing its timepoints in such a way that: i) all constraints in
the network can be satisfied, no matter how the execution of any guarded link
turns out, and ii) for any other guarded link A

[
[x, x′][y′, y]

]
C, the lower bound x

must not be increased beyond its lower guard x′ and the upper bound y must
not be decreased below its upper guard y′ [18].

In [18], it was shown how one can adapt and extend the edge-generation rules
and algorithm proposed by Morris et al. for checking the dynamic controllability
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Algorithm 1: STNPSU-DC-Check(G)
Input: G = (T , C, G): STNPSU graph instance to analyze.
Output: the dynamic controllability of G.

1 D:= distance graph of G;
2 for 1 to CutOffBound do // CutOffBound=O(|T |)
3 D′:= AllMax-Projection of D;
4 if (D′ has a negative cycle) then return false;
5 Generate new edges in D using edge-generation rules from Tab. 2;
6 if (no edges generated) then return true;
7 return false;

Table 2 Edge-generation rules of the STNPSU-DC-Check algorithm. Dashed edges are the
generated ones.

No Case:
Q T

S
u v

u + v

Upper Case:
Q T

S
u R :v

R :u + v

Lower Case:
Q T

S
s :u v

u + v

Applicable if: v < 0 ∨ (v = 0 ∧ S 6≡ T )

Cross Case: Q T

S
s :u R :v

R :u + v

Applicable if: R 6≡S ∧ (v<0∨ (v = 0∧ S 6≡ T ))

Label Removal:
S T R

R :v r : l
xv

Applicable if: R 6≡ S ∧ v ≥ x, where x is the negated value of
the lower bound of the guarded link from T to R, i.e., x ≤ 0

(DC) of STNU [29] in order to check the DC of an STNPSU in polynomial
time (cf. Alg. 1).

The checking algorithm works by recursively generating new edges in the
STNPSU distance graph according to the rules from Tab. 2 and by checking
whether newly added edges result in so called negative semi-reducible cycles
in the graph [27]. For each rule, existing edges are represented as solid arrows
and newly added ones as dashed arrows. Each of the first four rules takes
two existing edges as input and generates a single edge as output. Finally,
notation R 6≡ S expresses that R and S must be distinct time-point variables,
but does not represent a constraint on the values of those variables. A path in
an STNPSU distance graph is called semi-reducible if, through the subsequent
application of the edge generation rules (cf. Tab. 2), it can be transformed into
a path solely consisting of ordinary or upper-case edges [27]. A semi-reducible
cycle with negative unlabeled length is called a negative semi-reducible cycle.
To detect negative semi-reducible cycles Alg. 1 uses the AllMax-Projection of
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Fig. 3 New Generated Edges in Distance Graph of Fig. 2b

the STNPSU. The AllMax-Projection is the distance matrix for the Simple
Temporal Network (STN) [9] formed by all of the original and generated
ordinary and upper-case edges (without their alphabetic labels) and represents
the occurrence when all guarded links in the original network assume their
upper guard value.

Example 1 (Negative Semi-Reducible Cycle) Consider the distance graph de-
picted in Fig. 2b corresponding to the STNPSU from Fig. 2a. It is a matter of
applying the edge generation rules from Tab. 2 to verify that Fig. 3 depicts
the derived distance graph of Fig. 2b (dashed lines are the generated ones)
containing the semi-reducible cycle A − C − A. Moreover, as the unlabeled
length of this semi-reducible cycle is negative, the respective STNPSU cannot
be dynamically controllable. In particular, let us consider the scenario where D
is executed 4 time units after C and B is executed 2 time units after A. Then,
due to the fact that D may be executed at most 2 time units after B, C has to
be executed at most 0 time units after A (i.e., at the same item as A). In turn,
in the scenario where D is executed 2 time units after C and B is executed 4
time units after A, C has to be executed at least 1 time unit after A in order
to be able to satisfy the requirement link between B and D. However, it is not
possible to satisfy both conditions at the same time. Thus, the STNPSU is not
DC.

We observe that the edge-generation rules from Tab. 2 only generate
ordinary or upper-case edges. The upper-case edges generated by respective
rules represent conditional constraints, called waits [29]. In particular, an upper-
case edge BC :−v A represents the following constraint: as long as contingent
timepoint C remains unexecuted, timepoint B must wait at least v units after
the execution of A, the activation timepoint for C. Note that [27] and [28]
presented two optimizations of the original algorithm, which are not further
discussed in this paper.

5 Characterization of Time-Aware Processes

This section shows how to determine a proper representation for the duration of
a process. For this purpose, we consider a process schema P with a single start
and a single end node. In this paper we do not consider the choices pattern,
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Table 3 STNPSU transformation rules (adopted from [19]).

Process Schema STNPSU Process Schema STNPSU
Start/End node Time Lag

Z E Z E
[0,∞][0,∞]

A B

E[t, u]S

end-start
AS AE BS BE

[t, u]

Task
A[

[x, x′][y′, y]
] AS AE

[
[x, x′][y′, y]

]
[0,∞] [0,∞]

A B
S[t, u]S

start-start
AS AE BS BE

[0,∞]

[t, u]
ANDsplit

[1,1]
+S +E

[0,∞] [1, 1]

[0,∞]

[0,∞
]

A B
E[t, u]E

end-end
AS AE BS BE

[0,∞]

[t, u]

ANDjoin

[1,1]
+S +E

[0,∞
]

[0,∞] [1, 1] [0,∞]
A B

S[t, u]E

start-end
AS AE BS BE

[0,∞]

[t, u]

Control Edge
A B AS AE BS BE

[0,∞]

but we are currently extending STNPSU to support choices as well. However,
our preliminary analysis has shown that the results presented in this paper
will be also applicable to this extended kind of STNPSU.

First, we show how to verify the dynamic controllability (DC) of process
schema P and, if P is DC, how to derive its minimal constraints. Second,
we discuss how to determine the guards for a guarded link representing the
duration of a process. Finally, we propose to extend the concept of guarded
range in order to completely represent the overall temporal properties of a
process.

5.1 STNPSU Representation of a Process Schema

In order to verify the dynamic controllability of a process schema P , it is
transformed into an STNPSU S using the transformation rules depicted in
Tab. 3. The resulting STNPSU has a single initial timepoint that occurs
before any other one—called Z—and a single ending timepoint—called E—
that occurs after any other timepoint. This STNPSU is then checked for DC
by applying the standard algorithm for DC checking [18] to it. Given the above
transformation, one can easily show that the original process is DC if and
only if the corresponding STNPSU is DC. In turn, this results in the following
theorem.

Theorem 1 Given a time-aware process schema P , which uses the process
modeling elements from Tab. 3, there exists an STNPSU SP such that P is
dynamically controllable if and only if SP is DC.

Proof Tab. 3 depicts the mapping of the elements available for modeling a
time-aware process (i.e., tasks, control edges, AND gateways, and temporal
constraints) to the associated STNPSU fragments.
– Task. Given a process schema, each task node A is transformed into two
STNPSU timepoints, AS and AE , representing its start and end instants.
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The duration attribute of A, [[x, x′][y′, y]], is converted to the guarded link
AS

[
[x, x′][y′, y]

]
AE .

– ANDjoin/ANDsplit gateways. The conversion process is analogous to the one
of a task. However, duration attribute [x, y] is converted to a requirement link
AS

[x, y]
AE as control connectors are executed by the process engine of the

PAIS.
– Control Edge. A control edge from task A to task B is converted to a
requirement link AE [0,∞]

BS with duration range [0,∞] in order to guarantee
the correct execution order of the original process.
– Time Lags. Consider a time lag 〈IF〉[t, u]〈IS〉, where IF and IS represent the
kind of instants to be considered, i.e., ’S’ for the start instant and ’E’ for the
end instant. If the considered time lag is between tasks A and B, it is converted
to a requirement link between the timepoints associated to instants AIF

and
BIS

of the two tasks A and B. The resulting requirement link then has the
same duration range [t, u] as the time lag.

Let P be a time-aware process schema. Applying the above transformation
to P and to the possible time lags, one can simply verify that the obtained
STNPSU represents all precedence relations and temporal constraints of the
original process schema P .

As introduced in Sect. 1, a time-aware process schema is dynamically
controllable if it is possible to execute it for all required durations of all
activities, while still satisfying all temporal constraints. Furthermore, recall
that an STNPSU is dynamically controllable if it is possible to execute it in a
way such that, no matter how the execution of any guarded link turns out, for
any other guarded link A

[
[x, x′][y′, y]

]
C, the lower bound x must never be increased

beyond its guard x′ and the upper bound y must never be decreased below its
guard y′ in order to ensure controllability of the network.

Therefore, it is a matter of definition to verify that the dynamic controlla-
bility of a process schema implies dynamic controllability of the corresponding
STNPSU and vice versa. ut

5.2 Lower and Upper Guard

Assuming that the process is DC, it is noteworthy that the DC checking
algorithm also derives the minimum and maximum duration between timepoints
Z and E, i.e., the minimum and maximum durations of the process. However,
these bounds are not sufficient for characterizing the temporal behavior of the
process as they do not represent its possible non-restrictable duration ranges.
As an example consider the STNPSU depicted in Fig. 4c, which corresponds to
process P2 of Fig. 1. One can easily show that the duration range between Z
and E corresponds to [5, 19]. However, this range cannot be reduced to [5, 10],
for example, since internal task T7 has a contingent duration of 1 to 7, which
cannot be controlled (i.e., restricted) by the PAIS. In particular, if T7 lasts
exactly 7 time units, process P2 will last at least 11 time units. On the other
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Z +1S +1E

T1S T1E T2S T2E

T3S T3E

+2S +2E E
[1, 1] [1, 1]

[1, 4]

[1, 2]
[
[1, 2][3, 4]

]
[1, 2]

[
[2, 2][3, 3]

]
[
[1, 3][9, 9]

] [1, 5]

[1, 5]

[1, 1] [1, 1]

(a) STNPSU corresponding to P0.

Z T4S T4E T5S T5E E
[1, 1]

[
[1, 1][4, 4]

]
[1, 8]

[
[1, 2][4, 5]

]
[1, 1]

(b) STNPSU corresponding to P1.

Z T6S T6E T7S T7E E
[1, 1]

[
[1, 2][4, 5]

]
[1, 5]

[
[1, 1][7, 7]

]
[1, 1]

(c) STNPSU corresponding to P2.

Fig. 4 STNPSUs corresponding to subprocesses P0, P1 and P2 from Fig. 1.

hand, representing a subprocess by considering the duration range between Z
and E to be contingent, would make the overall process over-constrained and
thus limit the overall temporal flexibility of the modularized process.

We, therefore, suggest representing the duration of a process by a guarded
range with proper guards in order to prevent unacceptable restrictions of
the duration range of the process. In the following, we propose a method to
determine the lower and upper guard of such a guarded range based on the
STNPSU representation of the process schema. In this context, the upper guard
for the duration range of a process P represents the lowest value the maximum
duration of the process may be decreased to. In other words, considering the
STNPSU S corresponding to P , the upper guard corresponds to the lowest
value the upper bound of the requirement link, which is derived between Z and
E by the DC checking algorithm, may be decreased to. It can be determined
considering the maximum guards of any guarded link and the lower bounds of
any requirement link in S as outlined in Ex. 2.

Example 2 (Upper Guard) Consider the STNPSU depicted in Fig. 4c. While
the upper bounds of the internal requirement links may be restricted to their
lower bounds (i.e., 1) by the process engine, the upper bounds of the two
guarded links cannot be restricted below their upper guards (i.e., 4 and 7,
respectively). Therefore, the value we obtain when summing the lower bound
values of the requirement links and the upper guards of the guarded links, i.e.,
1 + 4 + 1 + 7 + 1 = 14, represents the minimal value the upper bound of the
link between Z and E may be restricted to.

In turn, the lower guard for the duration range of a process P represents
the greatest value the minimum duration of the process may be increased
to. Regarding the STNPSU S, therefore, the lower guard corresponds to the
greatest value the lower bound of the requirement link between Z and E may
be increased to.



Managing Time-Awareness in Modularized Processes 15

If there are several paths leading from Z to E, it becomes necessary to
consider the maximum/minimum value considering all paths. Therefore, Defi-
nitions 1 and 2 specify the concept of lower/upper guard for any timepoint of
an STNPSU.

Definition 1 (Upper Guard) Let S be a dynamically controllable STNPSU
with distance graph D = (T , E) and let C be a timepoint. Then: The minimum
value that may be set for the upper bound v of a requirement link Z [u, v]

C is
called the upper guard of C:

upperGuardS(C)=max
B∈T


0 if Z ≡ C
upperGuardS(B)+x if (B −x C)∈E
upperGuardS(B)+y′ if (B D :−y′ C)∈E

Definition 2 (Lower Guard) Let S be a dynamically controllable STNPSU
with distance graph D = (T , E) and let C be a timepoint. Then: The maximum
value that may be set for the lower bound u of a requirement link Z [u, v]

C is
called the lower guard of C:

lowerGuardS(C) = min
B∈T


0 if Z ≡ C
lowerGuardS(B) + y if (B y C) ∈ E
lowerGuardS(B) + x′ if (B d :x′ C) ∈ E

Considering Defs. 1 and 2 it is easy to verify that
– when there is a requirement link Z [x, y]

C in STNPSU S, the upperGuard
of C is ≥ x;

– when there is a guarded link Z
[
[x, x′][y′, y]

]
C in STNPSU S, the upperGuard

of C is in [y′, y];
– when there is a requirement link Z [x, y]

C in STNPSU S, the lowerGuard
of C is ≤ y;

– when there is a guarded link Z
[
[x, x′][y′, y]

]
C in STNPSU S, the lowerGuard

of C is in [x, x′];
– in general, for any timepoints A and C with Z [a, b]

A
[c, d]

C derived by the
DC checking algorithm, it holds upperGuard(C) ≥ upperGuard(A) + c and
lowerGuard(C) ≤ lowerGuard(A) + d.

Example 3 Regarding the STNPSUs from Fig. 4, one can verify that the values
of lowerGuard and upperGuard between Z and E correspond to

– lowerGuardP0(E) = 15 and upperGuardP0(E) = 15,
– lowerGuardP1(E) = 13 and upperGuardP1(E) = 11, and
– lowerGuardP2(E) = 10 and upperGuardP2(E) = 14.

Definitions 1 and 2 allow determining to which extent the upper/lower
bound of the derived requirement link between Z and a timepoint C in an
STNPSU S may be reduced/increased without affecting the DC of S (cf.
Lemmas 1 and 2).
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Lemma 1 (Upper Guard) Let S be a dynamically controllable STNPSU,
Z be the initial timepoint, and C be a timepoint in S. Then: The upper
bound v of the distance Z [u, v]

C between Z and C may be reduced to at most
upperGuardS(C), preserving the DC of S.

Proof First, we show that if v is set to a value less than upperGuardS(C), the
network cannot be DC. Let B1 . . . Bk be the path from Z to C in the distance
graph D that determines the value for upperGuard(C), i.e.,

Z α0 B1
α1 . . . αk−1 Bk

αk C

where αi is either an ordinary or upper case edge and −
∑
i∈{0,...,k} α̃i =

upperGuard(C) with α̃i corresponding to the value of αi ignoring any label.
Given such path, in the AllMax-Projection D′, any upper case edge αi =
{Di : −y′i} is replaced by α̃i = −y′i. Thus, it is easy to verify that by the
standard STN propagation rules in the AllMax-Projection an ordinary edge
Z

∑
α̃i C is derived. At the same time, if we add a requirement edge Z v∗ C

with v∗ < upperGuard(C) to the distance graph D of the original STNPSU S,
the same edge will also be added to the AllMax-Projection D′, resulting in a
negative cycle Z

∑
α̃i C v∗ Z, i.e., the STNPSU cannot be DC.

Second, we show that if S is DC and v is reduced to a value v′ ≥
upperGuardS(C), v′ cannot be part of any negative semi-reducible cycle, i.e.,
the resulting network must be DC as well. Let us assume that Z [u, v]

C is
restricted to Z [u, v′]

C with upperGuard(C) ≤ v′ ≤ v and that the resulting
network is not DC. This implies that there exists a negative semi-reducible
cycle Z α0 E1

α1 . . . αl−1 El
αl C v∗ Z in the distance graph D consisting

only of ordinary or upper case edges αi such that
∑
i∈{0,...,l} α̃i + v∗ < 0,

i.e., v∗ < −
∑
i∈{0,...,l} α̃i. Based on Def. 1, it follows that for any such path

E1, . . . , El from Z to C it holds upperGuard(C) ≥ −
∑
i∈{0,...,l} α̃i and, thus,

upperGuard(C) ≤ v∗ < −
∑
i∈{0,...,l} α̃i ≤ upperGuard(C). This, in turn, con-

tradicts the assumption. ut

Lemma 2 (Lower Guard) Let S be a dynamically controllable STNPSU, Z
be the initial timepoint, and C be a timepoint in S. Then: The lower bound u of
distance Z [u, v]

C between Z and C may be increased to at most lowerGuardS(S),
preserving the DC of S.

Proof The proof is analogous to the one of Lemma 1 using the AllMin-Projection
and applying a similar reasoning. The AllMin-Projection is similar to the
AllMax-Projection, but considers solely ordinary and lower-case edges. ut

Using Defs 1 and 2, it becomes possible to determine to which extent the
lower/upper bound of the duration range of a process can be restricted, while
preserving its DC. This is illustrated by Example 4.
Example 4 The minimum and maximum durations of the processes from Fig. 1
are determined by the DC checking algorithm as P0: [10, 20], P1: [5, 19], and
P2: [5, 19]. Using Defs 1 and 2, it now becomes possible to determine to which
extent these duration ranges may be restricted:
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– the minimum duration of P0 may be restricted to lowerGuardP0(E) = 15 at
most, whereas its maximum duration may be restricted to upperGuardP0(E) =
15;

– the duration of P1 may be restricted to lowerGuardP1(E) = 13 and
upperGuardP1(E) = 11, respectively, and

– the duration of P2 may be restricted to lowerGuardP2(E) = 10 and
upperGuardP2(E) = 14, respectively.

Therefore, the guarded range representing the duration of the three subpro-
cesses P0, P1, and P2 are

[
[10, 15][15, 20]

]
,
[
[5, 13][11, 19]

]
, and

[
[5, 10][14, 19]

]
,

respectively.
Based on the definitions of lowerGuard and upperGuard, one can easily

verify that their value is always non-negative. Moreover, it becomes easy to show
that the upperGuard(C) value is given by value u of edge Z −u C in the AllMax-
Projection graph of the network, whereas the lowerGuard(C) value is given
by value v of edge Z v C in the AllMin-Projection graph. Using standard STN
algorithms [9], therefore, the computational cost of determining lowerGuard(C)
and upperGuard(C) is at most O(n3), with n being the number of timepoints
in the considered STNPSU.

5.3 Contingency Span

Given a range [u, v] that represents the overall duration of a DC process, Defs. 1
and 2 assure that it is always possible to reduce one of the two bounds of the
respective duration range to the corresponding guard (i.e., upperGuard(E) or
lowerGuard(E)) without affecting the DC of the process. However, it is not
possible to restrict both bounds simultaneously since the restriction of one
bound may change the guard of the other bound as shown by Example 5.
Example 5 Consider the STNPSU from Fig. 4c, which corresponds to
subprocess P2. One can easily show that lowerGuardP2(E) = 10 and
upperGuardP2(E) = 14 hold. Moreover, the duration range of the process
corresponds to [5, 19] as determined by the DC checking algorithm. Considering
Lemmas 1 and 2, it then can be easily shown that the minimum duration of
the process may be increased to 10 or its maximum duration may be restricted
to 14. However, for process P2 it is not possible to increase the minimum
duration to 10 while, at the same time, restricting the maximum duration
to 14. In particular, if the minimum duration is increased to 10, due to the
partially contingent guarded link between timepoints T7S

and T7E
(representing

task T7), the maximum duration must not be decreased below 16 to further
guarantee DC of the process. On the other hand, the maximum duration may
be decreased to 14. In this case, the minimum duration must not be increased
beyond 8. In detail, a span of at least 6 must be ensured for the final duration
range of the process.
To fully represent the overall temporal properties of a process we suggest con-
sidering an additional value that represents the minimal span to be guaranteed
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for the duration range. We denote this value as the contingency span of the
process. It can be defined using the link contingency span and path contingency
span of the corresponding STNPSU.

Definition 3 (Link Contingency Span) A positive link contingency span
∆ corresponds to the span that needs to be guaranteed for a link in order
to ensure the DC of an STNPSU. In turn, a negative link contingency span
corresponds to the maximum span provided by a link that can be used to
reduce the contingency span of previous guarded link.
a) For a guarded link A

[
[a, a′][b′, b]

]
B, the link contingency span ∆AB is defined

as ∆AB = b′ − a′.
b) For a requirement link A [a, b]

B, the link contingency span ∆AB is defined
as ∆AB = a− b.

Taking Def. 3 it is easy to verify that, respectively

– the link contingency span of a requirement link is less than or equal to zero,
i.e., A [a, b]

B ⇒ ∆AB ≤ 0;
– the link contingency span of a partially shrinkable guarded link is less than

or equal to zero, i.e., A
[
[a, a′][b′, b]

]
B ∧ a′ ≥ b′ ⇒ ∆AB ≤ 0;

– the link contingency span of a partially contingent guarded link is greater
than zero, i.e., A

[
[a, a′][b′, b]

]
B ∧ a′ < b′ ⇒ ∆AB > 0.

Next, we need to find a way to determine the contingency span of a
path based on the link contingency span of its links. First, let us consider
a guarded link A

[
[a, a′][b′, b]

]
B followed by a requirement link B

[c, d]
C. In this

case, the contingency span required by the guarded link can be partially or
fully compensated by the subsequent requirement link, as the duration of
the latter can be decided based on the actual duration of the former. Thus,
the contingency of the path from A to C is given by ∆AB + ∆BC . In turn,
for a requirement link A

[a, b]
B followed by a guarded link B

[
[c, c′][d′, d]

]
C, we

must differentiate two subcases: If the guarded link is partially contingent
(i.e., c′ < d′) the previous requirement link cannot be used to compensate its
contingency span as the duration of the requirement link must be decided
before executing the guarded link. Therefore, the contingency span of the
path from A to C is given by ∆BC . However, if the guarded link is partially
shrinkable (i.e., d′ ≤ c′), its link contingency ∆BC is negative. In this case, the
contingency span of the path from A to C is again given by ∆AB +∆BC as
both links could be used to reduce the contingency of a previous guarded link.
Finally, the combination of two requirement links (guarded links) is similar to
the above cases. When considering a path that consists of more than two links,
the link contingency spans need to be combined in an incremental way starting
from the initial timepoint Z. When considering two or more parallel paths,
in turn, it becomes necessary to consider the most demanding case, i.e., the
path with the largest contingency span. This leads to the following recursive
approach for calculating the contingency span of a path.
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Definition 4 (Path Contingency Span) Let S be a dynamically control-
lable STNPSU and let Z be its initial timepoint. By definition, the path
contingency span of Z is contS(Z) = 0. Then: The path contingency span
contS(C) of any other timepoint C is given by

contS(C) = max
{

0,max
B∈T

{contS(B) +∆BC}
}

It is noteworthy that the path contingency span of any timepoint is al-
ways greater or equal to zero, i.e., contS(C) ≥ 0. Moreover, the problem of
determining the value of contS(C), i.e., the maximum contingency span among
all possible paths from Z to C, can be reduced to the problem of finding
the minimal distance between Z and C in a suitable weighted graph whose
construction considered the link contingency spans as edge values.

Definition 5 (Contingency Graph) Let S = (T , C,G) be an STNPSU to
which the DC-checking algorithm has been applied (cf. Alg. 1). The corre-
sponding contingency graph for S has the form CO = (T , ECO). Thereby, each
timepoint in T serves as a node in the graph; ECO is a set of weighted edges:
a) For each guarded link A

[
[x, x′][y′, y]

]
B ∈ G, there exists a single edge A−∆AB B ∈

ECO.
b) For each requirement link A

[x, y]
B ∈ C, there exist two edges A−∆AB B,

B −∆AB A ∈ ECO.
c) For each timepoint T ∈ T , there exists an edge Z 0 T ∈ ECO.

Based on Def. 4, one can easily verify that the path contingency span of any
timepoint C ∈ T corresponds to the negative value of the shortest path from
initial timepoint Z to C in the corresponding contingency graph (cf. Def. 5).

Two comments are noteworthy with respect to Def. 4 and Def. 5. First,
as a requirement link may connect two-non sequential timepoints, its link
contingency span can be used in combination with the contingency coming from
any of its endpoints. Def. 5 considers these two mutually-exclusive options by
adding two edges A−∆AB B,B −∆AB A ∈ ECO. Second, edges Z 0 T ∈ ECO, T ∈ T
added by Step c) in Def. 5 guarantee that the length of any path in the graph
starting at timepoint Z is always less than or equal to 0, i.e., the corresponding
path contingency is always positive as requested by the definition.

Moreover, as S is DC, the contingency graph CO cannot contain any negative
cycles. In particular, the only edges with a negative edge value are the ones
resulting from a partially contingent guarded link A

[
[x, x′][y′, y]

]
B. Then, for any

path B = E0, . . . , Ek = A it must hold−
∑
i=1...k−1 ∆EiEi+1 ≥ ∆AB , otherwise

S cannot be DC. Using the Bellman–Ford algorithm, the computational cost of
determining contS(C) is at most O(n3), with n being the number of timepoints
in the STNPSU.

Example 6 The path contingency graph corresponding to the STNPSU depicted
in Fig. 4a is shown in Fig. 5. Note that insignificant edges determined by the
DC checking algorithm have been omitted for the sake of readability. Applying
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Z +1S +1E

T1S T1E T2S T2E

T3S T3E

+2S +2E E
0

0

0

0 3
3

1
1

−1
1
1 −1

−6

4
4

4

4

0

0

0

0

0

0
0 [−1] 0

0 [−1]

0

0 [−6] 0 [−2]
0 [−2]

0 [−2]

Fig. 5 Contingency Graph of the STNPSU in Fig. 4a showing values determined by the
Bellman-Ford algorithm (grayed bracketed values).

the Bellman-Ford algorithm to this graph, the grayed values in bracket are
determined (insignificant edges are re-omitted). In particular, edge ZE is
derived as Z −2 E. Moreover, by applying Def. 4 to Fig. 4a it can be easily
verified that contP0(E) = 2 holds.

Regarding the other STNPSUs from Fig. 4, the path contingency span of
timepoints E are as follows:

– contP1(E) = 2, and
– contP2(E) = 6.

Based on Def. 4, it becomes possible to describe the admissible duration
ranges between two timepoints in an STNPSU.

Lemma 3 Let S be a dynamically controllable STNPSU, Z be its initial
timepoint, and C be any other timepoint. Then: In order to preserve the DC
of S, any restriction Z

[u∗, v∗]
C (u ≤ u∗ ≤ lowerGuardS(C), upperGuardS(C)

≤ v∗ ≤ v) of the distance between Z and C must be set in such a way that
v∗ − u∗ ≥ contS(C) holds.

Proof We solely consider timepoints C with a positive path contingency span
contS(C) > 0 and upperGuardS(C)− lowerGuardS(C) < contS(C); otherwise
it is already ensured that v∗ − u∗ ≥ contS(C) holds (either by the fact that
v∗ − u∗ ≥ 0 holds or by the guards).

First of all, let us consider the definition of contS(C). Note that a positive
path contingency span can only occur when there is at least one partially
contingent guarded link inside S. Moreover, taking the definition of contS(), it
is always possible to find a sequence of timepoints B0, . . . , Bk with Bk ≡ C for
which it holds

contS(C) = contS(B0) +∆B0,B1 + . . .+∆Bk−1,Bk

with
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1. contS(B0) = 0,
2. ∀j ∈ {1, . . . , k}

∑
i∈{1,...,j}∆Bi−1,Bi > 0,

i.e., ∀j ∈ {1, . . . , k} contS(Bj) > 0

Then, by definition, link B0B1 is a partially contingent guarded link:
B0

[
[x1, x

′
1][y′1, y1]

]
B1.

If path B0, . . . , Bk contains a sequence of requirement links
Bi−1

[xi, yi] Bi
[xi+1, yi+1]

Bi+1, there also exists an equivalent single requirement
link Bi−1

[xi + xi+1, yi + yi+1]
Bi+1 resulting in the same value of contS(Bi+1).

Moreover, if path B0, . . . , Bk contains a sequence of guarded links
Bi−1

[
[xi, x′i][y′i, yi]

]
Bi

[
[xi+1, x

′
i+1][y′i+1, yi+1]

]
Bi+1, it is always possible to split time-

point Bi into two timepoints B′i and B′′i connected by a requirement
link with value [0, 0] without changing the properties of the network
(particularly contS(Bi+1)), i.e., Bi−1

[
[xi, x′i][y′i, yi]

]
Bi

[
[xi+1, x

′
i+1][y′i+1, yi+1]

]
Bi+1 ≡

Bi−1

[
[xi, x′i][y′i, yi]

]
B′i

[0, 0]
B′′i

[
[xi+1, x

′
i+1][y′i+1, yi+1]

]
Bi+1.

In summary, without loss of generality we can assume that the sequence of
timepoints B0, . . . , Bk always has the following pattern:

Z
[a, b]

B0

[
[x1, x

′
1][y′1, y1]

]
B1

[x2, y2]
B2

[
[x3, x

′
3][y′3, y3]

]
B3

[x4, y4]
B4 . . .

. . .
[
[xk−1, x

′
k−1][y′k−1, yk−1]

]
Bk−1

[xk, yk]
Bk ≡ C

where Z [a, b]
B0 is the requirement link derived by the DC checking algorithm.

We can now show by induction that it is not possible to restrict Z [u, v]
Bk

to [u∗, v∗] such that v∗ − u∗ < contS(Bk) holds. Particularly, assuming that
v∗ − u∗ = contS(Bk) − ε, ε > 0 holds, we show that at least one link inside
path Z,B0, . . . , Bk has to be restricted beyond its bounds/guards.

First, consider a path consisting of 3 timepoints B0, B1, and B2, i.e.,
Z

[a, b]
B0

[
[x1, x

′
1][y′1, y1]

]
B1

[x2, y2]
B2 (Note that the case of two timepoints follows

by assuming y2 = x2 = 0 and the case of one timepoints is given by defini-
tion as b − a ≤ contS(B0) − ε =< 0 holds then). In this case contS(B2) is
given by contS(B2) = contS(B0) + (y′1 − x′1) + (x2 − y2) with contS(B0) = 0.
Assume Z [u, v]

B2 is restricted to Z [u∗, v∗]
B2 with v∗ − u∗ = contS(B2) − ε =

(y′1−x′1)+(x2−y2)−ε, ε > 0. Then, by applying the No-Case Rule (cf. Tab. 2),
a requirement link Z [u∗ − y2, v

∗ − x2]
B1 between Z and B1 is derived. Moreover,

the Lower Case Rule (cf. Tab. 2) derives an ordinary edge B0
x′1 − (u∗ − y2)

Z.
In turn, the Upper Case Rule (cf. Tab. 2) derives a wait B0

B1 : (v∗ − x2)− y′1 Z.
This wait is then transformed into the ordinary edge B0

(v∗ − x2)− y′1 Z by the
Label Removal Rule (cf. Tab. 2). Note that (v∗ − x2) − y′1 ≥ −x′1 holds as
v∗ ≥ y′1 + x2 ≥ y′1 − x′1 + x2 must hold for the original network to be DC.
In summary, a requirement link Z [(u∗ − y2)− x′1, (v∗ − x2)− y′1]

B0 is derived. Hence, it
must hold b ≤ (v∗ − x2) − y′1 and a ≥ (u∗ − y2) − x′1 and, therefore, it must
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also hold:

b− a ≤ (v∗ − x2)− y′1 − ((u∗ − y2)− x′1)
= v∗ − u∗ + y2 − x2 + x′1 − y′1
= (y′1 − x′1) + (x2 − y2)− ε+ y2 − x2 + x′1 − y′1 v∗−u∗=contS(B2)−ε

= −ε < 0

which shows that the network can no longer be DC as the requirement link
ZB0 is restricted too much.

Now let us consider a path consisting of k + 3 timepoints B0, . . . , Bk+2
as depicted below (Again, the case of k + 2 timepoints follows by assuming
yk+2 = xk+2 = 0).

Z B0 Bk Bk+1 Bk+2

[a, b] [
[xk+1, x

′
k+1][y′k+1, yk+1]

]
[xk+2, yk+2]

[u∗, v∗]

[u∗ − yk+2, v
∗ − xk+2]

[(u∗ − yk+2)− x′k+1, (v
∗ − xk+2)− y′k+1]

Let us assume that Z [u, v]
Bk+2 is restricted to Z [u∗, v∗]

Bk+2 with v∗ − u∗ =
contS(Bk+2) − ε, ε > 0. Then by the No-Case Rule (cf. Tab. 2) a require-
ment link Z

[u∗ − yk+2, v
∗ − xk+2]

Bk+1 is derived. Moreover, the Lower Case Rule
derives an ordinary edge Bk

x′k+1 − (u∗ − yk+2)
Z. In turn, the Upper Case Rule

derives a wait Bk
Bk+1 : (v∗ − xk+2)− y′k+1 Z. This wait is transformed into ordinary

edge Bk
(v∗ − xk+2)− y′k+1 Z by the Label Removal Rule because (v∗ − xk+2) −

y′k+1 ≥ −x′k+1 holds, as v∗ ≥ y′k+1 + xk+2 ≥ y′k+1 − x′k+1 + xk+2 must
hold for the original network to be DC. In summary a requirement link
Z

[(u∗ − yk+2)− x′k+1, (v∗ − xk+2)− y′k+1]
Bk is derived.

Thus for the span of the requirement link Z
[p, q]

Bk between Z and Bk
derived by the DC checking algorithm it holds:

q − p ≤ (v∗ − xk+2)− y′k+1 − ((u∗ − yk+2)− x′k+1)
= (v∗ − u∗)− (y′k+1 − x′k+1)− (xk+2 − yk+2)
= contS(Bk+2)− ε−∆BkBk+1 −∆Bk+1Bk+2 v∗−u∗=contS(Bk+2)−ε, Def. 3

= contS(Bk) +∆BkBk+1 +∆Bk+1Bk+2 − ε
−∆BkBk+1 −∆Bk+1Bk+2 Def. 4

= contS(Bk)− ε

Hence, the range of the requirement link Z [p, q]
Bk is restricted such that

q−p ≤ contS(Bk)−ε < contS(Bk) holds. By subsequent application of the same
steps (i.e., by induction), it follows that for Z [a, b]

B2 it holds b−a < contS(B2).
However, as previously shown, this implies that the network can no longer be
DC. ut
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From the previous observations, we can derive important relationships
between lowerGuard(C), upperGuard(C), and cont(C) values:

Lemma 4 Let S be a dynamically controllable STNPSU, Z be its initial
timepoint, and C be any other timepoint. If T is the network derived from S

by restricting upper bound v of the distance Z [u, v]
C between Z and C to v∗,

with upperGuardS(C) ≤ v∗ ≤ v, for T it holds:

lowerGuardT (C) = min {lowerGuardS(C); v∗ − contS(C)}

Lemma 5 Let S be a dynamically controllable STNPSU, Z be its initial
timepoint, and C be any other timepoint. If T is the network derived from S

by restricting the lower bound u of the distance Z [u, v]
C between Z and C to

u∗, with u ≤ u∗ ≤ lowerGuardS(C), for T it holds:

upperGuardT (C) = max {upperGuardS(C);u∗ + contS(C)}

Proof The proofs of Lemmas 4 and 5 are very similar. For the sake of brevity,
we only prove Lemma 4.

First, let us assume that lowerGuardT (C) > v∗ − contS(C) holds. When
applying Def. 2 and Lemma 2, we obtain that u may be increased to u∗ =
lowerGuardT (C) > v∗ − contS(C). According to Lemma 3, however, then the
resulting network cannot be DC.

Second, let us assume that u is increased to u∗ = v∗ − contS(C) with
u∗ ≤ lowerGuardS(C) in T and that the resulting network is not DC. This
implies that there exists a negative semi-reducible cycle

Z α0 E1
α1 E2 . . .

αl−1 El
αl C

−(v∗ − contS(C))
Z

in the distance graph DT of T such that
∑
i∈{1,...,l} α̃i − (v∗ − contS(C)) < 0

holds, i.e., contS(C) < v∗ −
∑
i∈{1,...,l} α̃i. Moreover, it holds that v∗ ≤ v ≤∑

i∈{1,...,l} α̃i and thus contS(C) < v∗ −
∑
i∈{1,...,l} α̃i ≤ 0, which contradicts

the basic property that contS(C) ≥ 0 holds.
Third, let us assume that u is increased to u∗ = lowerGuardS(C) with

u∗ ≤ v∗ − contS(C) and that the resulting network is not DC. Again, this
implies that there exists a negative semi-reducible cycle

Z α0 E1
α1 E2 . . .

αl−1 El
αl C

− lowerGuardS(C)
Z

in the distance graph DT of T such that
∑
i∈{1,...,l} α̃i − lowerGuardS(C) <

0 holds, i.e.,
∑
i∈{1,...,l} α̃i < lowerGuardS(C). Consequently, it also holds∑

i∈{1,...,l} α̃i < lowerGuardS(C) ≤ v∗−contS(C) ≤ v∗ ≤ v, i.e.,
∑
i∈{1,...,l} α̃i <

v, which contradicts the basic assumption that v has been restricted to v∗. ut
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5.4 Overall Temporal Properties of a Process

The previous results give rise to the following theorem that enables a complete
description of the overall temporal properties of a process.

Theorem 2 (Overall Temporal Properties of a Process) Considering a process
P and its corresponding STNPSU S, let Z and E be the single start and
single end timepoints of S. Then: The overall temporal properties of P can be
described by a guarded range with contingency

[
[x, x′][y′, y]

]
lc, where

– x and y are the bounds of the requirement link Z [x, y]
E between initial

timepoint Z and ending timepoint E in S, as derived by the DC checking
algorithm,

– x′ = lowerGuardS(E) and y′ = upperGuardS(E), and
– c = contS(E).

Proof Defs. 1 and 2 show how to use the values of lowerGuardS(E) = x′ and
upperGuardS(E) = y′ to specify the possible restrictions regarding the lower
and upper bounds of the duration range [x, y] of a process (i.e., its minimum
and maximum duration). This way, we can fully represent the possible duration
ranges of the process as a guarded range

[
[x, x′][y′, y]

]
. Moreover, Lemmas 3–5

show how to use the path contingency span contS(E) = c in order to ensure
that any possible restriction of the duration range

[
[x, x′][y′, y]

]
lc of the process

preserves its DC. ut

Based on Theorem 2, it becomes possible to represent the overall temporal
properties of a process using a single guarded range with contingency. This is
illustrated by Example 7.

Example 7 First, consider process P1 (cf. Fig. 1) and its corresponding STNPSU
(cf. Fig. 4). The overall temporal properties of this process may be described by
guarded range with contingency

[
[5, 13][11, 19]

]
l2. Since the contingency span

of this process corresponds to 2, it is possible to restrict the overall duration
range of the process to [13, 15] or [9, 11], while still preserving its DC. In turn,
the overall temporal properties of process P2 (cf. Figs. 1 and 4) can be described
by a guarded range with contingency

[
[5, 10][14, 19]

]
l6. For example, therefore,

the duration range of the process can be restricted to [6, 14], [10, 17], or [8, 14].
However, due to the required contingency span of 6, it must not be restricted
to, for example, [10, 14], or [10, 15].

Such kind of compact representation of the overall temporal properties of a
process schema is crucial for reusing it as part of a modularized process. In
particular, when adding a subprocess task to a process schema, a duration range
must be specified. Based on the guarded range with contingency determined for
the subprocess, it now becomes possible to determine a proper duration range
for it, when adding it to the main process. Without any need to reanalyze
the subprocess schema, this duration range ensures that any restriction of the
duration of the subprocess task in the main (i.e., toplevel) process will be made
in such a way that the subprocess remains dynamically controllable.
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6 Checking the Dynamic Controllability of Modularized
Time-Aware Processes

As shown in the previous section, for each time-aware process, one can derive
a guarded range with contingency that fully describes the overall temporal
properties of the process. In particular, this guarded range with contingency
specifies the possible durations of the process as well as the permissible restric-
tions that may be applied to its duration range without violating the DC of
the process. This section shows how such a knowledge can be utilized to enable
a sophisticated PAIS support for modularized time-aware processes.

In a PAIS, in general, the available process schemas are stored in a central
process model repository [34]. Based on the results presented in Sect. 5, it
now becomes possible to enhance the repository information about a process
schema with its overall temporal properties represented as a guarded range
with contingency. Such information can then be utilized when reusing a process
schema as part of a modularized time-aware process. In particular, during
design time, a process designer may select a process schema from the repository
and reuse it as a subprocess task. Similar to an atomic task, the designer then
has to configure the subprocess task in the process schema; i.e., he must specify
the duration range of the particular subprocess task. In this context, it must be
ensured that the temporal constraints of the modularized process as well as the
ones of the subprocess can be satisfied. In order to ensure the executability of
the modularized process the designer must guarantee that the duration range
set for the subprocess task is compliant with the overall temporal properties of
the (sub-)process schema. In this context, the repository information about the
overall temporal properties of the (sub-)process schema can be used to support
the process designer in choosing a proper duration range for the respective
subprocess task. In other words, the designer must select a guarded range as
duration range of the subprocess task, which satisfies the guards as well as the
contingency of the guarded range with contingency representing the overall
temporal properties of the (sub-)process schema as stored in the repository.

In general, the duration range
[
[x, x′][y′, y]

]
of a subprocess task needs to

be selected with respect to the overall temporal properties of the respective
(sub-)process schema

[
[u, u′][v′, v]

]
l c such that u ≤ x ≤ x′ ≤ u′ and v ≥ y ≥

y′ ≥ v′ hold. Moreover, if c > 0 holds, y′ − x′ ≥ c must hold as well. When
observing these constraints, it is guaranteed that, during the execution of a
subprocess task of a modularized process, the respective subprocess instance
may be completed without violating any of its temporal constraints (i.e., the
subprocess is DC).

Example 8 Fig. 6 depicts the modularized process from Fig. 1. Proper duration
ranges have been selected for the three subprocess tasks P0, P1 and P2, which are
related to (sub-)process schemas NonPharmR, PhysEx and PharmR. For example,
for subprocess task P0, duration range

[
[10, 14][16, 20]

]
is used. This range has

the same outer bounds as the overall temporal properties of the respective
process schema, i.e.,

[
[10, 15][15, 20]

]
l2. Moreover, the lower and upper guard
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Z

T0:PatEv[
[2, 4][6, 8]

]

1
[1,1]

P0[
[10, 14][16, 20]

]

P1[
[5, 9][11, 11]

]

P2[
[8, 10][17, 19]

]

T8:TrExp[
[1, 3][5, 5]

]

1
[1,1]

E

E[1, 4]S

E[1, 1]S

E[1, 4]SE[1, 4]S

E[1, 4]SE[1, 4]S

E[1, 5]SE[1, 5]S

E[1, 1]S
S[30, 45]S

Process Repository

. . .

PharmR[
[5, 10][14, 19]

]
l6

. . .

NonPharmR[
[10, 15][15, 20]

]
l2

. . .

PhysEx[
[5, 13][11, 19]

]
l2

. . .

Fig. 6 Modularized process.

of the duration range ensure that the guards as well as the contingency value
determined for the process schema are observed. In turn, for subprocess task
P1 the designer decides to further restrict the upper bound of the duration
range to 11 (thus also decreasing the lower guard to 9 due to the contingency of
2). Note that this still guarantees the DC of subprocess schema PhysEx as the
new constraints comply with the respective guards and contingency. Finally,
for subprocess P2, the designer increases the lower bound to 8 and the upper
guard to 17, thus providing a possible contingency of 7 instead of the required
contingency of 6.

After completing the design of the modularized process schema, the dynamic
controllability of the parent process schema itself needs to be verified. Then,
the overall temporal properties of the modularized process schema may be
determined based of the approach presented in Sect. 5.

Finally, the modularized process itself may be added to the process reposi-
tory. It may then be reused as a subprocess in the context of another modular-
ized process. This enables the definition of hierarchically structured modularized
time-aware process schemas comprising multiple levels.
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Persistence (DBMS)

LogManager

ProcessManagerDataManager

WorklistManager

OrgModelManager

ExecutionManager RuntimeManager ChangeOperations

Application / Design Toolset

Execution layer

User/Designer interaction layer

Basic services layer

Low-level services layer

TimeManager

Fig. 7 ATAPIS Toolset: AristaFlow Temporally-Extended Architecture.

7 Architecture and Implementation of the Proof-of-Concept
Prototype

The presented approach was implemented as a proof-of-concept prototype in
the ATAPIS Toolset [20][21], which, in turn, is based on the AristaFlow BPM
Suite [31].

Due to its Open API as well as its strict modular and service-oriented
design, AristaFlow can be easily applied and adapted to different application
domains. This way, it allows for the integration of advanced process support
functions into domain-specific PAIS as well as the provision of domain-specific
client, service and activity implementations.

In our case, we extended the original AristaFlow architecture by modifying
the time-aware modules, Design Toolset, ChangeOperations, and ProcessMan-
ager, to consider temporal aspects of tasks and (sub-)processes. Moreover, we
introduced a new module, called TimeManager, that provides the run-time
support for all the temporal features discussed in this paper. We denoted this
extended framework as ATAPIS Toolset. Fig. 7 depicts the architecture of the
ATAPIS Toolset, where the extended/new modules are displayed with a gray
background. ATAPIS Toolset supports the designer in specifying a time-aware
process, verifying its properties, and enacting it.

In particular, the design toolset, called Process Template Editor, and the
underlying modules enable designers to create time-aware process schemas and
to automatically transform them to a corresponding STNPSU. The STNPSU,
in turn, can then be checked for dynamic controllability. Moreover, the overall
temporal properties of the process can be determined. The screenshot from
Fig. 8 shows the Process Template Editor1.

At the top of Fig. 8, frame A depicts the common options available for
opening, editing and viewing time-aware process schemas. Moreover, there
are the main options for creating the corresponding STNPSU of the loaded
process schema, checking the temporal features of the STNPSU, and enacting
the time-aware process schema. Frame B, in turn, depicts the panel where

1 A screencast demonstrating the toolset is available at http://dbis.info/atapis

http://dbis.info/atapis
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B

C

DE

A

Fig. 8 Determining Process Overall Temporal Properties in ATAPIS Toolset.

the process schema is designed. In Fig. 8, the process schema from Fig. 1c is
shown. At the bottom, the automatically generated STNPSU, frame E, and
the STNPSU after the DC check, frame D, are depicted. Finally, the dialog
in the middle, frame C, shows the overall temporal properties of the process
schema, which have been determined based on the STNPSU.

Using the ATAPIS prototype, it becomes possible to create modularized
time-aware processes and to assign a proper duration range to each subprocess
task based on the overall temporal properties of the respective (sub-)process
schema. The resulting modularized time-aware process schema can then be
checked for dynamic controllability and its overall temporal properties be
determined. It is then possible to reuse this modularized time-aware process
schema for any subprocess task in another modularized process.

First simulations based on the ATAPIS prototype show a significantly
improved performance of our modularization-based approach compared to the
“classical approach”, where each subprocess task has to be replaced by its
respective (temporal) components. Overall, the prototype demonstrates the
applicability of our approach.

8 Summary and Outlook

Time and modular design constitute two fundamental aspects for properly
supporting business processes by PAIS. So far, these aspects have only been
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considered in isolation, although the overall temporal behavior of a (sub-)process
significantly differs from the one of simple tasks.

This paper closes this gap by considering modularization and time-awareness
of processes in conjunction with each other. In particular, we propose a novel
approach for determining and representing the overall temporal behavior of a
process, called guarded range with contingency. Using this representation, we
can specify the possible durations of a (sub-)process as well as any permissible
restriction that may be applied to it, while still ensuring the executability of
the process. Moreover, we show how this may be used in the context of process
repositories and multilayered process hierarchies.

We are currently extending STNPSU to consider conditional aspects as well.
In future work, we want to study the integration of (modularized) time-aware
processes in PAISs, specifically focusing on aspects like scalability and usability.
Finally, we would like to explore the concept of modularization in the context
of temporal networks in order to improve the performance of controllability
checking of such network.
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