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Abstract
The field of AI planning has seen rapid progress over the last decade and planners are
now able to find plans with hundreds of actions in a matter of seconds. Despite those
important progresses, robotic systems still tend to have a reactive architecture with very
little deliberation on the course of the plan they might follow. In this thesis, we argue
that a successful integration with a robotic system requires the planner to have capacities
for both temporal and hierarchical reasoning. The former is indeed a universal resource
central in many robot activities while the latter is a critical component for the integration
of reasoning capabilities at different abstraction levels, typically starting with a high level
view of an activity that is iteratively refined down to motion primitives.

As a first step to carry out this vision, we present a model for temporal planning
unifying the generative and hierarchical approaches. At the center of the model are
temporal action templates complemented with a specification of the initial state as well
as the expected evolution of the environment over time. In addition, our model allows for
the specification of hierarchical knowledge possibly with a partial coverage. Consequently,
our model generalizes the existing generative and hierarchical approaches together with
an explicit time representation.

In the subsequent chapter, we introduce a planning procedure suitable for our planning
model. In order to support hierarchical features, we extend the existing Partial-Order
Causal Link approach used in many constraint-based planners, with the notions of task
and decomposition. We implement it in FAPE (Flexible Acting and Planning Environ-
ment) together with automated problem analysis techniques used for search guidance.
We show FAPE to have performance similar to state of the art temporal planners when
used in a generative setting, and the addition of hierarchical information to lead to further
performance gain.

Next, we study the usual methods used to reason on temporal uncertainty while plan-
ning. We relax the usual assumption of total observability and instead provide techniques
to reason on the observations needed to maintain a plan dispatchable. We show how such
needed observations can be detected at planning time and incrementally dealt with by
considering the appropriate sensing actions.

In a final chapter, we discuss the place of the proposed planning system as a central
component for the control of a robotic actor. We demonstrate how the explicit time
representation facilitates plan monitoring and action dispatching when dealing with con-
tingent events that require observation. We take advantage of the constraint-based and
hierarchical representation to facilitate both plan-repair procedures as well opportunistic
plan refinement at acting time.
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players I have played with. Post-lunch foosball really has been part of the general well-
being at LAAS. Beyond the lab borders, my first thanks go to my parents and family for
their unconditional moral support and for giving the will and means to undertake this
PhD. A million thanks to Aude and Johann for their constant presence and support in
all unforeseen developments as well as for our many gastronomic reunions. Many thanks
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Chapter 1

Introduction

Since, the early days of AI, planning has been a perfect example of the strength of model
based reasoning in dealing with complex problems. Indeed, the planning community
has developed a large number of automated planners that, given a formal description of
planning problems, are able to solve complex tasks that were largely beyond the reach of
automated systems a few decades ago. However, the field of automated planning is also a
vibrant example of the pitfalls of model based reasoning where a tool is only useful when
the task at hand meets the assumption of the representation. While automated planners
have been extremely efficient at finding plans in very large state spaces, this development
has been at the cost of many restrictive assumptions. More importantly, the focus of the
field has been for a very large part on the creation of heuristics for reasoning on causal
relationships whose efficiency conditions the usefulness of planners.

The classical planning framework has seen many extensions, especially regarding
time, which is of particular interest for this dissertation. Most of the work in domain-
independent temporal planning has however been focused on an incremental extension
to classical planning and often suffers from the same limitations. While some planning
models, such as ANML, were proposed to encode much richer temporal problems, they
have only seen limited adoption from the planning community.

While being able to reason efficiently on causal relationships is indeed a key ability for
generating sound strategies to achieve a desired goal, one must not forget that it is only
part of the much more general one of actuating an autonomous agent in the real world.
Robotic actors offer a good illustration of the problematics of actuating the increasingly
complex robotic platforms. Indeed, while having high level deliberation capabilities such
as task planning are highly desirable for autonomous agents, such capabilities are hardly
limited to a simple input-output function in a universal model. For acting in the real
world, a robotic actor should be able to process the data coming from its sensors and
reason on the results of its observations. He must furthermore be able to reason on the
limitation of its perception capabilities and on the possibilities to enhance them through
specific sensing actions. He should model the contingent nature of the environment and
of its own actions to provide a robust strategy that accounts for them. He should detect
discrepancies between the actual evolution of the world and the one entailed by its model
and react to them by adapting its behavior. He must reason on its spatial environment
including its own kinematic limitations. He must transform abstract actions into a series
of motor commands that achieve the desired purpose. He must obey to various domain-
specific constraints such as social-norms or safety rules. Finally, he must be able to
formulate long term strategies where precise knowledge regarding the actual environment
is yet unknown.

Fortunately, some of those capabilities can be integrated in a hierarchical fashion
where each layer provides a more high-level view of the problem at hand, e.g., by go-
ing from an image stream to a characterization of some physical object through given
properties until the identification of particular object instances in the agent’s model. For
such capabilities, it is in general sound for a task planner to keep a high-level view of

1
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the domain. For many other capabilities, producing useful plans requires taking into
account domain-specific constraints that cannot be naturally encoded in the usual model
of automated planners.

Let us consider the simple example where we have guests arriving for dinner and a
service robot that should clean up the apartment, cook dinner and greet the guests on
their arrival. Planning in such an environment requires handling the complex temporal
constraints required for cooking. The ability to reason on the temporal uncertainty that
appears in the duration of the robot’s own activities (e.g. time needed to make the cake
batter) as well as external events (e.g. arrival time of the guests) is also critical in finding
controllable plans that are robust to these contingencies. Furthermore, the requirements
of complex activities are sometimes easier to represent with procedural knowledge spec-
ifying how things should be done than with traditional operators with conditions and
effects, e.g., cooking is a perfect example where a large amount of procedural knowledge
is available in the form of recipes that would be hardly expressible through traditional
planning operators. Even when following procedural knowledge, the system should still
be able to reason on the rest of its activities that might be performed concurrently (e.g.
to start cleaning up while the batter is resting).

For a planning framework to be successful in this apparently simple domain, it should
first be able to reason on causal and temporal relationships of its activities which is
supported by many state-of-the-art temporal planners. The need to tackle temporal
uncertainty and handle procedural knowledge has however seen limited interest in the
planning community. Finally, a planning framework must be adapted for the integration
into a more general acting framework that is responsible for filling the gap between the
high-level strategies devised by an automated planner and the sensory-motor capabilities
of an actuated platform. At the very least, such integration requires that the planning
and the acting framework have a common predictive model for the agent’s actions that is
used both for producing a strategy and monitoring its execution. The planning framework
should moreover be able to react to discrepancies by adapting the current plan to an
updated strategy.

Outline and Contributions. Our objective in this thesis is to lay the foundation for
such a planning and acting framework. We present FAPE (Flexible Acting and Planning
Environment) that lays the foundations of such a framework for planning and acting in
robotics.

At the core of the system is a predictive model for representing the current state and
expected evolution of the environment as well as the capabilities of an autonomous agent
(Chapter 2). The model relies on an action model that extends the usual preconditions
and effects to a rich temporal setting. Our core contribution in this chapter is the
extension of this temporal model to a hierarchical setting. The resulting representation
generalizes both generative and hierarchical planning as well as unique combination of
those. Action hierarchies provide us with a convenient way of extending a planning
problem with domain-specific knowledge regardless of whether it is meant to express
procedural knowledge or to enhance the performance of the system.

To reason on this core model, we introduce a constraint-based planning algorithm
(Chapter 3). The choice of a constraint based model is motivated by the great versatility
that has been demonstrated by such planners to account for domain-specific requirements
as well as their natural support for plan-repair. We extend the existing work to provide a
general procedure able to plan both in a fully generative setting as well as in a hierarchi-
cal one. We introduce several automated analysis techniques to reason on this planning
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model both for inferring constraints on the possible plans as well as for deriving domain-
independent heuristics. We demonstrate the resulting planner to be competitive with
state-of-the-art temporal planners when used in a domain-independent setting; it can
benefit from hierarchical knowledge to further improve its performance. A very prelimi-
nary version of this work was published in [Dvo+14b; Dvo+14a]. A specific reachability
analysis technique, key to the performance of the system, has been the object of dedicated
publications [BSD16a; BSD16b]. A global overview of the planner and a characterization
of its performance is still unpublished at the time of this writing.

Given this core capability for planning, we demonstrate how it can be extended to
account for temporal uncertainty (Chapter 4). More specifically, we develop a procedure
that guaranties the controllability of a plan subject to uncontrollable durations and con-
tingent events. We do this while relaxing the usual assumption of total observability of
the environment and instead provide techniques to reason on the observations needed to
maintain a plan dispatchable. We show how such needed observations can be detected
at planning time and incrementally dealt with by considering the appropriate sensing
actions. Most of the formalization and techniques in this chapter have been the object
of a dedicated publication [BGI16].

Last, we show how this planning framework is integrated in a more general architecture
for acting in order to synthesize the high-level behavior of a robotic actor (Chapter 5).
This is done be leveraging our rich temporal model in order to control the execution
of a plan under the occurrence of contingent events. We further use our action model
to monitor the execution of the plan and detect discrepancies between our predictions
and the actual evolution of the environment. When such discrepancies are detected, the
system is able to recover by locally repairing the plan. The overall system is integrated
with specific robotic skills responsible for perception and integration with the platform
actuators.

Given the wide range of topics discussed in this dissertation, each chapter has a
dedicated section discussing the related work; allowing a more detailed and contextualized
discussion to relate and compare our proposed models and techniques to the existing work.

During the first few months of this PhD, a preliminary version of the planning system was
implemented together with Filip Dvorak, that mostly consisted in a straightforward adap-
tation of constraint-based planning techniques to a limited hierarchical setting. While
this system provided a useful lookahead over the challenges of combining hierarchical
and constraint-based planning, it suffered many limitations, especially regarding a very
restricted planning model and a lack of a formal definition of said model that lead to
many approximations and inefficiencies both in the planning algorithm and the under-
lying implementation. For this reason, no parts of the preliminary system remains the
current implementation of FAPE and the key capabilities for the efficiency and expres-
siveness of the system were developed afterwards based on the insights gathered in this
preliminary phase. Hence, the author of this dissertation is the main contributor of all
aspects developed in this thesis.

The entire system is available under an open source license.1 It notably includes (i) a
parser for the supported subset of the ANML language, (ii) the entire planning system,
(iii) dedicated constraint solvers for reasoning on temporal uncertainty under various
observability assumptions, and (iv) the acting system with further tools to facilitate the
communication with ROS based robotic platforms.

1Available at https://github.com/laas/fape.

https://github.com/laas/fape
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2.1 Introduction
In order to act deliberately, an agent must have a representation of its environment and of
the consequences of its action on the real world. Time is a critical aspect of such models
as it allows representing the dynamics of the environment and its expected evolution
beyond the current situation.

In this chapter, we are interested in developing a model for a planning agent acting in
the real world. The environment is described through a set of state variables that depict
high-level properties of physical objects, e.g. that a container is on a truck rather that
the actual coordinates of the container and the truck. Temporally qualified assertions on
those state variables allow to describe both the current situation of the environment and
its expected evolution over time. We further provide predictive models for the actions of
a deliberate agent that provide their conditions of applicability as well as their expected
impact on the environment. We rely on the many developments that have been made in
the context of least-commitment and constraint based planners for the definition of rich
temporal models and especially on the ANML language [SFC08] that covers most of the
above aspects.

Beyond this generative planning model, we provide a way for the domain designer to
give a hierarchical view of the capabilities of an acting agent through a notion of tasks
and associated recipes that specify how a given task should be fulfilled. This (optional)
construct allows to further extend the planning domain with additional knowledge in order
to enforce domain-specific constraints or provide procedural knowledge. For the purpose
of generalizing both hierarchical and generative planning, we introduce a notion of task
dependency that relates a given action to higher level actions in the task network. The
resulting representation allows the encoding of both generative and hierarchical problems
as well as a unique combination of the two.

The relationship of this model with related work in the field of automated planning in
discussed in the last section of this chapter to allow for a better comparison (Section 2.6).
We especially discuss the key differences between the proposed model and the one of
ANML regarding their hierarchical constructs (Section 2.6.3).

2.2 Main Components

Example 2.1 (Running Example). For the purpose of illustrating this chapter we
introduce an example planning domain: a restricted version of the one of controlling
a fleet of automated trucks and cranes to transport containers in a harbor introduced
by Ghallab, Nau, and Traverso [GNT04].

We represent a harbor with several locations corresponding to specific docks. The
harbor is served by several automated trucks and cranes that move containers between
different docks. We are mainly interested in three primitive actions in this example:

• First, a truck r can move from a dock d1 to another dock d2 if they are
connected . We further consider that an area can contain a single truck and
as a consequence, a truck cannot enter an area that is currently occupied by
another truck. The duration of this action depends on the distance between
the two docks.



2.2. MAIN COMPONENTS 7

• A container c can be loaded onto a truck r if they are both in the same dock d
in which a crane is available to perform the task.

• Likewise, a container c can be unloaded from a truck r to a dock d if it is
currently on the truck and the truck is in the dock d where a crane is available
to perform the task.

We are interested in planning the load and unload operations of cargo ships that
will be docked at specific location for a limited amount of time.

2.2.1 Time Representation
We use a quantitative time representation based on time points. We rely on temporal
variables (e.g. t, t1), each designating a time point. Temporal variables are constrained
through the usual arithmetic operators that can be used to specify absolute (e.g. t ≥ 9)
or relative constraints (e.g. t1 + 1 ≤ t2 ≤ t3 − 2). Temporal variables are to be attached
to specific events of the plan such as the start of an action or the instant at which a given
condition must be fulfilled. We rely on a discrete time model, with temporal variables
taking a value in the set of positive integers.

2.2.2 Variables and Constraints
We consider a finite set of domain constants O. An example of such domain constants
are specific docks or trucks in Example 2.1. We define a type as a subset of O, whose
elements share a common property. For instance in Example 2.1, we would have a type
Docks = { dock1, dock2, dock3 }. A type can be composed from other types by union or
intersection (e.g. Vehicles = Cargos ∪ Trucks).

An object variable x with type T is a variable whose domain dom(o) is a subset of T .
A numeric variable i is a variable whose domain is a finite subset of the integers.

A constraint c over a set of variables {x1, . . . , xn } is a pair (x, γ) where:

• x = 〈x1, . . . , xn〉 is the sequence of variables affected by the constraint.
• γ ⊆ dom(x1) × · · · × dom(xn) is the relation of the constraint, giving the allowed

sequences of values for this sequence of variables. A table representation of such a
relation γtravel-time is given in Table 2.1 for a constraint representing the travel time
between two locations.

To allow for easier representation, we denote the constraint (〈x1, . . . , xn〉, γR) as
R(x1, . . . , xn−1) = xn. For instance, the constraint travel-time(dock2, d) = δ is satisfied
according to the relation γtravel-time (Table 2.1) if the object variable d takes the value
dock3 and that the numeric variable δ takes the value 9.

For simplicity, we assume the relation underlying each constraint to be given explicitly,
meaning that all allowed tuples are known a priori. In general though, the relation might
be implicit, e.g., for a difference constraint.

Numeric variables can also appear in temporal constraints. For instance,
travel-time(d1, d2) = δ ∧ ts + δ ≤ te enforces a delay δ between the timepoints ts and te
whose value is constrained by the time needed to travel from a location d1 to a location
d2.
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Origin Destination Travel Time
dock1 dock2 7
dock2 dock3 9
dock3 dock1 6
dock3 dock2 8

. . .

Table 2.1: Table representation of the relation γtravel-time of a constraint representing the
travel time between two locations (travel-time : Docks× Docks→ N ).

2.2.3 State variables
The evolution of the state over time is represented by multi-valued state variables similar
to those of SAS+ planning [BN95]. A state variable maps time and a set of objects to
an object. For instance loc : Time× Robots→ Docks gives the position of a robot over
time. The time parameter of state variables is usually kept implicit and we say that the
state variable sv(x1, . . . , xn) has the value v at time t if sv(t, x1, . . . , xn) = v. A complete
definition of the state of the environment at a given time is specified by taking a snapshot
of all state variables at this moment.

A fluent f = 〈sv=v〉 represents both a state variable sv and its value v. The fluent f
is said to hold at time t if sv has the value v at time t.

2.2.4 Temporally Qualified Assertions
We use temporally qualified assertions to express knowledge or constraints on the evolu-
tion of a state variable.

A (temporally qualified) persistence assertion, noted 〈[ts, te] sv=v〉, requires a state
variable sv to keep the same value v over a temporal interval [ts, te]. When consid-
ered in planning models, persistence assertions are typically used to express goals or
conditions for the applicability of an action. For instance, the persistence assertion
〈[400, 500] loc(r1)=dock2〉 can represent the objective that the robot r1 is at the dock
dock2 at time 400 and stays there until time 500. We also allow a persistence assertion
to be defined at an instant t (noted [t]) rather than an interval.

A (temporally qualified) change assertion, noted 〈[ts, te] sv :v1 7→ v2〉 asserts that the
state variable sv will change from having the value v1 at time ts to having value v2 at
time te. It expresses knowledge on the evolution of the environment, whether it results
from the proper dynamics of the environment or as a consequence of an agent’s activity.
When considered in a planning model, a change assertion typically represents a condition
that should be met (sv should have the value v1 at time ts) and an effect of some process
(sv will have the value v2 at time te). Over the temporal interval ]ts, te[ the value of sv is
undefined. This last property is necessary to represent durative change on state variable
with discrete domains without explicitly defining transitional values. For instance, the
change assertion 〈[100, 150] loc(r1) :dock1 7→ dock2〉, means that the robot will move
from dock1 to dock2 over the temporal interval [100, 150]. Its location is undefined over
[101, 149]: it might be in any dock (including dock1 and dock2) or in a location that has
not been explicitly modeled such as the road network.1

1Additional knowledge regarding the value of a state variable can typically be found by sensing at
acting time. Furthermore, a more specialized system can lift some of the lack of knowledge on this
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A (temporally qualified) assignment assertion, noted 〈[t] sv :=v〉, asserts that the state
variable sv will take the value v at time t. For instance the assertion 〈[0] loc (r1) :=dock1〉
states that the robot r1 is in location dock1 at the initial time. An assignment 〈[t] sv :=v〉
is a special case of change assertion 〈[t− 1, t] sv :any 7→ v〉 where any is an unconstrained
variable that can take any value.

While all the previous examples involved only domain constants and absolute times,
assertions can of course involve object or temporal variables. The objective of a planning
process is then to find activities to be performed and sufficient constraints on these
variables such that the expected evolution of the system is both plausible and desirable.

Given a temporally qualified assertion α = 〈[ts, te] sv=v〉 or α = 〈[ts, te] sv :v1 7→ v2〉,
we denote ts and te as start(α) and end(α) respectively.

2.2.5 Timeline
A timeline is a pair (F , C) where F is a set of temporal assertions on a state variable
and C is a set of constraints on the object and temporal variables appearing in F . A
timeline gives a partial view of the evolution of a state variable over time. For instance,
the following timeline describes the whereabouts of a robot at different points in time.

Example 2.2. Timeline containing three temporally qualified assertions on the state
variable loc (r1).

〈{ [t1, t2] loc (r1) :dock1 7→ d, [t2, t3] loc (r1)=d, [t4, t5] loc (r1) :d 7→ dock4 }
{ t1 < t2 < t3 < t4 < t5, connected(dock1, d), connected(d, dock4) }〉

The robot r1 is at dock1 at time t1. Over the time span [t1, t2], it will move to
a yet unspecified dock d where it will stay until time t3. Its whereabouts are not
constrained over the ]t3, t4[ period. However it must be back in the same dock d at
time t4 from where it will move to dock4. Constraints here impose a total ordering
on all temporal events and restrict the possible instantiations of d to places connected
to both dock1 and dock4.

t1 t2 t3 t4 t5

lo
c

(r
1)

time
dock1

d

d

dock4

A timeline typically features temporal and object variables that are not bound yet.
As a consequence a timeline can represent different evolutions for the same state variable.

matter. In our example, the uncertainty on the location of the robot will be lifted once its trajectory
between the two docks is planned by a specialized path planner. This is however beyond our interest in
this chapter and will be discussed in Chapter 5.
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On the above example, the state variable will go through different values depending on
the value assigned to d. In other cases, some assertions might be allowed to overlap,
possibly imposing conflicting values for the state variable. For instance, two persistences
〈[t1, t2] sv=v〉 and 〈[t3, t4] sv=v′〉 are conflicting if [t1, t2]∩ [t3, t4] 6= ∅ ∧ v 6= v′. If those
constraints are entailed by C, then the timeline (F ,C) containing those assertions would
be inconsistent; meaning that any valid instantiation of the variables in F would result
in a conflict.

Definition 2.2.1 (Instantiation of a Timeline). A timeline (F , C1) is an instantiation of
a timeline (F , C2) if (i) all constraints in C2 appear in C1 (C2 ⊆ C1), and (ii) all variables
in C1 are instantiated.

Definition 2.2.2 (Timeline Consistency). A timeline (F , C) is (possibly) consistent if
it has an instantiation (F , C ′) such that C ′ is a consistent set of constraints and given
C ′, the assertions in F dot not impose, at the same time, conflicting values for the state
variable.

Consistency is a desirable property to check since an inconsistent timeline cannot
represent a valid evolution of its state variable. An even more desirable property, that we
define as necessary consistency, is that a timeline cannot contain any conflicting assertion
regardless of the choices made when instantiating its variables.

Definition 2.2.3 (Timeline Necessary Consistency). A timeline (F , C) is necessarily
consistent if all its instantiations are consistent timelines.

As a consequence, a necessarily consistent timeline is must have a set of constraints
such that (i) no two change assertions can overlap, (ii) no persistence can overlap a
change, (iii) any two overlapping persistences be on the same value (by definition of a
timeline, they are on the same state variable). The timeline of Example 2.2 is necessarily
consistent.

Definition 2.2.4 (Causal Support). Given a timeline (F , C), we say that an assertion
〈[t, t′] sv=v〉 or 〈[t, t′] sv :v 7→ v′〉 in F is causally supported if there is another assertion
β ∈ F such that either:

• β = 〈[t1, t2] sv=v〉 with t1 < t ≤ t2; meaning that the fluent 〈sv=v〉 is required to
hold at an earlier time t1 and persist until time t; or

• β = 〈[t1, t2] sv :v′′ 7→ v〉 with t2 = t; meaning that the fluent 〈sv=v〉 holds at time
t as a result of the effect of an action or of the environment dynamics.

Furthermore all assignment assertions are a priori supported.

The persistence assertion of Example 2.2 is causally supported by the first change
assertion because (i) their temporal intervals meet, and (ii) the fluent 〈loc (r1)=d〉
achieved is the one required. However, none of the two change assertions are causally
supported. This might be surprising regarding the second change assertion because the
fluent 〈loc (r1)=d〉 is achieved by the first assertion. This fluent is however not con-
strained to hold during ]t3, t4[ and, as a consequence, its value might still be modified
during this interval. This second change assertion could be made causally supported by
the addition of a persistence condition ending at t4 (e.g. [t3, t4] sv=d). Another possibil-
ity for supporting it would be the introduction a new change assertion 〈[t, t4] sv :d′ 7→ d〉;
such an assertion would itself require to be causally supported.
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This definition of causal support requires any assertion α to be supported by another
assertions whose start timepoint is strictly before the one of α. For all assertions of a
timeline to be supported, the earliest one must be an assignment, which is by definition
a priori supported.

2.3 Tasks and Action Templates
Timelines allow to represent a changing environment through the evolution of selected
state features over time. A critical part for a planner is a model of how an actor’s behavior
can influence its environment. For this purpose we now introduce action templates (or
actions for short).

Each action has a unique name and a set of parameters. The conditions of applicability
as well as the effects of an action are encoded by a set of temporally qualified assertions. A
set of constraints restrict the allowed values taken by the action parameters and temporal
variables in the action. We augment this usual view of an action with hierarchical features:
(i) we define a set of tasks symbols T , (ii) each action is associated with a task symbol
in T representing the task that this action achieves, and (iii) any action can have a set
of subtasks representing tasks that must be achieved for this action to provide its desired
effects. Furthermore an action can be marked as task dependent in which case it cannot
be included outside of a preexisting decomposition tree.

Such hierarchical models have been traditionally handled by Hierarchical Task Net-
work (HTN) planners by distinguishing abstract tasks, each associated with one or sev-
eral methods, and primitive tasks each associated with a single operator (e.g. [EHN94;
Nau+03]). A method provides a transformation of an abstract task into a partially or-
dered set of abstract and primitive subtasks, while an operator represents a primitive
from the planner’s perspective and provides a predictive model of its effects on the envi-
ronment. Given an initial task network, HTN planners systematically refine all abstract
tasks until only primitive tasks remain and correspond a valid sequence of operators.
Unlike most HTN planners, our model does not distinguishes between methods and oper-
ators. This is motivated by the remark that hierarchical planners do not treat differently
methods from operators: they are are all associated with a task they achieve, all their
conditions must be causally supported and all their subtasks (if any) must be refined by
another operator or method. From a planning point of view, the distinction lies in an
artificial restriction on primitive operators that have no subtasks and are such that no
operator achieves the same task as another operator or method. This restriction could
usually be lifted without much impact on the algorithm of a hierarchical planner. Meth-
ods and operators however carry a semantic difference related to their intended purpose
by the domain designer. To facilitate the reading, we will usually refer as an high-level
action, an action that provide a recipe to achieve a given task, typically expressed as
a set of conditions and subtasks. We will refer to as a primitive action an action that
provides a causal model of its effects on the environment and is intended to be executed
through specific commands.

Formally, an action template A is a tuple
(head(A), task(A), dependent(A), subtasks(A),FA, CA) where:

• head(A) is the name and typed parameters of A. The parameter list contains only
its object variables and temporal variables are kept implicit. The start and end
timepoints of the action are denoted by tstart and tend respectively.
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• task(A) ∈ T is the task it achieves. The general idea is that the presence of A in
a solution plan is sufficient to say that task(A) is achieved. This does not depend
on whether A is primitive or high level. In the former case, the execution of A
will provide the desired effects. In the latter, A will state sufficient conditions for
task(A) to be indirectly achieved by other (primitive) actions. A single task can be
achieved by multiple actions, each corresponding to a distinct way to fulfill it.

• dependent(A) ∈ {>,⊥} is true (>) if the action is task dependent. The general
intuition (formalized in the next section) is that a task dependent action can only be
inserted in a plan if it achieves a task whose achievement was required either in the
problem definition or through a subtask of another action. If dependent(A) = ⊥,
then A is free and can appear in the plan without the need to achieve any task.

• subtasks(A) is a set of temporally qualified subtasks. For any action instance in a
plan, a subtask 〈[ts, te] τ〉 states that the plan should also contain an action instance
a that (i) starts at ts, (ii) ends at te, and (iii) has task(a) = τ .

• (FA, CA) is a consistent set of timelines. FA contains conditions for instances of
A to be applicable, primarily expressed as persistence assertions. FA might also
contain change assertions that represent a predicted evolution of the environment
as a result of using A. A change assertion 〈[t1, t2] sv :v1 7→ v2〉 represents both the
condition that sv has the value v1 at time t1 and the effect that sv will take the
value v2 at time t2.

Figure 2.1 is an example of the model of a (primitive) action for moving a robot r
from dock d to d′. It requires r to be in d at tstart, the start time of the action, and d′

to be empty at some point t′ before the end of the action tend. Its effect is to make the
location of the robot be d′ at tend, and to have d empty at some point t after tstart and
before t′. The duration δ of the action corresponds to the travel time from d to d′. The
constraints tstart < tend, tstart < t and t′ < tend are implicit in the interval notation. As
for primitives in HTN planning, the action has no subtasks and is the only achiever of
the eponymous task move(r, d, d′).

move(r, d, d′)
task: move(r, d, d′)

dependent: ⊥
assertions: [tstart, tend] loc (r) :d 7→ d′

[tstart, t] occupant (d) :r 7→ nil
[t′, tend] occupant (d′) :nil 7→ r

subtasks: ∅
constraints: connected(d, d′) = >

travel-time(d, d′) = δ
tend = tstart + δ
t < t′

Figure 2.1: An action to move a robot r from dock d to dock d′. The action starts at
tstart, finishes at tend and as duration δ corresponding to the travel time from d to d′. The
types of variables are left implicit for readability.
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On the other hand, the (high-level) actions of Figure 2.2 give two distinct recipes for
achieving the transport task of moving a container c to a location d.

m1-transport(c, d)
task: transport(c, d)

dependent: >
assertions: [tstart, tend] pos (c)=d
subtasks: ∅

constraints: ∅

m2-transport(r, c, ds, d)
task: transport(c, d)

dependent: >
assertions: [tstart]loc (r) = ds

[tstart]pos (c) = ds
subtasks: [tstart, t1] load(r, c, ds)

[t2, t3] move(r, ds, d)
[t4, tend] unload(r, c, d)

constraints: connected (ds, d)
ds 6= d
tstart < t1 < t2 < t3 < t4 < tend

Figure 2.2: High-level actions for achieving the task of transporting a container c to a
location d. The first one is the phantom action that requires nothing to be done if c is
already at its destination d. The second one states that transporting c from ds to d can
be achieved by a sequence of load, move and unload subtasks, using a robot r.

2.4 Chronicles

A chronicle is a triple (π,F , C) where π is a partial plan composed of action instances
and unrefined tasks while (F , C) is a set of timelines. A chronicle is a temporal and
hierarchical extension of partial plans, as in the plan-space planning approaches.

A planning problem is defined as a tuple 〈Σ, φ0〉 where Σ = (O,SV , T ,A) is the
planning domain composed of a set of typed domain objects O, the set of state variables
SV , the set of task symbols T and the set of action templates A. The problem itself is
encoded by the chronicle φ0 = (π0,F0, C0) where:

• π0 is a set of temporally qualified tasks that must be achieved.

• F0 is a set of temporally qualified assertions that describe the initial state of the
environment and its expected evolution together with a set of goals. Some of those
are assignment assertions that are a priori supported. Assertions that are not a
priori supported will typically require the integration of additional actions to have
causal support and thus naturally represent goals of the planning problem.

• C0 is a set of temporal constraints restricting the allowed values for the temporal
and object variables in π0 and F0. Those can typically be used to express temporaly
extended goals, timed initial literals or arbitrary ordering constraints on the tasks
to be achieved.
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φ0
tasks: [t, t′] transport(c1, dock3)

assertions: [t0] loc (r1) :=dock1
[t0] loc (r2) :=dock2
[t0] on (c1) :=ship1
[t0 + 10] docked (ship1) :=pier1
[t0 + δ] docked (ship1) :=nil
[tend] loc (r1)=dock1
[tend] loc (r2)=dock2

constraints: t0 < t < t′ < tend, 20 ≤ δ ≤ 30

The above chronicle represents a planning problem with two robots r1 and r2, initially
in dock1 and dock2 respectively, and a ship that is expected to be docked at pier1 at a
future interval of time. The problem is to perform a transport task of moving a container
c1 initially on ship1 to dock3 and to have the two robots in their initial locations at the
end. Note that φ0 states a planning problem in terms of tasks, as in HTN, as well as
goals, as in generative planning.

The initial chronicle is to be iteratively refined by the planning system until a solution
plan is found. We know describe what are those possible transformations and what are
the conditions a solution plan must meet.

2.5 Plan: Transformations and Solutions
One difference between HTN planners and generative planners is on the way their plans
are generated. HTN planners build plans by systematically decomposing all tasks while
generative planers build them by iteratively introducing new action instances. Both
processes are interleaved with the insertion of various restrictions of the partial plan, e.g.,
an ordering constraint between two actions. While this might seem like a simple search
procedure, it has important implications on the set of solutions that can be found by each
type of planner. Since we aim at combining both approaches, we now define the allowed
transformations applicable to an initial chronicle. While this is not meant to restrict the
creativity of planning techniques, it is critical to define the set of acceptable solutions of
a planning problem.

2.5.1 Task Decomposition
A chronicle φ = (πφ,Fφ, Cφ) can be refined into a chronicle φ′ = (πφ′ ,Fφ′ , Cφ′) by decom-
posing an unrefined task τ ∈ πφ with a new action instance a. This transformation is
denoted φ

τ,a−−−→D φ′ and results in the following φ′:

πφ′ ← πφ ∪ { a } ∪ subtasks(a) \ {τ}
Fφ′ ← Fφ ∪ assertions(a)
Cφ′ ← Cφ ∪ constraints(a) ∪ { task(a) = τ }

This transformation replaces an unrefined task by an action achieving it. The added
action can introduce additional unrefined tasks and assertions representing both the con-
ditions and the effects of this action. In addition to the constraints from the action
template, we have a constraint task(a) = τ that ensures that a does refine τ . More
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specifically, this constraint unifies all parameters of task(a) and τ and enforces a to start
and end at the times specified by the temporal qualification of this task.

2.5.2 Action Insertion
A chronicle φ = (πφ,Fφ, Cφ) can be refined into a chronicle φ′ = (πφ′ ,Fφ′ , Cφ′) by the inser-
tion of a free (i.e. not task-dependent) action instance a. We denote this transformation
by φ a−−→I φ

′ where φ′ is composed of the following items:

πφ′ ← πφ ∪ { a } ∪ subtasks(a)
Fφ′ ← Fφ ∪ assertions(a)
Cφ′ ← Cφ ∪ constraints(a)

The important difference with respect to what generative planners do is the restriction
to non task-dependent actions. As a result, task dependent actions can only be inserted
by decomposing a task and must respect all constraints specified on this task.

2.5.3 Plan Restriction Insertion
A chronicle φ = (πφ,Fφ, Cφ) can be refined into a chronicle φ′ = (πφ′ ,Fφ′ , Cφ′) by the
insertion of an additional restriction (F , C) where F is a set of persistence assertions and
C is a set of constraints over temporal and object variables. We denote this transformation
by φ (F ,C)−−−−→R φ

′ and the resulting chronicle φ′ is defined as follows:

πφ′ ← πφ

Fφ′ ← Fφ ∪ F
Cφ′ ← Cφ ∪ C

This transformation does not extend the plan but instead restricts it by either adding
persistence conditions or restricting allowed values of some variables. The former is typi-
cally used to achieve the causal support of an assertion, similarly to a causal link insertion
in plan-space planning. The latter is typically used to remove potential inconsistencies
in the partial plan, for instance by imposing an order on two actions with conflicting
requirements.

2.5.4 Reachable and Solution Plans
The above transformations define a set of chronicles that can be obtained from the initial
problem definition.

Definition 2.5.1. A chronicle φ′ is reachable from a chronicle φ if there is a sequence of
transformations that turns φ into φ′.

We note such a sequence of transformations→∗D,I,R to represent the fact that they can
represent any number of task decompositions, action insertions or restriction insertions.
The objective of a planner is usually to find a sequence of transformations such that the
resulting chronicle corresponds to a feasible plan.

Definition 2.5.2 (Solution plan). A chronicle φ∗ = (π∗,F∗, C∗) is a solution to a planning
problem (Σ, φ0) if:
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• φ∗ is reachable from φ0,

• π∗ has no unrefined tasks,

• all assertions in F∗ are causally supported.

• (F∗, C∗) is a set of qnecessarily consistent timelines.

The solution plan is given by the actions in π∗ completed with the constraints from C∗.
Let us explore some of the consequences of this definition on a solution chronicle φ∗.
First, because it must be reachable from φ0, the actions in φ∗ must fulfill all hierarchical
constraints. More specifically, if an action is task-dependent and was inserted to refine
an initial task, then it must respect all constraints placed on it by a higher level action
requesting it as a subtask. Second, the fact that all assertions are supported means that
all state variables have no unexplained changes. Third, the fact that all timelines are
necessarily consistent means that no inconsistency can be introduced in the plan.

It should be noted that this definition does not require all variables to be bound and
some choices might be delayed until execution. This is typically the case of temporal
variables that can be iteratively instantiated when dispatching.2

2.6 Discussion & Related Work

2.6.1 Relationship with other planning paradigms
HTN Planning. Following the definition of Erol, Hendler, and Nau [EHN94], we de-
fine an HTN planning problem as a problem whose all solutions can be obtained by a
sequence of task decompositions and plan restrictions. Intuitively, this definition requires
all actions of the plan to derive from the decomposition of an initial task network and has
been the dominating approach for hierarchical planning [Sac75; Tat77; TDK94; WM95;
EHN94; Nau+03; Cas+06]. HTN problems can easily be encoded in our model by making
all actions task dependent, in which case the action insertion transformation is never trig-
gered. Beyond the usual definition of HTN planning that only consider sequential plans
[EHN94; Nau+03; GB11; Ber+16; Alf+12], our model fully benefits from the underlying
timeline representation that can be used to encode exogenous events, temporally extended
goals and more generally all kinds of temporal planning problems including those with
required concurrency [Cus+07a] or inter-dependencies [CMR13] (see Example 2.4).

Generative Planning. Similarly, a generative planning problem is a problem where
all solutions can be obtained by action insertions and plan restrictions only. Intuitively,
this definition rules out any problem in which tasks appear either as the objective or
as subtasks of an action in a solution plan. Once again, a purely generative planning
problem can easily be expressed by (i) making all actions free, and (ii) forbidding the
presence of tasks in any part of the problem. In this setting, the model is similar to the
one of IxTeT [GL94] that had a closely related timeline-based representation.

2This is mainly possible because the Simple Temporal Networks typically used for this matter describe
a convex set of constraint from which a solution can be extracted in polynomial time.
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Generative HTN

HTN with task insertion HTN with task sharing

Figure 2.3: Graphical depiction of various planning paradigms. Actions are represented
by rectangles and tasks by dots. A task is either part of the problem definition (top level
ones) or introduced as a subtask of an action.

No Tasks Task dependent actions
None Some All

Generative
Planning

HTN planning with
Task Insertion

Mixed HTN and
Generative Planning HTN Planning

Table 2.2: Summary of planning problems that can be encoded in our model depending
on the presence of tasks and of task dependent actions.

HTN with Task Insertion & Hybrid Planning. Interesting settings to explore
are the one at the intersection of HTN and generative planning, that allow both task
decomposition and action insertion. Related techniques have been explored under the
name of hybrid planning [Sch09; CFG00; KMS98; ECW97; MPM94; Bec+14].3 The
common underlying mechanism of those approaches was formalized as HTN planning with
task insertion that allows the insertion of any operator at any point of the decomposition
process [GB11]. The motivating idea was to have the flexibility of generative planners
while still benefiting from hierarchical representation to express (i) complex constraints
between actions, and (ii) benefit from improved search performance when guided by
methods [ECW97]. However blindly allowing the insertion of any action has negative
consequences on both those aspects. First, an important benefit of using HTN planning

3The term hybrid planning has more recently been used to denote the use of a plan-space repre-
sentation by hierarchical planners [BKB14; Bec+14; Bec+15; Ber+16]. We see that as a reaction of
the dominance of state-based hierarchical planners (e.g. [Nau+03; Cas+06]) in recent years. However,
historically most hierarchical planners relied on a plan-space representation [Wil90; WM95; TDK94].
We do not use this convention as we consider that state-based and plan-based hierarchical planning are
to HTN planning what state-space and plan-space planning are to classical planning.
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is the ability express constraints between distinct actions by placing them in the same
higher level action, e.g., a rent-a-car action is always followed by a return-the-car
action in all task networks it appears in. Hence, being able to insert an action outside of its
usual task network reduces the ability of specifying constraints in a hierarchical fashion.
Second, action insertion increases the search space of hybrid planners when compared to
HTN planners. More specifically, it comes in direct conflict with the planning mechanism
of successful forward-chaining hierarchical planners such as SHOP2 [Nau+03]: Indeed
in this setting, a planner can decide whether a method is applicable by simple checking
that all its preconditions are met by the current state. With task insertion, this simple
decision becomes the much more complex one of finding whether there is a sub-plan that
would allow achieving the method’s preconditions.

Our proposal of task-dependent actions allows to tackle those problems by forcing the
planners to respect the user-intent that some actions should not be used in a generative
way. Another way to see it is as the possibility of specifying subparts of the problem
that are fully hierarchical such as the one shown in Example 2.3. A related approach
to this problem of respecting the user-intent in partially hierarchical problems is tackled
by Kambhampati, Mali, and Srivastava [KMS98] by (i) associating high-level actions
with primary effects achieved by their decompositions, and (ii) forbidding some state
variables to be supported by non-primary effects. To the best of our knowledge this is
the only other real hybrid planner that distinguishes itself from HTN with task insertion
by requiring some part of the problem to always obey hierarchical constraints.

Example 2.3. Consider the simple planning problem composed of the free move ac-
tion of Figure 2.1, two task dependent actions load and unload and two methods for
achieving a transport task below.

m1-transport(c, d′)
task: transport(c, d′)

dependent: yes
assertions: [tstart] loc (c)=d′

subtasks: ∅
constraints: ∅

m2-transport(c, r, d, d′)
task: transport(c, d′)

dependent: yes
assertions: [tstart] loc (r)=d

[tstart] loc (c)=d
subtasks: [tstart, t] load(c, r, d)

[t′, tend] unload(c, r, d′)
constraints: tend − tstart < 100

Figure 2.4: Two high level actions for achieving the task of transporting a container
c to a dock d′.

Given a planning problem composed of a single transport(c1, dock1) task any
non-empty solution will contain singles load and unload actions and a single truck r
will be used. The overall operation is guaranteed to take at most 100 time units.
Such constraints are typically hard to represent in generative planning problems and
are here possible because all actions but move are task dependent: the m2-transport
action can only be inserted to refine the initial transport task and its two subtasks
are the only way to insert the load and unload actions.

Moreover the hierarchical specification is kept short because the planner is al-
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lowed to freely insert a move action to achieve any missing precondition or external
requirement on the location of the trucks.

HTN with Task Sharing Another possible characteristic of HTN planners is the
ability for task-sharing as formalized by Alford et al. [Alf+16]. In our terminology, it
would allow a single action to be a refinement of multiple tasks. This is forbidden in
our model since the support of any task requires the introduction of a new action. Stock
et al. [Sto+15] use this approach to account for positive interactions between tasks. A
very related approach is taken by Georgievski, Lazovik, and Aiello [GLA11] to avoid the
introduction of primitive actions already in the plan and whose effects still persist.

Let us consider that we have two tasks τ1 and τ2 that both require to transport a
container c, initially in d1, to a location d2. An HTN planner with task sharing would
introduce a first m2-transport(r, c, d1, d2) action to support τ1 and then recognize that it
can also be used to achieve τ2, resulting in a single action being used and no or small
branching during search. This simple reasoning has an important flaw since hierarchical
planners typically require phantom actions that (i) are applicable only when the purpose
of the task is already completed, (ii) do not introduce any additional subtasks (e.g.
the m1-transport action of Figure 2.2). These additional actions allow HTN planners to
avoid returning plans with unnecessary steps. Moreover, it is also required in HTN with
task sharing for completeness; otherwise the planner would always require at least one
m2-transport action even if the container was already at its target location As it can be
seen in Table 2.3, the presence of phantom actions eliminates the expected gain in the
search space as a planner supporting task sharing must now consider one additional case
when compared to a classical HTN planner.

Task sharing brings additional complications as it allows interactions between de-
compositions with a single action being part of multiple decomposition trees. These
possible interactions require additional care when writing planning domains, especially
when dealing with incomplete models where some conditions for action application are
missing. Furthermore, in the case where it is desirable to have a single action refining
two tasks, the problem is often best expressed by replacing the task by a condition on a
state variable. For instance, allowing the planner to freely insert a move action to achieve
conditions on the location of the robot would be a more satisfying encoding than having
a phantom move action.

Hierarchical Setting Possible refinement for each task
Idealized HTN with
task-sharing τ1, τ2 : m2-transport(r, c, d1, d2) (refined by the same action)

HTN & phantomization τ1 : m2-transport(r, c, d1, d2) – τ2 : m1-transport(c, d2)
τ2 : m2-transport(r, c, d1, d2) – τ1 : m1-transport(c, d2)

HTN with task-sharing
and phantomization

τ1, τ2 : m2-transport(r, c, d1, d2) (refine the same instance)
τ1 : m2-transport(r, c, d1, d2) – τ2 : m1-transport(c, d2)
τ2 : m2-transport(r, c, d1, d2) – τ1 : m1-transport(c, d2)

Table 2.3: Possible refinements of two transport(c, d2) tasks denoted as τ1 and τ2. Each
line maps each task with an (high-level) action refining it. Since m1-transport is a phantom
action that does nothing, all refinements lead to an equivalent plan.
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2.6.2 Temporal planning models
2.6.2.1 State-transitions vs timelines

STRIPS and PDDL. The original PDDL language [McD+98], along with its ances-
tors STRIPS and ADL, see actions as state-transition functions all taking a uniform
duration. Each action comes with a set of preconditions defining the states in which it
can be applied and a set of effects describing the transformation made to the said state.
Early work in temporal planning has extended this simple framework by attaching du-
rations to actions and allowing planners to schedule non-interfering actions concurrently.
This approach, that we refer to as durative-STRIPS, was notably developed by Smith
and Weld [SW99] in TGP and Haslum and Geffner [HG01] in TP4. The definition, for
the purpose of the third International Planning Competition (IPC), of PDDL2.1 goes
beyond by allowing the placement of effects at an action’s start, of conditions at an ac-
tion’s end and of durative conditions that must hold during an action’s timespan. While
this seems like a minor difference to durative-STRIPS, the resulting language is strictly
more expressive as it allows the expression of temporal planning problems with required
concurrency [Cus+07a] and with interdependent actions [CMR13] (see Example 2.4).

The philosophy behind PDDL2.1 is to see a durative action as two instantaneous
at-start and at-end actions that both produce instantaneous state-transitions. Those
“snap” actions are linked together by duration constraints that restrict the possible delays
between the start and end times of the action as well as durative conditions that require
some condition to hold in all states traversed while the action is executing.

As pointed out by Smith [Smi03], a strong limitation of the language is that conditions
and effects can only be placed at the start and end of the action. The authors of the
language argue that this limitation can be avoided by splitting a complex temporal action
with intermediate time points into multiple subactions [FLH04]. While this process is
sound, encoding such durative actions by hand is at best difficult and error prone. In
this case, we believe it is useful to have a more expressive temporal language that can be
compiled into temporal PDDL to benefit from its large ecosystem. This is the approach
taken by Cooper, Maris, and Régnier [CMR10] with their language PDDL-TE or by the
authors of ANML [SFC08] on which most of our syntax is based.

Another important limitation of PDDL2.1 when compared to our model is that a
problem definition is composed solely of an initial state and a goal state. Thus, it is not
possible to easily express knowledge on the evolution of the environment (e.g. a cargo
ship is expected to dock at 11:05) or temporally qualified constraints on the solution
plan, (e.g. no truck should be used from 8pm to 6am). Both features were introduced
in later versions of the language. Evolution of the environment can be described with
the timed initial literals of PDDL2.2 [EH04] that allow truth assignment on predicate
at arbitrary times (e.g. at time 1105, the predicate docked (cargo1) will become true).
Temporally extended goals such as deadlines can be expressed with the state trajectory
constraints introduced by PDDL3.0 [GL05]. Even though those extensions are essential
in representing real world problems, they have seen a very limited penetration in the
temporal planning community: none of the participants of the temporal track in the
latest IPC supported them.4 Instead planners must rely on compilation procedures such
as those by Fox, Long, and Halsey [FLH04] to express temporal features of their problems.
As a consequence, problems with timed initial literals and temporally extended goals have

4See https://helios.hud.ac.uk/scommv/IPC-14/planners_actual.html for the supported fea-
tures of temporal planners.

https://helios.hud.ac.uk/scommv/IPC-14/planners_actual.html
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seen small interest by the planning community. As a testimony, the last two International
Planning Competition featured no such problems.5

Example 2.4 (Required concurrency & Interdependent actions). We consider the prob-
lem of fixing a fuse represented by the two actions below. The light-match action has a
start condition requiring the match to be unused (unused-match ) and immediately
produces the effect that the match is not unused (¬unused-match ) and that the
match is burning (have-light ). After 10 time units (the duration of the action), an
end effect is triggered saying that the match is not burning anymore (¬have-light ).

The fix-fuse action is applicable only when the fuse is initially broken
(¬fuse-working ) and if the match is burning over the entire action (have-light ).
At the end of the action, the fuse is fixed (fuse-working ).

light-match [10]

unused-match

¬unused-match
have-light

¬have-light

fix-fuse [4]

have-light¬fuse-working

fuse-working

It should be apparent from this model that have-light will only be true during
the execution of light-match. As a consequence, any fix-fuse action must be executed
concurrently with the execution of a light-match action.

This scenario where two temporal actions must overlap has been identified as re-
quired concurrency and is one the main characteristic of temporal planning. Indeed,
all PDDL2.1 planning problems with no required concurrency admit a sequential
solution plan and the optimal plan (makespan wise) can be obtained by greedily
rescheduling a sequential solution [Cus+07a]. Planning models that can feature re-
quired concurrency are called temporally expressive (e.g. PDDL2.1) and those that
do not are called temporally simple (e.g. durative-STRIPS).

A more fine grained characteristic of temporal planning languages is the possibil-
ity of having interdependent actions as investigated by Cooper, Maris, and Régnier
[CMR13]. From our previous example, assume we want to make sure the match is
only used in order to fix the fuse. For this purpose, we add the conditions that the
light-match action is only applicable when the fuse is broken and that the fuse must
be fixed by the end of the action (in red below).

5Domains of the 2014 and 2011 IPC can be found at https://helios.hud.ac.uk/scommv/IPC-14/
and http://www.plg.inf.uc3m.es/ipc2011-deterministic/ respectively.

https://helios.hud.ac.uk/scommv/IPC-14/
http://www.plg.inf.uc3m.es/ipc2011-deterministic/
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light-match

unused-match
¬fuse-working

fuse-working

¬unused-match
have-light

¬have-light

fix-fuse

have-light¬fuse-working

fuse-working

The two actions are now interdependent: fix-fuse still requires light-match to pro-
duce have-light and light-match now requires fix-fuse to produce fuse-working .
Such problems, and languages that allow them, are denoted by Cooper, Maris, and
Régnier [CMR13] as temporally cyclic. We usually refer to them as problems with
interdependent actions (or interdepencies for short).

Timeline-based representations, such as our own, focuses on scheduling various
temporal intervals representing values taken by state variables. In those approaches,
actions are typically composed of a set of temporally qualified assertions representing the
action’s conditions and effects over various state variables (i.e. timelines). Coordination
between the different timelines is made by temporal constraints that relate the various
assertions of an action.

An early proposal was the one by Allen and Koomen [AK83] based on Allen’s temporal
algebra [All83]. A timepoint centered view was proposed by Ghallab and Laruelle [GL94]
for the IxTeT planner. While many generative and hierarchical planners have since chosen
this paradigm [Chi+00b; TDK94; DU11; Ces+09; kR96; FJ03; Bar+12; Mus+02], no
dominating language has emerged for the encoding of such planning problems. Given
that all models have a very similar notions of causal reasoning, we briefly review the
input models of the Europa [Bar+12] and ASPEN [Chi+00b] planning systems because
of their historical significance in the creation of ANML that is of more direct interest to
us.

Like its predecessor DDL [CO96a; Ces+09], the New Domain Definition Language
(NDDL, defined anonymously by Frank and Jónsson [FJ03]) used in Europa has no
representation of actions and encodes them as assertions on their own activity timelines.
It has no notion of conditions and effects but instead has compatibilities that govern
the legal arrangements of values on across timelines (e.g. an assertion representing the
activity of moving r to x must be met by an assertion situating r at x). The temporal
relations in compatibilities are encoded with a quantitative extension to Allen’s Interval
Algebra. A solution is a set of timelines that are completely specified (there is no gap
between assertions) and that respect all compatibilities.

The Aspen Modeling Language (AML, [Fuk+97; Chi+00b]) is another language based
on a timeline representation. The central component of AML are activities that can be
used to represent a goal, a high level task or a primitive action. Sub-activities are used
to refine goal and high level tasks into primitive actions. This HTN model is completed
with a rich syntax for specifying constraints on the state of the system.

Timeline models have been central in the deployment of many Planning & Scheduling
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tools for automated mission operation in space, many of which are surveyed by Chien
et al. [Chi+12]. As a consequence many such planning system have required the encoding
domain constraints that go beyond the usual definition of planning problem, either for
performing search control or encoding exotic constraints. This focus on specific problems
of many such planners explains to some extent the lack of a unified model.

2.6.2.2 Predicate vs State Variables

As a result of the legacy from STRIPS into PDDL, a lot of planners only support predicate
values for encoding state features. We use a state variable representation, similar to the
one discussed in [BN95; JB98], to encode state features. State variables have various
advantages, one of those being a more natural and concise representation, e.g., it is easier
to represent the location of a robot as function mapping one robot to value in a set
of n locations than having a n boolean function each saying whether the robot is in a
particular location. This conciseness is directly beneficial to state-space planners as they
allow for a more compact encoding of the state [DFP10; Hel09].

The state variable representation has the other advantage of making explicit some
mutex relations, e.g., a robot can not be in two different locations at the same time. While
those are usually not a problem for forward chaining planners, that will never generate
a state with two mutex fluents, some plan-space planners, including CPT [Vid11a] and
HiPOP [Bec+14; Bec16], do some extra work to identify the mutex relations that are not
explicit in their predicate representation.

The large availability of benchmarks in PDDL motivated the need for automated
translation from predicates to state variables. Such work was conducted in the context of
classical planning by [Hel09] and [DTB13] for use in the Fast-Downward planner [Hel06].
Things are more complex in a temporal setting because one needs to account for interact-
ing concurrent actions to identify mutex fluents. Some of those are studied by Bernardini
and Smith [BS11] in the context of PDDL2.2.

Despite those translation techniques, the fact that state variables allow a more natural
encoding and result in more efficient planners make a strong case for their presence as
first place citizen in our planning model. This is especially true as compilation from state
variables to predicates is straightforward and predicates can be represented by state
variables with a boolean domain.

2.6.2.3 Continuous vs Discrete Time

The choice of a discrete time representation might seem like a regression given that the
most wide spread language for temporal planning support continuous time. Indeed, the
specification of PDDL2.1 describes the changes occurring at the start and end of an action
as instantaneous. However, Fox and Long [FL03] argue that a platform for executing the
plan can only have a bounded precision. For this reason, the PDDL2.1 specification
demands that the instant at which an effect is asserted by an action and the instant at
which it is required by a condition be separated by a constant delay ε. In practical terms,
it means that an “instantaneous” effect at time t in fact spans over a temporal interval
[t, t+ ε[ since any condition depending on it cannot occur before time t+ ε.6 As noted by

6This statement is not true for the original semantics of PDDL2.1 as invariant conditions escaped
the bounded precision rule. This inconsistency has been fixed in most practical implementations (e.g.
[Col+10; EMR12; RG15; Col+12]). A practical example illustrating this problem is given by Cushing
[Cus12, Fig. 3.1].
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Cushing [Cus12, Sec. 3.3.3.1], this simple observation is sufficient to make a discretization
completeness-preserving by taking as the unit of time the greatest common denominator
of all durations.

Thus, our usage of a discrete time representation does not result in any loss of ex-
pressivity with respect to the so-called continuous time representation of PDDL. On the
other hand, it allows us to avoid the inconsistencies of durative conditions of PDDL. For
instance, for a correct support of the bounded precision rule, the duration of a durative
condition will depend on the presence of an effect on the same predicate in the action
[Col+10; Cus12].

It should be noted that in our model the domain designer can freely choose any unit of
time he judges appropriate. Our constraint based representation further allows to let the
choice of discretization to the planner by (i) having a variable TimeScale whose domain
is the set of integers; (ii) multiplying all durations by TimeScale. The choice by the
planner of a value for TimeScale will result in a discretization of time of 1

T imeScale
.

2.6.3 Relationship with ANML
The Action Notation Modeling Language (ANML [SFC08]) is a recent proposal to over-
come the absence of apparent causal structure of NDDL and the lack of support for
generative planning of AML while retaining some of the simplicity of PDDL. As such,
ANML aims at being a unique language for the specification of planning and scheduling
problems at NASA.

ANML has a strong emphasize on generative planning with the direct inheritance
of earlier timeline based planning models. It comes with a clear notion of action with
conditions and effects taking the form of temporally qualified assertions at arbitrary time-
points. While the scope of ANML is larger than the one of interest here (e.g. including
resources and conditional effects) the generative part of our model has a direct mapping
into ANML.

In addition, ANML provides some facilities for hierarchical planning, mainly as syn-
tactic sugar around traditional conditions and effects. Each action instance is associated
with its own predicate that is set to true on the action start and to false on the action end.
For example, an instance of an action A(x) is associated with a predicate A∗(x, id) where
id is a unique identifier of the instance. The “subtask” assertion 〈[t, t′]A(y)〉 is simply
translated as the condition that there is an i such that A∗(y, i) holds over [t, t′]; requiring
an instance of A with id i to be executing over [t, t′]. This definition departs from the
traditional definition of HTN problems as it allows for task-sharing: a single action can
support multiple tasks just like a single effect can support multiple conditions. It also
comes with minor inconsistencies for the temporal qualification of tasks: in the previous
example, the subaction A is not required to start at t and end at t′ but instead should
be executing before t and after t′. This difficulty for relating the start and end time of
subactions required the introduction of specific temporal qualifiers for the specification of
subtasks. Instead we preferred the inclusion of tasks as primary citizens of our planning
model. This choice allows us to more clearly relate ourselves to the existing literature
on hierarchical planning. Furthermore, we choose not to allow task-sharing. As already
mentioned, this facilitates the reasoning on the set of reachable decompositions with no
impact on representation capabilities.

The original language definition had no notion of task-dependency and could thus be
characterized as an HTN language with task-sharing and task-insertion [Alf+16]. The
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latest version of the ANML manual proposes a notion similar to our task-dependency,
by the introduction of the keyword motivated [Sch+13]. When placed in an action A, an
instance a of A can only appear in the plan if there is an action instance b that has a
subtask achieved by a and such that [start(a), end(a)] ⊆ [start(b), end(b)]. Conceptually,
the presence of such an action must be “motivated” by the presence of a higher level action
that requires its presence and temporally envelops it. Our task-dependency setting differs
as it does not require the “motivating” task to be part of an action nor the subaction to
be temporally contained by the said action. This simple difference allows us to motivate
the presence of actions from tasks placed in the problem definition. This capability is key
in relating our model to HTN planning in which all actions are derived from the initial
task network.

2.7 Conclusion
In this chapter, we have introduced a planning model that builds on the rich temporal
semantics of the ANML language. Namely, the model supports (i) temporal actions with
assertions placed at arbitrary timepoints, (ii) the description of the current state of the
environment as well as its expected evolution over time and (iii) temporally extended
goals.

Beyond those constructs, the model supports an unique mix of generative and hier-
archical planning. The key novelty is the notion of task-dependency that allows for a
seamless integration of generative and hierarchical models especially allowing for partial
hierarchies and the capability of allowing task insertion. The resulting model notably
permits the encoding of both generative and HTN planning problems.

To the best of our knowledge, this model is beyond the expressivity of any existing
planner. In the next chapter, we will introduce a planning algorithm supporting this
representation as well as several dedicated search control methods.
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3.1 Introduction
In the previous chapter, we have introduced a model to represent temporal planning
problems with and without hierarchies. In this chapter, we present a complete planning
system that is able to reason on such problems.

Relevant approaches to planning. We start by very briefly sketching the related
work in task planning. This overview is meant to present the main concepts that have
been influential in the planning community and that we refer to along this chapter. To
allow for a more direct comparison and discussion, a detailed review of the related work
is delay to Section 3.4.

The field of automating planning has been dominated by forward-search planners,
that build a sequence of actions that transform an initial state into a goal state. Such
planners search in the space of states, with each action (or sequence of actions) being seen
as a state transition function. The key to the efficiency of state space planners is their use
of heuristic search to guide their exploration of the set of states. Many heuristics have
been devised to evaluate the cost of achieving the goals from a given state by solving a
relaxed version of the planning problem. The most influential relaxation is to consider
the tractable problem in which all the delete effects of actions are ignored. Planners can
compute a heuristic based on this relaxed problem, e.g., FF [Hel06] uses as a heuristic
the number of actions in a plan solving this relaxed planning problem. Much work has
been done to adapt the state-space approach to temporal planning, e.g., POPF [Col+10]
adapts the key ideas of FF to a temporal setting where durative actions are partially
ordered and can have many interactions.

The other influential approach in the early days of AI planning has been the plan-
space approach. Those planners explore the set of partial plans by iteratively fixing flaws
in a partial plan. An example of such a flaw is an open goal: a goal or the condition of an
action that has not been achieved yet. Given an open goal, a plan-space planner would
extend the plan backward by adding an action which effects achieve the open-goal. A
key advantage of plan-space planners is that they naturally yield partially ordered plans
that can represent many possible sequences of actions. They also exploit the structure of
the problem since they will only consider plans where all actions contribute directly or
indirectly to the goals. Despite those advantages, plan-space planners have not benefited
from the development of planning heuristic as well as state-space planners. They however
allow an intuitive support for temporal planning by simply keeping track of temporal
constraints in an STN.
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The ideas behind plan-space planning have been further developed into
least-commitment constraint-based planners that keep a lifted plan representation in
which the parameters of actions are not instantiated. Instead, the planners keep track
of the possible values of those parameters as an underlying constraint satisfaction
problem. Those planners rely on the plan-space planning mechanism but their lifted
representation allows them to keep a more compact search-space where a single search
node represents many possible plans. Such planners have been very early adapted to
support temporal planning (e.g. IxTeT [GL94]). However, their lifted representation
comes as a liability when trying to adapt the usual heuristic from domain-independent
state-space planners and they often rely on domain-dependent search control.

In parallel to those generative planners, hierarchical planners have been influential by
their capability to benefit from domain specific knowledge encoded in high-level actions.
Those planners typically perform a top to bottom decomposition of a set of initial tasks.
Like generative planners, they either follow state-based approach by building a sequence
of actions from an initial state (e.g. SHOP2 [Nau+03]) or a plan-based approach where
actions are partially ordered and require some additional reasoning for handling open
goals (e.g. O-Plan [TDK94]). Such planners almost exclusively rely on hand coded rules
to guide their exploration of the search space.

Overview of the chapter. In this chapter, we present a planning algorithm based
on least-commitment planning. In the next section, we extend the plan-space planning
procedure of those planners to account for the presence of hierarchical actions. The
procedure is sound and complete for both generative and hierarchical planning problems.
In the following section, we introduce various techniques to reason on the search space
of the planner. Because of the lifted representation, a key capability is to reason on the
possible instantiations of a partial plan which is done through a dedicated reachability
analysis technique. We also present heuristics to guide the exploration of the search space
both in generative and hierarchical settings. We review and discuss the related work in
Section 3.4. Section 3.5 evaluates how the proposed techniques contribute to the overall
efficiency of the planning system and draws some comparison with existing temporal
planners.

3.2 A Plan-Space Planning Procedure

3.2.1 Overview
Our planning procedure extends the approach of chronicle planning [GNT04, Sec. 14.3]
that was first defined in IxTeT [GL94]. The chronicle approach is an extension of plan-
space planning to a rich temporal representation. Our main contribution regarding the
planning procedure is to extend it to support the association of hierarchical and generative
planning.

Given a planning problem with an initial chronicle φ0, the objective of the planner is
to refine φ0 into a solution chronicle φ∗ where all tasks have been refined, all assertions
are causally supported and the set of temporal assertions form necessarily consistent
timelines. For this purpose, the planner is equipped with the ability to detect flaws in a
partial plan: features that prevent the partial plan from being a solution. Let us define
a flaw in a chronicle (π,F , C) as either:
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• an unrefined task τ ∈ π,

• an unsupported assertion α ∈ F . This flaw is a generalization of the notion of
open-goal in plan-space planning.

• a pair of assertions (α, β) ∈ F × F that can be conflicting given C. This flaw is
called conflicting assertions and again is a generalization of the notion of threats
in plan-space planning to a more a general temporal model.

Each type of flaw matches one of the necessary conditions for a chronicle to be a solution
plan (Definition 2.5.2). Hence the presence of a flaw in a partial plan means it is not a
solution to the planning problem. Intuitively, every flaw must be resolved to transform
a partial plan into a solution plan; resolving each flaw will require the application of one
or multiple plan transformations (as defined in Section 2.5).

An abstract view of the planning procedure, FapePlan, is given in Algorithm 1. At
each step, for a given partial plan, the planner chooses a flaw f to solve. Because all flaws
must eventually be solved, this choice is not a backtracking point. Next, the planner faces
the choice of resolver ρ to handle the flaw. Each resolver results in a transformation of
the partial plan φ into a refined partial plan φ′ in which f is absent.

Our planning procedure follows the general one of refinement planning (as formalized
by Kambhampati, Knoblock, and Yang [KKY95] and Schattenberg [Sch09, Sec. 2.6 to
2.8]) where a set of deficiency detection functions identify flaws in a partial plan and a
set of modification generation functions generate modifications of the plan that fix the
flaws (i.e. resolvers). Our procedure is an instantiation of this more general scheme with
three detection functions (one for each flaw) and their modification generation functions
implicitly defined by the set of resolver associated to a flaw. This procedure has been
used from early partial order planners (e.g. [PW92; YS03]) to more advanced generative
temporal planners [GL94; VG06]. Many hierarchical planners follow a similar approach,
including the recent HiPOP [Bec+14] and PANDA [Sch09]. The differences between all
those planners lie in four aspects: (i) their definition of flaws and resolvers, (ii) their
internal representation of a partial plan, (iii) the type of constraints and propagation
used to reason on variables in the plan, and (iv) the strategy for exploring the search
space. The remaining of this section is dedicated to clarifying the first three aspects.
We start by detailing our definition of flaws as they are critical in understanding the
planning mechanism at work to mix hierarchical and generative planning. Next, we detail
our constraint based representation that follows a least commitment approach where
both temporal and object variables are partially instantiated. Temporal constraints are
represented as a Simple Temporal Network (STN) while object variables are handled in
a dedicated binding constraint network using arc-consistency for propagation. Last, we
briefly characterize the search space and study the formal properties of the algorithm,
including soundness and completeness.

3.2.2 Flaws and Resolvers
The primary function of flaws is to act as detection functions of termination: a flaw in-
dicates a deficiency of a partial plan that makes it unfit to be a solution. The definition
of flaws is critical for the soundness of the planning procedure as the planner consider as
a solution plan any partial plan that is flaw-free. Equally important are their associated
resolvers that describe how a partial plan can be refined into a solution plan. All trans-
formations applied to a partial plan by the planner are motivated by the resolution of a
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Algorithm 1 FapePlan algorithm: returns a solution plan achieving the tasks and
goals in φ for the domain Σ.

function FapePlan(Σ, φ)
Flaws← flaws in φ
if Flaws = ∅ then return φ

f ← select a flaw in Flaws
Resolvers← resolvers for f
if Resolvers = ∅ then return failure
nondeterministically choose ρ ∈ Resolvers
φ′ ← Transform(φ, ρ)
return FapePlan(Σ, φ′)

flaw and consist of the application of a resolver. Thus, resolvers are as well critical in
shaping the search space of the planner. Ill-defined resolvers can easily result in a lack of
completeness of the planner when some solution is not accessible through any resolver.

There is another strategic aspect in the definition of resolvers: when solving a flaw,
the planner should ideally disregard any resolver that would result in a dead-end, e.g., a
resolver that would make all resulting plans inconsistent. This feature does not impact
soundness (such inconsistencies would we eventually detected later during search) but
allows the planner to better identify dead-ends (i.e. when a flaw has no resolvers) or
necessary modification to the plan (i.e. when a flaw has a single resolver).

3.2.2.1 Unsupported assertion

Our first type of flaw is meant to identify the lack of causal support of some assertion in
the partial plan. It is a simple extension to the notion of open goal in plan-space planning
to a more general temporal framework.

Our definition of a solution plan (Definition 2.5.2) requires every assertion to be
causally supported. Given a partial plan φ, the planner incrementally tracks this property
by associating every assertion that requires causal support for a fluent 〈sv=v〉 to another
one that produces the desired value. With the exception of a priori supported assertions,
the planner considers an assertion α = 〈[t1, t2] sv=v〉 ∈ Fφ or α = 〈[t1, t2] sv :v 7→ v′〉 ∈
Fφ as causally supported iff:

• there is another assertion β ∈ Fφ that produces 〈sv=v〉 at an earlier time t0. The
assertion β is said to produce 〈sv=v〉 at time t0 if it is an a priori supported assertion
〈[t, t0] sv :=v〉 or if it is a change assertion 〈[t, t0] sv :v′′ 7→ v〉. β is called the causal
supporter of α.

• the value of sv cannot change during the temporal interval [t0, t1], i.e., sv keeps the
value v from the end of β until the start of α.

For the planner to incrementally keep track of causal supports, we use a notion of
causal link β → α denoting that the assertion β is the causal supporter of α. A causal
link is associated with a new persistence assertion [t0, t1] sv=v that fulfills a similar job
as the one of causal links in plan-space planning: it prevents any change on the value of
the state variable sv from the end of β (t0) until the start of α (t1).

Definition 3.2.1. Given a chronicle (π,F , C) we say that an assertion α ∈ F is supported
if either:
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• α is a priori supported, or

• α has a causal supporter β and an incoming causal link β → α.

With the exception of a priori supported assertions, the planner assumes all assertions
to be unsupported until a causal link is added to the chronicle. The presence of an
unsupported assertion constitutes a flaw that must be solved by enforcing its causal
support. The choice of how to support an assertion thus requires finding another assertion
β to be its supporter. There are two possibilities: β can either be already in Fφ or it can be
added through the insertion of another action. Action insertion is more complex than in
purely generative planning because we must take into account the hierarchical constraints
of the domain. For this reason, our resolvers for an unsupported assertion are more
elaborate than those for an open goal in plan-space planning: instead of directly inserting
an action that provides a causal support, we instead select or create a decomposition tree
in which the supporting assertion is taken.

Possible effects. We say that the fluent f = 〈sv = v〉 is a direct effect of an action a
if f is produced by an assertion of a, i.e. a has a assertion of the form 〈[t, t′] sv :v′ 7→ v〉
or 〈[t′′] sv :=v〉.

A fluent f is a possible effect of an action a, noted f ∈ E+
a , if it is either a direct effect

of a or a possible effect of the decomposition of one of its subtasks. A fluent is a possible
effect of a task τ , noted f ∈ E+

τ , if f is a possible effect of an action a that refines τ .
Possible effects thus represent the different fluents that can be achieved as part of the
decomposition tree of a given task or action.

E+
a = direct effects(a)

⋃
(∪τ∈subtasks(a) E+

τ )
E+
τ =

⋃
m ∈ {a | task(a)=τ}

E+
m

The possible effect f of an action a (resp. a task τ) is also associated with a duration
representing the minimal delay from the moment the action (resp. task) starts to the
instant at which the possible effect can be produced, noted ∆PosEff (a, f). This mini-
mal delay is computed by taking an optimistic view of the delays enforced as temporal
constraints in the actions, as illustrated in the following example.

Example 3.1. The move(r,d,d’) action of Figure 2.1 has the possible effects
〈loc (r)=d′〉, 〈occupant (d)=nil〉 and 〈occupant (d′)=r〉. The first one is produced
at time tend, thus its associated delay is the duration of the action tend − tstart:

∆PosEff (move(r, d, d′), 〈loc (r)=d′〉) = tend − tstart = travel-time(d, d′)

The fluent 〈loc(r)=d′〉 is also a possible effect of the action m2-transport (Fig-
ure 2.2) because the presence of its move subtask means it can be indirectly produced
as a result of inserting m2-transport in the plan. The delay associated to the possible
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effect is computed recursively as:

∆PosEff (m2-transport(r, c, d, d′), 〈loc (r)=d′〉)
= min-delay(tstart, t2) + ∆PosEff (move(r, d, d′), 〈loc (r)=d′〉)
= min-delay(tstart, t2) + travel-time(d, d′)
= min-delay(tstart, t1) + min-delay(t1, t2) + travel-time(d, d′)
= duration(load(r, d, c)) + 1 + travel-time(d, d′)

In practice the computation of minimal delays (such as the expansion of
min-delay(tstart, t2)) is done by a shortest path computation in an STN containing
all timepoints and temporal constraints of the action.

For an unsupported assertion α, there are three different places where a supporting
assertion β can be found:

• β can be an assertion already in the plan,

• β can be introduced by decomposing an unrefined task τ ∈ π. This requires that τ
has a possible effect supporting α (i.e. cond(α) ∈ E+

τ ).

• β can be introduced through the addition of a free action a, where β is either in
the assertions of a or introduced by the decomposition of the subtasks of a. This
requires a to have a possible effect supporting α (i.e. cond(α) ∈ E+

a ).

It is however impractical for the planner to branch on all the different assertions
that can be used for causal support. For instance, a single recursive task might produce
infinitely many assertions eligible for causal support. Instead, the planner branches on
the choice of a source for providing the causal supporter, e.g, for a given unsupported
assertion, the planner will commit to select its causal supporter in the set of assertions
resulting from the decomposition of a particular unrefined task τ ∈ πφ.

Intermediate support constraints. We associate an unsupported assertion α to a
set of tasks DTα representing a commitment on the origin of the supporter for α. More
specifically, for any task τ ∈ DTα, the assertion supporting α can only be chosen in those
introduced by an action appearing in πφ as a descendant of τ . An action is a descendant
of τ if it refines τ or refines a subtask of an action descending from τ .

This mechanism allows tying the resolution of an unsupported assertion to a tree or
subtree of the task network. DTα is initially empty and might be extended during search
to track commitments made on the origin of the support of α.

If there is an unrefined task τ ∈ DTα, the resolution of α is postponed until τ is
refined.

Resolvers. Let us now explore the three different resolvers for an unsupported assertion
α = 〈[ts, te] sv=v〉 (resp. an unsupported change assertion α = 〈[ts, te] sv :v 7→ v′〉):

• Direct supporters. Let DSα be the set of all assertions β ∈ Fφ such that β
produces 〈sv = v〉. For any change assertion β ∈ DSα, a possible resolver for α is
to add a causal link from β to α.
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The transformation resolving the unsupported assertion α is a simple plan restric-
tion that introduces a causal link from β to α: φ ({β→α },C)−−−−−−−−→R φ

′. The additional
set of constraints C simply enforces that the value produced by β is the one needed
by α. Furthermore, the assertion representing the causal link is a priori supported
since it is inseparable from β that causally supports it.
For instance, if the assertion 〈[t1, t2] loc(r1) :d1 7→ d〉 was selected to be the causal
support of an assertion 〈[t3, t4] loc(r)=d4〉, we would have an additional set of
constraints t2 ≤ t3 ∧ r1 = r ∧ d = d4. The causal link would take the form of the
persistence assertion [t2, t3] loc (r1)=d4.
To avoid introducing redundancies in the search space, we must also take into
account the previous commitment that have been made regarding the source of the
causal support of α. For this reason, we only consider an assertion β ∈ DSα as
a possible resolver if, for any τ ∈ DTα, β was introduced by an action descending
from τ .

• Delayed support from existing task. Another possible source of supporting
statements for α are those that will be inserted when decomposing yet unrefined
tasks of the partial plan.
Let TSα be a subset of the unrefined tasks τ ∈ πφ such that

– 〈sv = v〉 is a possible effect of τ (i.e. 〈sv=v〉 ∈ E+
τ ),

– there is enough time for the possible effect to occur before α. Put other-
wise, it means the addition of the temporal constraint start(α) − start(τ) ≥
∆PosEff (τ, 〈sv=v〉) does no make the temporal network inconsistent.

For any unrefined task τ ∈ TSα, a possible resolver for α is to add τ to DTα. While
this does not directly resolve the open goal, it makes a commitment to a subset of
resolvers: the only allowed supporting assertion for α will be the ones descending
from τ . In practice this commitment means that: (i) the choice of a supporting
assertion for α will be delayed at least until τ is refined; (ii) the chosen refinement
for τ will need to provide an enabler for α. It should be noted that this resolver
does not bring any change to the partial plan itself but constrain the planner a
restricted set of solution plans.
Once again, to avoid redundancies in the search space, we must account for the
previous commitments made on the causal supporter of τ . For this reason, we only
consider as a resolver a task τ ∈ TSα if it is a descendant of all tasks in DTα.

• Delayed support from new free action. The last possible source of supporting
assertions comes from the introduction of free actions that have 〈sv=v〉 as a possible
effect.
If the planner already made a commitment to support α from a particular task (i.e.
DTα 6= ∅), then no such resolver is applicable. Indeed, any supporter would appear
by a mean of task decomposition only.
In the other case (i.e. DTα = ∅), we need to consider the insertion of free actions
outside of any existing decomposition trees. Let ASα be a set of action templates
A such that 〈sv=v〉 ∈ E+

A . For any action A ∈ ASα, a possible resolver for α is to
insert an instance a of A and add task(a) to DTα. This resolver ensures that α will
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be supported either by a direct effect of a or by an effect of one of its subactions.
The choice of the actual supporting assertion for α is delayed.

To summarize, our definition of unsupported assertions requires every assertion to
have a causal supporter whose choice is made explicit by the introduction of a causal
link. We distinguish three cases for the selection of the causal supporter depending on
whether it is already in the plan, can be introduced by decomposing existing tasks or
requires the introduction of new actions outside of existing decomposition tree. In the
two latter choices, the selection of the actual causal supporter is delayed to a later time
where the task network has seen more decompositions.

3.2.2.2 Unrefined tasks

We say that a task is unrefined if it has been required, either as an initial task of the
problem or as subtask of an action in the plan, and it has not been refined by a task
decomposition transformation (Section 2.5.1). Given a partial plan φ = (πφ,Fφ, Cφ), any
task τ ∈ πφ is an unrefined task. Resolving an unrefined task requires selecting an action
that achieves it and applying the corresponding task decomposition transformation.

Given an unrefined task τ : tsk(x1, . . . , xn), let PRτ be the set of action templates
A such that task(A) is unifiable with τ (i.e. task(A) is of the form tsk(b1, . . . , bn)). For
any action template A ∈ PRτ , a possible resolver to the unrefined task τ is to apply
the decomposition transformation φ

τ,a−−−→D φ′, where a is an instance of A. Thus, in the
resulting chronicle φ′ the unrefined task τ has been replaced by a new action instance a.

Furthermore, we should account for the commitment already made for the support of
unsupported assertions. For this reason, we only consider as a resolver an action template
A ∈ PRτ if for any unsupported assertion α such that τ ∈ DTα, A has a possible effect
e ∈ E+

τ that could support α.
In practice, this definition is close to the decomposition procedure of HTN planning:

for each pending task, a possible choice is to apply one of the actions achieving it. Our
procedure simply extends it to account for the commitments previously made while re-
solving unsupported assertion flaws. An example of the interactions that can result from
that are given in Example 3.2.

3.2.2.3 Conflicting assertions

Our last type of flaw occurs when the chronicle φ = (πφ,Fφ, Cφ) has a possible instanti-
ation that would make two assertions conflicting. We start by studying the simple case
of persistence assertions and then show how this scheme can be used to consider the
conflicts involving change assertions as well.

Two persistence assertions p1 = 〈[ts1, te1] sv1 =v1〉 and p2 = 〈[ts2, te2] sv2 =v2〉 are con-
flicting when they can concurrently require different values for the same state variable.
More precisely they are seen as conflicting when the three following conditions are met:

• they can temporally overlap, meaning that the temporal constraints in Cφ are con-
sistent with [ts1, te1]∩[ts2, te2] 6= ∅.

• they can be about the same state variable. This is the case when sv1 and sv2 are
respectively of the form sv (x1, . . . , xn) and sv (y1, . . . , yn) and Cφ ∪{x1 = y1∧· · ·∧
xn = yn } is a consistent set of constraints.
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• their values can be different, i.e., v1 6= v2 is consistent with Cφ.

Resolving a conflict requires enforcing that the two assertions can not be conflicting in
any of the instantiation of the chronicle. A conflict involving a pair of assertions (p1, p2)
can be resolved by a plan restriction φ

(∅,{ c })−−−−−→R φ
′ where c is one of:

• a temporal separation constraint forcing p1 and p2 to be non-overlapping, i.e., c is
either end(p1) < start(p2) or end(p2) < start(p1)

• a state variable separation constraint, i.e., c is one of {x1 6= y1, . . . , xn 6= yn } where
x1..n and y1..n denote the arguments of the state variables of p1 and p2 respectively.

• a unification constraint that requires the two values v1 and v2 to be the same
(v1 = v2).

A change assertion [ts, te] sv :vs 7→ ve is more complex and, for the purpose of identi-
fying conflicts can be seen as a combination of three persistences:

• a start persistence assertion [ts] sv=vs

• a changing part [ts + 1, te − 1] sv = undefined, where undefined is a spe-
cial value that is not unifiable with any variable including undefined itself (i.e.
∀v,undefined 6= v).

• an end persistence [te] sv=ve

A conflict involving a change assertion can be identified, and resolved, by reasoning
on its three component as it is done for persistences. We note that this definition allows
the start and end instants of the change assertion to overlap with other assertions, given
that they require the same value. However, the inner part of the change assertion that
denotes the interval over which the value is changing can not overlap with any other
assertion about the same state variable.

In practice, conflicting assertions are simply an extension of the notion of threats in
plan space planning to a context of partially instantiated partial plans with assertions
spanning over temporal intervals. The resolvers thus consider separation constraints not
only on the temporal aspects but also on the different variables involved in the two
threatening assertions.

Example 3.2. Let us consider the following scenario with an initial chronicle

φ0 = ({ t : go(r1, d1) }, { [0] loc (r1) :=d2, [100, 110] loc (r1)=d1 }, C0)

where t is an unrefined task requiring r1 to go to d1 and the second persistence
in φ0 requires r1 to be in d1 during [100, 110]. 〈[0] loc (r1) :=d2〉 gives the initial
position of r1 and is a priori supported. Our model is fully hierarchical and contains
two task dependent actions achieving the task go. The first one is the phantom action
that just requires r to be in the right location already and the second is the action of
actually moving. While somewhat artificial in this simplistic example, the phantom
action is usually needed in hierarchical problems in which goals are stated as tasks.
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no-move(r,d’)
task: go(r,d’)

dependent: yes
assertions: [tstart, tend] loc(r)=d′

constraints: ∅

move(r,d,d’)
task: go(r,d’)

dependent: yes
assertions: [tstart, tend] loc(r) :d 7→ d′

constraints: tend − tstart = 40

This chronicle contains two flaws: an unrefined task and an unsupported assertion.
We simulate the behavior of a planner that would try to solve this simple planning
problem. We distinguish two scenarios, each representing a preference of the planner
as of which type of flaw to handle first.

Scenario 1. We first choose to resolve the unrefined task t. This task has two
actions possibly refining it, resulting in two resolvers:

• we can choose to refine t with no-move, resulting in a chronicle

φ1 = ({ a1 : no-move(r1, d1) },
{ [0] loc (r1) :=d2, [start(a1), end(a1)] loc (r1)=d1,
[100, 110] loc (r1)=d1 },
C1)

The resulting chronicle has two unsupported assertions. Note that there is no
existing change assertion (or a priori supported assertion) that can support the
claim that r1 is in d1. Furthermore, no additional action can be added to φ1
because all actions are task-dependent and there are no unrefined tasks left.
Thus, none of the flaws have resolvers and φ1 is a dead-end from which the
planner will need to backtrack.

• or, we can choose to refine t with move, resulting in the chronicle

φ2 = ({ a2 : move(r1, d, d1) },
{ [0] loc (r1) :=d2, [start(a2), end(a2)] loc (r1) :d 7→ d1,
[100, 110] loc (r1)=d1 }, C2)

Here we also have two unsupported assertions to support and no action
can be added to the plan. Let us suppose we choose the first
one,〈[start(a2), end(a2)] loc (r1) :d 7→ d1〉, as the next flaw to handle. Our
only resolver is to select 〈[0] loc (r1) :=d2〉 as the supporting assertion and
enforce its support by the addition of a causal link 〈[0, start(a2)] loc (r1)=d2〉
and binding d to d2.

φ3 = ({ a2 : move(r1, d2, d1) },
{ [0] loc (r1) :=d2, [0, start(a2)] loc (r1)=d2,

[start(a2), end(a2)] loc (r1) :d2 7→ d1, [100, 110] loc (r1)=d1 }, C3)
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The only flaw left in φ3 is the unsupported goal assertion that loc (r1) be in d1
at time 100. The only supporter for this flaw is to take as the supporting asser-
tion the change from d2 to d1, 〈[start(a2), end(a2)] loc (r1) :d2 7→ d1〉, enforce
the support by the introduction of the persistence 〈[end(a2), 100] loc (r1)=d1〉.
This will result in a solution plan:

φ∗ = ({ a2 : move(r1, d2, d1) },
{ [0] loc (r1) :=d2, [0, start(a2)] loc (r1)=d2,

[start(a2), end(a2)] loc (r1) :d2 7→ d1,
[end(a2), 100] loc (r1)=d1, [100, 110] loc (r1)=d1 }, C∗)

Scenario 2. Suppose now that we were to choose the unsupported assertion g =
〈[100, 110] loc (r1)=d1〉 as the first flaw to solve. We first note that there is no
assertions already in φ0 that could be used as a direct supporter for g. Also, all our
actions are task dependent, thus we have no possibilities of inserting a free action that
would provide the desired effect. Our only possibility is thus to choose a task that
has 〈loc (r1)=d1〉 in its possible effects. The only such task is t : go(r1, d1), the flaw
thus have a single resolver. Applying this resolver does not result in any modification
of chronicle, instead the planner will simply record that the supporter of g must be
chosen in the assertions appearing in refinements of t. This is done by adding t to
DTg and postponing the actual resolution of g.

The only active flaw left is the unrefined task t. Like in the first scenario, we have
two candidates for refining it. Moreover, we now need to ensure that any refinement
we make can eventually provide a supporter for g. The first action no-move, has no
possible effect. Hence it cannot be used to refine t, as it would violate our previous
commitment to choose a supporter for g in the descendants of t. Our only choice is
to refine t with move(r1, d, d1) that has 〈loc (r1)=d1〉 in its possible effects.

φ4 = ({ a3 : move(r1, d, d1) },
{ [0] loc (r1) :=d2,

[start(a3), end(a3)] loc (r1) :d 7→ d1,
[100, 110] loc (r1)=d1 },
C4)

Now that t has been refined, the unsupported assertion g = [100, 110] loc (r1) =
d1 can be reconsidered. Its only possible resolver is to select the newly inserted
statement 〈[start(a3), end(a3)] loc (r1) :d 7→ d1〉 as the supporting assertion. This is
a valid resolver as it was inserted by an action deriving from the task t. As in the
previous scenario, the insertion of the causal support constraints for both unsupported



3.2. A PLAN-SPACE PLANNING PROCEDURE 39

assertions would result in a solution:

φ∗′ = ({ a3 : move(r1, d2, d1) },
{ [0] loc (r1) :=d2, [0, start(a3)] loc (r1)=d2,

[start(a3), end(a3)] loc (r1) :d2 7→ d1,
[end(a3), 100] loc (r1)=d1, [100, 110] loc (r1)=d1 }, C∗′)

We can see that both scenarios do find the same solution, the only difference
being the name given to action instances (a2 vs a3). φ∗′ is equivalent to the solution
found in the first scenario, by means of a simple renaming of the action instance. An
overview of the solution is given in Figure 3.1. The solution would notably contains
the following temporal constraints.

C∗′ = { start(t) = start(a3) ∧ end(t) = end(a3) ∧ 0 ≤ start(a3)
∧ end(a3) ≤ 100 ∧ end(a3)− start(a3) = 40 . . . }

start(a) end(a)0 100 110

lo
c

(r
1)

time

d2

d1

a : move(r1, d2, d1)

Figure 3.1: Solution to the planning problem. In blue are the two assertions part
of initial problem definition. In red are the persistence assertions inserted to enforce
causal support.

3.2.3 Constraint Networks

FAPE makes an important use of constraint networks to represent temporal aspects of the
problem and to maintain partially instantiated partial plans. The constraint networks are
meant to efficiently store the constraints accumulated by the planner and answer various
queries necessary for the identification of flaws as well as the listing of possible resolvers.

For instance determining whether two assertions are conflicting requires determining
if they can temporally overlap and if all variables appearing in the state variable are
unifiable. For this purpose, we have two distinct constraint networks: one responsible for
temporal reasoning and one for handling binding constraints. Some variables are present
in both constraints networks: duration variables, such as δ in Figure 2.1, that need to
meet binding as well as temporal constraints. We start by presenting the temporal and
binding constraint networks independently, and will then show how they are extended to
handle constraints involving duration variables.



40 CHAPTER 3. PLANNING WITH TIME AND HIERARCHIES

3.2.3.1 Temporal Constraints Network

Temporal variables (or timepoints) and temporal constraints are handled as a Simple
Temporal Problem (STP) [DMP91]. Given a set of timepoints X , a temporal constraint
is an inequality of the form t2−t1 ≥ d where t1 and t2 are timepoints in X and d is an inte-
ger constant. Such a constraint means that the minimal delay from t1 to t2 must be of at
least d. The use of a Simple Temporal Network (STN) answers some efficiency require-
ments as both the consistency and the minimal network of an STN can be computed
in polynomial time. On the down side, its restriction to only represent a conjunction
of constraints forces the planner to branch on some scheduling choices that could have
been encoded has a Disjunctive Simple Temporal Network (DSTN) or as a Temporal
Constraint Satisfaction Problem (TCSP). However, determining the consistency of such
temporal constraint network is NP-complete [DMP91].

Propagation uses Floyd-Warshall’s All-Pairs Shorter Path Algorithm to get the mini-
mal network [Flo62; War62]. In practice, this means that in a fully propagated network,
the minimal delay between all pairs of timepoints is known and explicitly represented.
For a network containing n timepoints, the cost of this operation is Θ(n3) for any net-
work. We use the incremental version of this algorithm, as presented by Planken [Pla08],
that has a quadratic runtime complexity of O(n2). Having the minimal network allows
us to answer all temporal queries in constant time

While many other more efficient techniques have been devised to determine the con-
sistency of an STN (e.g. [CO96b; XC03; PWY10; TPW11; PWK08]), they are mainly
based on avoiding the propagation of constraints not needed for determining consistency
of the network. As a result, answering some queries would require additional computa-
tions, often taking the form of a Bellman-Ford algorithm to find the minimal distance
between two timepoints.

We denote as distSTN(t1, t2) the minimal delay that must elapse between t1 and t2. It
can be extracted in constant time from the minimal network. We further note as O the
timepoint denoting the origin of time.

3.2.3.2 Binding Constraints Network

A binding constraint network is a tuple (XBind,DBind, CBind) where:

• XBind is a set of object variables and duration variables.

• DBind is a set of domains for each variable in XBind. The initial domain of object
variables is a subset of the objects in the problem determined by their types. The
initial domain of duration variables is the set of integers denoting durations that
appear in the problem definition.

• CBind is a set of constraints on the variables of XBind. A constraint is either

– an equality constraint, e.g., x1 = x2

– a difference constraints, e.g., x1 6= x2

– a general relation constraint, e.g., travel-time(x1, . . . , xn−1) = xn. Relation
constraints are associated with a relation table (e.g. γtravel-time of Table 2.1)
that give the allowed tuple of values for the variables x1..n.

– an inequality on a duration variable, e.g., x1 ≤ 12 where x1 is a duration
variable.



3.2. A PLAN-SPACE PLANNING PROCEDURE 41

– disjunctive equality constraint, e.g., x = x1 ∨ x = x2 ∨ · · · ∨ x = xn

The main purpose of the constraint network is to detect inconsistencies in the set of
constraints and to answer various queries on binding variables. Typical queries on the
constraint network include (i) the domain of a variable, (ii) knowing if two variables
are equal, (iii) knowing if two variables can be made equal or different. Answering
those queries exactly is far from trivial as many constraint satisfaction problems are
NP-complete. In particular, the only presence of inequality constraints is sufficient to
demonstrate the membership in NP.

To find a trade-off between accuracy and efficiency we use an arc-consistency algorithm
(AC-3 [Mac77]) for constraint propagation. More specifically, we maintain a work list of
constraints QBind. When a new constraint is added to the network, it is added to QBind.
Propagation proceeds until QBind is empty as follows:

1. extract a constraint c from QBind,

2. for every variable x involved in c, remove any value v from dom(x) that can not
satisfy this constraint.

For a relation constraint c = 〈R(x1, . . . , xn−1) = xn〉, this is done by first elimi-
nating from the relation any tuple of values (v1, . . . , vn) that is not achievable (i.e.
∃i ∈ [1, n] | vi 6∈ dom(xi)). For all remaining tuples, projecting them on a single
variable xi gives a set of allowed values Projcxi . The domain of each variable xi is
restricted to the values in Projcxi .

For a disjunctive equality constraint c = 〈x = x1 ∨ x = x2 ∨ · · · ∨ x = xn〉, the
domain of x is restricted to ⋃

i∈[i,n] dom(xi).

3. if the domain of any variable x was updated during propagation, all constraints
involving x are added to QBind. If QBind is not empty, then go back to step 1.

If a variable x ∈ XBind has an empty domain, then the network is not consistent.
Otherwise the network is only arc-consistent which is used as an optimistic approximation
of consistency by the planner. Full consistency is only checked to ensure that a plan with
no flaw is indeed a solution to a planning problem (i.e. that the binding constraint
network is indeed consistent).

The network is used as a base for various queries from the planner. Those are used
to identify flaws and filter out impossible resolvers. The binding constraint network
considers that two variables x1 and x2 are:

• unified if they have the same singleton domain or if there is an equality constraint
between the two. This equality constraint can involve intermediate variables.

• unifiable if they have intersecting domains and there is no inequality constraints
between them (or between any two variables unified with x1 and x2 respectively).

• separated if they are not unifiable. That is, if they have non intersecting domains
or if there is an inequality constraint between them (or between any two variable
unified with them).

• separable if they are not unified.
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3.2.3.3 Duration Constraints

A special case of variables are duration variables that appear both as variables in the
binding constraint network and in duration constraints in the temporal network. A
duration constraint is thus a special case of a mixed constraint of the form t2− t1 ≥ f(x)
where:

• t1 and t2 are timepoints of the temporal network,

• x is a duration variable in the binding constraint network,

• f : Z → Z is a function transforming the value of x into the one appearing in the
temporal constraint

For instance, the introduction of an instance a of the move action of Figure 2.1, would
result in the following constraints:

travel-time(r, d, d′) = δ

∧ end(a)− start(a) ≥ δ

∧ start(a)− end(a) ≥ −δ

where r, d and d′ are object variables, start(a) and end(a) are timepoints and δ is a
duration variable. The last two constraints are mixed constraints as they involve variables
from the temporal network and from the binding constraint network.

The propagation of mixed constraints requires communication between temporal and
binding constraint networks. This is done through the addition of new constraints in
a network when a new bound is found on the value of x in the other network. More
specifically, given a mixed constraint t2 − t1 ≥ f(x):

• when a new constraint d ≥ t2 − t1 is added or inferred in the temporal network,
the domain of x is filtered to remove any value that would be greater than d after
transformation by f :

dom(x)← { v | v ∈ dom(x) ∧ d ≥ f(v) }

If the domain of x is modified by this operation, it will trigger propagation in the
binding network.

• when the domain of the duration variable x is modified in the binding constraint
network, then a new temporal constraint t2 − t1 ≥ minv∈dom(x) f(v) is added to the
STN. In practice, this means that we propagate the least constraining instantiation
of x into the temporal network.

3.2.4 Search Space: Properties and Exploration

We now give some characteristics of the search space.
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Search Space Infiniteness. In plan-space planning, the search space is infinite which
can be easily understood as the planner explore the set of plans which is infinite [GNT04,
Chap. 5]. Indeed, even for a simplistic goal such as going somewhere, there can be
an infinite set of plans fulfilling it: one can go round and round in circles an arbitrary
number of time before getting to his destination. This in an important difference with
state-space classical planners that prohibit going through the same state twice. The set of
states being finite, their search space is finite as well. The search space of HTN planners is
infinite because of the presence of recursive methods [EHN94]. Since our search procedure
is an extension of plan-space planning (and can represent HTN problems) our search-
space is infinite as well. In these conditions, the planner must guarantee a methodical
exploration of the search space to ensure that, if there is a solution plan, it will be
found. Algorithms such as depth bounded search or incremental deepening meet those
expectations. More interestingly, best first search in general (and A* in particular) also
meet those expectations as long as the addition of an action to the partial plan constitute
a strictly positive cost for its evaluation function. Indeed when the number of actions in a
plan augments towards infinity, the evaluation functions will eventually prefer a shallower
plan that is shorter. Our planner uses a best-first search algorithm whose evaluation
function allows for a methodical exploration (as we will detail in Section 3.3.4.1).

Search Space Acyclicity Another condition for the completeness of the search is the
acyclicity of the search space, meaning that the search space does not contain any loop
that would allow indefinitely coming back to a given partial plan.

Proposition 3.2.1. The search space of FapePlan is acyclic.

Proof. To show the acyclicity of the search space, we show that given a partial plan, there
is no infinite sequence of resolver application that can lead to the same partial plan.

We first observe that the Transform(φ, ρ) of Algorithm 1 is incremental: it can
add actions or constraints but never removes anything. Furthermore, each Transform
application will result in one flaw being solved (even in the case where the resolution of
an unsupported assertion is delayed, this unsupported assertion will only be reconsidered
once at least one other flaw has been fixed). Since there is only a finite number of flaws in
a partial plan, the repeated application of transform will either (i) result in a solution
plan with no flaw, (ii) result in an inconsistent plan or (iii) add a new action to the plan,
possibly introducing new flaws. In the latter case, the added action can never be removed
and the planner cannot transform it back into the original chronicle.

Soundness & Completeness. We now study the soundness and completeness of our
planning procedure.

Proposition 3.2.2. FapePlan (Algorithm 1) is sound.

Proof. Soundness requires proving that any plan returned by FapePlan is indeed a
solution, i.e., that it respects the four conditions of Definition 2.5.2.

The first one, reachability of φ∗ from φ0, can be shown since (i) any transformation
made to the plan is done by applying a resolver, and (ii) all resolvers can be expressed
in terms of the allowed transformations (task decomposition, free action insertion and
restriction insertion). As reachability admits any sequence of transformations, the appli-
cation of any number of resolvers, regardless of their order will result in a plan that is
reachable from the original one.
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The last three conditions all correspond to a flaw type. Hence, if any of those condi-
tions is not met, the partial plan would have a flaw that the planner will need to resolve.
The requirement that the plan be flaw free, together with the type of flaws considered is
thus sufficient to guarantee that the last three conditions are met.

Proposition 3.2.3. FapePlan (Algorithm 1) is complete.

Proof. We rely on the study by Kambhampati, Knoblock, and Yang [KKY95] and Schat-
tenberg [Sch09, Sec. 2.6 to 2.8] of the general refinement planning procedure where a set
of deficiency detection functions identify flaws in a partial plan and a set of modification
generation functions generate modifications of the plan that fix the flaws (i.e. resolvers).
Our procedure is an instantiation of this more general scheme with three detection func-
tions (one for each flaw) and their modification generation functions implicitly defined by
the set of resolver associated to a flaw. Showing completeness of a particular refinement
planning procedure requires us to show that (i) no solution plan is rejected because it
has flaws, (ii) for a given flaw, our resolvers cover all the ways of addressing it [Sch09,
Def 3.2].

Let us first show that no solution plan is ruled out because of the presence of flaw.
We assume that a solution plan φ has a flaw of a given type and show that it cannot be
a solution plan or that it will be transformed in a flawless solution plan.

• if φ has an unrefined task τ then it is not a solution plan according to Defini-
tion 2.5.2.

• if φ is detected with an unsupported assertion α, it means that we have not explicitly
added a causal link from a supporting assertion β. Assuming φ to be solution, it
means that α is supported by the presence of chain of assertions that must eventually
originate in a change assertion or in an a priori supported assertion β. β is thus
a causal support of α and there is a chain of persistences preventing any change
on their state variable during [end(β), start(α)]. Even though this situation could
trigger a flaw, its resolver would be a causal link β → α that would simply make
the support explicit in an equivalent plan.

• Similarly, the planner could detect a conflict between two assertions that cannot
be conflicting due to implicit constraints. Indeed, the use of arc-consistency in
place of full consistency in the binding constraint network could make FAPE miss
such implicit constraints. Here again, the planner would simply provide a resolver
making the constraint explicit and resulting in an equivalent plan.

We now show that no solution plan is missed due to an incomplete set of resolvers:

• Unsupported Assertion. It is easy to see, by the need of causal support, that
all assertions in a solution plan must have an incoming causal link from a support-
ing assertion. For completeness, we need to show that all possible supporters are
considered regardless of whether they are in the current partial plan or can be in-
serted later. Our approach distinguishes the assertions already present in the plan
from those that will be inserted later. The direct supporter resolver provides the
possibility for the planner to select any assertion already in the plan.
Regarding the assertions not yet in the plan we distinguish two cases: the supporter
can be introduced by refining an existing task or it can be introduced by an action
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not descending from an existing task. The former is handled by the delayed support
from existing task resolvers that allows choosing any of the future assertions deriving
from an existing task. For the latter, let us observe that the containing action will
be part of another decomposition tree not yet in the plan, whose root is necessarily
a free action. Our delayed support from new free action resolvers allow precisely
to consider the addition of free actions as the source of new supporting assertion,
regardless of whether they appear in the free action it self or in a descendant action
obtained by decomposing its subtasks.
To summarize our resolvers allow to consider all possible sources of supporting
assertions, namely: (i) those already in the plan, (ii) those introduced by the ex-
tension of existing decomposition trees, and (iii) those introduced by the expansion
of new decomposition trees.

• Unrefined task. Assuming that no previous commitment was made on the support
of unsupported assertions, the set of resolvers is complete as it considers all possible
task decomposition transformations. Let us assume now that the planner made an
earlier choice regarding the support of an assertion α: it decided that α must be
supported by a descendant of an unrefined task τ (i.e. τ ∈ DTα). This can lead
the planner to disregard an action template A for the refinement of τ because A
would not have any possible effect for supporting α. This pruning is however sound
because there cannot be an assertion supporting α deriving from A, i.e., there
is no solution plan involving the decomposition of τ with A given our previous
commitment. Furthermore, possibility of using A to refine τ will be considered in
other branches of the search space: those deriving from another resolver for α.

• Conflicting assertions. For two assertions α1 and α2 to be conflicting in a partial
plan (π,F , C), it is necessary that a conjunction of constraints be entailed by C: (i)
they overlap (i.e. end(α1) ≥ start(α2)∧end(α2) ≥ start(α1)), (ii) all the arguments
of their state variables are equal, and (iii) in the case of two persistence assertions
their values are different. The negation of this conjunction of constraints thus forms
a disjunction of constraints that must hold in any solution plan (otherwise, α1 and
α2 would be conflicting). Each of the disjunct corresponds to a resolver of the
threat. Because at least one such disjunct must hold in a solution plan, the set of
resolvers for conflicting assertions is complete.

Redundancy in the Search Space (Systematicity). Another desirable property
is the absence of redundancy in the search space, denoting the fact that there are no
two partial plans that can be refined into two equivalent plans. This property is usually
referred to as systematicity of the planning algorithm [MR91; Kam93]. In practice, it
means that, for a given order in which flaws are resolved, there is a single path from the
initial plan to any partial plan. The key idea for achieving systematicity in plan-space
planning is to make sure that all resolvers of a given flaw are mutually exclusive [Kam93].

Mutual exclusivity between resolvers is easily achieved by totally instantiated plan-
space planners such as UCPOP [PW92], e.g., a threat can only be resolved by a strictly
before or strictly after temporal constraint. Our least-commitment approach with par-
tially instantiated partial plans makes the achievement of systematicity harder. In order
to achieve systematicity, McAllester and Rosenblitt [MR91] extend the lifted plan-space
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planning algorithm as follows: whenever the planner needs to know whether two variables
v1 and v2 are equal, two mutually exclusive branches of the search space are generated:
one with the constraint v1 = v2 and one with the constraint v1 6= v2. This mechanism is
shown to achieve systematicity but results in an early commitment that is detrimental
to search efficiency [Kam93]. Indeed, as noted by Kambhampati [Kam93], removing all
redundancy usually requires an early commitment that has a negative impact on the
compactness of the search space, each partially instantiated plan representing less fully
instantiated ones.

Our approach makes a trade-off between systematicity and commitment. Our use of
a (single sourced) causal link achieves systematicity as it makes a commitment to a single
achiever [Tat76; MR91]. Our resolvers for conflicting assertions however permit redun-
dancy in the search space as they are not all mutually exclusive. A practical technique
to achieve systematicity in many planning problems is to delay the handling of threats.
Indeed, achieving complete causal support usually results in a complete instantiation of
the plan. If a threat appears in a totally instantiated plan, the only possible resolvers
are (mutually exclusive) temporal separation constraints. This technique to improve
systematicity is used in our preferences for flaw selection (see Section 3.3.4.1).

HTN planners generally do not achieve systematicity but instead can consider a plan
as many times as there are ways to decompose it from the initial task network. It is
the responsibility of the domain designer to come up with domains where the planner
has no or few redundancies in the search space. Planners like SHOP or UMCP only
consider solution plans composed of primitive actions. Because in our model, all actions
(including high level actions) appear in the solution plan, our solution contains a memory
of the path taken to reach it. Systematicity is not directly comparable with the one off
those HTN planners. We can simply state that, if one is only interested in the primitive
actions of a plan (e.g. would post-process our plan to delete all high-level actions) then our
procedure lacks systematicity in a similar fashion as other HTN planners. Forward search
HTN planners, such as SHOP2 or SIADEX [Nau+03] have another source of redundancy
in their search space has they branch on the order in which to decompose tasks. We
discuss this limitation, and how it is avoided in FAPE, in details in Section 3.4.2.

Even when one is interested in all high-level actions of a plan, our resolvers for unre-
fined tasks do not achieve systematicity. As a counter example, suppose that the solution
plan contains two distinct actions achieving the same task symbol over the same tem-
poral interval. This solution plan can appear twice in the search space as two identical
tasks could interchangeably be achieved by any of those actions. In practice however,
such cases are rare and the lack of systematicity of the hierarchical part of the planning
process can be ignored like in other hierarchical planners.

Discussion. Our definition of flaws and resolvers results in a top down approach of
hierarchical planning, similar to that other HTN planner such as SHOP. Indeed, the
search starts from an existing task network that is entirely decomposed over the course of
planning. In addition, we permit the insertion of free action to be added independently
of the existing decomposition trees.

In practice, this means that any action in the plan was inserted later than all actions it
descends from. This scheme has the advantage of being well documented and understood
as it is the technique used by all HTN planners to date. This top down decomposition
schema also has the advantage of mimicking some of the reasoning process followed by
humans which makes the understanding of the planning process easier.
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Other techniques are however possible. For instance, one could allow the direct inser-
tion of task-dependent actions that are needed for their effects and then build the plan
in a bottom up fashion until meeting the initial task network. In this setting, we would
require an additional flaw tracking whether a task-dependent action a has been attached
to a task. Solving this flaw would involve either marking a as refining an existing task
τ or adding an high level action with a subtask that can be refined with a. While we
tested some of those techniques in FAPE, we do not report on them in this chapter as
they resulted in poor performance in a pure task planning context. Indeed, this scheme
complicates the definition of dedicated heuristics since one must not only reason on what
are the effects achievable through the decomposition of unrefined task but also on how
actions already in the plan can be linked to the existing task network. Those techniques
can however be of interest in contexts relevant to our work such as plan repair and we
will study some of those in Section 5.5.4.3.

3.3 Search Control
Section 3.2.4 has defined the search space of FAPE, obtained by extending the PSP
algorithm with hierarchical considerations. Compared to most planners, the search space
of constraint-based planners (including FAPE) is much more compact as their lifted
representation allow representing many partial plan in a single search node. On the other
hand, the maintenance of various constraint networks make the expansion of a search
node computationally expensive and such planners still require search control strategies
to perform efficiently.

In the following sections, we detail the different strategies used for the shaping and
exploring of the search space. These can be roughly separated in three categories:

• the strategy for choosing which flaw to solve next plays an important role in plan-
space planning as it allows shaping the search space. For instance, choosing to first
decompose all unrefined tasks would lead to very different search space than the
ones resulting in solving threats first.

• the strategy of which partial plan to consider next is critical to guide the exploration
of the search space towards solution plan, even for planning problems involving only
a handful of actions.

• inference of necessary constraints to allow an early detection of specific characteris-
tics of a partial plan. An example of such inference capability is the detection that
a given unsupported assertion cannot be achieved early because its establishment
requires a long chain of actions. Such new constraints can be used to reduce the
search space by detecting dead-ends or filtering out impossible resolvers.

These three aspects are strongly interconnected since flaw ordering and inference can
be seen as shaping up the search space that will be explored given the partial plan selection
strategy. This section will first study the techniques used for automatic inference in FAPE
(Sections 3.3.1 to 3.3.3). More specifically, Section 3.3.2 will detail a reachability analysis
to infer what cannot be achieved from a partial plan due to its temporal and hierarchical
features and Section 3.3.3 will provide techniques to reason on the causal structure of a
plan. Finally, Section 3.3.4 will focus on the strategies for flaw and plan selection.
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3.3.1 Instantiation and Refinement Variables
While the lifted representation is beneficial for the efficiency of the search, it makes
reasoning on a partial plan harder because a given lifted statement can be refined into
many ground ones. This can be detrimental as most heuristic computation for planning
require a ground representation. To facilitate the mapping between lifted partial plans
and ground heuristic techniques, we introduce two types of variables that represent the
possible instantiation of actions and the set of ground actions that can be used to refine
a task.

Any action template act is associated with a relation γact-inst that contains all possible
ground instances of act. A ground instance of act is one where all object variables are
bound and satisfy all binding constraints in the template. If act has a ground instance
id = 〈act(c1, . . . , cn)〉, then γact-inst will contain the tuple (c1, . . . , cn, id) where id is a
unique identifier of this instance. Table 3.1 gives an example of this relation for the move
action of Figure 2.1.

Robot Origin Destination Action ID
r1 d1 d2 id1
r1 d2 d3 id2
r1 d2 d1 id3
r2 d1 d2 id4
r2 d2 d3 id5

. . .

Table 3.1: Table for the relation γmove-inst that give the instantiations of the move action.
In this example, id1 identifies the ground action move(r1, d1, d2).

A lifted action a : act(x1, . . . , xn) in πφ is associated with an instantiation variable Ia
that takes a value in the set of ground instances of act. At a given time, dom(Ia) should
contain any ground action that a might become once all its parameters are instantiated:

act(c1, . . . , cn) ∈ dom(Ia)⇐⇒ ∀i∈1..n ci ∈ dom(xi)

To enforce, this relationship, every time a (lifted) action instance a = 〈act(x1, . . . , xn)〉
is added to the partial plan, a constraint (〈x1, . . . , xn, Ia〉, γact-inst) is added to the binding
constraint network, where Ia is the instantiation variable of a.

This instantiation variable has two main benefits. First it allows to find all possible
instantiations of an action which is a useful input for the reasoning techniques we will
introduce later in this section. This set of instantiations is iteratively refined through
constraint propagation whenever the parameters of the action are updated. Second,
when a ground action is known or found to be impossible, it can simply be removed from
the allowed tuples in the relation. This change will trigger propagation in the binding
constraint network and be reflected on the parameters of actions in the partial plan.

Similarly, every lifted task τ : tsk(y1, . . . , yn) is associated with a refinement variable
Rτ that takes value in the ground actions whose task is tsk. At a given time, dom(Rτ )
contains any ground action that might be used as a refinement for τ :
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a ∈ dom(Rτ )⇐⇒ task(a) = tsk(c1, . . . , cn) ∧ ∀i∈1..n ci ∈ dom(yi)

More specifically, a task symbol tsk is associated with a relation γtsk-ref that
gives the possible refinements of a task. If there is a possible ground action
id = act(c1, . . . , cn) whose task is tsk(p1, . . . , pm), then the relation γtsk-ref will contain
the tuple (p1, . . . , pm, id). This identifies that the action (uniquely identified by id)
is a possible refinement of the task tsk(p1, . . . , pm). When a new unrefined
task tsk(y1, . . . , yn) is inserted into the partial plan, it is associated with a
refinement variable Rτ that must verify this relation, i.e., with a constraint
(〈y1, . . . , yn, Rτ 〉, γtsk-ref).

When an action a is introduced as a refinement of task τ , their respective instantiation
and refinement variables are unified by the introduction of a constraint Ia = Rτ .

Instantiation and refinement variables make explicit the relationships between lifted ac-
tions and tasks in a partial plan and the ground actions that will appear in a solution
plan. In search control, those variables are used to transform lifted partial plans into
ground relaxed problem for reachability analysis and heuristic computation. The result
of reachability analysis is also used to remove unreachable actions from the domains of
both instantiation and refinement variables, as we will see in the next subsection.

3.3.2 Reachability Analysis
Reachability analysis has been a crucial component of many planning systems including
ff [Hof01] and popf [Col+10]. This analysis is done by solving a relaxed version of the
planning problem in order to infer optimistic estimates of the set of states reachable from
the initial state. It allows inferring which actions and fluents might appear in a solution
plan. In classical planners, this analysis is often done by taking the delete-free relaxation
of a planning problem. A set of reachable actions is then built by adding, one by one,
any action whose preconditions are achieved either in the initial state or by an action in
the reachable set.

This technique is not directly applicable to temporal problems that might contain
inter-dependent actions (see Example 2.4). Indeed, if two actions A and B are inter-
dependent (as in Figure 3.2), inferring that B is reachable requires knowing that A is
reachable, which would require prior knowledge that B is reachable. Planners such as
popf go around this problem by further relaxing delete-free problems: each durative
action is split in two instantaneous at-start and at-end actions. The at-start action does
not contain the end conditions of the original action which eliminates any possibility of
inter-dependency.

A (duration: 10)

y

x

B (duration: 7)

x

y

Figure 3.2: Two interdependent actions: A with a start effect x and an end condition y,
and B with a start condition x and an end effect y.
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Hierarchical problems introduce further complications to this scheme. For a satis-
factory analysis, one should take into account the consequences of a hierarchized search
space: that any high-level action should have its subtasks achieved and that any task-
dependent action be required by a given task. Intuitively, these requirements of hierar-
chical problems lead to many interdependencies: a high-level action requires the presence
of the actions achieving its subtasks and those actions can only appear in the plan if the
high-level action initially required them (Figure 3.3).

load(r1,c1,d1) move(r1,d1,d2) unload(r1,c1,d2)

m2-transport(r1,c1,d1,d2)

loc (r1) = d1

loc (r1) = d2

pos (c1) = r1

pos (c1) = d1

loc (r1) = d1

pos (c1) = d1

loc (r1) = d1

x y : x depends on y to achieve one of its conditions
x y : x depends on y to refine one of its subtask
x y : x is task-dependent and depends on y to provide the task it refines

Figure 3.3: Dependencies between actions in a plan achieving a single transport(c1,d2)
task. The m2-transport action is the one of Figure 2.2. Its three subtasks are refined by
a free move action (Figure 2.1) and two task-dependent load and unload actions.

In this section, we describe a reachability analysis that takes into account the hier-
archical properties of a problem and supports interdependent actions with no additional
relaxation. More specifically, we consider delete-free actions as a basis for our relaxed
model. To give an intuition of what a delete-free model would be, consider a change
assertion [ts, te] sv :a 7→ b. This transition requires sv to have the value a at time ts (i.e.
that the fluent 〈sv=a〉 holds at ts) and states that sv will have the value b at time te,
meaning that the 〈sv=a〉 no longer holds at time te. This change assertion thus has a
positive effect on the fluent 〈sv=b〉 and a delete effect on the fluent 〈sv=a〉. In a delete-
free model, we would consider that after the change assertion the state variable has both
the values a and b. Those delete-free actions are extended with additional conditions and
effects that account for hierarchical features of the original actions.

This relaxed model is used to compute a set of actions that might appear in a solution
together with information about their earliest appearance. This information is then used
to infer constraints on a partial plans as well as to detect dead-ends in the search.

3.3.2.1 Relaxed Problem

In order to perform a reachability analysis, we start by defining a relaxed planning prob-
lem. A relaxed problem is a tuple 〈F,A, I〉 where F is a set of fluents, A is a set of
elementary actions and I is the initial set of timed fluents.

The set of fluents F contains all fluents in the original domain (i.e. all combinations of
a state variable and a value). Furthermore, for any task symbol τ in the original domain,
F is extended with required(τ), started(τ) and ended(τ), which take a value in {>,⊥}.
Those respectively represent that an action achieving τ is needed, has started and has
ended.
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The elementary actions in A are simple temporal actions with a set of conditions and
a single positive effect. Conditions and effects are on fluents in F and can represent
causal or hierarchical requirements and effects of the original action.

The initial set of timed fluents I, represents a set of fluent whose appearance in a
solution plan is already supported. It is built from both the set of a priori supported
assertions in the original problem and from the effects of actions already in the partial
plan.

Given a relaxed problem, the objective is to find the subsets of F and A that can be
reached from the facts in I.

Elementary actions. We start by transforming our actions (both high-level and prim-
itive) into a more traditional action representation with conditions and effects. Our
objective is to obtain delete-free actions that still encompass temporal and hierarchical
aspects of the original action. We associate any action a of the planning domain with a
flat action aflat together with a set of conditions Caflat and effects Eaflat such that:

• for any persistence condition 〈[t, t′] sv = v〉 in a, aflat has the condition 〈[t] sv = v〉

• for any assertion 〈[t, t′] sv :v 7→ v′〉 in a, aflat has the condition 〈[t] sv = v〉 and the
effect 〈[t′] sv = v′〉

• for any a priori supported assertion 〈[t] sv :=v〉 in a, aflat has the effect 〈[t] sv = v〉

• given the task τa achieved by a, aflat has the effect 〈[tstart] started(τa) = >〉 and the
effect 〈[tend] ended(τa) = >〉

• if a is task-dependent and its task is τa, then aflat has the additional condition
〈[tstart] required(τa) = >〉

• for every subtask 〈[t, t′] τ〉 of a:

– two additional conditions 〈[t] started(τ) = >〉 and 〈[t′] ended(τ) = >〉
– one additional effect 〈[t] required(τ) = >〉

• aflat contains all constraints of a

Such flat actions define a relaxed version of the problem in which actions have no
“delete effects” and hierarchical relationships are compiled as additional conditions and
effects. It is important to note that the resulting ‘flat’ problem relaxes some hierarchical
aspects of the original one. Indeed, a given subtask 〈[stτ , etτ ] τ〉 yields two conditions
[stτ ] started(τ) = > and [etτ ] ended(τ) = >. Those two conditions can be fulfilled by
distinct actions, thus ignoring temporal constraints on the unique action that should
have achieved the subtask in the original model. Furthermore, a single “subtask effect”
could allow the presence of multiple task-dependent actions. This additional relaxation
is however not a problem as this transformation is simply meant to expose hierarchical
features of the problem for a reachability analysis that is optimistic.

The flat actions are still temporally complex and might feature numerous timepoints
related by temporal constraints. As a second preprocessing step, those actions are split
into simpler elementary actions where all delays are fixed. An elementary action contains
a single effect and the necessary conditions to achieve this effect with aflat. Specifically,
given a flat action aflat, the set of elementary actions for aflat is given by:
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moveflat(r, d, d′)
conditions: [tstart] loc (r) = d

[tstart] occupant (d) = r
[t′] occupant (d′) = nil

effects: [tend] loc (r) = d′

[t] occupant (d) = nil
[tend] occupant (d′) = nil
[tstart] started(move(r, d, d′)) = >
[tend] ended(move(r, d, d′)) = >

constraints: connected (d, d′)
tend − tstart = 10
tstart < t < t′ < tend

Figure 3.4: Flattened version of the move operator of Figure 2.1. The implicit temporal
constraints are shown explicitly here.

• for each effect e = 〈[te]f〉 in aflat, creating a new elementary action ae with 〈[1]f〉
as the only effect of ae. In practice this places the effect exactly one time unit after
the start of the elementary action. While not strictly needed, it facilitates reasoning
of the relative placement of conditions and effect in an elementary action.

• any condition c in aflat is added to each ae with an optimistic timing constraint
on when c is needed relatively to e. By optimistic, we mean the latest time at
which c can be required to be true given the temporal constraints. For a condition
c = 〈[tc]sv′ = v′〉 in aflat, this is achieved by adding to ae a condition 〈[d]sv′ = v′〉
where d is the highest valid value that can be taken by tc given that te took the
value 1.

Figure 3.5 shows two elementary actions generated for the flat move of Figure 3.4.
Three additional elementary actions are needed to cover the last three effects of the
action.

Timed fluents. We now describe how the initial set of timed fluents I is derived from
a partial plan. A initial timed fluent i ∈ I is denoted by 〈[t]f〉 where f is a fluent and t
is a time at which f holds. Given a partial plan (π,F , C), I is composed of:

• for any assertion 〈[t1, t2] sv :v1 7→ v2〉 or 〈[t2] sv :=v2〉 in F ; if sv′ and v′2 are instan-
tiations of sv and v2 consistent with C, I contains 〈[t′2] sv′ = v′2〉 where t′2 is the
smallest instantiation of t2 consistent with C, given by distSTN(O, t2).

• for any unrefined task 〈[t1, t2] τ〉 in π; if τ ′ is an instantiation of τ consistent with
C, I contains 〈[t′1] required(τ ′) = >〉 where t′1 is the smallest possible instantiation
of t1 consistent with C.

Definitions. An elementary action is applicable once all its conditions are met. An
action with an effect f is called an achiever of the fluent f . A fluent becomes achievable
after one of its achievers becomes applicable. As a consequence of using (delete-free)
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moveloc(r)(r, d, d′)
conditions: [−9] loc (r) = d

[−9] occupant (d) = r
[0] occupant (d′) = nil
[−9] required(move(r, d, d′)) = >

effects: [1] loc (r) = d′

constraints: connected (d, d′)

moveoccupant(d)(r, d, d′)
conditions: [0] loc (r) = d

[0] occupant (d) = r
[9] occupant (d′) = nil
[0] required(move(r, d, d′)) = >

effects: [1]occupant (d) = nil
constraints: connected (d, d′)

Figure 3.5: The first two elementary actions generated from moveflat

elementary actions, once a fluent is achievable or an action is applicable, it stays achiev-
able/applicable at all subsequent time points.

Action a is applicable at time t (denoted by applicable(a, t)) if for all conditions 〈[δ]f〉
of a, f is achievable at time t + δ. Similarly, a fact f ′ is achievable at time t′ (noted
achievable(f ′, t′)) if there exists an achiever of f ′ applicable at time t′ − 1.

We say that an action a (resp. a fluent f) is reachable if there exists a time t such that
applicable(a, t) holds (resp. achievable(f, t) holds). The earliest appearance of a reachable
action a (denoted by ea(a)) is the smallest t for which applicable(a, t) holds. Similarly,
the earliest appearance of a reachable fluent f is the lowest t for which achievable(f, t)
holds.

3.3.2.2 Reachability analysis with inter-dependent actions

The problem of inter-dependent actions. As shown by Cooper, Maris, and Régnier
[CMR13], the difficulty of doing reachability analysis with interdependent actions is due
to the presence of after-conditions: conditions that must hold after an effect of the action
is achieved. For instance, the end condition y of the action A of Figure 3.2 is an after-
condition. In our elementary actions, an after-condition can be easily detected as any
condition 〈[t] f〉 where t ≥ 1. All other conditions are referred to as before-conditions.

The approach taken by popf of splitting an action into instantaneous at-start and
at-end actions in practice means that all after-conditions are ignored. In Figure 3.2, the
action A would indeed become action Astart containing only an effect x and an action
Aend with a condition y. In this model, the effect x can thus be produced independently
of the after-condition on y. This constitutes an additional relaxation resulting in the
elimination of all interdependencies in the delete-free problem.

While this relaxation is reasonable for many generative planning problems, hierar-
chical problems typically feature many interdependencies between methods and their
subtasks. The remaining of this section describes a technique for reachability analysis
that does not need any additional relaxation, thus taking all after-conditions into account.
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Algorithm 2 Algorithm for identifying reachable actions and fluents and computing
their earliest appearance.

1: A← Elementary actions
2: F ← Fluents
3: I ← Initial timed fluents
4: Q← ∅ . Priority queue of 〈action/fluent, time〉 ordered by increasing time
5: for all f ∈ F do
6: reachable(f)← ⊥
7: for all 〈[t] f〉 ∈ I do
8: Q← Q∪{〈f, t〉}
9: for all a ∈ A do

10: reachable(a)← ⊥
11: if a has no before-conditions then
12: Q← Q∪{〈a, 0〉}
13:
14: while Q non empty do
15: DijkstraPass
16: for all a ∈ A do
17: for all 〈[δ] f〉 ∈ after-conditions of a do
18: if ¬reachable(f) then
19: 〈A,F 〉 ← RecursivelyRemove(a)
20: else if ea(a) < ea(f) + δ then
21: Q← Q∪{〈a, ea(f) + δ〉}
22: for a ∈ A do
23: if a is late then
24: 〈A,F 〉 ← RecursivelyRemove(a)
25:
26: procedure DijkstraPass
27: while Q non empty do
28: 〈n, t〉 ← pop(Q)
29: if n already expanded in this pass then
30: continue
31: if reachable(n) ∧ ea(n) ≥ t then
32: continue
33: reachable(n)← >
34: ea(n)← t
35: if n is an action with the effect 〈[δ] f〉 then
36: Q← Q∪{〈f, t+ δ〉}
37: else
38: for all a ∈ A with a condition on the fluent n do
39: if all before conditions of a are reachable then
40: t′ ← max〈[δ] f〉 ∈ Ca ea(f)− δ
41: Q← Q∪{〈a, t′〉}
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Propagation To handle after-conditions during reachability analysis, as detailed in Al-
gorithm 2, we alternate two steps: (i) a propagation that ignores all after-conditions by
performing a Dijkstra like propagation in the graph composed of all fluents and elemen-
tary actions; and (ii) a second step that enforces all after-conditions. Those two steps
are complemented with a pruning mechanism that repeatedly detects actions that have
unsolvable interdependencies.

Algorithm 2 begins by selecting a set of assumed reachable elements (i.e. actions
or fluents) from which to start propagation (lines 4-12). The obvious candidates are
fluents known to be true at a given time, e.g., fluents achieved by assertions in the
problem definition or by actions in the partial plan. All such fluents have been previously
inserted the initial set of timed fluents (I) and are selected. We also optimistically select
all actions that have no before-conditions, i.e., actions whose all conditions are after-
conditions. Those assumed reachable elements are inserted into a priority queue Q of
〈n, t〉 pairs where n is either an elementary action or a fluent and t is a candidate time
for its earliest appearance.

The initial assumed reachable set is then iteratively extended with all fluents with
an assumed reachable achiever and any action whose all before-conditions are assumed
reachable. This is done by a Dijkstra-like propagation (line 15), that extracts the items
in Q by increasing earliest appearances. The corresponding actions (resp. fluents) are
marked as reachable and the fluents (resp. actions) depending on them are inserted into
Q. More specifically, if a pair 〈a, t〉 is extracted from Q and a is an action with the
effect 〈[δ] f〉, the pair 〈f, t+ δ〉 is inserted into the queue. If a pair 〈f, t〉, with f ∈ F ,
is extracted from Q, all actions depending on f that have all their before-conditions
reachable are pushed in Q (lines 38-41).

As a second step, we revise our optimistic assumptions by considering after-conditions:
• Line 19 removes any action a with an after-condition on an unreachable fluent
f . More specifically, the RecursivelyRemove procedure marks its parameter as
unreachable and removes it from the set of actions. The removal is recursive: if a
removed action is the only achiever for a fluent f then f is removed as well (and as
a consequence all actions depending on f will also be removed, etc.). Furthermore,
if the first achiever of a fluent is removed from the graph and there is at least one
other achiever for it, then the fluent is added back to Q with an updated earliest
appearance.

• Line 21 takes an after-condition of an action a on a reachable fluent f and enforces
the minimal delay δ between ea(f) and ea(a). If the current delay is not sufficient,
a is added to Q and will be reconsidered upon the next Dijkstra pass.

Finally, late actions are marked unreachable and removed from the graph (line 24).
We say that an action a is late if for any non-late action a′, ea(a′) +dmax < ea(a) where
dmax is the highest delay in the relaxed model (either of a timed initial literal or between
a before-condition and an effect). In practice, this means that actions are partitioned
into non-late and late, these two sets being separated by a temporal gap of at least dmax.
The intuition (demonstrated in the next subsection) is that the earliest appearance of a
late action is being pushed back due to unachievable interdependencies with other late
actions.

The two-step process is repeated (line 14) to take into account the newly updated
reachability information. In the subsequent runs, Dijkstra algorithm will start propagat-
ing from the items updated by the previous iteration, with lines 31-32 making sure that
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the earliest appearance values ea(n) are never decreased to a too optimistic value. The al-
gorithm detects a fix-point and exits if the queue is empty, meaning that after-conditions
did not trigger any change.

3.3.2.3 Analysis and Possible Variants

We now explore some of the characteristics of Algorithm 2. The first Dijkstra pass acts
as an optimistic initialization: it identifies a set of possibly reachable nodes and assigns
them earliest appearance times. All operations after this first pass will only (i) shrink
the set of reachable nodes; and (ii) increase the earliest appearance times.

For analysis, it is helpful to see the relaxed problem as a graph whose nodes are the
fluents and elementary actions. Edges either represent a condition (edges from a fluent
to an action) or an effect (edges from an action to a fluent).

Definition 3.3.1 (Causal loop). We denote as a causal loop a cycle of actions and fluents
f0 → A0 → f1 → A1 . . . An → f0, such that each fluent fi is a condition of the elementary
action Ai and each action Ai is an achiever of the fluent fi+1.

Each edge of this loop is associated with a delay d that is respectively the delay from
when an action Ai start to the moment its effect fi+1 is achieved, or the delay from when
a condition fi is needed to the moment its containing action Ai can start.

The notion of causal loop is crucial in the understanding of problems with interdepen-
dent actions. We say that a causal loop is self-supporting if the sum of the delays on its
edges is less than or equal to 0. The actions of Figure 3.2 form a self-supporting causal
loop A

0−→ x
0−→ B

7−→ y
−10−−→ A, which essentially means that B can be used to produce

the condition y of A early enough for A to be executable.
A causal loop is said to be unfeasible if its length is strictly positive. If B had a

duration of 12 in Figure 3.2, we would have an unfeasible causal loop A
0−→ x

0−→ B
12−→

y
−10−−→ A. Indeed, B does not “fit” in A anymore and the planner must find another way

to achieve either x or y to use those two actions.

Proposition 3.3.1. If a node (i.e. action or fluent) n is reachable in the relaxed problem,
then ea(n) converges to a finite value. If a node n′ is not reachable then ea(n′) either
remains at ∞ or diverges towards ∞ until it is removed from the graph.

Proof (Sketch). We sketch the proof that is fully given in Appendix A.1. An action or
fluent n is reachable if there is either a path from initial facts to n or if n is part of
a self-supporting causal loop (i.e. cycle of negative or zero length). Consequently and
because the earliest appearance can only increase, repeated propagations will eventually
converge. On the other hand, an unreachable node either depends on an unreachable
node or is involved only in causal cycles of strictly positive length. If the node was ever
assumed reachable, its earliest appearance will thus be increased by Algorithm 2 until it
is removed from the graph.

Proposition 3.3.2. If a node is put in the late set, then it is not reachable.

Proof (Sketch). We sketch the proof that is fully given in Appendix A.2. The intuition is
that the gap between non-late and late nodes appeared because late nodes are delaying
each other due to positive causal cycles. We first show that any late node was delayed
to its current time due to a dependency on another late node: because the temporal gap
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is bigger than all delays in the model, a non-late node could not have influenced a late
node. It follows that any late node depends on at least one other late node. Furthermore
a late node necessarily participates in a positive cycle or depends on a late node that
does. From there, one can show that at least one node n in this group is involved only in
positive cycles. Any other possibility (path from timed initial literals or negative cycle)
would have resulted in n being less than dmax away from a non-late node.

It follows from propositions 3.3.1 and 3.3.2 that Algorithm 2 produces a reachability
model (denoted as R∞) that contains a fluent or action n and its earliest appearance
ea∗(n) iff n is reachable in the relaxed problem. In the worst case, computing this model
has a pseudo-polynomial complexity since there may be as many as dmax iterations of the
algorithm (dmax being the highest delay in the relaxed model). The worst-case complexity
of each iteration is dominated by the Dijkstra pass of O(|N |× log(|N |)+ |E|), where N is
the number of fluents and actions and E is the number of conditions and effects appearing
in actions.

Discussion. One might consider computing various approximations of R∞ by limiting
the number of iterations to a fixed number K, making the algorithm polynomial in
O(K × |N | × log(|N |) + |E|) for producing a reachability model RK . In the special
case where K = 1, this is equivalent to performing a single Dijkstra pass and removing
all actions with an unreachable after-condition. Increasing K would allow us to better
estimate the earliest appearances and detect additional late nodes.

Another simplification is to ignore all after-conditions, which can be done by stopping
Algorithm 1 after the first Dijkstra pass. In practice, this model has all the character-
istics of the relaxed temporal planning graph of popf: (1) the separation of durative
actions into at-start and at-end instantaneous actions is done by the transformation into
elementary actions; (2) the minimal delay between matching at-start and at-end actions
is enforced by the presence of start conditions in the elementary actions representing the
end effects; and (3) any end condition appearing in the elementary action of a start effect
would be ignored because it would be an after-condition. We refer to this reachability
model as R+.

It is interesting to note that R+ and R∞ are equivalent on all problems with no
after-conditions. Classical planning obviously falls in this category as well as any PDDL
model with no at-start effect or no at-end condition. In fact, on such problems R+ and
R∞ are equivalent to building a relaxed temporal planning graph, with no significant
computational overhead.

3.3.2.4 Using the results of a reachability analysis

For a given partial plan φ, a reachability analysis provides us with:

• Raφ, a set of actions reachable in the relaxed problem,

• Rfφ, a set of fluents reachable in the relaxed problem,

• eaφ : (Raφ ∪Rfφ) → N a function associating each reachable action and fluent
with an optimistic earliest time at which it can be added or achieved in a solution
plan.



58 CHAPTER 3. PLANNING WITH TIME AND HIERARCHIES

Those are computed for any partial plan that is extracted from the priority queue
for expansion. Because all computed values are optimistic, Algorithm 2 can be run
incrementally by initializing the set of reachable nodes and earliest appearances with
those computed for the previous partial plan. While the complexity of the incremental
version is unchanged, our implementation suggests that it avoids a lot of redundant
computations. The results of a reachability analysis are used in many parts of the planner
to prune parts of the search space and derive additional constraints on the current partial
plan:

• For any unsupported assertion α ∈ Fφ, if its condition cannot be instantiated to a
reachable fluent f ∈ Rfφ, then the partial plan is marked as a dead-end and search
proceeds with the next best partial plan. Otherwise we temporally constrain α to
be at least as late as its earliest reachable instantiation. This is done by adding the
following constraint to the STN:

distSTN(O, start(α)) ≥ min{ ea(f) | f ∈ Rfφ ∩ dom(cond(α)) }

• We check that all unrefined tasks can be refined by a reachable action. This is done
by restricting the domain of any refinement variable to reachable actions:

dom(Rτ ) ⊆ Raφ

If a task has no possible refinement (i.e. one refinement variable has an empty
domain) then the partial plan is declared a dead-end. Otherwise, the earliest start
time of all unrefined tasks is updated to be at least as late as the earliest reachable
action that can refine it.

• When considering unsupported assertions or unrefined tasks flaws, we disregard any
resolver involving an action with no reachable instances. For instance, if there is
no instance of the move action in Raφ, then the planner would not consider the
insertion of move to support an assertion on the location of a robot. In this case,
the planner would need to rely on assertions already in the partial plan.

• All domain transition graphs (that will be introduced in Section 3.3.3) are updated
by removing any transition provided by an unreachable action. This update has
indirect effects, since it allows more reliable information when reasoning on causal
networks.

• When creating the instantiation variables of Section 3.3.1, the domain of such vari-
ables is constrained to be a subset of Raφ. This indirectly constrains the parameters
of any newly added action to respect some reachability requirements.

3.3.3 Causal Network
We define the causal network of a partial plan φ as the graph Gφ = 〈N,E〉 where N is the
set of assertions in Fφ and E contains an edge x→ y iff there is a causal link stating that
x supports y. This causal network is explicitly maintained by the planner by adding edges
when new causal links are inserted and adding nodes when new assertions are introduced
by newly added actions. For a partial plan to be a solution, the corresponding causal
network must be such that:
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• every assertion x ∈ N that is not a priori supported has an incoming edge

• any change assertion or a priori supported assertion x ∈ N has at most one out-
going edge that targets a change assertion. In addition, x might support several
persistence conditions.

In this section, we show how this graph Gφ can be exploited to infer additional con-
straints on the partial plan and extract heuristic information.

Definition 3.3.2 (Causal Chain). A causal chain is a sequence of change assertions
〈β1, . . . , βn〉 such that for any element βi there is a causal link to its direct successor βi+1.

A causal chain spans over the temporal interval [start(β1), end(βn)] and is said to be
about the state variable sv common to all its composing assertions.

We say that two causal chains possibly overlap if their state variables can be unified
by consistent binding constraints and they span over two possibly overlapping temporal
intervals. Two causal chains necessarily overlap if every consistent instantiations overlap.
Two necessarily overlapping causal chains result in an unsolvable threat because at least
one change assertion of the first chain would temporally overlap a change assertion or a
causal link of the second chain.

In order to facilitate the reasoning on the possible transitions that can be taken by a
state variable, we now introduce Domain Transition Graphs.

Definition 3.3.3 (DTG). A Domain Transition Graph (DTG) of a state variable sv is
a directed graph (N,E) where N is composed of the values that can be taken by sv and
a special node any. E is a set of allowed transitions from one value to another. An edge
in E is of the form v1

d−→ v2 meaning that the value of sv can be changed from v1 to v2 in
d time units. In the special case where v1 = any, it means that sv can take the value v2
regardless of its previous value (even if sv had no known previous value).

The DTG of a given state variable sv is built as follows. For any ground action a that
is reachable (according to reachability analysis):

• if the action contains a change assertion 〈[t1, t2] sv :v1 7→ v2〉, then the DTG contains
an edge v1

t2−t1−−−→ v2

• if the action contains an a priori supported assertion 〈[t] sv :=v〉, then the DTG
contains the edge any 1−→ v.

We say that there is a feasible transition of a state variable sv from a value v1 to a
value v2 if there is a path in the DTG of sv from v1 to v2 or from any to v2. We denote
as distDTG(v1, v2) the length of the shortest such path. An example of a DTG is given in
Figure 3.6.

3.3.3.1 Potential supporters

In order to appear in a solution plan, any unsupported assertion must eventually be
linked to a supporting assertion. This link can take the form of a single causal link or
of a chain of causal links going through statements not yet in the plan. We refer to the
candidates for such supporting assertions as potential supporters.



60 CHAPTER 3. PLANNING WITH TIME AND HIERARCHIES

d0

d1
d2

d3

d4

d5
d6

10

10
10

10

10
10

10

Figure 3.6: Example DTG of loc (r): where the location in which the robot r can
navigate are organized in a circular pattern. Moving from one place to the next takes 10
time units.

Definition 3.3.4 (Potential supporter). Given a causal network Gφ of a partial plan φ,
a change assertion β is a potential supporter of an unsupported assertion α if a set of
statements {s1, . . . , sn} and a chain of causal links β → s1 → . . .→ sn → α can be added
to Gφ.

For an unsupported assertion α, we consider a superset of the set of potential sup-
porters, noted Sα. This set is incrementally updated to contain any change assertion
β ∈ N that satisfies the following necessary conditions:

• the state variables of α and β are unifiable.

• there is a feasible transition from the value produced by β to the value required by
α.

• adding a chain of causal link from β to α will not result in any unsolvable threat.
We consider that there is an unsolvable threat, if the causal chain obtained by
concatenating the current causal chains of α and β would necessarily overlap an
existing causal chain.

In the causal network example of Figure 3.7, the potential supporters of α would be
β and µ and the potential supporters of γ would be β and α. The potential supporters
of ρ are α and ρ. Indeed any causal chain from β to ρ would be threatened by α and by
the causal chain of γ and µ.

3.3.3.2 Deriving Constraints from Possible Supporters

We now consider what temporal constraints can be inferred from the necessary evolution
of a causal network. In order to keep the explanations and notations concise, we first
assume that actions do not contain any a priori supported assertions.

Given this assumption, an unsupported assertion α must eventually be linked to a
change assertion β ∈ Sα by a chain of causal links β → · · · → α. The length of the
causal chain depends on the change assertions needed to go from the value produced by
β (noted eff (β)) to the value needed by α (noted cond(α)). Therefore, start(α) must be
after end(β) with a delay depending on the values of eff (β) and cond(α). More formally,
this requirement is expressed by the following inequality,

distSTN(O, start(α)) ≥ min
β∈Sα

distSTN(O, end(β)) + distDTG(eff (β), cond(α))
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Figure 3.7: Partial view of a causal network of a state variable loc (r) with 4 change
assertions (β, α, γ, µ) and one persistence conditions ρ, all on the same state variable
loc(r). There is a causal link from γ to µ, β is temporally constrained to be before α and
γ, ρ is temporally constrained to be after α and µ. We further suppose β to be initially
supported. This causal network is to be considered jointly with the DTG of Figure 3.6.

where distSTN(O, t) is the minimal delay in the STN between the origin of time O
and the time point t and distDTG(x, y) represents the length of the minimal path in the
DTG to go from any instantiation of x to any instantiation of y. If this inequality does
not hold, it is enforced by setting the earliest time of start(α) to be greater or equal to
the right side of the inequality.

In the case where an assertion α has a single potential supporter β, one can devise a
more specific version that does not use a triangular inequality:

distSTN(end(β), start(α)) ≥ distDTG(eff (β), cond(α))

Again this inequality is enforced by adding in the STN a minimal delay constraint
between etβ and stα.

In the case where some actions contain an a priori supported assertion and that α
can be achieved using one such assertion (i.e. distDTG(any, cond(α)) 6= ∞), the above
rules are generalized by considering a virtual possible supporter that could support it at
time distDTG(any, cond(α)).

Example 3.3. Let us now consider what applying those rules on the causal network
of Figure 3.7 would allow us to infer. Assuming that distSTN(O, stβ) = 0, we would
infer the following temporal constraints:

distSTN(O, stα) ≥ min { distSTN(O, etβ) + 10, distSTN(O, etµ) + 30 }
≥ 20

distSTN(O, stγ) ≥ min { distSTN(O, etβ) + 30, distSTN(O, etα) + 10 }
≥ 40

distSTN(O, stρ) ≥ min { distSTN(O, etα) + 50, distSTN(O, etµ) + 20 }
≥ 80

The important catch is the detection that the persistence condition
ρ = 〈loc(r) = d1〉 cannot be satisfied before time 80. Indeed, the planner has
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already made commitments to other change assertions, between when the value d1
is first achieved by β and the moment it is required by ρ.

3.3.3.3 Estimating the number of additional assertions needed for a valid
causal chain

We further use the causal network as part of heuristic evaluation in order to estimate
how many additional assertions are needed to support the set of open goals.

For each open goal α, the key idea is to find a chain of causal links going from an a
priori supported assertion to α. We seek a minimal chain: filling out the missing parts
should result in as few additional assertions as possible. Figure 3.8 gives an example of
the minimal causal chain needed to support the persistence condition ρ from Figure 3.7.
Building such a causal chain requires the addition of 4 change assertions, resulting in as
many new open goals to be solved.

βd0
d1

d1
d2

α
d2

d3
d3

d4

γ
d4

d5

µ
d5

d6
d6

d0
d0

d1

ρ
d1

Figure 3.8: One possible causal chain to support the persistence condition ρ =
〈loc(r) = d1〉. In blue (and with no label in the upper right) are temporal assertions
that would need to be added for the causal chain to be complete.

Let us now define how we compute hc(α), an estimation of the number of additional
assertions that are needed to build a complete causal chain to the open goal α. We first
remark that our lifted representation means that there are multiple candidates for the
instantiation of the condition of α. We thus introduce hc(f, α) as the cost of building the
causal chain to α if its condition is the ground fluent f . Since the planner has the choice
in the instantiation of variables, we consider the cost of building the causal chain to α to
be the minimum of the cost of building it with any possible instantiation of its condition:

hc(α) = min
〈sv=v〉∈dom(cond(α))

hc(〈sv=v〉, α) (3.1)

where hc(f, α) is the cost of achieving α if its condition is f and dom(cond(α)) is the
set of possible instantiations of the condition of α.

Let us now define hc(f, α), the cost of achieving the ground condition f = 〈sv=v〉
of an assertion α. We give a recursive definition: the cost of building a causal chain is
expressed as the cost of having its rightmost link plus the cost of building a chain up to
this rightmost link.

hc(〈sv=v〉, α) =



0 if α initially supported

min
〈sv=v′ 7→v)〉∈dom(β)

hc(〈sv=v′〉, β) if ∃ causal link β → α

min


min

γ∈Sα, 〈sv=v′ 7→v〉∈dom(γ)
hc(〈sv=v′〉, γ)

min
e=〈v′→v〉∈DTG(sv)

c(e) + hc(〈sv=v′〉, α)
otherwise

(3.2)
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Intuitively, there is no additional cost if α is a priori supported because there is no
need for any causal support (i.e. hc(·, α) = 0).

If α is supported by an incoming causal link β → α, this causal link is necessarily the
last link of the causal chain to α (for instance in Figure 3.7, the last link of any causal
chain to µ is the existing causal link γ → µ). Thus, the cost of achieving the condition
f of α is the cost of achieving the condition f ′ of β, where f ′ is an instantiation of the
condition of β such that β produces f .

If α is in neither of these cases, we are left with two possibilities for the last link of
its causal chain. First, if α has a possible supporter γ ∈ Sα and γ can be instantiated
to provide f , then a possibility is to have a causal link γ → α. In this case, the cost is
the one of achieving γ with such an instantiation. Second, there might a possible action
achieving f = 〈sv=v〉 by adding a change assertion of the state variable sv from a value
v′ to v. Such a change would appear as an edge e in the DTG of sv. As adding this link
in the causal chain requires inserting a new action in the plan, we associate a cost c(e) to
this operation. This cost is set to the number of unsupported assertions in the introduced
action, e.g., for the action move of Figure 2.1 this cost would be 3 since its insertion would
result in 3 new assertions. Furthermore, one still needs to build the causal chain as to
achieve the value f ′ = 〈sv=v′〉 for α.

Example 3.4. Considering the causal network of Figure 3.7, the equation below gives
the estimated cost of building a causal chain to α (i.e. hc(α)). Since all variables
in α are already bound, there is a single possibility for instantiating its condition
(first line). From there, the only possibility to provide the value d2 is to insert an
additional move(r, d1, d2) action, resulting in an additional cost of 3 (second line). To
provide the value d1, we can either have a causal link from β or add another action
move(r, d0, d1) again with an additional cost of 3 (third line). Since β is initially
supported, it induces no extra cost and we can conclude that hc(α) = 3: building a
complete causal chain to support α would require the insertion of three new assertion
into the partial plan.

hc(α) = hc(〈loc(r)=d2〉, α)
= 3 + hc(〈loc(r)=d1〉, α)
= 3 + min { hc(〈loc(r)=d0〉, β), 3 + hc(〈loc(r)=d0〉, α) }
= 3 + min { 0, . . . }
= 3

For computing hc(α), we use a distance computation in an equivalent graph where
each node is a pair 〈f, α〉, f being a fluent and α an assertion in the causal network. An
example of such a graph for the causal network of Figure 3.7 is given in Figure 3.9. Edges
in the graph represent the different possible transitions defined in equation (3.2). We
distinguish a causal link from an existing assertion (two-headed green with a cost of 0)
and a causal link from an additional assertion (red with a non-zero cost). We consider two
special kinds of nodes: nodes representing a priori supported conditions (empty circles)
and nodes representing unsupported conditions (blue circles). Finding a minimal causal
chain to an unsupported assertion α is equivalent to finding in the graph the shortest
path from any a priori supported node to any node representing an instantiation of α.

In the example of Figure 3.9, we can easily find the causal chain of Figure 3.8 by
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looking for the shortest path from 〈d0, β〉 to 〈d1, ρ〉. This shortest path takes 4 red edges
for a final cost of 12, allowing us to conclude that hc(ρ) = 12.

In practice, the computation of hc(α) is done by a backward Dijkstra search: ini-
tializing the priority queue with nodes {〈f, α〉|f ∈ dom(cond(α))}. Search proceeds by
selecting the node with the least cost in the priority queue and adding its direct ancestors
to the queue with an updated cost. Search continues until a node 〈f ′, β〉, where β is a
priori supported, is extracted from the queue. The cost of this node gives the cost of the
minimal causal chain to α (i.e. hc(α)).

d0 d1 d2 d3 d4 d5 d6

β

α

γ

µ

ρ

Figure 3.9: Virtual graph used for computing the minimal causal chain of the assertions
of Figure 3.7.

3.3.4 Search Strategies
The search algorithm is responsible for choosing which node of the search tree to expand
in order to quickly find a solution of good quality. The quality of the solution and the
time spent finding it are often conflicting objective. By default in FAPE, the priority is
given to the latter and plan quality is left as a secondary objective, used as a tie breaking
criteria. The general motivation behind this choice is that the quality of a plan is often
a domain-dependent criteria that can for instance include: the number of actions in the
plan, the makespan of the plan, the work load distribution between the different agents or
the presence of certain action sequences in the plan. For this reason, we deliberately focus
on finding a valid plan independently of its cost. Of course, FAPE provides the capability
to consider cost as an additional objective of search either through anytime planning or
by defining domain-dependent heuristic but we do not discuss those possibilities here.

As it is usually the case in plan-space planning, our search procedure (Algorithm 1)
requires two choices to be made at each search iteration. The first one is the nondeter-
ministic choice of which partial plan to consider next that will define the order in which
the search space is explored. The second one is the choice of a flaw to be fixed in the
selected partial plan. As all flaws must eventually be fixed for a partial plan to become a
solution, this choice is not a backtracking point but will have an impact on the shape of
the search space. A search strategy is composed of two schemes that dictate the choices
made in those two cases.

As it can be expected, a good strategy is not universal as it must take into account
many specificities of the problem at hand. Because we support such a wide range of
planning problem, from generative to HTN problem, we define two strategies. The first
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one aims at being very general and have good performance on a wide range of problem
while the second is specifically tailored for fully hierarchical problems.

3.3.4.1 General Search Strategy

Plan selection. Our plan selection strategy is conceptually based on Aε [GA83] in that
it contains two queues both sorted by the same priority function f . The first one QAll

contains all partial plans that have been generated and not expanded. The second one
QChi is a subset of QAll that is limited to children of the last expanded node. Those two
queues serve different purposes that can be seen as diversification versus intensification:
the planner chooses the partial plan to consider next either as the globally most promising
according to f or commits to its previous choice and tries to further advance the last
chosen plan.

The choice of the queue to use is governed by a parameter ε and is done as follows:
if minφ∈QAll f(φ) < (1 + ε)×minφ∈QChi f(φ) then the next partial plan is the one with
the lowest f value in QAll. Otherwise it is the one with the lowest f value in QChi.
In practice, it means the search is restricted to the children of the last explored nodes
until they are significantly worse than the globally best partial plan, where the threshold
of “significantly” is given by ε. The objective of this technique is to compensate the
inaccuracies in the definition of f .

The priority function f(φ) is defined as the sum of the following values:

1. the number of assertions in Fφ. This helps in estimating the search effort already
done. It can been seen as normalized version of the number of actions in the plan
as other parts of f use the number assertions rather than the number of actions.

2. the number of unrefined task in πφ. This conservatively estimates the search effort
left due to unrefined tasks.

3. the number of unsupported assertions in Fφ.

4. the number of assertions involved in at least one threat. This is a conservative
estimation of the search effort left due to threats. We do not consider the number
of threats itself as it can be, in the worst case, quadratic in the number of assertions
in the plan, resulting in a very important impact on the value of f . Furthermore
the addition of a single temporal constraint is likely to solve many threats at once.

5. the expected number of assertions that must be added to the partial plan. This is
computed as the sum, for every unsupported assertion α ∈ Fφ, of hc(α) where hc
gives the number of assertion needed to reach the minimal causal chain, as defined
in Section 3.3.3.3.

This definition of the priority function f can be seen as composed of the usual g + h
parts where g is given by the first item while h is given by the four others. More specifically
for h, the items 2 to 4 give the search effort directly visible as flaws in the partial plan
while the fifth item give a heuristic estimation of the search effort to be made.

Flaw Selection. Our flaw selection strategy aims at sorting flaws in order to select the
one whose resolution will be most beneficial (or least detrimental) to search. Choosing
which flaw to select next is a tricky question as it mainly permits an organization of the
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search space. A similar use case occurs in constraint satisfaction problems as the choice of
the next variable to be given a value. A very efficient heuristic for this choice is to choose
the one with the smallest domain because it results in the smallest branching factor for
the early stages of search. As a result, the search space of constraint solver can be kept
small. Things are more complex in planning as a plan has more types of components
whose interactions are hard to take into account. Our strategy is given by the ordered
list below. If the first item gives the priority to one flaw over another, then only this one
is kept. Otherwise the next rule is used to break the tie.

1. Prefer a flaw that has a single resolver. A single resolver means that there is a
single option to choose from. Thus, no mistake can be made in applying it.

2. Prefer unrefined tasks over other types of flaws. This priority has the advantage
of giving the priority to decomposition, thus quickly reaching the point where the
plan contains most of its actions with no unrefined tasks. This is useful as unrefined
tasks are weakly accounted for in our plan selection strategy. Getting rid of those
early means we will quickly get to a point where our f function is most informative.

3. Prefer unsupported assertions over other types of flaw. Given two unsupported
assertions, choose the one on the maximally abstract state variables as defined by
Knoblock [Kno94].

4. Finally, prefer the flaw with the least number of resolvers.

Note that if there is a flaw with no resolver, then this partial plan is necessarily a
dead-end and the planner can select a new partial plan directly.

3.3.4.2 Forward Hierarchical Search Strategy

Our second search strategy is dedicated to HTN problems and is conceptually similar to
the forward search techniques of HTN planners like SHOP2 or SIADEX. The key idea
is to hand back some control to the domain designer about which plans will be explored
first. For this reason, the planner will try the different decompositions in the order
defined in the domain and commit to them until they are proved unsound. The planner
also follows an early commitment strategy through its flaw selection strategy, which is
meant to detect inconsistencies in the current plan early on.

Plan selection. Plan selection is made in a depth-first manner with chronological
backtracking. When a node is expanded, the choice of the next partial plan to expand
among its children is made as follows:

• if the last resolved flaw was an unrefined task, meaning that each possible partial
plan matches a possible action for refining it, then give priority to the action defined
first in the domain.

• otherwise sort the candidate children by the priority function of the general search
strategy.

This prioritization allows the domain designer to force the planner to explore plans
in a predefined order. For instance a typical prioritization for different actions to go
somewhere would be to (i) first try to do nothing (i.e. check whether we are already at
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the destination), (ii) otherwise try to go by foot, (iii) if the destination is to far, then
take the car. The rest of the search decisions, such as the choice of how to resolve a
threat, is let to our general search strategy.

Flaw selection. Similarly to the general search strategy, we define the flaw selection
strategy as a sequence of rules whose application is meant to give the next flaw to resolve:

1. Prefer flaws with a single resolver.

2. Prefer the flaw that has the earliest interaction time. The interaction time of an
unsupported assertion (resp. an unrefined task) is defined as the earliest time of its
start time point (e.g. distSTN(O, ts) for an unsupported persistence 〈[ts, te] sv=v〉).
The interaction time of a threat is taken as the maximum of the interaction time
of both assertions it involves.

3. Prefer threats over other types of flaws.

4. Prefer unrefined tasks over other types of flaws. When comparing two unrefined
tasks, prioritize the one that was introduced first.

5. Like for the general strategy, prefer unsupported assertions and prioritize among
them the maximally abstract ones.

6. Prefer flaws with the least number of resolvers.

The general idea behind those rules is to bias the planner into a forward search by
dealing with unsupported assertions and unrefined tasks that appear early in the partial
plan. Indeed, solving them will typically result in the introduction of causal chains
involving assertions from the initial state. The construction of those causal chains forces
the instantiation of object variables involved in them and permits an easier verification
of the conditions on actions.

While this is the general idea, it does not prevent the planner from inserting some of
the last actions of the plan early during search by solving a flaw with a single resolver.

3.4 Related Work

3.4.1 PDDL Temporal Planners

Ever since the introduction of the durative actions of PDDL2.1 for the third IPC, the
PDDL ecosystem has seen the development of many temporal planners, a good part
of which have been participating in the competition. Mainly because of the language
barrier, the IPC community has been a relatively closed environment with no timeline
based planners participating in the competition (with the exception of IxTeT in the
IPC-2002). We here give a brief overview of the temporal planning systems that have
been involved in the IPC, with some exceptions to include closely related planners. An
empirical comparison with such planners will be given in Section 3.5.
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Forward-chaining planners. Not surprisingly, most temporal planners participating
in the IPC more or less directly descend from classical planners. And, as for the classical
planning tracks of the competition, the temporal satisficing track has been dominated
by forward-chaining temporal planners. We partition forward-search planners into three
categories depending on their search space:

• First-fit temporal planners are disguised classical planners that essentially resched-
ule a sequential solution. The most surprising example is the baseline planner that
(unofficially) won the temporal track of IPC-2008 [HDR08]. Implemented by the
organizers to provide basic results to compare against, it greedily rescheduled the
sequential solution provided by MetricFF [Hof03]. A more advanced implemen-
tation of this approach is YAHSP [Vid04; Vid11b; Vid14] whose second and third
versions respectively won the temporal tracks of IPC-2011 and IPC-2014. This
rescheduling approach is also taken by other kinds of classical planners to sup-
port temporally simple problems (e.g. MIPS [Ede03] and an early version of LPG
[GSS06]).
While such planners have the advantage of being simple, they are incomplete as
they can only solve temporally simple problems that do not require concurrency
between actions [Cus+07a].

• Another possibility that was first proposed in TLPlan [BK00], is the one of de-
cision epoch planning. In this setting the planners have a timestamp (called the
decision epoch) at which they can schedule the actions. Successors of search nodes
are generated by either starting a new action at the timestamp or advancing the
timestamp (typically to be just after the next effect). This technique has been
the base of many influential temporal planners such as SAPA [DK03], Temporal
Fast-Downward (TFD) [EMR12], TP4 [HG01], among others [Has06; BK00].
Such planners support some cases of required concurrency but are still not complete
for temporally expressive problems [Cus+07a]. Much like first-fit planners, they
suffer from a lack of systematicity because they choose when actions can be executed
before what to execute. To see why this can by problematic, consider an action
that is entirely independent of the rest of the plan. The planner will consider its
execution at each decision epoch, leading to as many plans that should have been
seen as equivalent.

• A last approach that avoids those limitations is the one of temporally lifted planners
whose line started with CRIKEY [HLF04]. Such planners essentially separate the
problem of what actions to add to the plan and of when to execute them by having
an STN that keeps track of temporal constraints. Those ideas have been perpet-
uated in the many successors of CRIKEY: CRIKEY3 [Col+08], POPF [Col+10],
COLIN [Col+12] and OPTIC [BCC12].
Unlike First-Fit and Decision Epoch planners, those temporally lifted planners are
complete for the semantics of PDDL2.1 and can solve problems with required con-
currency or interdependent actions [Cus+07a].

Regardless of their search space, all forward-chaining planners rely on heuristics to
guide their exploration. Not surprisingly, those heuristic are mainly adapted versions of
one that have been successful in classical planners. Much of those heuristic are based
on a (temporal) relaxed planning graph (RPG) built by ignoring the delete effects of
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actions. YAHSP uses the hadd heuristic by Bonet and Geffner [BG01] that essentially
adds the depth of all goals fluents in the RPG built from the current state. TFD uses an
adaptation of the context-enhanced additive heuristic hcea [HG08] of the classical Fast-
Downward planner [Hel06]. hcea is an generalization of hadd to take into the context in
which the transitions taken occurred. SAPA, CRIKEY, CRIKEY3, POPF, COLIN and
OPTIC all use as a heuristic the length of a relaxed plan extracted from a TRPG. This
heuristic was first used as hFF by the classical planner FF [HN01]. TP4 [HG01] and
HSP∗a [Has06] both use a variant of the hm heuristic that was first defined for classical
planning by Haslum and Geffner [HG00] as a generalization of the hmax heuristic defined
for HSP [BG99].

While all those heuristics have proved extremely useful for those planners, their ef-
fective adaptation to our setting is far from trivial. Indeed, their efficiency relies on a
fully defined state for which we want to find the distance to fully defined set of goals.
Our least-commitment approach with partial orders and lifted actions makes them hardly
applicable to our case.

Other notable approaches. A pioneer work was done by Smith and Weld [SW99] in
their temporal extension of GraphPlan [BF97]. Their planner, TGP, considers durative-
STRIPS actions and finds a solution by extracting it from a planning graph. In the
same line, LPGP by Long and Fox [LF03] is a first complete approach to PDDL2.1. It
decouples the causal parts of the problem, dealt with in a GraphPlan framework, and the
temporal parts that are handed to a linear programming solver. TLP-GP [MR08] does a
similar work but uses a disjunctive temporal network instead of the linear program.

LPG [GSS03; GSS06] is a planner that builds an action graph (with similarities to
planning graphs and to the partial plans of plan-space planning) through stochastic local
search. Its latest version is able to handle problems with required concurrency by split-
ting durative actions into instantaneous ones and simultaneously considering temporal
constraints in an STN [GSS10].

Plan-space planning has been represented by VHPOP [YS03], a ground plan-space
planner that uses an adapted hadd heuristic to guide itself in the set of ground partial
plans. CPT by Vidal and Geffner [VG06] is a more involved ground plan-space planner
that aims at finding plans with an optimal makespan. This is done by placing an upper
bound on the makespan of the plan and trying to prove, through inference and search
whether such a plan exists. To do so, CPT performs a lot of temporal reasoning that is
relevant to our setting. It starts by propagating the earliest appearances of fluents and
actions from the initial state by using the admissible hm heuristic (with m = 2). This
is similar to what we do with our reachability analysis except that we use the weaker
hmax (or synonymously hm with m = 1). The key to the efficiency in optimal planning of
CPT is a set of pruning rules that detect when a resolver would result in an overlength
plan. Those rules are encoded as a CSP and used to infer temporal constraints. Many
of those rules would be applicable in our planner with some adaptation to our lifted
representation. However, their efficiency in CPT is strongly tied to the presence of the
upper bound on the plan length which is not transferable to a non-optimal planner such
as FAPE. Furthermore, to facilitate reasoning, CPT makes the restrictive assumption
that interfering actions do not overlap and is thus not complete.

Planning as satisfiability have been historically strong in optimal classical and parallel
planning (e.g. with planners such as SASE [HCZ10] or SATPlan [KSH06]) but few work
as considered the extension to temporal planning. The recent proposal of ITSAT [RG15]
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closes this gap with a temporal planner supporting PDDL2.1 problems with required
concurrency. This is achieved by first solving, in a SAT solver, an non-temporal problem
where all durative actions have been split into instantaneous ones. The planner then tries
to find a schedule for this plan by considering the temporal constraints in an STN. If no
such schedule exists, the problem is extended with an additional clauses forbiding the
cause of the temporal inconsistency and the procedure is restarted.

Discussion. We first note that all reviewed planning systems strongly rely on a ground
representation both for their representation of a plan during search and for computing
their heuristics. We remark that this makes harder the adaptation of the wealth of
heuristics that have been developed for those planners to the lifted representation of
our planner. On a more general note, this raises the question of whether those planning
system can be adapted to a more general setting where problems might contain thousands
of objects, leading to millions of ground actions instances. There has recently been some
tentative to lift this limitation for classical planners by, e.g., Ridder and Fox [RF14]
construct a lifted planning graph for use in heuristic evaluation and [WSH16] tries to lift
the search space of a classical planner by compiling symmetries in the domain definition.
However their methods are still incremental developments that do not depart from the
other limitations of classical planning and have not been adapted to temporal planning
yet. The approach we take in FAPE is more viable as it can reason on entirely lifted
problems and only grounds the actions to better guide the search.

We also remark that, in the planners we have reviewed, the only one supporting
PDDL2.2 is OPTIC (together with a subset of PDDL3) all others planners being limited
to PDDL2.1. This greatly limits the expressivity of those planners as PDDL2.1 does not
allow expressing problems with timed initial literals or deadlines. While such features
can be compiled into PDDL2.1 (see [FLH04]), doing so makes a tight integration of a
planner into a more general acting system harder as it requires to translate the problem
back and force between its natural representation and the one of the planner. Other than
OPTIC, a notable exception is TLP-GP that uses a more expressive language with timed
initial literals, deadlines and even conditions and effects at arbitrary fixed times within
an action.

Regarding planners complete for the semantics of PDDL2.1 (i.e. CRIKEY(3), POPF,
COLIN, OPTIC, VHPOP, LPG, LPGP, TLP-GP, ITSAT), we remark that they all use
some kind of temporal lifting and use temporal networks or linear programming to rep-
resent their temporal constraints. This allows them to obtain flexible partial plans which
is desirable for execution. We further remark that, of those complete planners, all but
VHPOP and TLP-GP require splitting the action into as many instantaneous action as
there are timepoints in the original action. While this is doable (with added complexity)
for PDDL where all actions are limited to timepoints, adapting it to a language with
an arbitrary number of timepoints is at best non-trivial and might lead to important
performance loss.

3.4.2 Hierarchical Planners
HTN planning has historically been developed around a plan-space approach with plan-
ners such as NOAH [Sac75], Nonlin [MR91], SIPE [Wil90; WM95], O-Plan [TDK94] and
UMCP [EHN94]. At a time where heuristics were in their infancy in automated planning,
hierarchies allowed increasing the planners’ performances by guiding their search. Much
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like plan-space planners, those planners maintained a partial plan representation with
causal links and further allowed the transformation of an abstract action into subactions
through decomposition. While there is a lack of general evaluation of the performance
of those planners, the general survey by Georgievski and Aiello [GA15] tends to indicate
that they have difficulties in scaling up to problems handled by today’s state of the art
domain independent planners.

A major shift in hierarchical planning occurred with the introduction of state-based
HTN planners by SHOP [Nau+00] and SHOP2 [Nau+03]. SHOP2 follows a forward
chaining mechanism by sequentially building a plan. For this purpose, SHOP2 nondeter-
ministically chooses the next task to consider among the ones that have no predecessors.
If the task is abstract, it then branches on the choice of a method to decompose it. Oth-
erwise, the corresponding primitive action is appended to the current sequential plan.
Much like state space planners, this scheme allows the maintenance of an explicit current
state against which all planning decisions can be evaluated. This is primarily used to
check which methods are applicable: a method is only applicable if all its preconditions
are contained in the current state. This allows early pruning without impacting the
completeness of the approach: indeed a missing precondition cannot be achieved since
the addition of any action in the plan would occur after the current state and thus can-
not serve as an achiever. In comparison, our plan-space approach cannot make similar
pruning since additional actions might appear between the task currently being refined
and the temporal origin. However, this scheme has an important drawback: when a set
of actions can be maintained partially ordered, SHOP2 will consider all their possible
sequences. SHOP2 also uses the state as a base to define some domain dependent search
control, e.g., one can define state-dependent priority functions for the order in which val-
ues of a parameter will be tried. In general the full state can be used as a base to control
all aspects of the search, starting from which task to first decompose and which method
to try first down to the instantiation of all parameters of the actions. This provides
tremendous power to the domain designer to provide guidance to the planner as well as
domain specific procedures for computing the current state. The downside side is that
more stress is placed on the domain designer as SHOP exclusively relies on those search
control mechanisms.

While SHOP and SHOP2 have seen some simple extension for handling time [YN00;
Nau+03; Gol06] the most elaborated temporal state-based HTN planner is SIADEX
[Cas+06; Fde+06]. SIADEX allows the placement of effects at arbitrary timepoints
within durative actions. Conditions are restricted to be placed at the action’s start. Like
SHOP2, SIADEX builds an inherently sequential solution through action chaining. The
main change is that SIADEX performs an online scheduling of the plan by essentially
constraining an action to start after all its preconditions are true. This last step is done by
keeping track of temporal constrains in an STN with propagation techniques tailored for
the specificities of HTN planning and allows for the representation of partially ordered
plans during search [Cas+06]. However, if multiple sequential solutions would lead to
the same rescheduled plan, the partially ordered plan would appear as many times in
the search space. With this regard, SIADEX has the same limitations as SHOP2. The
maintenance of temporal information at planning time is nevertheless needed to reason
on deadline and temporal synchronization between tasks (as supported by their problem
definition).

An alternate approach to hierarchical planning has been proposed in the form of Hier-
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archical Goal Networks (HGN) [Shi+12]. Shivashankar et al. replace the task networks
of methods with totally ordered goal networks. Search proceeds by either (i) appending
an action to the plan if it is applicable in the current state and achieves the first goal
of the goal network; or (ii) extending the goal network if there is a method applicable
in the current state that is relevant for the first goal of the goal network (i.e. the last
goal appearing in the method’s goal network is the next one to be achieved). The main
limitation of the formalism is the restriction to totally ordered goal networks. It was par-
tially lifted by Alford et al. [Alf+16] who allow partially ordered goal networks while still
looking for a totally ordered plan (however no implementation nor empirical evaluation
was provided for this extension). The HGN algorithm was recently extended to support
cost-optimal planning by adapting classical planning heuristics to evaluate the minimal
number of actions needed to achieve all current goals [Shi+16]. Like HTN, HGN typ-
ically requires complete hierarchical knowledge: the method should allow decomposing
the initial goal network in a totally ordered sequence 〈g1, . . . , gn〉 such that at most one
action is needed to achieve the goal gi from the state si−1 where gi−1 was achieved (where
s0 is the initial state). GoDeL [Shi+13] is an interesting extension that allows a partial
hierarchical knowledge that would result in “gaps” in the goal networks. Those gaps are
filled either by inferring new goals through landmark regression (e.g. the technique used
by LAMA [RW10]) or by using a classical planner to find a sequence of actions reach-
ing the next goal. Their experiments show that even partial hierarchical knowledge is
extremely beneficial for search while reducing the burden of the domain designer.

The use of HTN planning with task insertion was first explored with PANDA [Sch09] a
lifted hierarchical planner reasoning in plan space. PANDA allows the use of high-level
actions that can be decomposed into lower-level ones. Both high-level and primitive ac-
tions are always considered free and can thus be freely inserted by the planner to resolve
open goals, outside of any decomposition tree. Parameters of the partial plan are kept
lifted and handled in a binding constraint network. PANDA only supports limited qual-
itative time with its plan-space representation allowing it to represent partially ordered
plans. Many heuristics have been studied to be used with PANDA both for flaw ordering
and plan selection in a best first search setting [Sch09; Elk+12; BKB14]. More specif-
ically, Elkawkagy et al. [Elk+12] extract necessary conditions that must be achieved in
all possible decompositions of a task network and counts them in their heuristic based on
the number of flaw. Similarly, Bercher, Keen, and Biundo [BKB14] estimate the minimal
number of flaws that would result from decomposing the current task network. Both
heuristics would be relevant for usage in FAPE as a means to account for the difficulty
of decomposing the current tasks. Their effect on the scalability of PANDA is however
disappointing and does not allow the planner to handle complex plans.1

HiPOP is a recent planner that mixes HTN and generative planning in plan-space
[Bec+14; Bec16]. HiPOP considers primitive actions in the form of PDDL2.1 operators
and abstract actions that can be transformed into a partially ordered set of primitive or
abstract actions through the application of methods. An abstract action is manually
annotated with effects that reflect either the ones that will be inserted by all its
decompositions or some high level effects it achieves. For instance, an high level effect of
an abstract action that is used to explore all locations of a given area would be to mark

1On the provided test data, Breadth-First Search is slightly slower but overall competitive with a
Best-First search guided by the proposed heuristics.
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the area explored (while its subactions would mark all locations in the area as
explored). The planner considers three types of flaws: threats, unrefined abstract
actions and open goals. Unlike FAPE, the introduction of a new abstract action to
support an open goal is limited to actions that can support it through an effect
explicitly stated in the abstract action. Because those effects are a subset of the
possible effects of all decompositions, the completeness of the planner is not guaranteed.
Another possibility provided by HiPOP is to manually distinguish the primary effects of
an action (abstract or primitive) from its side effects. An action can only be inserted to
support an open goal through its primary effects, again impacting the completeness of
the approach. For both extensions, the presence of a solution plan in the search space of
the planner depends on the flaw ordering heuristic and the one proposed does not
guarantee completeness in general. In practice its completeness is problem dependent:
for a given domain, a different formulation of the goals could make it miss otherwise
acceptable solutions. HiPOP allows to give further indications to the planner: one can
specify a list of predicates that an abstract action would be conflicting with and also
specify which causal links should be inserted between the subactions of a method. On a
general note, HiPOP provides many tools that empower the domain designer to restrict
the search space. This allows HiPOP to obtain good performance on realistic robotics
exploration scenarios [Bec16]. The down side is that achieving this performance requires
an important amount of problem-specific knowledge rather than domain-dependent
knowledge (e.g. in the encoding of an exploration domain each area to explore has a
dedicated abstract action [Bec16, Annex D]).

3.4.3 Timeline-based Planners

The work on temporal planning largely predates the introduction of durative actions in
PDDL2.1. Indeed, the observation by Vere, that the Partial-Order Causal Link technique
can be generalized to rich temporal models, lead to numerous planners with advanced
temporal representation capabilities [Ver83; GL94; Mus94; PW94; FJ03]. Vere’s Deviser
planner applied a plan-space approach, based on flaw detection and resolution, to a
model where actions were associated to temporal intervals and problems could feature
temporally extended goals and execution windows [Ver83]. The key idea in Deviser was
the maintenance of the metric relationships between temporal intervals in a constraint
satisfaction problem. ZENO [PW94; Pen93] extends this approach to allow reasoning on
resources with continuous change. This notably includes specific data structures to keep
track of assertions on the evolution and the requirements of resources and allow detection
of inconsistencies in their usage as additional flaws and resolvers.

IxTeT [GL94] is a related least-commitment planner supporting explicit time and re-
sources in a plan-space approach. Unlike the previous Zeno and Deviser, IxTeT uses time-
points as the building block for representing temporal relations. Once again a large part
of the internal representation and reasoning is handled by specific constraint satisfaction
problems representing constraints on timepoints and parameters of actions. IxTeT has a
domain-independent search strategy based on an extended notion of least-commitment.
Specifically, given a flaw to resolve, it will try first the resolver that least restricts the set
of possible solutions. The least restricting resolver is heuristically chosen by measuring
its impact on the underlying constraint networks (e.g. the reduction of the domain of a
variable when placing an equality constraint).
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Another line of work emerged with HSTS [Mus94] from the objective of tightly integrating
planning and scheduling. Instead of actions, HSTS relied on the notion of compatibil-
ities to describe the possible interactions between various timelines. For instance, on
a timeline representing the position of a rover, the temporal interval (or token in their
formalism) associated with the value going(a,b) must be met by a token at(a) and must
meet a token at(b). The compatibility could be used to express requirements on other
timelines, e.g., that the battery of the rover be sufficiently charged for the duration of
the action. The planner’s objective is to find fully defined timelines that respect all
compatibilities. Despite the difference in the representation, this was again achieved by
a flaw/resolvers mechanism that borrowed most of its search technique from plan space
planning, e.g., instead of choosing which action to use as a supporter, HSTS would choose
which compatibility to enforce and introduce the necessary tokens and constraints for its
implementation. HSTS was notably used as a base for the Remote Agent Planner (RAP
or RAX-PS) that was demonstrated by running on board the Deep Space One spacecraft
and controlling its operations during two days in 1999 [Nay+99]. The ideas of HSTS
later matured into EUROPA [FJ03; Bar+12] whose central paradigm is to see planning
as a dynamic constraint satisfaction problem where choices of the planner simply results
in the addition of constraints to underlying constraints networks. As a result EUROPA
was not only used for planning but also to handle problems that are usually reserved to
CSP or SAT solvers such as scheduling and optimization problems.

Let us point out some of the keys differences between the search space of FAPE and
the one of EUROPA. The core component in EUROPA is the timeline that generalizes
state variables to also represent activities (or actions in our formalism). A timeline must
eventually be filled with a sequence of tokens, each of which giving the value taken by the
timeline over a given temporal interval. To make a direct comparison with our model, a
timeline typically represents the evolution of a state variable, e.g., in our example problem
we would have a timeline for the state variable loc (r1) and one for the state variable
loc (r2). Tokens are best thought of as persistence assertions with lifted parameters and
associated to a temporal interval. A key difference between FAPE and EUROPA appears
in the way unsupported assertions (or free tokens in EUROPA terminology) are handled.
Indeed, given a free token, EUROPA will first assign it to a given timeline. Put into
FAPE formalism, this is roughly equivalent to binding all the parameters of the state
variable of the unsupported assertion.

Example 3.5. Consider the simple case where we have two rovers r1 and r2, initially
in location d0, and that our objective is to have a rover in d1. This goal is represented
by the persistence condition 〈[ts, te] loc(r)=d1〉.

In EUROPA handling this unsupported assertion (or free token) would first re-
quire assigning it to a timeline, i.e., binding the r variable. The planner would then
decide how to support it. In this case it would mean triggering the compatibility cor-
responding to move(r1, x, d1) or the one corresponding to move(r2, x, d1) depending
on the choice previously made for r.

In contrast, FAPE would directly consider the insertion of a move(r, x, d1) action,
leaving the r variable unbound. As a consequence, the search space of FAPE would
be more compact, representing both possibilities in a single partial plan. On the
down side, it makes automated reasoning on a partial plan more complex since it has
more possible instantiations.
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EUROPA was not developed as a domain-independent planner but instead provides
facilities for the definition of domain-dependent search control. This typically takes the
form of ordering functions to order the different flaws and resolvers. Combined with a
depth-first strategy, it allows a good control on the search of the planner. The natural
support for temporally rich action models further allows for a hierarchization of the
search space by the introduction of abstract state variable. Indeed, mimicking our m2-
transport action of Figure 2.2, one could have high-level transport activity affecting an
abstract transported timeline. The compatibility associated with transport would in
turn require the presence of load, move and unload activities by placing tokens on lower
level timelines. This is however a limited form of HTN planning, as the notion of task
dependency is missing and relying on state variable instead of tasks means that one
is restricted to the use of task sharing (indeed a single “effect” can support multiple
“conditions”).

Some work has been conducted to transpose ideas from domain-independent planners
into EUROPA [BS07; BS08; BS09]. The key to this work is the adaptation of Domain
Transition Graphs to the internal model of EUROPA. Those are used in fashion similar
to ours (Section 3.3.3.3): to estimate the difficulty of building a causal linking assertions.
The main difference in the usage of this information is that Bernardini and Smith use it
to estimate the “cost” of placing a given token at a given position in a timeline, giving a
local view of the cost of using a specific resolver. When used to compare it with the cost
of placing this token elsewhere, it gives an ordering function for the choice of a resolver.
Combined with the Depth-First search of EUROPA, this heuristic proves useful in a few
domains that EUROPA was able to handle without any domain dependent knowledge
[BS08]. However the Depth-First strategy of EUROPA proved limiting in this setting
as it places additional pressure on the heuristic: the planner could only recover from a
mistake if it proved all resulting plans to be invalid. As a result, when such a mistake is
made early during search, the planner would fail to find a solution as it would stay stuck
in an unfeasible branch.

Much work involving planning and scheduling for space relies on timelines as the central
representation (as surveyed by Chien et al. [Chi+12]). As a result, the European Space
Agency (ESA) launched the Advanced Planning and Scheduling Initiative (APSI) that
resulted in the definition of the Timeline-based Representation Framework (APSI-TRF)
[Ces+09]. While not a planner per se, APSI-TRF aims at being a timeline-based deliber-
ation layer to provide facilities for the implementation of timeline based planners. Those
notably include a module for the representation of timelines together with specialized
constraint solver to reason on temporal and binding constraints.

It has notably been used as a building block for the GOAC-APSI planner [Fra+11].
GOAC-APSI (and its predecessor OMPS [CFP08]) share most of its search mechanism
with EUROPA and tries to iteratively fix flaws in a depth first search.

It has also been used as the base layer in MrSPOCK [Ces+09], a long term planner for
the Mars Express mission. MrSPOCK works by first greedily constructing a long term
plan that is then optimized through a genetic algorithm. One of the key insights in this
work is the use of a timeline representation not only as a book-keeping structure for the
genetic optimization phase but also for propagation of temporal and binding constraints
in this phase.

A similar approach is taken in the meta-CSP framework that sees a planning and schedul-
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ing problem as a higher level constraint satisfaction problem that requires cross reason-
ing on several lower level CSPs (referred to as ground CSPs). More specifically meta-
constraints enforce high-level requirements on the solution plan, playing the role of the
flaw detection function of our approach. A conflict associated to a meta-constraint is
denoted by a meta-variable whose domain is a set of meta-values. For instance, given a
meta-constraint enforcing the overall consistency of the plan, a meta-variable would be
associated with each pair of conflicting assertions. The meta-values in its domain would
be a set of separation constraints spanning both on a temporal ground CSP and on a
bindings ground CSP. The key idea is to leverage this generic approach to allow a natural
integration with more application specific components by the addition of supplementary
ground CSPs and meta-constraints.

This general approach has been instantiated in several planners targeting robotic ap-
plications while relying on a common core for reasoning on time, causality and resource
consumption. These core capabilities are extended by Di Rocco, Pecora, and Saffiotti
[DPS13] to allow reasoning on information dependencies in robotic tasks. For this pur-
pose, the activities of the robots are annotated with the information they need and the
one they produce while the relationship between different informations is encoded as a
set of Horn clauses. Meta-constraints enforce the production of all (directly or indirectly)
needed information by the scheduling of additional activities. On another line, Mansouri
and Pecora [MP14] provide an additional ground CSP for spatial reasoning, allowing
them to reason on the relative placement of objects for service robot tasks.

The meta-CSP framework has recently been used as a base to create CHIMP: a (pure)
HTN planner with a timeline-based representation [Sto+15]. Like traditional HTN plan-
ners, CHIMP uses a notion of task that can be decomposed into partially ordered task
through the application of methods. Conditions and effects are represented as tokens that
will be placed on a timeline. The former must be unified with an existing token while the
latter are added to the timeline. CHIMP follows a pure HTN approach: methods and ac-
tions can only be inserted if they refine an existing task, i.e., all actions in the plan derive
from the initial task network. While their input language differs, FAPE (when restricted
to pure HTN planning) and CHIMP have essentially the same model with multi-valued
state variables and expressive time representation that are mapped into a lifted partial
plan representation whose most aspects are handled through constraint networks. The
key difference between them lies in the way they explore their search space. While it is
generally more flexible, CHIMP can be seen as a forward search planner: given a method
or an action to insert in the plan, CHIMP immediately unifies all its conditions with ex-
isting tokens on timelines. In practice this means that all the effects supporting an action
must already be in the plan when it is introduced. Because the supporting effects could
be introduced by decomposing a yet unrefined task, maintaining completeness requires
making the choice of which task to refine nondeterministic (i.e. a backtrack point). On
the other hand, FAPE treats conditions of actions (high-level or primitive) as open goals
and thus does not require branching on the choice of which task to decompose. The
approach taken by CHIMP has some clear advantages. First, the fact that the planner
never maintains open conditions greatly simplifies the underlying implementation. Sec-
ond, the conditions on methods can be checked right away and be used to prune the
search space early on by discarding non-applicable ones. The down sides are also impor-
tant: (i) it can drastically impact the systematicity of the planner as equivalent plans
can be explored multiple times, (ii) it forces an early commitment as unifying the con-
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ditions would typically result in instantiating their parameters. Another limitation, less
relevant here, is that CHIMP cannot solve problems with causally interdependent actions
(see Example 2.4). To mitigate the impact on systematicity, we can make the following
observation: if the actions derivable from a task t1 have no effect that can support an
action derivable from a task t2, then t2 can always be decomposed first without impacting
completeness. Such refinement order can be explicitly enforced in CHIMP: the planner
would thus try to decompose t1 before t2, if this order fails, then the planner would not
try the other way around. The application of such enforcement is however limited: any
two tasks that have no predefined order and might use a common resource cannot benefit
from it. Since FAPE and CHIMP take very different approaches to reason on essentially
equivalent models, we will further empirically evaluate the efficiency of their techniques
in Section 3.5.3.

ASPEN is another timeline based planner proposed by the NASA Jet Propulsion Labo-
ratory (JPL) [Fuk+97; Smi+98; Chi+00a; Chi+00b]. It shares with the others the same
underlying structure of timelines whose temporal parameters are handled in a dedicated
constraint network. The main difference lies in the use of iterative repair [Zwe+93] to
perform local search in place of the depth-first search adopted by other timeline-based
planners. This local search is driven by the resolution of conflicts in the partial plan,
e.g. temporal inconsistency or lack of causal support. Due to the nature of its search,
conflict resolution allows both constructive resolvers (e.g. scheduling a new activity) and
destructive ones (e.g. removing an activity). This local search has practical benefits as
it allows to take as input any plan regardless of its flaws and inconsistencies. Efficiency
is achieved by ASPEN by the definition of a hierarchical structure where activities can
be refined into subactivities, allowing the planner to quickly bootstrap its search with
a minimal (possibly flawed) plan. However, this hierarchical structure strongly differs
from the one of hierarchical planners as it is not constraining: some constraints due to a
decomposition could be relaxed through local search. ASPEN uses hand written rules to
weight the different flaws and resolvers. The search algorithm then randomly selects the
next flaw-resolver pair to apply with the probability distribution favoring higher weighted
elements. Unlike other timeline based planners, ASPEN tends to favor early commitment
and grounds all non-temporal parameters. While increasing the search space, it makes
reasoning on partial plan easier and allows for better integration with external compo-
nents that do not naturally handle a lifted representation [Chi+98].

Several of these timeline based planning system have been successfully deployed in the
many space applications for which they were developed (as surveyed by Chien et al.
[Chi+12]). More recently, they have been adapted to other application domains includ-
ing marine exploration [McG+08] and robotics [DPS13; Pec+12; Cir+14; MP14; Sto+15].
The key to this success has been the flexible timeline-based representation that allows for
many extensions to the basic planning paradigm. The most prevalent such extension is
the handling of resources, supported by all the above planners, that is naturally handled
by dedicated flaws and resolvers. The down side of these timeline based planners is the
harder integration of domain-independent search control and heuristics in particular. The
need for heuristic should however be mitigated as the conflict directed search takes ad-
vantage of the structure of the problem by only extending the plan to fix a visible conflict.
Furthermore the least-commitment approach allows more compact search spaces where
many possible plans are represented in a single search node. On the other hand, domain-
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independent planners based on state space search are extremely dependent on the quality
of their heuristic because it is used to justify the choice of actions whose contribution
to the overall plan is yet unknown. This strong dependency on heuristics makes them
harder to extend with additional constraints since even minor changes to the allowed set
of solution must be reflected on the heuristic value. Least commitment timeline-based
planners have been easier to adapt to various settings due to their more general constraint
based representation and their lower dependence on domain-independent heuristics.

FAPE seeks a middle ground between those two approaches by aiming for a good
domain-independent performance on a restricted set of problems while maintaining the
overall benefits of a timeline representation. Indeed, FAPE focuses on efficiently han-
dling causal relationships that are the core of many planning applications. On the other
hand, we acknowledge the need for more targeted extensions to solve real world prob-
lem. Two such extensions, for handling temporal uncertainty and for the maintenance of
abstract long term plans, are developed in the subsequent chapters. The combination of
a flexible timeline representation and of a least commitment search is key in integrating
those extensions through an alteration of flaw detection functions. Furthermore, the low
dependency of FAPE on heuristic values remains important to handle such cases with
domain-independent search. However, when this is not sufficient, the planner can rely on
domain dependent knowledge, typically provided by adding hierarchical features to the
domain.

3.5 Empirical Evaluation
We have presented an algorithm able to plan both in a generative and a hierarchical
fashion with rich temporal models. Our proposal is complemented with a number of
techniques intended to improve the efficiency of the planner by (i) inferring constraints,
(ii) guiding the planner to efficiently explore its search space.

In this section, we first compare FAPE with state-of-the-art temporal planners from
the IPC. We show FAPE to be competitive in a fully generative setting and the addition
of hierarchical knowledge to further improve its performance. We then study how each of
the techniques we have described contribute to the overall efficiency of the system. Last,
we study the impact of the respective techniques of FAPE and CHIMP to reason on their
very similar models.

3.5.1 Empirical Comparison with IPC Planners
Experimental setup. For comparison with state of the art PDDL temporal planners,
we consider 11 temporal domains from the International Planning Competition all of
which with PDDL2.1 versions. We have manually written ANML versions of the domains
that closely mirror the original PDDL model: domains have the same actions and a direct
mapping from predicates to corresponding state variables. For each domain, we wrote
a, domain-specific, automated translator that parsed the original PDDL problems and
output ANML problem files.

We use hierarchical versions of a subset of those domains (blocks, hiking, logistics,
turnandopen). Those domains were chosen either because they have a natural expression
with partial hierarchies (blocks and logistics) or because FAPE had difficulties in solving
the generative versions of the problem (hiking and turnandopen).
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Three of the selected domains have “advanced” temporal features. Namely, airport-tw
and satellite-tw have temporal windows that respectively restrict the instants at which
a plane can take off and at which a satellite can transmit data. In addition, the goals
of pipesworld-dl are associated with deadlines that must be met by the solution plan.
We use compilations of those domains into PDDL2.1. All domains, in their ANML and
PDDL versions, are available online in FAPE’s public repository.2

Planners. We compare FAPE to POPF [Col+10], OPTIC [BCC12] and Temporal Fast-
Downward (TFD) [EMR12]). POPF is a complete PDDL2.1 planner based on temporally-
lifted progression planning [Cus+07a]. As such it can be seen as a forward-search planner
taking a late-commitment approach in the ordering of actions and uses the FF heuristic
adapted for temporal planning. OPTIC is a recent extension to POPF that supports
more advanced PDDL features, including PDDL2.2 timed initial literals and PDDL3
preferences.

Temporal Fast-Downward (TFD) is a temporal extension of the successful Fast-
Downward classical planner using a decision-epoch mechanism [Cus+07a]. It performs
heuristic search in the space of time-stamped states, using an adapted version of the
context-enhanced additive heuristic [HG08]. TFD supports PDDL2.1 syntax but is not
complete as it only supports a limited class of problems with required concurrency. More
specifically it cannot handle problems with interdependent actions.

POPF and TFD have been runners-up in the temporal satisficing track of IPC-2011
and IPC-2014 respectively. We did not consider YAHSP, the winner of those two tracks,
in our comparison as it only supports temporally simple problems and as such is strictly
less expressive that the other planners considered here.

We distinguish two versions of FAPE. FAPE-Gen denotes the purely generative version
of FAPE that only considered flat domain encoding with no hierarchical information. It
uses the general search strategy and has no domain-dependent knowledge. FAPE-Hier
uses the hierarchical versions of the blocks, hiking, logistics and turnandopen domains
together with the forward hierarchical search strategy. For flat domains, it uses the
general search strategy and is equivalent to FAPE-Gen.

Results. All tests were performed on an Intel Core i7 and allowed to run for 30 minutes
with 3GB of RAM. The results are given in Table 3.2 in terms of the number of problems
solved by each planner within the time limit. POPF crashed while preprocessing two
domains (pipesworld-dl and satellite-tw). For this reason, we provide a subtotal excluding
said domains to facilitate the comparison.

The performance of the purely generative version of FAPE is comparable with that of
POPF and OPTIC. TFD is ahead in terms of number of problems solved. The addition
of hierarchical knowledge in 4 of the domains allows FAPE to solve 36 more instances.
As a result, it outperforms POPF and OPTIC and but still falls behind TFD in terms of
solved problems.

A focused subset of the results is given in Table 3.3 for problems with deadlines and
timewindows. Those are the only domains of the test set where time is strictly needed,
i.e., on all other domains every solution plan has a valid totally ordered counter part.
While being the overall best performer, TFD exhibits poor performance on those domains,
solving only 3 problems.

2Available at https://github.com/laas/fape

https://github.com/laas/fape
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FAPE-Gen FAPE-Hier POPF OPTIC TFD
(ipc4) airport 6 6 7 7 37
(ipc4) airport-tw 7 7 17 7 1
(ipc2) blocks* 25 27 32 32 35
(ipc8) driverlog 4 4 0 0 0
(ipc2) logistics* 22 27 27 27 27
(ipc4) pipesworld-dl 6 6 - 13 2
(ipc5) rovers 34 34 26 26 29
(ipc4) satellite-tw 10 10 - 4 0
(ipc8) satellite 16 16 3 4 17
(ipc8) turnandopen* 0 8 8 9 18
(ipc8) hiking* 0 20 10 9 19
Subtotal (POPF specific) 114 149 130 121 183
Total 130 165 - 138 185

Table 3.2: Number of problems solved in 30 minutes for various temporal IPC domains.
The best performance in given in bold. FAPE-Hier uses hierarchical versions of the
starred domains and generative versions of the others.

FAPE (Gen/Hier) OPTIC TFD
(ipc4) airport-tw 7 7 1
(ipc4) pipesworld-dl 6 13 2
(ipc4) satellite-tw 10 4 0
Total 23 24 3

Table 3.3: Results limited to domains featuring deadlines or timewindows. FAPE-Hier
does not appear separately as we only considered generative versions of those domains.
POPF is excluded since it failed to process two of those domains.

3.5.2 Evaluation of the Different Components of the Planner
3.5.2.1 Evaluation of Reachability Analysis

We start by evaluating our proposed reachability analysis independently of other tech-
niques. The motivation to do so comes from the fact that it generalizes the delete-free
analysis done by classical planners to a temporal setting. More interestingly, the other
adaptation of this technique by Coles et al. [Col+08] is easily represented in our frame-
work by considering an additional relaxation. We can hence make a direct comparison
between them.

Tested Configurations. We distinguish 5 configurations of the planner depending on
how far it pushes the reachability analysis.

• R∞ is the configuration where no limitation is put on the number of iterations for
reachability analysis.

• R5 and R1 denote the configurations where the number of iterations is limited to 5
and 1 iterations, respectively. This makes the algorithm strongly polynomial and
reduces the overhead when many iterations are needed to converge. On the other
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hand, the algorithm might incorrectly label unreachable actions as reachable and
fluents/actions will typically be found to have lower earliest appearance times.

• R+ denotes the configuration where all after-conditions are ignored. In practice,
it means that the propagation will stop right after the first Dijkstra propagation
(in the middle of the first iteration). This configuration is equivalent, for our more
expressive temporal model, to the reachability analysis performed by popf and
related planners [Col+10; Col+08; BCC12; Col+12].

• ∅ denotes the configuration where no reachability analysis is performed. In this
case, the planner does not ground the problem which reduces its overhead.

Experimental setting. We evaluate our reachability analysis technique on several
temporal domains with and without hierarchical features, the former involving many in-
terdependencies between high-level actions and their subactions. The satellite, rovers,
logistics and hiking domains are the eponymous domains from the International Plan-
ning Competition. The handover domain is a robotics problem presented by Dvorák et
al. [Dvo+14b], the docks domain is the dock worker domain of Ghallab, Nau, and Traverso
[GNT04] and machine-shop is the problem presented by Cushing et al. [Cus+07b]. Hi-
erarchical versions of the domains have their names appended with ‘-hier’. We note that
the flat versions of the domains satellite, rovers and logistics are temporally simple and
contain no after-conditions. On such domains, our first four configurations are equivalent
as discussed in Section 3.3.2.3. All experiments were conducted on an Intel Xeon E3 with
3GB of memory and a 30 minutes timeout.

R∞ R5 R1 R+ ∅
(ipc-8) satellite (20) 14 14 14 14 15
(ipc-5) rovers (40) 25 25 25 25 25
(ipc-2) logistics (28) 8 8 8 8 8
(ipc-8) satellite-hier (20) 17 17 17 17 16
(ipc-5) rovers-hier (40) 22 22 22 22 22
(laas) machine-shop-hier (20) 7 7 7 7 7
(ipc-2) logistics-hier (28) 28 28 28 6 9
(laas) handover-hier (20) 16 16 16 7 7
(ipc-8) hiking-hier (20) 20 17 16 15 17
(laas) docks-hier (18) 17 13 12 7 7
Total (254) 174 167 165 128 133

Table 3.4: Number of solved tasks for various domains with a 30 minutes timeout. The
best result is shown in bold. The number of problem instances is given in parenthesis.

Results and Discussion. Table 3.4 and Figure 3.10 present the number of problems
solved using different reachability models. For this criteria, R∞ outperforms the other
configurations: solving the highest number of problems on all but one domain. R5 and R1
are respectively second and third best performers while R+ does not provide significant
pruning of the search space; the computational overhead makes it perform slightly worse
than no reachability checks (denoted by ∅). As expected, on temporally simple problems
(non-hierarchical domains in our test set), all configurations show similar performance.
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Figure 3.10: Number of solved tasks by each configuration within a given time amount.

R∞ R5 R1 R+ ∅
satellite 0.0 0.0 0.0 0.0 0.0
rovers 43.5 43.5 43.5 43.5 0.0
logistics 34.5 34.5 34.5 34.5 0.0
satellite-hier 14.1 14.1 14.1 14.1 0.0
rovers-hier 72.6 72.6 72.6 27.1 0.0
machine-shop-hier 87.9 87.9 87.9 0.0 0.0
logistics-hier 94.6 94.6 94.6 15.5 0.0
handover-hier 99.2 99.2 99.2 3.5 0.0
hiking-hier 38.1 36.5 36.5 0.0 0.0
docks-hier 85.2 52.6 52.6 0.0 0.0

Table 3.5: Percentage of ground actions detected as unreachable from the initial state.
For each problem instance, the percentage is obtained by comparing the number of ground
actions detected as unreachable from the initial state with the original number of ground
actions. Those values are then averaged over all instances of a domain.
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Table 3.5 presents the percentage of actions detected as unreachable by different
configurations. As expected, R∞, R5, R1 and R+ perform identically on temporally
simple problems. However, R+ is largely outperformed on all but one hierarchical domain.
The good performance of R1 with respect to R+ shows that a single iteration is often
sufficient to capture most of the problematic after-conditions. However, on more complex
problems such as hiking-hier and docks-hier, more iterations are beneficial both in terms
of detected unreachable actions and solved problems.

R∞ R5 R1 R+ ∅
satellite 100 (1) 100 100 100 –
rovers 100 (1) 100 100 100 –
logistics 100 (1) 100 100 100 –
satellite-hier 100 (2) 100 100 100 –
rovers-hier 100 (4) 99.2 56.7 54.2 –
machine-shop-hier 100 (6) 69.3 14.2 14.2 –
logistics-hier 100 (2) 100 2.8 2.8 –
handover-hier 100 (43) 98.2 5.7 5.7 –
hiking-hier 100 (9) 100 71.7 71.7 –
docks-hier 100 (37) 73.0 29.8 29.8 –

Table 3.6: Average admissible makespans for different reachability models. Those are
computed by taking the earliest appearance of the latest satisfied goal from the initial
state, and normalizing on the value computed for R∞. For R∞, we also indicate the
average number of iterations needed to converge on the first propagation of each instance
(in parenthesis).

Table 3.6 presents the value taken by the admissible hmax heuristic with different
reachability models. hmax essentially determines a lower bound on the makespan of a
solution plan by looking at the earliest appearance of the goals. On all but one hierarchical
model, both R1 and R+ largely underestimate the makespan of a solution. Indeed, not
propagating after-conditions makes them miss important causal aspects of the problems.
Those can take as many as 43 iterations to be initially propagated by R∞. The subsequent
propagations are typically faster because they are made incrementally. As expected, a
single iteration was needed to converge on all temporally simple problems.

3.5.2.2 Evaluation of Other Components

We continue our evaluation with a broader scope by evaluating how each of the techniques
discussed contributes to the overall efficiency of the system. For this purpose we consider
6 configurations of the planner each one having a specific technique deactivated. We
compare this against the full configuration of FAPE.

• Cfull is the full configuration will all the techniques previously discussed enabled. It
use the general search strategy by default and switches to the forward hierarchical
strategy when facing a fully hierarchical domain.

• Cgen is the configuration where FAPE always uses the general search strategy. It
differs from Cfull on fully hierarchical domains where the forward hierarchical search
strategy would have been preferred.
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• Clift is a fully lifted version of FAPE. More specifically it does not use reachability
analysis and thus all features that require grounding are deactivated (i.e. DTGs
and instantiation/refinement variables). This configuration is essential to measure
the benefits and penalties for grounding the problem.

• CNoCN does not use the causal network to infer constraints or prune impossible
resolvers (Sections 3.3.3.1 and 3.3.3.2).

• CNoDelCheck does not check that there is a sufficient delay from the start of a task
to the moment its possible effect is required to support a task. Hence it can result
in additional resolvers being considered for supporting an open goal.

• CNoDecV ars does not use refinement variables to disregard the resolvers of unrefined
tasks that involve unreachable actions.

• CA∗ use A∗ in place of our variant of Aε (Section 3.3.4.1).

It should be noted that our test configurations do not consider variations for the
flaw ordering strategies. We have tested other such strategies but they resulted in poor
performance of the planner. While in general other strategies can be efficient (e.g. many
ground state-space planners use a “threat first” strategy), their efficiency is strongly
coupled with the rest of the strategies used in the planner. This factor can explain that
dominance of the current strategy as it has evolved with the rest of the system.

Domains. We use a set of domains to evaluate the performance of the planner. A
large part of those have been translated from the International Planning Competition:
airport, blocks, driverlog, logistics, pipesworld, satellite, turnandopen and hiking. The
domain definitions of those problems have been manually translated into ANML and
their problems were automatically translated by domain dependent parsers.

Our other domains are the following. docks and handover are the ones already pre-
sented. race is a robotics domain adapted from CHIMP [Sto+15], where a waiter-robot
must serve clients. It notably features navigation constraints expressed through hierar-
chical features and deadlines regarding the moment a client must be served. springdoor
is another robotics problem where the robots must move objects between several places
with closed doors. Opening a door results in complex interactions between several ac-
tions (turning the knob, pushing the door and releasing the knob) which can be performed
by the robot that must pass through the door if it carries nothing or by another one.
machine-shop is a domain presented by Cushing et al. [Cus+07b] of baking pieces in kilns
where the action of baking must be concurrent with an action showing that the kiln is
switched on.

We consider several variants of the problems depending on whether they are fully
generative (denoted by a Flat suffix), fully hierarchical (denoted by a FullHier suffix)
or partially hierarchical (denoted by a PartHier suffix). In fully hierarchical domains, all
actions are task-dependent while partially hierarchical domains contain some free actions.

Overview of results. We first start by giving a broad overview of the results given in
Table 3.7. The table contains the number of problems solved by each configuration with
a five minutes timeout and a memory limit of 3GB.

The first important catch is to see that while all features somewhat contribute to the
efficiency of the planner, none is critical to its overall performance. Indeed, the absence
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Cfull Cgen Clift CNoCN CNoDelCheck CNoDecV ars CA∗
airport-Flat (50) 5 5 5 5 5 5 5
airport-tw-Flat (50) 6 6 6 6 6 6 6
blocks-Flat (35) 23 23 26 23 23 23 23
docks-Flat (18) 12 12 12 12 12 12 12
driverlog-Flat (20) 3 2 1 2 2 3 0
handover-Flat (12) 8 8 4 8 8 8 8
logistics-Flat (27) 23 22 3 19 21 21 13
pipesworld-dl-Flat (30) 5 5 6 5 5 5 5
rovers-Flat (40) 32 32 35 32 32 32 31
satellite-tw-Flat (36) 9 9 10 8 9 9 5
satellite-Flat (20) 16 16 16 13 16 16 11
turnandopen-Flat (20) 0 0 0 0 0 0 0
Total Generative 142 140 124 133 139 140 119

blocks-PartHier (35) 28 27 32 27 27 28 26
blocks-FullHier (35) 10 7 14 9 9 4 10
docks-FullHier (18) 17 17 17 17 11 15 17
handover-PartHier (12) 10 10 1 10 10 10 10
hiking-FullHier (20) 20 2 2 20 13 12 20
logistics-PartHier (27) 27 27 27 27 27 27 27
race-FullHier (13) 13 10 5 13 13 13 13
satellite-PartHier (20) 17 17 17 15 17 17 10
springdoor-FullHier (4) 2 2 2 2 2 2 2
machine-shop-PartHier (10) 6 6 6 5 6 6 6
turnandopen-FullHier (20) 8 0 0 8 5 0 8
Total Hierarchical 158 125 123 153 140 134 149

Total 300 265 247 286 279 274 268

Table 3.7: Number of problems solved by each configuration with a 5 minutes timeout.
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of a feature resulted in 13 to 53 less problems being solved which is only a small subset
of the overall 300 problems solved by the full configuration. However, this statement
must be mitigated as the difficulty of a planning problem is typically exponential in the
number of goals in the problem. Solving a few additional problems of a domain has thus
more significance than it seems through a simple comparison of numbers.

As expected the Cgen, CNoDelCheck and CNoDecV ars have no impact on generative prob-
lems (the small difference is due to problems being solved closed to the timeout by one
configuration). The use of our forward hierarchical strategy is however critical in some
hierarchical domains, as it can be seen by the terrible performance of Cgen on the hiking
and turnandopen domains. The use of delay checks (absent in CNoDelCheck) and of refine-
ment variables (absent in CNoDecV ars) is less critical but contributes to the scaling up of
the planners on some hierarchical domains. The gain of using causal networks (absent in
CNoCN) and Aε (absent in CA∗) is also globally noticeable but does not benefit a domain
in particular.

The most important results are the ones related to Clift as this configuration does not
ground the problem. Thus it can be expected to scale up better on problems that would
feature many ground actions. The gains of non-grounding are noticeable on the blocks,
rovers and satellite whose most difficult problems contain many objects. A limitation of
our test set (and of problems from the IPC in general) is that the difficulty of the problem
(e.g. length of the plan) is directly correlated to the number of objects in the problem.
Thus we have no instances in our test set where Clift would find a trivial solution plan
while Cfull would fail because it could not ground the problem. On the rest of the test
set, we can see the gain, in terms of search control, of applying reachability analysis. This
is most noticeable with the hierarchical versions of handover, hiking and turnandopen.
Nevertheless, we believe it is important to keep the ability to perform a fully lifted search
even if it means not using some of the heuristics we have developed. A view of the
overhead required for grounding can be seen in Figure 3.11, where we can see that the
lifted version tends to solve simple problems faster because it does not need to ground
the problem.

Partial vs Full Hierarchy. A good number of domains used partial hierarchies. A
good example of the benefits of using those is the blocks-PartHier, given in Section B.1.
In this domain, the single task-dependent primitive action is stack. When compared to a
flat version of the problem it features an additional high-level action DoStack(a, b) that
either does nothing if b is on a or decomposes to stack(a, b) if it is not. In the resulting
problem, the planner is only allowed to perform one stack action per DoStack task in the
problem. On the other hand, it can use as many pickup, putdown and unstack as necessary
to fulfill the conditions of the stack actions. This formulation thus poses a simple con-
straint on the plan: do not use more stack actions than necessary. When compared to the
fully hierarchical version of the domain (Section B.2), the partially hierarchical one is ob-
viously simpler requiring less domain engineering. Furthermore the partially hierarchical
version is more easily solved by FAPE. This should not be too surprising: FAPE already
does a decent job of solving the flat version of the problem and this simple extension
simply provides some additional help. On the other hand the hierarchical version is a
very different problem. While extending the fully hierarchical version with more domain
knowledge could probably make it competitive with the partially hierarchical one, there
is no need to do it because the simpler partially hierarchical version already fulfills our
needs (and we are not eager to dedicate much time in solving blocks world problems).
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Figure 3.11: Time needed to solve problems with Cfull (fape) and Clift (fape-no-reach).
The startup time of the JVM that take an important share of time to load and perform
just-in-time optimization during the first seconds of the run. This overhead is however
comparable for both configurations.

A similar approach is taken in the handover-PartHier and logistics-PartHier. In
handover, the only task-dependent actions are those involving manipulation of an object
(pick, place and handover) while the movements of the robots are left free. Similarly, in
logistics the only hierarchical part are the load and unload actions. All the movements of
planes and trucks are left free. If the planner was to decompose entirely the original task
network, it would have a set of load and unload actions and would simply need to plan
the fleet movements between those.

Specificities of fully hierarchical problems. The fully hierarchical problems (and
the search strategy that comes with them) hand back some control to the domain designer
and as such must be considered more carefully. The hierarchical search strategy will try
to decompose a task by trying the actions in the order of their definition. To make
sure this order is respected, the planner uses a depth-first search and thus commits to a
refinement until it is proven to be unfeasible. This is practical for the domain designer
as it ensures that its will is respected and gives him more visibility on how the planner
will act.

Depth-first search is however a dangerous thing when the search space is infinite as our
own. In this case, infiniteness does not come from the properties of plan space planning
because there are no free actions to insert. However HTN planning does allow an infinite
search space in the presence of recursive methods. In this case, it is the responsibility
of the domain designer to make sure that the planner will not get stuck in an infinite
recursive decomposition. There are several ways to do that: one can put a bound on the
depth of the solution or a constraint on the duration of the plan. The most general (and
often most efficient) solution is however to force the termination of a recursive method
once it has exhausted all relevant solutions as shown in Example 3.6.
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Example 3.6. Consider the two high-level actions below that recursively try to get
an agent to some location dest. It is perfectly possible for the agent to go around in
circles indefinitely. For instance, consider we have two connected places a and b and
an unconnected place c where we want to get (i.e. we have a goto(c) task). Starting
from a, the left action would never be chosen and the planner would indefinitely
choose the right action that would move between a and b while always posting a new
unrefined task to force us to eventually get to c.

m1-goto(dest)
task: goto(dest)

assertions: [tstart, tend] at=dest
subtasks: ∅

constraints: ∅

m2-goto(from, d′, dest)
task: goto(dest)

assertions: [tstart] at=from
subtasks: [tstart, t1]move(from, d′)

[t2, tend] goto(dest)
constraints: from 6= dest ∧ t1 < t2

This problem can be avoided by making sure the same original task is not used
to get to the same place twice. This can be achieved by adding to the second action
the set of assertions:

[tstart, tstart + 1] visited(from) :⊥ 7→ >
∧ [tstart + 1, tend − 1] visited(from)=>
∧ [tend − 1, tend] visited(from) :> 7→ ⊥

These statements make sure that a place p is not visited by a second action as it
would force changing the value of the visited(p) state variable while it is protected
by the first action. This essentially attaches a unary resource to each location and
makes sure it is not used twice. As a result two instances of m2-goto(x, ·) are mutually
exclusive (independently of their second parameter).

This could even be expressed in a single (less intuitive) change assertion
〈[tstart, tend] visited(from) :⊥ 7→ ⊥〉. Indeed it would force two durative changes on
the same state variable to overlap.

Another trap for a hierarchical planner is the presence of redundancies in the search
space. Indeed, a hierarchical planner usually considers a plan as many times as there are
ways to decompose it from the initial task network, leading to redundancies in the search
space. For this reason, the domain designer must make sure that there is indeed only
one way of decomposing it. Consider for instance that, being in a location a, we want to
go to a location c and to a location d without any particular order. Expressed with two
tasks goto(c) and goto(d), we probably intend the planner to find a solution like this one:

mv(a,b) mv(b,c) mv(c,d)

goto(c) goto(d)

where the goto(c) task contributes the first two actions to get me from a to c (in blue)
and the goto(d) task contributes a last action to get me from c to d (in red).
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However we certainly didn’t expect the planner to come up with this equivalent solu-
tion where the first move is contributed by the goto(d) task:

mv(a,b) mv(b,c) mv(c,d)

goto(c)

goto(d)

However, it is a perfectly valid solution, equivalent to the first one regarding the sequence
of movements. But it lies in a different branch of the search space because the planner
took two different paths to decompose it. One possible way to avoid such issues is to
make actions whose interactions lead to non-systematicity mutually exclusive with a
similar trick as the one used in Example 3.6. Indeed, forbidding the two highest-level
goto tasks to overlap would maintain completeness while enforcing systematicity. This
should however be done with care as many interactions can be beneficial and forbidding
those can easily lead to a loss of completeness.

As we can see, writing fully hierarchical domains requires care and practice. The fact
that FAPE is able to solve most of the problems it faces in a generative fashion or with
partial hierarchies is enjoyable. Nevertheless, the ability to do HTN planning can be
the key to solve problems that would have been inaccessible to the domain-independent
setting, as best seen for the hiking and turnandopen domains in our tests set.

In other cases, some problems are more naturally expressed in a hierarchical fashion
that maps to a procedural knowledge of the domain designer. This is the case of the
race domain, where constraints on the navigation of the robots appear as procedural
knowledge in high-level actions (Section B.3).

3.5.3 Comparison with CHIMP
Because of the important similarities of representation but large difference in search
techniques, we empirically compared the performance of both FAPE and CHIMP on two
domains. The first one was defined in the scope of the European project RACE for use
in CHIMP and has been translated in a fully hierarchical ANML domain. The RACE
domain deals with service robots that must serve clients by bringing the order, while
obeying complex navigation constraints. The second domain is the dock worker that
we have used as an example through this dissertation and that has been translated by
CHIMP’s authors for use in their planner. For both domains, we ensured that both plan-
ners have equivalent models: each one has the same primitive and high-level actions with
similar conditions and effects. We compare the planners on several planning problems
that involve one or multiple planning tasks: respectively of bringing a container to cer-
tain location or serving a customer. In each case achieving a single task requires between
12 and 16 primitive actions that are either sequenced or independent (i.e. CHIMP was
able to impose an ordering constraint on their decomposition). The runtime for solving
problems in those two domains is presented in Table 3.8.

CHIMP was able to solve all problems with a single goal task, regularly outperforming
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Dock Worker Domain
Number of tasks 1 2 3 4
FAPE 1.17 0.89 1.88 3.03 0.94 3.44 12.43 27.34 –
CHIMP 29.18 0.76 203.26 0.71 – 2.31 – – –

RACE Domain
Number of tasks 1 2 3 4 5
FAPE 1.29 0.77 1.27 1.42 1.22 1.25 1.91 2.74 4.13
CHIMP 0.70 0.63 – – 5.12 – – – –

Table 3.8: Runtime (in seconds) for solving hierarchical planning problems depending on
the number of goal tasks. A field with – indicates that the planner was not able to solve
the task within 10 minutes. Both domains and the problem instances are available in
FAPE’s public repository.

FAPE on those.3 The catch with CHIMP occurs as soon as more than two tasks are
involved. Indeed in such cases, imposing an order on the decomposition of the goal tasks
is not possible because they are not independent. In this case, if it does not find a
solution on the first try, CHIMP must eventually backtrack on the choice of the order
in which tasks are decomposed, leading to much redundancy in the search space. As a
result, CHIMP usually finds a solution quickly or times out. On the other hand, the more
involved approach of FAPE allows it to better scale to planning problems with multiple
tasks. It is however important to note that this result is not final: since CHIMP mostly
relies on domain-dependent knowledge, its scalability could most certainly be improved
by extending the domain definition. This experiment simply highlights the advantage
that FAPE has over CHIMP when the two planners are given the same hierarchical
knowledge. On the other hand, since it is based on the meta-CSP framework, CHIMP
can directly benefit from the extensions already built in the framework, e.g., CHIMP
supports reasoning on resources which FAPE currently does not.4

3.6 Conclusion
In this chapter, we have presented a planning algorithm for FAPE that allows a unique
mix of generative and hierarchical temporal planning. The planner reasons in plan-space
with a least-commitment approach and integrates several inference techniques to restrict
its search space. The planner uses a new reachability analysis that adapts the delete-free
relaxation to a temporal and hierarchical setting. Further techniques were developed to
extract constraints and heuristics from the causal structure of a partial plan. We have
shown the planner to be competitive with state of the art domain-independent temporal
planners when used in a generative setting. Its additional support for hierarchies allows
to further extend both its efficiency and its expressivity.

While the planner we have presented focuses on causal reasoning, its constraint based
3We also noticed this behavior on many test instances with simpler goal tasks that are not presented

here.
4Partial support for resources has been implemented in FAPE but is still regarded as unstable and is

not well integrated with the other aspects of the search.
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representation has several advantages when its comes to considering real-world problems.
First, by extending its flaw detection functions to reason on other particular subproblems,
the planner can naturally be extended to handle richer problems than most AI planning
systems. Timeline based planners have a strong history in developing such extensions
(see Section 3.4.3) most of which could be integrated in FAPE. The next chapter will
demonstrate how such an extension is possible by augmenting the planer to reason under
temporal uncertainty. Second, the plan-space approach has some key advantages when
it comes to continual planning and acting, as once again demonstrated by many timeline
based planners. The last chapter of this thesis will be dedicated to show how FAPE takes
advantage of this in the context of deliberative acting for robotics.
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4.1 Introduction
So far, we have only considered problems in which all temporal aspects are either exactly
known or under the control of the planning system. This is however a limiting assumption
when considering real-world problems. For instance, the duration of a trip from Toulouse
to Paris is always reliably predictable in a limited interval. However, its actual duration
is not entirely under the control of the driver but will instead depend on the weather and
the traffic. In the context of task planning, such contingencies typically appear on the
duration of actions (e.g. duration of a trip) or in the definition of exogenous events (e.g.
the time at which a guest arrives).

93
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Handling such contingencies can be done in several ways. A planner could simply
disregard any uncertainty in the duration and instead use a fixed estimation of the dura-
tion. One could also try to build temporally flexible plans that make a best-effort not to
depend on any precise duration of contingent events. We follow a more involved approach
which is to guarantee a plan to be executable regardless of the outcome of contingent
durations.

In this chapter, we explicitly model the temporal uncertainty by considering contin-
gent events that are not under the control of the actor. Contingent events are described
by explicit lower and upper bounds on their occurrence time relatively to another event.
Given a problem with contingent events, the objective of the planner is to find a plan
that is valid regardless of the occurrence time of contingent events.

We start by introducing the related work around the Simple Temporal Problem with
Uncertainty (STPU) that will serve as a base for modeling temporal uncertainty. We then
analyze some of the limitations of the STPU, especially for representing problems where
only part of the environment is observable. We lift those limitations in a generalization
of the STPU that incorporates the notion of partial observability and propose dedicated
algorithms to check whether a plan based on our extended model is executable. Last,
we show how the framework is integrated in FAPE and provide techniques to reason
on which observations are needed to maintain a plan dispatchable. We show how such
needed observation can be identified at planning time and incrementally dealt with by
considering the appropriate sensing actions. We conclude on some empirical evaluation
of the proposed techniques and some discussions.

4.2 Background and Related Work

4.2.1 Background
4.2.1.1 Simple Temporal Network with Uncertainty

A Simple Temporal Network with Uncertainty (STNU) extends an STN with contingent
links, where each contingent link represents a temporal interval whose duration is not
under the control of the agent. Contingent links are typically used to represent uncer-
tain durations of actions (e.g. the duration of the trip in our previous example) and
uncertainty on the occurrence time of exogenous events (e.g. arrival time of a guest).

Definition 4.2.1 (STNU). An STNU is a triple (X ,R, C) where (X ,R) is an STN
composed of a set of timepoints X and a set of requirement link R and C is a set of
contingent links:

• As in an STN, a requirement link C
[y,y′]−−−→ D states that the delay between C and

D should be in the interval [y, y′].

• A contingent link A
[x,x′]==⇒ B states that the delay between the events A and B is

non-controllable and will be fixed by the environment in the interval [x, x′].

This definition naturally leads to two types of timepoints: (i) contingent events have
incoming contingent constraints and their occurrence time is fixed by the environment
(within the bounds specified on their incoming contingent link); (ii) controllable events
are events that have no incoming contingent links and are to be dispatched (i.e. assigned
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an execution time) by the execution process. We denote the set of contingent points by
Xctg and the set of controllable events by Xctl, where X = Xctl ∪Xctg and Xctl ∩Xctg = ∅.

Simple Temporal Networks with Uncertainty were first introduced by Vidal and Ghal-
lab [VG96], and refined by Vidal and Fargier [VF99], to handle the presence of uncertain
durations in planning. A typical problem with an STNU is a plan where the duration of
actions is uncontrollable. In such a case, the start time of actions are denoted by control-
lable timepoints and the plan is controllable if one can devise a viable strategy for deciding
when each action is to be dispatched (while ensuring that no temporal constraints are
violated). Such a strategy can be either static (the dispatch times are precomputed before
starting the execution of the plan) or dynamic (the values of controllable timepoints are
assigned online, allowing to take into account knowledge already accumulated during the
execution). Vidal and Fargier [VF99] propose three ways of characterizing the control-
lability of an STNU depending on the assumption that can be made regarding the time
at which the duration taken by a contingent will be known. Namely, they introduce the
notion of strong controllability, weak controllability and dynamic controllability. Before
describing those, we give some definitions that will be useful in characterizing them.

An STNU can represent several situations, each associating all contingent links with
the duration they will take.

Definition 4.2.2 (Situations). If A1
[l1,u1]===⇒ B1, . . . , AK

[lK ,uK ]====⇒ BK are the K contingent
link in an STNU S, we call ΨS the space of situations of S, given by ΨS = [l1, u1]× · · ·×
[lK , uK ].

Each situation ψ = (ψ1, . . . , ψK) ∈ ΨS gives one possible value for each of the contin-
gent links in S.

A situation essentially maps each contingent link to the value it will take. For a given
situation ψ ∈ ΨS , there is no uncertainty regarding the contingent links and the STNU
S can thus be translated to an STN Sω.

Definition 4.2.3 (Projection). A projection of the STNU S = (X ,R, C) onto the sit-
uation ψ is defined to be the STN (X ,R∪Cψ) where Cψ is the set of links where each
contingent constraint Ai

[li,ui]===⇒ Bi ∈ C is replaced by a requirement link Ai [ψi,ψi]−−−→ Bi (i.e.
Cψ = {Ai [ψi,ψi]−−−→ Bi | 1 ≤ i ≤ K }).

For a given STNU, we are typically interested in finding a schedule that gives a
dispatch time to each event under our control.

Definition 4.2.4 (Schedule). A schedule ξ of an STNU S = (Xctl ∪Xctg,R, C) is a map-
ping ξ : Xctl → Z from controllable timepoints to integer values.1

A schedule thus maps every controllable timepoints to a time at which it is executed.
We note that knowing the situation and a schedule is sufficient to know the occurrence
time of all (contingent and controllable) timepoints. Given a schedule ξ and a situation
ψ, we denote as [x]ξ,ψ the time at which the timepoint x ∈ X would be executed.

Furthermore, we say that a schedule ξ : Xctl → Z is consistent with an STN (X ,R),
with Xctl ⊆ X , iff (X ,R∪Rsched) is a consistent STN where Rsched encode the occurrence
times imposed by the schedule:

1In this definition, the execution of time of events is limited to the set of integers since that fits our
temporal model. In general though, STNUs are not restricted to discrete time.
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Rsched =
⋃

x∈Xctl

O [ξ(x),ξ(x)]−−−−−→ x

4.2.1.2 Strong Controllability

A first interesting property for an STNU is whether it is strongly controllable, i.e., whether
there exist a single schedule that will work for all situations.

Definition 4.2.5 (Strong Controllability). An STNU S is strongly controllable if there
is a schedule ξ such that for all situations ψ ∈ ΨS , ξ is consistent with Sψ.

Essentially, strong controllability denotes the fact that an STNU is controllable (i.e.
the corresponding plan can be executed) when the agent can schedule a priori all con-
trollable points without knowledge on any contingent events beside the bounds initially
provided.

Strong controllability can be detected in polynomial time, by compiling it into an
equivalent STN [VF99]. The key to this compilation is to transform each constraint c
involving a contingent timepoint x ∈ Xctg into two constraints cmax and cmin where cmax
(resp. cmin) enforces that c is respected in the eventuality that x occurs at its latest (resp.
at its earliest).

4.2.1.3 Weak Controllability

The complementary of strong controllability is weak controllability, i.e., that, if the sit-
uation is known before execution, then one can find a schedule that is valid for this
situation.

Definition 4.2.6 (Weak Controllability). An STNU S is weakly controllable if for all
situations ψ ∈ ΨS , there is a schedule ξψ such that ξψ is consistent with Sψ.

Essentially, weak controllability denotes the fact that an STNU is controllable when
the agent has complete knowledge on all contingent events before starting the execution
of a plan. This is equivalent to saying that every projection of an STNU is a consistent
STN.

Weak controllability has been shown to be co-NP-complete by Vidal and Fargier
[VF99]. The same authors also provide an algorithm for it that essentially checks if all
relevant projections are consistent, where a projection is relevant when all contingent
durations take either their minimum or maximum values.

4.2.1.4 Dynamic Controllability

Dynamic controllability (DC) is a last characterization of an STNU where an agent is
interested in having a dynamic execution strategy where the dispatch time of actions is
decided online and can leverage accumulated knowledge regarding the occurrence of past
events. A network is dynamically controllable if the dispatch time of controllable events
can be decided online assuming a knowledge on past events only.

We first define an execution strategy as a mapping from a given situation to a schedule
and say that it is viable if it does not result in any violated constraint. We will then
refine this concept to a dynamic execution strategy where the situation is not given but
partially characterized by the observation of past events.
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Definition 4.2.7 (Execution Strategy). An execution strategy S for an STNU S is
mapping S : ΨS → Ξ from situations to schedules (where Ξ denotes the set of possible
schedules).
Definition 4.2.8 (Viable Execution Strategy). An execution strategy S, is said viable
for an STNU S if for every situation ψ ∈ ΨS , S(ψ) is a schedule consistent with Sψ, the
projection of S onto ψ.

In the case of dynamic controllability however, the situation is not entirely known but
instead, the agent only knows the part that correspond to past events, which we call the
execution trace.
Definition 4.2.9 (Execution trace). The execution trace up to time t of applying a
schedule ξ to a situation ψ, is defined by the occurrence time of all contingents timepoints
that occurred before t. This execution trace is denoted by Θt

ξ,ψ:

Θt
ξ,ψ = { (x, [x]ξ,ψ) | x ∈ Xctg and [x]ξ,ψ < t }

An execution strategy is dynamic if the decision of dispatching a timepoint at a given
time t only depends on the (past) execution trace.
Definition 4.2.10 (Dynamic Execution Strategy). A strategy S is said to be a dynamic
execution strategy if for any two situations ψ and ψ′, and any timepoint x ∈ Xctl, the
following holds:

if ξψ(x) = t and Θt
ξψ ,ψ

= Θt
ξψ′ ,ψ

′ then ξψ′(x) = t

where ξψ is the schedule selected by S for the situation ψ (i.e. S(ψ)).
Definition 4.2.11 (Dynamic Controllability). An STNU is dynamically controllable if
it has a viable dynamic execution strategy.

Example 4.1. Consider the following problem where an agent has to prepare dinner
for its partner and wants to ensure that the meal is ready (or almost ready) and
still warm when its partner gets home. The agent has knowledge about the planned
activities of its partner: he will be we working for 30 to 60 minutes then drive home
which will take between 35 and 40 minutes. He further knows that preparing dinner
will take from 25 to 30 minutes. With all this information, the agent should decide
when to start cooking so that the dinner be ready when his partner gets home (with
a five minutes margin before and after this moment).

[30
, 60

]

Work
ing

[35, 40]

Driving home [−5, 5]

[25, 30]

Cooking

Figure 4.1: A dynamically controllable STNU, with contingent timepoints (in orange)
representing the uncontrollable activities of a partner. A controllable timepoint (in
green) denotes the moment when one should start cooking so that the dinner is ready
at most 5 minutes before or after one’s partner gets home.
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The solution to this problem is to start cooking exactly 10 minutes after the
partner leaves work. Indeed, this strategy means that the events of the dinner being
ready and of our partner arriving home will both occur within [tdrive + 35, tdrive +
40], where tdrive denotes the moment our partner starts driving. This strategy is
guaranteed to meet all constraints (and is in fact the only one that does).

The strategy simply requires to know the occurrence time of tdrive in order to dis-
patch the tcook timepoints at tdrive+10. The network is thus dynamically controllable
since dispatching the plan requires knowledge on past events only.

A characterization of Dynamic Controllability was first proposed by Vidal and Fargier
[VF99] and more formally exposed by Morris, Muscettola, and Vidal [MMV01]. Huns-
berger [Hun09] later amended this definition to disallow the instantaneous reaction to
contingent events. It is his definition that we presented here, with some minor changes
to ease the joint presentation of weak and strong controllability. Hunsberger [Hun09]
further proposed a semantically equivalent definition centered on the real-time execution
decision that a planning agent must make.

The first technique for checking dynamic controllability relied on the translation to
a timed game automata [VF99]. This untractable method was abandoned for constraint
propagation techniques that were initially pseudo-polynomial [MMV01]. Polynomial ver-
sions have been proposed by Morris and Muscettola [MM05] (with a runtime quadric in
the number of timepoints) that were refined by Morris [Mor14] and Hunsberger [Hun14]
to run with a cubic complexity.

An incremental algorithm was introduced by Shah et al. [Sha+07] and also relies con-
straint propagation. This algorithm was corrected and improved by Nilsson, Kvarnström,
and Doherty, whose latest algorithm also has a cubic complexity [NKD13; NKD14b;
NKD15].

Recent algorithms for DC-checking rely on a labeled distance graph representation that is
convenient for encoding propagation rules. It relies on transforming the STNU network
into a labeled multigraph obtained as follows. Each requirement link A [x,y]−−→ B is replaced
by two edges A y−→ B and A −x←− B. A contingent link A [x,y]==⇒ B is replaced by four edges:
the same two edges as for a controllable link, and two labelled edges A b:x−→ B and
A B:−y←−−− B, called lower-case and upper-case edges, referring respectively to the lower and
upper bound values of the contingent link.

A labeled distance graph can be used to compute distances between nodes, as in
a distance graph of an ordinary STN. An STN is consistent if and only if its distance
graph does not contain a negative cycle. Specific propagation rules (Table 4.1) have been
devised for labelled distance edges to provide a similar property: an STNU is dynamically
controllable iff it does not have a so-called semi-reducible negative cycle obtained with
these constraint propagation rules [Mor14]. A procedure DC-Check takes as input an
STNU; it propagates its constraints with a Dijkstra-like algorithm; it returns true when
no such a negative cycle is found, which entails a DC STNU.

4.2.2 Other Related Work
Beyond the work regarding the characterization of an STNU that we discussed above,
some work has been dedicated to providing algorithms for efficient execution of dynami-
cally controllable networks [Hun10; Hun13; Mor14; Hun16].
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Conditions Added constraint
A B:x←−− C y←− D A B:(x+y)←−−−− D
A x←− C c:y←− D, x < 0 A x+y←−− D

A B:x←−− C c:y←− D, x < 0, B 6= C A B:(x+y)←−−−− D
A x←− C y←− D A x+y←−− D
B b:x←− A B:z←−− C, z ≥ −x A z←− C

Table 4.1: Constraint propagation rules in an STNU

The encoding of a timeline-based plan with uncontrollable durations into a Timed
Game Automata (TGA) has been recently used by Mayer and Orlandini [MO15] to check
its controllability. This approach has the advantage of relying on well established model
checking tools to assess the controllability of the STNU and synthesize an execution
strategy that can be efficiently executed online. Its main disadvantage when compared
to recent propagation based techniques to dynamic controllability is its large overhead
that limits its usage to an offline setting.

Some extensions to the STNU framework have been considered in the literature.
The Disjunctive Temporal Network with Uncertainty (DTNU) allows the presence of
disjunctive constraints. Algorithms have been proposed to check the strong controllability
[CMR12a; CMR14] and the weak controllability [CMR12b; CMR15] of a DTNU that
rely on a translation to SMT. More specifically, quantitative constraints are encoded into
the theory Linear Arithmetic over The Real Numbers with additional boolean variables
encoding the disjunctive parts of the problem. The same authors have further studied the
dynamic controllability of a DTNU by mean of a translation to a Timed Game Automata
[Cim+14a; Cim+14b; Cim+16].

Combi, Hunsberger, and Posenato [CHP14] have considered Conditional STNU
(CSTNU) where the actions taken by an agent are conditioned regarding the occurrence
of contingent events. A translation of Conditional and Disjunctive STNU into TGAs
was given by Cimatti et al. [Cim+16]. Lanz et al. [Lan+15] consider a special case of
CSTNUs were an uncertain duration can be reduced in order to meet a deadline (e.g.
allowing the agent to perform a strictly shorter activity instead).

Moffitt [Mof07] is the first to consider the case where the occurrence of only a subset
of the events can be dynamically observed and proposes an algorithm to characterize
the dynamic controllability of such networks through updated propagation rules. Their
algorithm is unsound and can only determine when the network is not dynamically con-
trollable. Casanova et al. [Cas+16] study a similar case where multiple agents must carry
out a shared plan where an agent can only know the duration taken by its own actions.
They check the dynamic controllability of such network by a sound but not complete
translation to MILP.

4.3 Generalized Controllability of STNU
So far, we have presented ways of characterizing an STNU as:

• strongly controllable, meaning that the network is dispatchable without any require-
ment on the observation of contingent events,
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• dynamically controllable, meaning that the network is dispatchable given that all
contingent events are observed when they occur,

• weakly controllable, meaning that the network is dispatchable given that the dura-
tion of all contingent links is known before starting the execution.

Such a view is however limiting in many cases. Consider our cooking example of
Figure 4.1. While I can certainly observe the events corresponding to my partner arriving
home and to me finishing cooking, its is unlikely that I know the moments when he starts
working or starts driving home. The case where an STNU contains observable contingent
events and non-observable ones is not captured by neither dynamic controllability (that
assumes total observation of all contingent events) nor strong controllability (that does
not account for any observations). In fact in this case, different timepoints of the network
depend upon different types of controllability.

We can find scenarios where weak controllability is relevant. Indeed, task planning
often serves as a means to produce an high-level plan for which many details have not
yet been planned, either because they are too expensive to compute or because some
information is lacking. Consider for instance an action involving a robot picking an object.
Its duration is at first unknown to the task planner. However, once a complete motion
plan has been computed for this action its duration will be known. Such a case where
some contingent durations are known prior to execution comes within the competency of
weak controllability. Here again, it is incorrect to assume that all other contingent events
are in this same category.

To model such cases, we define a Partially Observable STNU (POSTNU) as an ex-
tension to an STNU where the observability of contingent events is explicit.

Definition 4.3.1 (POSTNU). We define a POSTNU as a tuple Ω = (Xctl,Xctg,R, C)
where the set of contingent points Xctg is partitioned into:

• a set of a priori known events X a.p, whose occurrence time is currently unknown
but will be known prior to execution (relatively to another event),

• a set of dynamically observable events X dyn, whose occurrence time will be known
when they occur,

• a set of invisible events X invis whose occurrence cannot be observed.

Timepoints



Controllable (Xctl)

Contingent (Xctg)


Invisible (X invis)
Dynamically Observable (X dyn)
A priori Known (X a.p)

We say that a POSTNU is controllable if there is a viable execution strategy that
depends on the value taken by a priori known events and past dynamically observable
events only.

Definition 4.3.2 (Visible Execution Trace). We call the visible execution trace of up to
time t of applying a schedule ξ to a situation ψ, the occurrence time of all dynamically
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observable events that occurred before t and the occurrence time of all a priori known
events. This execution trace is denoted by Γtξ,ψ:

Γtξ,ψ = { (x, [x]ξ,ψ) | x ∈ X a.p ∨ x ∈ X dyn ∧ [x]ξ,ψ < t }

An execution strategy S is dynamic if the choice of executing a controllable timepoint
at time t depends only on contingent events that have been observed at time t: either a
priori known events whose value was known before execution or dynamically observable
events that occurred prior to time t.

Definition 4.3.3 (Dynamic Execution Strategy of a POSTNU). A strategy S is said to
be a dynamic execution strategy if for any two situations ψ and ψ′, and any timepoint
x ∈ Xctl, the following holds:

if ξψ(x) = t and Γtξψ ,ψ = Γtξψ′ ,ψ′ then ξψ′(x) = t

where ξψ is the schedule selected by S for the situation ψ (i.e. S(ψ)).

Definition 4.3.4 (Controllability of a POSTNU). A POSNTU is said to be controllable
if it has a viable dynamic execution strategy.

This definition of POSTNU relates to strong, weak and dynamic controllability in the
special cases where all contingent events are all invisible, a priori known or dynamically
observable respectively.

Example 4.2. Below is a revised version of our cooking example where only some of
the contingent events are dynamically observable.

[30
, 60

]

Work
ing

[35, 40]

Driving home [−5, 5]

[25, 30]

Cooking

Figure 4.2: A revised version of Figure 4.1 where the only dynamically observable
events are the ones of our partner arriving home and of us finishing cooking.

4.4 Checking the controllability of a POSTNU
In this section we are interested in devising techniques to check whether a given POSTNU
is controllable. Our main interest lies in finding tractable algorithms that can be used at
planning time while giving a guaranty on the controllability of the plan.

A first obstacle to this objective is the presence of a priori known timepoints. Indeed,
checking the weak controllability of an STNU (i.e. the controllability of a POSTNU
where all contingent timepoints are a priori known) has been shown to be co-NP-complete
[VF99]. A simple trick to avoid this difficulty is to consider every contingent link A [l,u]==⇒ B,
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where B is a priori known, as a requirement link A [l,u]−−→ B. One can then ensure that the
original link is not squeezed during propagation, i.e., that no new constraint A [l′,u′]−−−→ B is
inferred where l < l′ or u′ < u. While this is a necessary condition of the controllability of
the POSTNU it is not a sufficient one but can serve as a tractable relaxation [MMV01].

Another tractable approach is to consider all a priori known timepoints as dynamically
observable. The resulting POSTNU assumes strictly less information about the environ-
ment, thus proving its controllability is sufficient to demonstrate the controllability of the
original network. The converse is however not true.

For the purpose of finding tractable algorithms, we restrict ourselves to the case where
the POSTNUs contains no a priori known events. Such events could have been compiled
away by one of the two methods above depending on whether they should be considered
optimistically or pessimistically.

In order to check the controllability of POSTNU, we map it into an STNU. The key idea is
to locally apply the propagation rules of Strong Controllability to invisible events. Once
those are propagated, the invisible points, and the constraints involving them, can be
removed from the network. The resulting network contains only dynamically observable
points and is controllable if the corresponding STNU is dynamically controllable.

This is performed by procedure PO-Contr-Check (Algorithm 3). For every in-
visible node xinv ∈ X invis, it propagates the constraints in which it appears using the
propagation rules of Table 4.2 (PropagateInvisible). All edges to and from xinv are
then removed from the network (RemoveEdges). At that point (Xctl,X dyn,R′, C ′) is an
STNU whose dynamic controllability is tested with DC-Check.

Algorithm 3 Maps a POSTNU into a dynamically observable STNU whose controlla-
bility is tested with DC-Check.

function PO-Contr-Check(Xctl,X dyn,X invis,R, C)
(R′, C ′)← (R, C)
for all xinv ∈ X invis do

(R′, C ′)← PropagateInvisible(R′, C ′, xinv)
(R′, C ′)← RemoveEdgesInvolving(R′, C ′, xinv)

return DC-Check(Xctl,X dyn,R′, C ′)

Conditions Added constraint
A B:x←−− B y←− C A x+y←−− C

A B:x←−− B C:y←−− C A C:x+y←−−− C

A x←− B b:y←− C A x+y←−− C

A a:x←− B b:y←− C A a:x+y←−−− C

Table 4.2: Added constraints due to an invisible point B.

Proposition 4.4.1. If PO-Contr-Check(Xctl,X dyn,X invis,R, C) returns true, then the
POSTNU S = (Xctl,X dyn ∪X invis,R, C) is controllable.

Proof. Consider an invisible timepoint B with an incoming contingent link A
[l,u]==⇒ B

(i.e., A b:l−→ B and A B:−u←−−− B in the labeled distance graph). B cannot be the target of
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more than one contingent link, otherwise the network is not DC. There are three possible
constraints that may involve B:

• B is the target of a requirement edge B −y←− C, which says “C must occur at least
y time units after B”. The first rule in Table 4.2 adds the edge C −y−u←−−− A. This
edge dominates the original one: a minimum delay of at least y will be maintained
between B and C regardless of the outcome of the contingent link A⇒ B.

• B is the source of a requirement edge B x−→ C, which says “C should occur at most
x time units after B”. The third rule in Table 4.2 introduces an edge A x+l−−→ C. The
original edge is dominated by this edge: a maximum delay of x is enforced between
B and C regardless of the outcome of the contingent link A⇒ B.

• B is the source of a contingent link B
[x,y]==⇒ C, giving two edges B c:x−→ C and

B C:−y←−−− C. The second and fourth rules in Table 4.2 add the edges A c:x+l−−−→ C
and A C:−y−l←−−−− C. These merge the two contingent links A ⇒ B ⇒ C into one,
ignoring B as an intermediary point. They dominate the original ones as they are
less informative.

Consequently, any edge involving B in the original POSTNU is dominated by an edge
introduced by the rules in Table 4.2. All those edges to and from B can thus be removed
from the STNU without relaxing the problem.

The converse of Proposition 4.4.1 does not hold in general, since the transformation
of PO-Contr-Check is conservative on some POSTNUs. An example of such network
is given in Figure 4.3. This network has a chained contingency: there is a contingent
timepoint B that is at the center of a contingent chain A ⇒ B ⇒ C and is involved in
an additional contingent or requirement link with another timepoint D.

A B

C

D
[0, 2]

[2, 2]

[5, 5]

Figure 4.3: A POSTNU where PO-Contr-Check is too conservative. The network
is controllable even if B is invisible: just schedule D 3 time units after C. Here, B is
indirectly observable through C.

The converse of Proposition 4.4.1 holds for a POSTNU without chained contingencies.

Proposition 4.4.2. A POSTNU S with no chained contingencies is controllable if and
only if PO-Contr-Check(S) holds.

Proof. It is sufficient to show that, for a given contingent point B, either (i) no indirect
information can be gathered on B after its occurrence; or (ii) such information is useless
since B is not involved in any requirement link.

POSTNU without chained contingencies are in general relevant in a planning context:
contingent points in a plan are usually the end points or the intermediate points of the
agent own actions as well as the expected events to be triggered by the environment
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independently of its actions. The expectations regarding the latter are often known with
respect to absolute time (e.g. periodic events), which rule out chained contingencies.
Expected events, supposed to occur regardless of the agent activity, can seldom be defined
with respect to the end points of its actions. Further, two consecutive actions cannot make
a chained contingency. Remains as a case of such contingencies intermediate and final
points of actions. This case can be avoided by decomposing the action or expressing the
contingent constraints with respect to the controllable point. If this is not convenient,
then PO-Contr-Check loses completeness but remains sound and useful in practice.

The complexity of PO-Contr-Check is in O(|X |3) for a network with the set of
timepoints X : the for iteration is in O(|X invis| × |R∪C|) dominated by the DC-Check
step of cubic complexity when using current state of the art algorithm [Mor14].

Applied on our cooking example of Figure 4.2, PO-Contr-Check would show that
this POSTNU is uncontrollable.

4.5 Finding what to observe in a POSTNU
We partitioned contingent events into invisible and dynamically observable ones. However,
an observable event may or may not be visible to an agent depending on, e.g., its location,
the setting of its sensors or its concurrent activity. The agent may need to perform specific
actions to perceive observable events.

In our cooking example, it would be interesting to know if additional knowledge
would make the problem controllable. In this case, one could infer that knowing when
his partner leaves work will allow him to start cooking 10 minutes after. Such additional
information can easily be requested to the other agent (e.g. with a “text me when you
leave” request). This request essentially turns an invisible event into an observable one.

As a first step to achieve this deliberation, we study how an agent can find which
observations are necessary to make an uncontrollable POSTNU controllable.

Given a plan π, we further partition the set of dynamically observable contingent events
X dyn into two subsets (Figure 4.4):

• X vis(π): events whose occurrence will always be visible to the agent, e.g., when the
phone in my pocket rings;

• X hid(π): events that are normally hidden, they become visible if specific actions are
added to π, e.g., to observe that the water boils I need to be close and pay attention
to it.

Contingent (Xctg)


Invisible (X invis)

Dynamically Observable (X dyn)

Visible (X vis)
Hidden (X hid)

Figure 4.4: Classes of contingent points (ignoring a priori known ones).

Contingent events in a plan π are: X invis ∪ X vis(π) ∪ X hid(π). Invisible events are
intrinsic to a domain model, which has no means to observe them. However, the partition
of observable events depends on the specification of a planning problem as well as on the
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particular plan for that problem: an event initially in X hid migrates to X vis iff the actions
needed to observe it are added to π. To make a plan controllable, an agent may need to
perform additional sensing actions.

4.5.1 Needed Observations
Let Sπ = (Xctl, X invis ∪X vis(π)∪X hid(π), R, C) be a POSTNU corresponding to a plan
π without chained contingencies. X vis(π) are the events initially specified as visible and
those hidden that become visible because of the activity already planned in π. Sπ can be
in one of the following three cases:

(1) PO-Contr-Check(XC , X vis(π)∪X hid(π), X invis, R, C) is false: π cannot be
made controllable even if all X hid(π) is observed.

(2) PO-Contr-Check(XC , X vis(π), X invis ∪X hid(π), R, C) is true: π is controllable
without any additional observation.

(3) Otherwise additional observation actions of events in X hid(π) may make π control-
lable.

The third case requires identifying in X hid events whose observation makes an aug-
mented plan controllable. This is performed with procedure NeededObs (Algorithm 4),
which searches a space of subsets of X hid. A path in the search tree corresponds to a set
of events to move from the initial X hid to X vis. A search state is expanded by nondeter-
ministically choosing an event x to observe in a set of candidates. This is a backtrack
point, but the order in which the candidates are examined is irrelevant. The search fails
when no candidates can be found in X hid.

For finding one or all minimal sets of observation (in the set inclusion sense) that
make the network controllable one can rely on breadth-first search. Because the order in
which observation are considered is irrelevant, the procedure is extended to ignore any
set of observations that was previously considered.

Algorithm 4 Finding a set of observations to make a Partially Observable STNU Dy-
namically Controllable

function NeededObs(Xctl,X invis,X vis,X hid,R, C)
if PO-Contr-Check(Xctl,X vis,X invis ∪ X hid,R, C) then

return ∅
Σ← ObsCandidates(X hid) . Selects a subset of X hid

if Σ = ∅ then
return failure

x← NondeterministicallyChoose(Σ)
σ ← NeededObs(Xctl,X invis,X vis ∪ {x },X hid \ { x },R, C)
if σ = failure then

return failure
else

return {x} ∪ σ

ObsCandidates is a key function in NeededObs: it selects a subset of X hid whose
observation might render the POSTNU controllable. A naive version would simply try
all possibly hidden events. Let us discuss how to find a focused set of candidates.
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4.5.2 Relevant Candidates for Observation
The key insight to focus the search is to analyze what makes a given POSTNU not
controllable. We first remark that the transformations in Table 4.2 simply make sure
that the network stays consistent regardless of whether an invisible node occurs at its
earliest or at its latest. More specifically, the first and second rules propagate the upper-
case edges, while the last two rules propagate the lower-case edges of the invisible node.

We say that an edge e enforces the upper bound of a invisible point B if it was either:
(i) introduced by the first or second rule of Table 4.2 with B as an invisible point; or (ii)
derived through constraint propagation from an edge enforcing the upper bound of B.
Similarly for the lower bounds with respect to the last two rules. We say that a bound of
an invisible point is enforced by a sequence of edges if at least one edge of the sequence
enforces that bound.

We make this information explicit in the network by labeling all edges with the
set of bounds they enforce. For instance, if an edge is labeled with the set
{AMAX , BMAX , BMIN}, it means it enforces the upper bounds of A and B (noted
AMAX and BMAX), and the lower bound of B (noted BMIN).

Procedure PO-Contr-Check is extended to initialize these labels. Table 4.3 shows
the extended transformations with the additional labels (in red). For an invisible event
B, the added constraint inherits the label of the two constraints it originates from (the
sets U and V ) and has an additional projection BMIN (resp. BMAX) if it enforces the
lower (resp. upper) bound of B.

Conditions Added constraint
A B:x, U←−−−− B y, V←−− C A x+y, U ∪V ∪{BMAX}←−−−−−−−−−−−−− C

A B:x, U←−−−− B C:y, V←−−−− C A C:x+y, U ∪V ∪{BMAX}←−−−−−−−−−−−−−− C

A x, U←−− B b:y, V←−−− C A x+y, U ∪V ∪{BMIN}←−−−−−−−−−−−− C

A a:x, U←−−− B b:y, V←−−− C A c:x+y, U ∪V ∪{BMIN}←−−−−−−−−−−−−− C

Table 4.3: Added constraints due to an invisible point B, with the labels propagated to
track the bounds enforced by edges.

We also extend the classical STNU reduction rules of Table 4.1 as follow: if a reduction
is triggered that produces an edge e3 from two edges e1 and e2, then e3 is annotated
with the labels of both e1 and e2. Let ϕ be an STNU issued from the transformation by
Table 4.3 of a POSTNU. If ϕ is not DC then it necessarily has a “culprit” sequence of edges
(a semi-reducible negative cycle). This sequence, denoted ϕCulprit, enforces invisible and
hidden nodes in X invis and X hid; in the latter case it can give us observation candidates.

Proposition 4.5.1. Let S = (Xctl X invis ∪X vis ∪X hid, R, C) be a POSTNU with-
out chained contingencies such that PO-Contr-Check(Xctl,X vis,X invis ∪X hid,R, C) is
false, and ϕ be the corresponding STNU. If there is a sequence ϕCulprit that enforces both
the upper and lower bounds of events in X hid, then the observation of at least one such
event is needed to make S controllable. Otherwise S cannot be made controllable.

Proof. Making S controllable requires a change in ϕ in order to remove ϕCulprit. The only
allowed changes result from observing events in X hid. Observing an event A means that
edges labeled with AMIN or AMAX (and only those) won’t be introduced in ϕ. Since the
only edges that can be removed are the ones labeled with a node in X hid, then if there is
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(a) A B C D
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(b) A B C D
b:0
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c:0
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(c) A C D

c:0, BMIN

C:−4, BMAX
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0
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b:0
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2, CMINBMIN
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Figure 4.5: (a) A POSTNU with two contingent points B and C; its labelled distance
graph (where some requirement edges are omitted for clarity) in different observability
cases: (b) both B and C are observable, (c) B is invisible, (d) C is invisible, (e) both B
or C are invisible.

none (ϕCulprit enforces only nodes in X invis) ϕ remains non DC regardless of additional
observations. Otherwise the observation of at least one event in X hid enforced by the
sequence ϕCulprit is needed.

Let ϕ′ be a partial projection of ϕ defined as follows: for every contingent link A [l,u]==⇒ B
where B has its lower (resp. upper) and only its lower (resp. upper) bound enforced by
ϕCulprit, we replace in ϕ′ this link by a new link A [l,l]=⇒ B (resp. A [u,u]==⇒ B). ϕ′ is essentially
a version of ϕ where the duration of all contingent links with only one bound enforced
by ϕCulprit is known in advance.

The main feature of ϕ′ is that it contains all edges of ϕCulprit, making ϕ′ not DC. In
ϕ′, complete knowledge of events with just one enforced bound is not sufficient to remove
the inconsistent sequence. Consequently, removing the inconsistency requires at least one
event with its two bounds participating in ϕCulprit to be observed.

The ObsCandidates function returns ∅ when there is a sequence ϕCulprit (obtained
when PO-Contr-Check is false) which does not enforce the upper and lower bounds
of a node in X hid. Otherwise it returns all such nodes.

Figure 4.5(e) gives an example of such an inconsistent network. It was built by
applying PO-Contr-Check to the network of Figure 4.5(a) with B and C marked
invisible. The edge A 2, CMINBMIN−−−−−−−−−→ D states that the lower bounds of both B and C
require a delay from A to D of at most 2. The edge A −4, CMAXBMAX←−−−−−−−−−− D states that
the upper bounds of both B and C require a delay from A to D of at least 4. These
two edges will be detected as a culprit cycle that enforces both the lower and upper
bounds of B and C. To make the network controllable, at least one of B or C must be
observed. This would result in the STNUs of either Figures 4.5(c) and 4.5(d) which are
both controllable.2

2Note that the network in Figure 4.5a has no chained contingencies.
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4.6 Planning with a POSTNU
Our proposed approach and procedures PO-Contr-Check and NeededObs can be
integrated and used incrementally into our temporal planner. For this purpose, partial
plans are extended to contain contingents events together with conditions for their obser-
vation. The Temporal Constraint Network is adapted to reason with such events and the
planning algorithm considers a new kind of flaw that detects when a plan is uncontrollable
and imposes some observations to enforce controllability of the plan.

4.6.1 Representation of Contingent Events
To handle POSTNUs, we need a way to refer to contingent events and their observation
conditions. For this purpose, our definition of a chronicle (Section 2.4) is extended to
allow the presence of contingent timepoints and contingent constraints. Furthermore,
every observable contingent event e is associated with observation conditions expressed
as a pair (Fe, Ce) where Fe and Ce are assertions and constraints denoting a set of sufficient
conditions for the observation of e. For instance, consider the event ecooked that the dinner
is cooked. We need to observe that event in order to avoid overcooking. Such an event
would be associated with the conditions:

({ [ecooked] location =Kitchen },∅)

that requires me to be in the kitchen at the occurrence time of ecooked.

A partial plan (i.e. a chronicle φ), is associated with a set of contingent events Xctg =
X invis ∪X vis(φ)∪X hid(φ) where:
• X invis is the fixed set of events that can never be observed. We assume them to be

given in the domain definition.

• X vis(φ) contains all points whose occurrence will be observed. The initial set of
visible contingent (i.e. X vis(φ0)) is composed of all dynamically observable events
who are unconditionally observed (i.e. any event e such that Fe = Ce = ∅).

• X hid(φ0) contains all dynamically observable contingent events that we have not
proved to be observable yet. Initially, any event that is not unconditionally observed
is assumed to be hidden (i.e. in X hid(φ0)).

4.6.2 Main Temporal Constraint Network
FAPE planning algorithm heavily relies on the availability of temporal knowledge re-
garding the current partial plan. To maintain completeness of the planner, we need every
temporal constraint in a plan φ to be sound (i.e. to be present in any solution obtained
by refining φ).

For this purpose, the consistency of the temporal network is checked by assuming all
hidden points to be visible using:

PO-Contr-Check(Xctl, X vis(φ)∪X hid(φ), X invis, R, C)

The result is optimistic: some currently hidden points could indeed remain hidden.
The DC-Check algorithm used internally is the one of Morris [Mor14] that runs in O(n3)
where n is the number of timepoints in the network.
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This consistency check allows to prune dead-ends due to detected inconsistencies.
However, the planner still need to query the temporal network and the cubic algorithm
for DC-Check does not compute the all-pairs shortest paths required to efficiently query
the network. DC checking procedures that rely on such a minimal network are typically
too expensive for considering an online use for planning (e.g. the algorithm of Morris,
Muscettola, and Vidal [MMV01] is pseudo-polynomial). Instead, we use an STN S com-
posed of all requirements constraints of the POSTNU. Any time a new requirement is
inferred by PO-Contr-Check, the corresponding constraint is added to S. S is main-
tained minimal by an incremental Floyd-Warshall procedure (see Section 3.2.3.1) and can
be used to answer the queries of the planner in constant time.

4.6.3 Planning for Observation
We now present how the planner is extended to reason on observability. The core of
this mechanism is a new flaw detection function that detects when new observations are
needed and proposes sets of observations that would render the current plan controllable.

Uncontrollable Plan Flaw. We define a new type of flaw denoting an uncontrollable
plan. This flaw is detected if the current POSTNU is not controllable given that all
currently hidden events remain hidden. The plan is thus uncontrollable if the procedure

PO-Contr-Check(Xctl, X vis(φ), X invis ∪X hid(φ), R, C)

returns false.

Resolvers for an Uncontrollable Plan. Given an uncontrollable plan φ, one must
find a set of observations that would make it controllable. This is done using NeededObs
to find all minimal sets of observations {O1, . . . , ON } where each Oi is such that:

• Oi is a set of hidden events, i.e., Oi ⊆ X hid(φ)

• the observation of all events e ∈ Oi would make the plan controllable, i.e.,
PO-Contr-Check(Xctl, X vis(φ)∪Oi, X invis ∪X hid(φ) \Oi, R, C) returns true.

The uncontrollable plan has N resolvers, one for each set of observations.
For a given set of observation Oi, the resolver is a plan restriction φ

(FOi ,COi )−−−−−−−→R φ′

where FOi = ⋃
e∈Oi Fe and COi = ⋃

e∈Oi Ce. Essentially, this ensure that the condition
for the observation of any e ∈ Oi are met in all plans refined from φ′. This is made
explicit by transferring all events in Oi from the hidden set to the visible set of φ′ (i.e.
X vis(φ′)← X vis(φ)∪Oi and X hid(φ′)← X hid(φ) \Oi).

This flaw detection mechanism allows to detect, while planning, whether the current
partial plan is controllable. If not, then the planner will consider possible sets of obser-
vations, each of which would render the partial plan controllable. This is not done by
directly considering sensing actions but instead by stating condition on the state of the
world. Supporting those conditions will typically trigger the insertion of new actions into
the plan.
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4.6.4 Dispatchable and Structural Timepoints
So far we have avoided another restricting assumption in the classical definition of an
STNU which is that all controllable timepoints must be dispatched: given a controllable
timepoint x ∈ Xctl, a dynamic execution strategy must assign it an execution time t no
later than t.

Let us consider a simple example to see how this can be problematic in the case of
rich temporal models. We use a version of our move action from Chapter 2 extended to
have an uncertain duration:

move(r, d, d′)
task: move(r, d, d′)

dependent: no
assertions: [tstart, tend] loc (r) :d 7→ d′

[tstart, t] free (d) :⊥ 7→ >
[t′, tend] free (d′) :> 7→ ⊥

subtasks: ∅
constraints: connected(d, d′) = >

tstart
[15,20]===⇒ tend

t = tstart + 1
t′ = tend − 1

Figure 4.6: A move action with uncertain duration. Moving from location d to location
d′ takes between 15 and 20 time units.

Using this move action, suppose we want to bring a rover r from a location d1 to
a location d2, where d2 only become free after time 30. Given a temporal origin O,
a solution to this problem would be to have an action move(r, d1, d2) to be scheduled
after O while ensuring that its t′ timepoint occurs at least 30 time units after O. The
POSTNU corresponding to this solution is given in Figure 4.7.

O

tstart tend

t t′

[15, 20]

[1, 1] [1,
1][1,∞

]

[30,∞]

move(r, d1, d2)

Figure 4.7: STNU of our moving problem.

However this STNU is not controllable: t′ can not be dispatched exactly one time
unit before the occurrence of tend as it would require knowing in advance when our move
action finishes. Our planning problem however has an intuitive solution: if we schedule
the action to start at time 16, then it will not end before time 31 and we are guaranteed
that d2 be free when needed.
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The difference lies in how t′ is considered. In our intuitive solution, t′ is simply meant
to express constraints relating O and tend, here to condition that at least 31 time units
elapse between O and tend. In fact, we never require a value to be given to t′, its domain
will instead be reduced due to the occurrence of other events such as tstart and tend. We say
that t′ is a structural timepoint: it is simply meant to express requirements about other
timepoints. While the reasoning on t′ is simple enough, temporal action can in general
contain many such structural timepoints involved in more complex chains of constraints.

Definition 4.6.1 (POSTNU with Structural Timepoints). We define a POSTNU with
Structural Timepoints as a POSTNU S = (Xctl,Xctg,R, C), where the set of controllable
points Xctl is partitioned into:

• a set of dispatchable timepoints X disp
ctl , and

• a set of structural timepoints X struct
ctl that are only involved in requirement con-

straints.

Timepoints



Controllable (Xctl)

 Dispatchable (X disp
ctl )

Structural (X struct
ctl )

Contingent (Xctg)


Invisible (X invis)
Dynamically Observable (X dyn)
A priori Known (X a.p)

We do not give a complete definition of the controllability of such a network but instead
remark that this definition can be built by simply restricting a schedule to provide an
execution time for dispatchable points only (while our previous definition considered it
for all controllable timepoints). The result is that (i) no decision must be made regarding
the time at which structural points are dispatched (ii) the STN network resulting from
the execution must still be consistent. The latter condition enforces that all structural
timepoints have a valid instantiation.

Definition 4.6.2 (Controllability of POSTNU with Structural Points). We say that a
POSTNU with Structural Timepoints is controllable if it has a viable dynamic execution
strategy whose schedule is restricted to dispatchable timepoints.

Given this definition of POSTNU with Structural Timepoints, we would be inter-
ested in knowing whether it is controllable and find an execution strategy for it. We
now demonstrate how a POSTNU with Structural Timepoints can be compiled into an
equivalent POSTNU in which all structural timepoints have been removed.

Algorithm 5 performs this compilation by first considering an STN (X ,Rstruct) that
contains all timepoints X of a POSTNU with structural points and a restricted set of
requirement links Rstruct ⊆ R that contains all links whose start or end point is a struc-
tural timepoint. An All-Pairs Shortest Path (APSP) procedure is used to compute the
minimal network of this STN: (X ,Rmin-struct). While, the original set of requirements
Rstruct only contained constraints involving at least one structural point, Rmin-struct now
contains minimal constraints that can relate two contingents or dispatchable points. The
final POSTNU is built by taking only those constraints that do not involve any structural
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points both from the original constraint set (R and C) and from the minimal network
(Rmin-struct).

The resulting POSTNU does not contain any structural timepoints and one can use
the customary algorithms for checking its controllability (e.g. PO-Contr-Check).

Algorithm 5 Compilation of structural timepoints
Input:

A POSTNU with structural timepoints
Output:

An equivalent POSTNU with no structural timepoints

function CompileStructuralPoints(X disp
ctl ∪X struct

ctl ,Xctg,R, C)
X ← X disp

ctl ∪X struct
ctl ∪Xctg

Rstruct ← { c | c ∈ R ∧ c involves a structural timepoints x ∈ X struct
ctl }

(X ,Rmin−struct)← APSP(X ,Rstruct)
if Rmin-struct has a negative cycle then

return failure
Rno−struct ← { c | c ∈ (R∪Rmin−struct) ∧ c involves no structural timepoints }
return (X disp

ctl ,Xctg, R
no−struct, C)

Theorem 4.6.1. Algorithm 5 is sound and complete.

Proof. We first make the observation that Algorithm 5 only adds constraints that are in-
ferred through an APSP algorithm. Hence all constraints added to the compiled POSTNU
are correct.

Now we prove that if the STNU is controllable, then all structural timepoints have
a consistent instantiation. Assume that, after execution, the STN with structural time-
points would contain an inconsistency that is not present in the compiled one. This
means that there is a cycle of negative length involving at least one structural timepoint
T : A

[−,x]−−→ T
[−,y]−−→ B

[−,z]−−→ A such that x + y + z < 0. To show that the compiled
STN would have the same inconsistency, we rely on the fact that APSP preserve minimal
distances. Indeed, in this case, APSP would have inferred an A

[−,x+y]−−−−→ B constraint
and the negative cycle would also appear in the compiled STN. In the case where all
timepoints of a negative cycle are structural, the inconsistency would have been detected
in the compilation phase by a negative cycle in Rmin-struct.

In the special case where a structural timepoint t1 is rigidly fixed to another timepoint
t2 through a constraint t1 [d,d]−−→ t2, a simpler procedure can be applied to remove it from the
network (see the compilation of rigid components of an STN by Tsamardinos, Muscettola,
and Morris [TMM98]). This is for instance the case of the timepoint t′ in Figure 4.7.
This technique is however not applicable in general as an action might contain many
structural timepoints that are not rigidly constrained such as the timepoints associated
to an unrefined task.

Example 4.3. We illustrate our compilation of structural timepoints on a slightly more
complex example introduced by Rabideau et al. [Rab+99] in the context of STN that
involves warming up an instrument some time before using it. We define an action
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take measure that requires (i) that an instrument i had been warming up for at least
10 seconds (ii) that the instrument be idle for the duration of the action.

take measure(i)
task: [tstart, tend]take measure(i)

assertions: [tc, tc + 10] state (i)=warming
[tstart, tend] state (i)= idle

constraints: tstart − 25 ≤ tc ≤ tstart − 20

The chronicle below defines two change assertions. e1 is a change of the state of
an instrument i from idle to warming at time te1. e2 is a change of the state of an
instrument c from warming to idle at time te2. The timepoint te2 is contingent and
occurs between 10 and 30 seconds after te1

({∅,
{[te1 − 1, te1] state (i) : idle 7→ warming,

[te2, te2 + 1] state (i) :warming 7→ idle},

{te1
[10,30]===⇒ te2})

By making e1 and e2 respectively support the first and second statement of the
take measure action, we would obtain the following STNU where:

• tc must occur once the instrument is warming (i.e. after te1)

• tc must occur at least 10 seconds before it switches back to idle (i.e. at least 10
time units before te2).

• tstart must occur when the instrument is idle (i.e. strictly after te2)

• tstart must occur between 20 and 25 seconds after tc.

te1 te2

tc tstart

[10, 30]

[0,∞
]

[1
0,
∞

]

[20, 25]

[1,∞
]

If we assumed tc to be a dispatchable timepoint, the STNU would not be control-
lable: tc would be constrained to happened directly after te1 (to make sure the 10
seconds delay with te2 is respected). If te2 occurs 30 seconds after te1 there would be
no possible instantiation of tstart.

Taking a step back, we can see that this problem should have a solution. By
ensuring that tstart occurs at least 20s after te1 and at most 15s after te2 we are
guaranteed to find a solution where the warming condition holds. The reason why the
proposed STNU is not DC comes from a too restrictive assumption: the tc timepoint
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does not need to be dynamically instantiated. It is sufficient to show that it will have
at least one valid value regardless of the choice made for other timepoints.

This can be modeled by considering tc as a structural timepoint. The figures
below give the intermediate step and the result of compiling the structural timepoint
tc of this network using Algorithm 5.

te1 te2

tc tstart

[10,∞]

[0,∞
]

[1
0,
∞

]

[20, 25]

[−∞
, 15]

[20,∞]

Figure 4.8: In black are the constraints
of the original POSTNU that are used
as a base for the APSP computation
(i.e. Rstruct). In gray are the con-
straints inferred with the APSP step (i.e.
Rmin-struct \ Rstruct).

te1 te2

tstart

[10, 30]

[1,∞
]

[−∞
, 15]

[20,∞]

Figure 4.9: The compiled POSTNU lim-
ited to contingent and dispatchable time-
points. In black are the constraints origi-
nally present. The constraints in gray are
those introduced after the APSP step on
tc.

4.7 Empirical Evaluation
For evaluating our approach, we extended the ANML language for representing contingent
events and their observation conditions. For illustration, we encoded our running example
of cooking dinner with an additional action allowing the agent to request his partner
to notify him when leaving a location. The corresponding problem can be found in
Section B.4. FAPE was able to find a solution to this problem by:

• scheduling a cooking action,

• recognizing that the partial plan is not controllable and that the observation of the
wife driving event would make the plan controllable,

• adding the conditions for observation of wife driving to the partial plan,

• scheduling a notification request while wife is at work to make those conditions
hold in the solution plan.

Finding this plan presented no difficulty for FAPE that took well under a second to solve
the problem.

In order to assess the various components involved in computing a plan with partial
observability and sensing actions, we constructed an artificial logistics domain as follows.
A domain has n areas. In each area several contingent events of different types occur. An
event e produces an effect that holds for a given amount of time. An agent can: (i) move
between the areas, (ii) observe the occurrence of events in its area, and (iii) handle an
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event by acting during the period its effect holds. Each problem instance has two agents
and few tasks corresponding to events that need be handled.

The planner is run on 192 randomly generated instances of this domain, each problem
containing from 2 to 20 areas and from 8 to 200 events. Each task typically requires a
few move actions and one handling action for the targeted event. Furthermore, handling
an event leads either to: (i) add a sensing action to observe this event; (ii) add one or
several sensing actions to observe earlier events to provide enough information; or (iii)
no sensing action is needed. The planner is able to identify which of these options is
possible and choose a desirable one appropriately.
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Figure 4.10: FAPE runtime distribution on 192 random instances of a logistics domain
with 8 to 200 contingent events (isolated points are beyond the maximum plotted by R).

Figure 4.10 shows the runtime distribution to plan problems having different numbers
of tasks. More tasks result in more actions in the final plan, which naturally increases
planning time. The planner spent on average 47.31%, and at most 68%, of its processing
time on POSTNU related code (that is, checking controllability and looking for needed
observations). Three problems with 12 tasks were not solved for a timeout of 60 seconds.
On those problems, the limitation was the heuristic of the planner that failed to provide
sufficient guidance. Indeed, our usual heuristics are not designed to assess the specifics of
partial observability and the resulting additional sensing actions. Beyond the quantitative
measures, it is important to note that, with a reasonable overhead, the planner was
able to incrementally identify the necessary observations to keep its plan dynamically
controllable. More importantly, this was done while maintaining and extending the causal
structure of the plan to support the required sensing actions.

We further use the POSTNUs encountered while planning on those examples to ex-
plore the performance of NeededObs. Figure 4.11 shows an empirical evaluation of the
performance of NeededObs on those POSTNUs corresponding to partial plans in our
test domain with a few hundred nodes and up to 200 contingent events. The labeling
technique speeds up the search by several orders of magnitude over the naive approach.
Indeed, NeededObs required on average 5 iterations, and as many calls to DC-Check,
to find a minimal set of observations. Even on large networks, this number never exceeded
13.
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Figure 4.11: NeededObs runtime distribution on 2264 networks of 32 to 311 events in
total, requiring 1 to 4 observations to be controllable (median, first and third quartiles,
max and min). The dashed line gives the median runtime when our labeling technique
is not used to extract a restricted set of candidate observations.

4.8 Conclusion
In this chapter, we presented a fairly comprehensive study of temporal networks with
partially observable contingent events. The dynamic controllability of STNUs assumes
all contingent events to be observable. In many domains they are not. However, the
agent can observe them if he takes adequate sensing actions, hence if he plans for those
actions.

We proposed a transformation of POSTNUs into STNUs to determine their control-
lability using known DC-Check algorithms. We formally proved PO-Contr-Check
to be sound; it is complete for an interesting subclass of networks.

Building on PO-Contr-Check, we proposed NeededObs for finding a minimal
set of observations that makes a POSTNU controllable. We developed an edge labelling
mechanism that focuses NeededObs and demonstrated formally its main property. Em-
pirical tests show that NeededObs remains efficient even on networks corresponding to
large plans.

Finally, we showed how the proposed approach can be integrated incrementally in
FAPE. We proposed a new flaw detection function that identifies the need for additional
observations and imposes the necessary conditions for maintaining a plan controllable.
The planner further relies on dedicated constraint networks for handling contingent events
and structural timepoints.

The essential contribution of this chapter is to consider visibility as a dynamic property
over which an agent has some control. On the contrary, classical models of partially
observable dynamic systems consider only two static categories of variables: invisible and
observable.



Chapter 5
Online Planning and Acting with

FAPE

Contents
5.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . 118
5.2 Related Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . 118
5.3 General Architecture . . . . . . . . . . . . . . . . . . . . . . . 122

5.3.1 Main Components . . . . . . . . . . . . . . . . . . . . . . . . . 122
5.3.1.1 Platform . . . . . . . . . . . . . . . . . . . . . . . . . 122
5.3.1.2 Skill Handlers . . . . . . . . . . . . . . . . . . . . . . 123
5.3.1.3 Activity manager . . . . . . . . . . . . . . . . . . . . 123
5.3.1.4 Planner . . . . . . . . . . . . . . . . . . . . . . . . . . 124
5.3.1.5 Observation Database . . . . . . . . . . . . . . . . . . 124

5.3.2 Key Ingredients . . . . . . . . . . . . . . . . . . . . . . . . . . . 124
5.3.2.1 Planning Domain . . . . . . . . . . . . . . . . . . . . 124
5.3.2.2 Time Representation . . . . . . . . . . . . . . . . . . 124
5.3.2.3 State Variables . . . . . . . . . . . . . . . . . . . . . . 124
5.3.2.4 Observations . . . . . . . . . . . . . . . . . . . . . . . 124
5.3.2.5 Chronicle . . . . . . . . . . . . . . . . . . . . . . . . . 125

5.4 Observation Database . . . . . . . . . . . . . . . . . . . . . . . 125
5.5 Activity Manager . . . . . . . . . . . . . . . . . . . . . . . . . 126

5.5.1 Main Acting Loop . . . . . . . . . . . . . . . . . . . . . . . . . 127
5.5.2 Observation Merging . . . . . . . . . . . . . . . . . . . . . . . . 128
5.5.3 Dispatching . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 129
5.5.4 Repair and Replan Requests . . . . . . . . . . . . . . . . . . . 130

5.5.4.1 Plan Repair . . . . . . . . . . . . . . . . . . . . . . . 131
5.5.4.2 Repairing vs Replanning . . . . . . . . . . . . . . . . 132
5.5.4.3 Dealing with Orphan Task-Dependent Actions . . . . 132

5.6 Skill Handlers . . . . . . . . . . . . . . . . . . . . . . . . . . . . 133
5.6.1 Execution of a Primitive Action . . . . . . . . . . . . . . . . . . 134
5.6.2 Online Refinement of High Level Actions . . . . . . . . . . . . 136

5.7 Experimental Results . . . . . . . . . . . . . . . . . . . . . . . 139
5.7.1 Platform Settings . . . . . . . . . . . . . . . . . . . . . . . . . . 139
5.7.2 Experimental Setting and Results . . . . . . . . . . . . . . . . 139

5.8 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 142

117



118 CHAPTER 5. ONLINE PLANNING AND ACTING WITH FAPE

5.1 Introduction
So far, we have been interested in solving offline planning problems. In this chapter, we
are interested in adapting the algorithms previously presented to handle robotics planning
tasks that require online deliberation in order to act in the real world. Autonomous agents
and robotics in particular present many use cases where the planning procedure we have
presented would not be useful if limited to an offline setting.

Indeed, our planner assumes a fairly abstract view of the problem of actuating a
robotic platform. For acting in the real world, those abstract actions must eventually be
refined to commands understandable by the robotic platform. Such refinement is often
non trivial and requires further deliberation, e.g., for choosing how to grasp an object.
Furthermore, in open environments, one cannot assume that a plan will be carried out
entirely without encountering failures. In such cases, the execution of a plan must be
monitored and adapted online to handle unforeseen contingencies.

In this chapter, we discuss the integration of our planning system in a more general
architecture aiming at deliberate acting in robotics. For this purpose, we will study a
service robotics domain where a robot must accomplish several tasks such as tidying up an
apartment and bringing items to a human user, possibly with some temporal constraints.

An agent has a model of the environment and of its own capabilities expressed in
particular as a set of chronicles. The agent further has perception capabilities that
provide a partial view of the evolution of the world and actuation capabilities provided
as primitive commands of a robotic platform. The agent should, through deliberate
planning and acting, achieve a set of objectives expressed as tasks or assertions on the
state of the world. For this purpose, the agent should find and execute a plan that
achieves its objectives while taking into account the modeled and observed contingencies
and the partial knowledge of the environment. Executing the plan involves refining the
actions into primitive commands and monitoring the overall process to make sure the
evolution of the world matches the agent’s expectation. In case of discrepancies that
would prevent the agent from achieving its objectives, its current plan should be adapted
to go back to a nominal behavior.

5.2 Related Work
The needs of deliberate action in robotics goes well beyond the usual planning problem as
the execution of a symbolic plan typically involves (i) refining symbolic actions down to
primitive commands, (ii) monitoring the execution of the plan in a partially observable
environment, and (iii) reacting to unforeseen contingencies by adapting its behavior. We
here give an overview of some of the deliberation capabilities that a robotic agent must
have in order to act in the real world. A comprehensive view of those functions is given
by Ingrand and Ghallab [IG14].

Monitoring. Execution monitoring is the process of identifying the discrepancies be-
tween the observations of the real world and predictions derived from an agent’s repre-
sentation of the world. In addition to a fault detection function, execution monitoring
is typically used for fault isolation and fault diagnosis, that is, identifying where the
problem is situated and providing an explanation for it.

Execution monitoring has been well studied in the context of industrial control, where
systems have very limited autonomy. A survey of related monitoring systems, targeting
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the sensory-motor level of autonomous robots, is given by Pettersson [Pet05].
Model-based diagnosis was used for monitoring and recovery in the Remote Agent

Experiment (DS1/RAX) [Mus+98; Ber+00]. Each component of the spacecraft is asso-
ciated with a graph were nodes denote the nominal and failure states and edges describe
nominal transitions (associated to a command) or exogenous transitions (denoting fail-
ures). The latter are associated with transition probabilities that are used to find out
the most likely transitions that match the observations. The system is also capable of
recovery by searching for a set of nominal transitions such that all components return a
nominal state. This system is integrated with the rest of the deliberation modules and
was demonstrated to be effective for a spacecraft.

Several approach extends planning operators to facilitate the monitoring of a plan.
Doherty, Kvarnström, and Heintz [DKH09] provide an integration of planning and mon-
itoring using Temporal Action Logic (TAL). The system uses the model of actions to
generate control formulas using an annotated subset of an action conditions and effects.
The control formula is used to detect discrepancies at acting time regarding both the
individual actions and the causal structure of the plan.

Fichtner, Großmann, and Thielscher [FGT03] extend the usual planning operators
with abnormal conditions representing conditions which, when not true, can cause an
action failure. Those conditions are by default assumed to hold. When discrepancies are
detected, the system uses a prioritized default logic to find out the most likely cause for
failure, i.e. one or several abnormal conditions that do not hold.

Fraser, Steinbauer, and Wotawa [FSW05] extend a planning problem with plan in-
variants in the form of a logical sentence that should hold at any point of a solution plan.
Monitoring is done by checking that neither plan invariants nor causal links are violated
during execution.

Recovering. Regardless of the system used for detecting and explaining discrepancies,
a complete acting system must be able to recover from a discrepancy by adapting its
behavior. In the context of plan-based acting systems, this is generally achieved by
changing the plan by either repairing the current plan or replanning entirely.

A metric of plan stability is defined by Fox et al. [Fox+06] as a function of the num-
ber of actions that differ from the original plan in the new one. The authors argue
that stability is an important property as it (i) reduces the cognitive load on a human
operator supervising the robotic system, and (ii) allows for a better prediction of the
action sequences that will be executed and facilitates the transitions between those ac-
tions. Similarly, Cushing and Kambhampati [CK05] argue that the metric for evaluating
the quality of a plan should take into account the commitments previously made by the
acting system.

A practical setting for maintaining plan stability as well as limiting the computational
load of the system is to favor plan repair in place of replanning [Fox+06]. A popular
framework for plan repair is to use local search at the core the planner’s algorithm.
Indeed, local search allows both the removal of problematic actions or constraints as well
as extending the plan to fulfill unsatisfied conditions. This approach is notably used in
GPG [GS00], LPG [GSS03] and ASPEN [Chi+00a] for both planning and repair. Bajada,
Fox, and Long [BFL14] propose a local search mechanism for repairing or optimizing a
temporal plan subject to various quality metrics.

Various system handle plan repair by removing parts of the plan to come up with a
partial plan from which search will be started. Krogt and Weerdt [KW05] use this tech-
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nique in an extension to VHPOP [YS03]. Their planner uses classical planning heuristics
to decide which constraints or action to remove in a first de-refinement process. The
resulting plan is used as a starting point for search. If the search fails to provide a
solution, their planner will try to remove more actions until eventually all actions are
removed which is equivalent to replanning. A similar approach is used by Boella and
Damiano [BD02] in the context of HTN planning: the system will first try to remove the
first inapplicable action. If the system fails to find a plan, then the planner will remove
its parent in the decomposition tree, together with all its subactions. The process is
continued until finding a plan or reaching the root of the task network. POCL planners,
including most constraint based planners, naturally support this repair scheme that was
for instance demonstrated with IxTeT [LI04; Lem04] or HiPOP [Bec16].

Another possibility is to replay the reasoning that led to the original plan. This gener-
ally involves storing the reason for which an action was inserted and remembering which
choice always leads to inconsistent plans. The planner can then replay the reasoning
from an updated state, avoiding some dead-ends and only inserting actions whose inser-
tion is still required. This is the approach taken by RepairSHOP [War+07] and PANDA
[BSB08] in the context of hierarchical planning.

Perceiving. Perception is another critical capability for robotic systems. While the
problem of localization of a robotic agent as been successfully handled by Simultane-
ous Localization and Mapping techniques (SLAM) [Mon+03; BD06], other perception
problems remain more challenging.

One of those is the anchoring problem of relating symbols and perception data that
refer to the same physical object [CS02]. Anchoring is a critical capability as planning,
and other deliberation functions, reason on symbolic attributes that must eventually be
related to the actual properties of physical objects they represent (e.g. for the purpose of
monitoring a plan execution). While much work has been dedicated to the classification
of an object from visual data (e.g. recognizing that a given object is a cup), only a few
systems have been focused on symbol anchoring (e.g. [CS02; Kar+08; HKD10]).

An additional problem is the one of situation and event recognition from a set of
temporally situated observations. Chronicle recognition techniques encode a possible
situation in the form a chronicle. The set of possible situations is filtered online by
eliminating situations that do not match the observation made so far [DGG93; DL07;
Gha96; HKD10]. In addition, several techniques for activity recognition draw from the
related work in signal processing and plan recognition, as extensively surveyed by Krüger
et al. [Krü+07].

Dispatching. Plan dispatching is the problem of dynamically deciding when to start
each action of the plan. The problem is trivial for non-temporal planning as one must
simply start an action once the preceding one has finished. In temporal planning, each
action is associated with a start timepoint tstart whose associated constraints form a
temporal network. An action can be started a time t if tstart = t is a consistent assignment
to its start timepoint. To carry out the execution of a plan, a dispatching algorithm must
keep track of the assignments made to all past timepoints and propagate their consequence
in the rest of the temporal network. Various efficient algorithms have been proposed to
perform this propagation for Simple Temporal Networks (e.g. [TMM98; MMT98]).

The problem is more complex with the Simple Temporal Network with Uncertainty
(STNU) as one must account for contingent timepoints in addition to controllable ones.
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An STNU is dynamically controllable if controllable timepoints can be dynamically dis-
patched by looking at past observations only. Because of this property, most algorithms
for checking the dynamic controllability of an STNU make explicit the constraints nec-
essary for deciding whether a controllable timepoint can be executed at the present
time [NKD15; NKD14a; NKD13; Mor14]. Additional algorithms have been proposed
to provide a more efficient online propagation of dynamically controllable STNU [Hun16;
Hun10]. Beyond these constraint based approaches, another possibility is to translate an
STNU to a Timed Game Automata (TGA) and rely on established model checking tools
to provide a execution strategy [Vid00; Cim+14b; Cim+16; MO15].

Those approaches assume a central controller that is instantly aware of all decisions
regarding the execution of controllable timepoints. This assumption does not hold in
the context of multi-agent plans where communication between agents is not always
possible. For this purpose, Casanova, Pralet, and Lesire [CPL15] propose an algorithm
for managing the execution of a Multi-agent STN (MaSTN [BD13]) where each agent has
a partial view of another agent’s activities. The author consider several communication
scenarios ranging from complete observability by a central supervisor to local information
exchange between agents. Mogali, Smith, and Rubinstein [MSR16] propose an algorithm
that decouple the activities of all agents involved by a MaSTN by an offline distributed
preprocessing. In the same line, Casanova et al. [Cas+16] consider a Multi-agent STNU
(MaSTNU) problem that involves uncertain durations. The authors propose an offline
technique that compiles a MaSTNU into one SNTU for each agent that does not require
any knowledge on the activity of other agents.

Acting. Acting is the problem of refining an action down to primitive commands ex-
ecutable by the platform. A tempting approach would be to simply map the planned
actions to commands of the system as it was demonstrated on Shakey with the PLANEX
system [Fik71]. This scheme however quickly finds its limits as the planned actions typ-
ically remain to abstract to handle the physics of the real world.

Procedure-based approaches rely on hand written rules to decide how to refine an
action based on the current context. RAP [Fir87] and PRS [Ing+96] are two systems
that rely on operational procedures (or skills) to achieve goals or react to events. Both
systems commit to their goals, possibly falling back to a different skill if the one initially
chosen fails to achieve the goal at hand. XFRM [BM94] and TCA/TDL [Sim92; SA98]
are other influential examples of procedure based acting systems. The former uses rules
to transform a current plan in plan space while the latter use a task decomposition
framemork for this purpose. While some of those system are endowed with limited
planning capabilities (e.g. by simulating the execution of a given skill), they have mainly
be used in conjunction with task planners. PRS has been integrated with SIPE [Wil90] in
Cypress [WM95] and CPEF [Mye99], RAP has been integrated with PRODIGY [VR98]
and AP [Bon+97] and TDL has been integrated with Casper [Chi+00a].

RMPL (Reactive Model-based Programming Language [IRW99; LW14; EWH10;
KWA01] provides a comprehensive representation for planning and acting by combining
a model of the system as a state transition system (encoding nominal and failure
transitions) as well as reactive programming constructs encoding the control rules. An
RMPL model is translated into Temporal Plan Networks that represent a set of possible
plans and their associated decision nodes in an extension of STNs. Planning with a
TPN can be reduced to associating a choice to each decision node so that the system
takes a desirable path. Extension to Temporal Plan Networks have been devised to
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handle probabilistic domains [SW14] or uncertain domain [LW14].
IDEA [Mus+00; Mus+02] and T-ReX [PRM10; McG+08; McG+09] both provide a

way of combining several components with heterogeneous tasks (e.g. long term planning
or navigation control) through a set of shared timelines. The EUROPA planner [Bar+12]
(or possibly APSI [Ces+09] in the case of T-ReX) typically provides long term planning
capabilities while other components access and modify the shared plan through reading
and altering the timelines of other components. The components of T-ReX (or reactors)
are further hierarchically organized to ensure the reactivity of the system.

Many other techniques have been devised for the purpose of acting, notably including
automata based methods [CAL92; Boh+11; Ver+05] and logic based approaches [HBL98;
FL08].

Other Deliberation Functions. Other deliberation capabilities are relevant for an
acting system in robotics but are beyond our interest in this chapter.

Goal reasoning is a high level capability of a system that is responsible of deciding
which goals to pursue. While some planning system are capable of selecting a subset of
goals in the case of an over-subscription planning problem [Smi04], the problem of goal
reasoning goes beyond this capability by, for instance, synthesizing new goals to react to
discrepancies (as extensively surveyed by Vattam et al. [Vat+13] and Hawes [Haw11]).

Furthermore, many robotic problems require a tight integration of task and motion
planning. Indeed, in many cases, a task planner must take into account geometric con-
straints or the motion dynamics of a robot to solve a complex task. Many planning
systems have been developed for this purpose and usually associate, at planning time,
each primitive action to one possible motion for achieving it, e.g., [CAG09; CA09; Sil+14;
Sri+14; Bid+15; Gar15; KL11]. Those planners further provide many search control tech-
niques to reason on this joint search space.

5.3 General Architecture
Our system follows the very general Actor Model architecture [HBS73] where several
components communicate and synchronize through message passing while maintaining
an internal state. In this section, we give an overview of the system by presenting its
main components and elements. A more detailed view of each component will be given
in the subsequent sections.

5.3.1 Main Components
5.3.1.1 Platform

The platform is the component that provides a software interface to handle the various
capabilities of the controlled agent. In our robotic case, the platform provides some
robotic specific deliberation capabilities such as a way to compute a motion plan for
grasping an object. It further provides means to actuate the robot, e.g., by executing a
previously computed motion plan. It is also responsible for transforming the raw sensor
output into a more intelligible form, typically through symbol anchoring.

In practice, the ROS (Robot Operating System) middleware is used to interact with
the many specific tools developed by the robotics community (see Section 5.7.1).



5.3. GENERAL ARCHITECTURE 123

Activity
Manager

Planner

Skill 1
(e.g. navigation)

Skill 2
(e.g. manipulation)

Observation
Database

Platform

Env. updates

R
ep

ai
r

R
eq

.N
ew

Plan

Exec
uti

on
Req.

Execution Req.

Exe
c.

fee
db

ack

Exec. feedback

Se
ns

or
ou

tp
ut

Figure 5.1: General architecture of FAPE for online planning and acting.

5.3.1.2 Skill Handlers

Skill handlers (Section 5.6) are responsible for executing a given primitive action (from
the planner perspective) by refining it into one or several commands provided by the
platform and overseeing their execution. A skill handler is started when an action becomes
executable and terminated once it succeeds or fails.

During its execution it typically provides feedback regarding the execution status of
the action (e.g. succeeded, failed) and the values of some state variables used by other
components of the system.

In addition, a skill handler can refine a high-level action it is responsible for, for
instance by creating new subtasks. Such new subtasks will cause the planner to extend
the plan to achieve them with additional actions.

5.3.1.3 Activity manager

The activity manager (Section 5.5) is the central component of our architecture that is
responsible for carrying out a plan. Given a set of goals, it maintains an executable plan
that achieves them and overlooks its execution.

With the current plan, the activity manager dispatches executable actions to dedicated
skill handlers. It is further responsible for integrating the feedback gathered through
observations of the environment or provided by skill handlers regarding the execution of
actions.

When such feedback results in an inconsistency (e.g. an action failed or an observation
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does not match the predictions), it emits planning requests to either repair the current
plan or get an entirely new one.

5.3.1.4 Planner

The planner is, with some minor adaptations, the planning framework we have discussed
in the previous chapters of this thesis. Given a flawed plan, it is responsible in refining
and extending it to make it consistent.

5.3.1.5 Observation Database

The observation database (Section 5.4) is the component responsible of maintaining the
information gathered during execution. Its main objective is to map the information that
was gathered through the robots sensors and make it available into anchored facts that
are appropriate for usage in the rest of the system. It can further make some limited
inference to extend the existing database. ORO [Lem+10] provides a good example of
the desirable capabilities of this component.

5.3.2 Key Ingredients
5.3.2.1 Planning Domain

The planning domain is composed of a set of actions templates and invariants representing
static knowledge on the environment (e.g. connected(d, d′)). Actions are partitioned into
executable ones, whose start timepoint is dispatchable and abstract ones, whose start
timepoint is structural (see Section 4.6.4).

5.3.2.2 Time Representation

We use a discrete time representation where the set of instant is denoted by Ticks =
JO,HK, O being the temporal origin and H the temporal horizon. We refer to the
current time as tcurr ∈ Ticks.

5.3.2.3 State Variables

The dynamics of the system is encoded with a set of state variables SV that either
characterize the environment in which the robot evolves (e.g. the placement of a cup) or
the internal state of the robot (e.g. that some sensor is currently active).

The set of state variables is not limited to the one appearing in the planning domain
and can represent any value that might be usable by the activity manager or skill handlers.

5.3.2.4 Observations

An observation is a tuple (t, sv, v) denoting that a state variable sv ∈ SV was observed
with the value v at time t ∈ Ticks.

We denote the set of possible observations by Λ = Ticks × SV × V al where V al is
the set of all possible values that can be taken by state variables.
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5.3.2.5 Chronicle

A chronicle remains the privileged way of representing a plan together with its associated
temporal and binding constraints. The assertions of a chronicle are used to represent the
expected evolution of the environment as a result of carrying out a plan.

A chronicle is extended to contain the execution status of an action that is either
pending, executing, executed or failed.

5.4 Observation Database
The observation database is responsible for maintaining the knowledge on the values that
has been taken by the state variables of the system.

Its maintains a database of observations ΛDB ⊆ Λ that is extended with new obser-
vations made by the platform or notified by other components.

In addition, it contains a set of inference functions T . An inference function f ∈ T
takes as parameters a new observation and the current database and returns a new set
of facts to be added to the database.

Finally the component maintains, for each state variable sv, a list of subscribers
Subs(sv) that contains all components that should be notified of new observations on sv.

Messages . Synchronization with other components is done by message passing with
the following messages:
• Incoming:

– newobs (t, sv, v): a newobs message notifies that a new fact should be added
to the database, here representing that the state variable sv was observed
with value v at time t. When receiving this message, the internal state is
updated using the ProcessObservation procedure of Algorithm 6. New
observations can be contributed by the platform (e.g. an object was observed
at given location) or by skill handlers.

– sub (sv): this subscribe message is received from a component that should be
notified of any new observations made on the state variable sv. The subscriber
list of sv is extended to contain this component.

– request (q): where q : Λ→ Λ is a function that selects a subset of the current
observation database, represents a query whose result should be sent back to
the original sender.

• Outgoing:

– obs (t, sv, v): when a new observation (t, sv, v) is added to ΛDB, each com-
ponent that subscribed to the new observations on sv is notified through this
message.

– requestanswer (Λq): where Λq is the result of a request request (q) (i.e.
Λq = q(ΛDB)). This message is sent to the component that issued the request.

At any time, we suppose that the database does not contain any conflicting obser-
vations, i.e., that there is not two observations (t1, sv1, v1) and (t2, sv2, v2) such that
t1 = t2 ∧ sv1 = sv2 ∧ v1 6= v2. This requires disambiguation of observations to be made
upstream, in the dedicated platform component (see Section 5.7.1).
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Algorithm 6 Extends the current observation database with a new observation and the
ones that can be inferred from it. Notify the other components of all new observations
they have subscribed to.

function ProcessObservation((t, sv, v),ΛDB)
Λinferred ← ∅
for all f ∈ T do . Infer new facts

Λinferred ← Λinferred ∪ f((t, sv, v),ΛDB)
ΛDB ← ΛDB ∪{ (t, sv, v) } . Extend database with the new observation
for all c ∈ Subs(sv) do . Notify all subscribers

Send(c, obs (t, sv, v))
for all o ∈ Λinferred do . Integrate and keep processing inferred facts

ΛDB ← ΛDB ∪ProcessObservation(o,ΛDB)
return ΛDB

5.5 Activity Manager
The activity manager is the component responsible for maintaining an executable plan
and overseeing its execution. Its internal state is composed of a planning domain Σ and
of a chronicle φ representing the current plan. For each action a that appears in φ, we
denote as φa ⊆ φ the chronicle composed of all the subtasks, assertions and constraints
defined in a.

The core task of the activity manager is to dispatch executable actions to their dedi-
cated skill handler. For each currently executing action a we denote as H(a) the handler
that is executing it.

In addition, the activity manager serves as a central entity for incorporating plan up-
dates (issued by skill handlers) and new observations (issued by the observation database)
into the current plan. When this process results in an inconsistency or new flaws in the
plan, the activity manager asks the planner to fix the current plan or provide an entirely
new one.

Messages. Synchronization and exchange of information with other component is done
by message passing with the following messages:

• Incoming:

– obs (t, sv, v): Notification by the observation database that a new observation
has been made. The new observation is appended to a queue of pending
observations Λpend.

– newplan (φ): Received from the planner to notify that a new consistent plan
has been found as a result of a repair or replan request. When this message is
received, the current plan is replaced with φ.

– planupdate (φdel, φadd): Request to alter the current plan by removing ele-
ments of φdel and adding elements of φadd. The request is issued by the handler
H(a) of an executing action a and is such that φdel ⊆ φa (i.e. the handler can
only request the removal of statements in the action it is responsible for). A
plan update can also mark an action as failed or succeeded. When received, a
plan update is appended to a queue Upend of pending plan updates.
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– newgoal (g): Notification that a new goal should be pursued. The new goal is
appended to a queue Gpend of pending goals.

• Outgoing:

– exec (a): this message is sent to a skill handler to notify it that is should carry
out the execution of an action a.

– active (tp, [earliest, latest]): notification that a dispatchable timepoint tp can
be executed in the temporal window [earliest, latest]. This message is sent to
the skill handler of the action a in which tp was defined (i.e. tp ∈ φa).

– repair (φ′): Sent to the planner to request that a flawed plan φ′ be repaired.
– sub (sv): Request sent to the observation database to be notified of any new

observation made on the state variable sv. The activity manager subscribes
to all state variables that appear in the planning domain Σ.

5.5.1 Main Acting Loop
The core of the activity manager is composed of the Act procedure (Algorithm 7) that
is executed every time a tick occurs or a newplan (φ) message is received.

In between two Act invocations, the activity manager keeps track of all the request
it has received regarding new goals, new plan update requests and new observations it
received. Those are respectively stored in Gpend, Upend and Λpend.

The Act procedure starts by integrating into φ all pending goals, updates and ob-
servations (lines 1–7). The MergeObs procedure, detailed in Section 5.5.2, essentially
identifies the events associated to the new observations and propagate temporal con-
straints to maintain the plan consistent. When an observation cannot be reconciled with
existing assertions in the plan, it results in a conflict making the current plan inconsistent.

When the integration of pending updates results in a valid plan (i.e. there was no
conflicting observations and the integration of goals and updates did not introduce any
flaw), the executable actions in the plan are dispatched by the Dispatch procedure
(detailed in Section 5.5.3). Dispatching essentially consists in starting new skill handlers
to carry out the execution of actions that can be started at the current tick tcurr.

Algorithm 7 Act merges observations and plan updates into the current plan and
dispatches the resulting plan if it is consistent. Otherwise, a repair or replan operation
is carried out.

1: procedure Act(φ,Gpend, Upend,Λpend)
2: for all g ∈ Gpend do . Integrate new goals
3: φ← φ∪ g
4: for all (φdel, φadd) ∈ Upend do . Integrate plan updates
5: φ← φ \ φdel ∪φadd

6: for all λ ∈ Λpend do . Merge observations (including inferred ones)
7: φ←MergeObs(φ, λ)
8: if φ is a solution plan then
9: Dispatch(φ)

10: else
11: RepairOrRePlan(φ)
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If the integration steps resulted in an inconsistency, the activity manager will try to
repair the plan. This procedure, detailed in Section 5.5.4, typically consists in removing
some (when repairing) or all (when replanning) of the pending actions in φ and issuing a
plan request to the planner. When receiving the new plan from the planner, the activity
manager will restart a new Act cycle.

5.5.2 Observation Merging
Observation merging consists in aligning the predictions associated to the current plan
with the observations that have been made so far. A given observation (t, sv, v), where
sv is a state variable appearing in φ, must be placed on the timeline giving the expected
evolution of the state variable sv. This process is made complex by the fact that a
timeline only gives a partial view of the evolution of a state variable. The value of a state
variable sv might be undefined at a time t when no assertion was made on its value at
an earlier time and or if t overlaps a transition assertion. Furthermore, the controllable
timepoints associated with a timeline can retain some flexibility and some timepoints can
be contingent, meaning that their occurrence time is a priori unknown. When a plan
contains contingent events, an observation further allows to infer knowledge on whether
or not they have already occurred.

Given an observation (t, sv, v), we are first interested in finding a temporal interval
[ts, te] where the observation is consistent with the predicted values of sv.

Definition 5.5.1 (Merge Candidate). Given a chronicle φ, a temporal interval [ts, te] is
a merge candidate for an observation (t, sv, v) iff:

• t ∈ [ts, te] is consistent with Cφ,

• ∀t′ ∈ [ts, te], 〈sv=v〉 or 〈sv=undefined〉 holds at time t′,

• neither 〈sv=v〉 nor 〈sv=undefined〉 holds at times ts − 1 and te + 1.

Example 5.1. Consider the timeline below that denotes the evolution of the state
variable loc (r1) as a result of two move actions. Assuming that the only temporal
constraints on the timepoints t1..6 is a total order, the merge candidate for an ob-
servation (t, loc (r1), d2) is the temporal interval ]t2, t5[. Indeed in this interval the
value of loc (r1) is either undefined (on ]t2, t3[∪]t4, t5[) or equal to d2 (on [t3, t4]).

An observation (t, loc (r1), d1) would have two merge candidates [O, t3[ and
]t4,H], O and H denoting the time origin and temporal horizon respectively.

t1 t2 t3 t4 t5 t6

lo
c

(r
1)

time

d1

d2

d1

mv(r1, d1, d2) mv(r1, d2, d1)

Perhaps surprisingly, an observation (t, loc (r1), d4) would also have two merge
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candidates ]t2, t3[ and ]t4, t5[ in this example. Indeed, these intervals represent du-
rative changes during which the value of loc (r1) is not defined and could take any
value. If this is problematic (e.g. the agent should not pass through in any in-
termediate location), the action model could be adapted to encode this fact. For
instance, one could represent the effect of moving from one location to another with
an instantaneous transition to occur at a contingent timepoint t during the move
action.

Let us first assume that each observation has at most one merge candidate. This is
often verified in practice as observations are only made for past or current timepoints and
the executed part of the plan typically has no temporal flexibility left. In our example
above, where the timeline denotes the changes due to two sequential move actions, the
occurrence time of all time points before tcurr would be fixed. These additional constraints
would result in a single merge candidate for (t, loc (r1), d1).

In the exceptional case where multiple merge candidates are possible, we would greed-
ily select the earliest merge candidate. This can be problematic in cases where the contin-
gent evolution of a state variable is not entirely observable and the contingent durations
allow for indistinguishable scenarios given a limited set of observations. This is however
not a case we have encountered in practice. In fact, the techniques developed in Chapter 4
allow to enforce sufficient observation in cases where the occurrence time of contingent
events matter.

Definition 5.5.2. An assertion α ∈ Fφ is necessarily conflicting with an observation
(t, sv, v) iff (i) α is an assertion on sv, (ii) t necessarily overlaps α (i.e. Cφ |= t ∈
[start(α), end(α)]), and (iii) α asserts a value incompatible with v.

Definition 5.5.3. An assertion α ∈ Fφ possibly overlaps with an observation (t, sv, v)
iff α is (i) an assertion on sv and (ii) t possibly overlaps α (i.e. t ∈ [start(α), end(α)] is
consistent with Cφ).

The procedure for merging an observation λ = (t, sv, v) into the current plan is given
in Algorithm 8. The procedure starts by finding a merge candidate [ts, te] for λ. If such
a candidate exists it augments φ with temporal constraints to enforce that t be in [ts, te].
In the case where ts denotes a contingent event, it is marked as executed and instantiated
to the latest time before t compatible with its bounds.1 In the case where te denotes a
contingent event, the bounds on its incoming contingent link are updated to reflect the
fact that it cannot occur before time t.

If there is no assertion possibly overlapping λ, then a new a priori supported assertion
is added to the plan. This case typically occurs when the initial problem (corresponding
to an empty plan) is constructed by merging all observations in it.

If there was no merge candidate for this observation, then all conflicting assertions
are marked as such in the plan. This makes the plan inconsistent and will be handled by
repairing the plan.

5.5.3 Dispatching
The execution of a plan relies on the dispatching algorithms for STNU. More specifically,
a plan φ is associated with a POSTNU that is compiled to an STNU through our method

1By an abuse of notation and in accordance with the literature (e.g. [NKD14a]), we say that a
contingent timepoint is executed once it has been observed.
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Algorithm 8 Extends the current plan φ to account an observation λ = (t, sv, v). It
further identifies assertions that are conflicting with the observation.

procedure MergeObs(φ, λ)
if ∃ earliest merge candidate [ts, te] for λ then
Cφ ← Cφ ∪{ t ∈ [ts, te] }
if ts non-executed contingent then

Instantiate(φ, ts, t)
if te contingent timepoint then

DelayPossibleOccurrence(φ, te, t)
if @ α ∈ Fφ possibly overlapping with λ then
Fφ ← Fφ ∪{ [t] sv :=v } . Add an a priori supported assertion

else
for all α ∈ Fφ conflicting with λ do

φ←MarkConflicting(φ, α, λ)
return φ

detailed in Section 4.4. This STNU is maintained in a dispatchable form by using the
algorithm of Morris [Mor14] that infers all edges needed for dispatching the STNU in
addition to those needed for checking its dynamic controllability.

We say that a dispatchable timepoint tp is enabled if tp = tcurr is a consistent as-
signment for tp. In a dispatchable STNU, it essentially means that (i) all dispatchable
timepoints before it are executed, (ii) all its wait constraints on contingent events are
verified and (iii) the current time tcurr is in the allowed execution window of tp.

Our Dispatch procedure (Algorithm 9) takes as parameter a dispatchable plan φ. For
any timepoint that is enabled at the current time and corresponds to the start timepoint
of an action a, a new skill handler is started to carry out the execution of a. The skill
handler is notified of the action to execute and tp is marked as executed.

Beside its start timepoint, an action may contain other dispatchable timepoints. Such
timepoints can be used to control the start time of subactivities while obeying synchro-
nization constraints with other events. For instance, in a Charge action that requires
plugging in and unplugging the robot, one must take a decision regarding when to start
unplugging. For such timepoints, our Dispatch procedure does not take the responsi-
bility of instantiating the timepoint. Instead, the handler of the action is notified that
one of the timepoints it is responsible for is enabled and gives the allowed execution win-
dow [earliest, latest] where earliest and latest respectively denote the earliest and latest
execution time of tp (i.e. distSTN(O, tp) and −distSTN(tp,O)). The handler will decide
when to execute it and report on its instantiation to the activity manager through a plan
update.

Last, if there is an enabled timepoint that is not attached to any action, then this
timepoint is instantiated.

5.5.4 Repair and Replan Requests
The last responsibility of the activity manager is to maintain the plan consistent by issuing
repair or replanning requests. Indeed, merging observations might result in conflicts
with existing assertions. Likewise, the plan updates sent by skill handlers can reveal an
action failure or introduce new flaws. These scenarios would result in a plan that is not
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Algorithm 9 Dispatching algorithm
H: mapping from each executing action to its skill handler
procedure Dispatch(φ)

enabled← dispatchable timepoints in Cφ instantiable at tcurr
for all tp ∈ enabled do

if tp is the start timepoint of an action a ∈ πφ then
H(a)← new skill handler for a
Instantiate(φ, tp, tcurr)
Send(H(a), exec (a))
MarkExecuting(φ, a)

else if tp is a controllable timepoint inside an action a then
Send(H(a), enabled (tp), [earliest, latest])

else
Instantiate(φ, tp, tcurr)

dispatchable because of its inconsistencies. FAPE handles such inconsistencies by first
attempting to repair the plan. This process is done by removing problematic actions that
are not executing and handing out the restricted plan to the planner.

5.5.4.1 Plan Repair

Given an inconsistent plan φ, the repair procedure builds a chronicle φrepair by:

• removing from φ any action that was marked as failed;

• for any assertion α marked as conflicting in φ, if α was defined in an action instance
a, then a is removed from φ. Otherwise, α alone is removed. The observation
that was conflicting with α is introduced in the chronicle as an a priori supported
assertion.

A notable exception is that no action currently executing is ever removed, even if its
assertions are conflicting with an observation. In this case, the responsibility of declaring
the action as failed is left to the skill handler. This condition ensures that for any
executing action a all its elements will stay in the current plan of the activity manager
(i.e. φa ⊆ φ). The skill handler is responsible for maintaining the model of the action
consistent (e.g. by updating the temporal scope of the action if its execution takes longer
than initially accounted for in the model) or declaring it failed.

Action Removal. The removal of an action a from a plan φ is done as follows:

• all assertions, constraints, tasks, timepoints and variables introduced by the action
are removed from φ (i.e. φ← φ \ φa);

• if the action had any subtasks, then all pending actions refining one of those subtasks
are recursively removed as well;

• any plan refinement involving an element of a (i.e. its timepoints, object variables,
assertions and subtasks) is removed. For instance, any causal link that supports or
is supported by an assertion of a is removed as well as any separation constraint
involving a temporal or object variable of a.
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5.5.4.2 Repairing vs Replanning

Plan repair is typically attempted first with a domain-dependent timeout. If the planner
fails to find a plan in this time window, the activity manager will start a replanning
phase. Replanning is a special case of plan repair where all pending actions are removed
from the plan.

Several variations of this scheme are possible. If the initial repair request failed, one
could for instance try to remove more actions (e.g. those with a broken incoming causal
link or whose subactions were removed), until the planner can come up with a valid plan.

Another variation would to be to initialize the search space of the planner with mul-
tiple partial plans, each one with a different set of removed actions. The planner would
then choose the most promising partial plan to expand based on its own heuristics.

5.5.4.3 Dealing with Orphan Task-Dependent Actions

The action removals made for the purpose of plan repair or replanning can result in
orphan actions: task-dependent actions that do not refine any task. For instance, if an
executing action a was refining the subtask of a removed action, then a would still be in
the plan but the task it refined would be absent from φrepair.

We consider two ways of handling such orphan actions. The first one is simply to
ignore them and allow the plan to have orphan actions. This is a convenient choice
as it allows to keep the planning domain and the planner’s implementation untouched.
However it results in an unsoundness as FAPE could carry out the execution of a plan
where some actions do not obey the hierarchical constraints of the domain.

A more involved possibility is to ensure that, after repairing, the solution plan returned
by the planner does not contain any orphan action. We now detail how this can be
achieved through an additional flaw definition that handles orphan actions.

Definition 5.5.4 (Orphan Action Flaw). Any task-dependent action that does not refine
any task constitutes an orphan action flaw.

Dealing with orphan actions is done in a fashion similar to the one for handling
unsupported assertions. Instead of looking for an action that can provide an effect for
causal support, we look for an action that can provide a task to be refined by the orphan
action. We briefly sketch here the resolvers for an orphan action. The specifics can be
obtained by simply adapting the resolvers of unsupported assertions to subtasks instead
of effects (Section 3.2.2.1).

Definition 5.5.5 (Possible Subtasks). An action a has a set of possible subtasks defined
recursively as its own subtasks and the possible subtasks of all actions that can refine
one of its subtasks. The possible subtasks of a task is the union of the possible subtasks
of all actions that can refine it.

Resolvers for Orphan Actions. Like for unsupported assertions, orphan actions are
handled by either selecting an existing task to refine or selecting a source from which
the task to refine will be taken. In the second case, the actual resolution of the flaw is
delayed. More specifically, given an orphan action a in a chronicle φ, we distinguish three
types of resolvers:
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• Direct refinement: an orphan action flaw can be resolved by making the orphan
action a refine an unrefined task τ ∈ πφ currently in the plan.

• Delayed refinement from existing task: given a task τ ∈ πφ such that task(a) ∈
possible subtasks(τ), the planner can commit to choose the task refined by a in the
tasks inserted while decomposing τ . In this case, the resolution of the orphan action
flaw is delayed until τ has been refined by an other action.

• Delayed refinement from new action: given a free action template B such that
task(a) ∈ possible subtasks(B) a possible resolver is to (i) insert a new instance b of
B, and (ii) commit to choose the task refined by a in the direct or indirect subtasks
of b.

For maintaining completeness of the planner, an unrefined task flaw has another type
of resolver that involves marking an orphan action as refining that task.

Explicitly handling orphan actions allows enforcing the soundness of the system: regard-
less of the failure that occurs during execution: any task-dependent action will always
be considered as part of an higher level action and will thus respect all hierarchical con-
straints defined in it. On the down side, it places much more stress on the domain
designer as one must now ensure that the hierarchical domain is robust enough to handle
various cases of plan failures.

The choice of ignoring orphan actions or not is inherently domain dependent and
especially depends on whether task-dependent actions are used to improve the planner’s
efficiency or to enforce necessary constraints between actions. The planner implementa-
tion supports both possibilities.

5.6 Skill Handlers
A skill handler is a component responsible for carrying out the execution of a single
action instance. Executing an action can be done by two main mechanisms. One can
send commands to the platform that will result in altering the environment. For instance,
one could trigger a ROS command whose effect is to make the robot navigate to a given
location. Another way to perform an action is to extend it with new subtasks. These
will trigger a plan repair in which the planner will add new actions to the current plan.

In either case, a skill handler is responsible for monitoring the execution of the action
(e.g. by controlling that the observations match its expectations) and of reporting on its
execution. The latter is done by sending plan updates to the activity manager that reflect
the current status of the action (e.g. the action failed or succeeded) and that adapts the
current model of the action (e.g. the action has new subtask or one of its timepoints was
instantiated). A skill handler can also send new observations to the observation database
that reflect its activity or the evolution of the environment. For instance, an action for
scanning a surface would report that a given table T has been scanned at a given time t
by providing a new observation (t, scanned(T),>).

As for other components of the system, a skill handler communicates with other
components through message passing. We consider the following messages to be received
and sent by a skill handler:

• Incoming:
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– exec (a): the first message that is sent by the activity manager to a skill
handler. It requests the execution of an action a. We denote as φa the chronicle
composed of all subtasks, assertions and constraints defined in a.

– obs (t, sv, v): notification sent by the observation database that a new obser-
vation has been made on the state variable sv.

– active (tp, [earliest, latest]): notification from the activity manager that a
dispatchable time points tp ∈ φa is enabled and can be dispatched within the
execution window [earliest, latest].

• Outgoing:

– newobs (t, sv, v): notification sent to the observation database that it should
record this observation and notify any component that subscribed to the ob-
servations of the state variable sv.

– request (q): request sent to the observation database to get any past obser-
vation matching the query q.

– sub (sv): request sent to the observation database to be notified of any new
observation made on the state variable sv.

– planupdate (φdel, φadd): where φdel ⊆ φa, is a request sent to the activity
manager to update the model of action a. The current model is adapted as
follows: φa ← φa\φdel ∪φadd. In addition to the usual definition of a chronicle,
φadd can also mark an action as failed or executed.

This general scheme allows for quite general capabilities: a skill handler can freely
update the model of the action it is responsible for. Let us now detail the two cases we
are interested in that respectively handle the execution of a primitive action and of a
high level action.

5.6.1 Execution of a Primitive Action
As an example of a primitive action, we consider a Go(r, l) action where a robot r will
navigate to location l. An ANML model of this Go action is given in Appendix B.5.
The action has two dispatchable timepoints: its start timepoint at which the robot must
plan a trajectory to its target location and a texec traj timepoint where the robot will
start navigating to its target location by executing the previously computed trajectory.
Its trajectory planning activity takes an uncontrollable duration and requires the path
planner to be available (i.e. it should have no concurrent requests). Its navigation activity
also has a (much larger) uncontrollable duration and will end once the robot reaches its
target location. For the first phase of this action (i.e. until texec charge) no requirement is
made on the actual location of the robot.

The skill handler for the Go action follows an automaton whose simplified version is
given in Figure 5.2. Starting from an Init state, the handler awaits for an exec (Go(r, l))
message. When it is received, the handler will subscribe to any new observation made
on the state variable loc(r) that keeps track of the current location of the robot. It then
starts planning its trajectory by issuing commands to the appropriate component of the
platform in order to find a precise and reachable target location adapted to the current
task. For instance if the Go action is part of a high-level action to pick an object, the
skill handler looks for a final location close enough to the object to be able to pick it,
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Init

Plan
Trajectory

Have
Trajectory

Execute
Trajectory

Success Failure

exec (Go(r, l))
→ sub (loc(r))

trajectory found
→ planupdate (updated duration))

active (texec traj, [earliest, latest])
→ planupdate (texec traj = tcurr . . . )

obs (t, loc(r), l)
→ planupdate (executed(Go(r, l)) . . . )

no trajectory found
→ planupdate (failed(Go(r, l)) . . . )

exec failure

Figure 5.2: Simplified workflow of the Go action for bringing a robot r to a location l.

using inverse kinematics in a collision aware motion planner such as GTP (Section 5.7.1).
If no target pose and trajectory is found, then the action is considered as failed and
the activity manager is notified of the failure with a plan update message. Otherwise,
the skill handler moves to a Have Trajectory state. A plan update is sent so that the
duration of the navigation activity reflects the actual duration of executing the now
available trajectory (before that, its duration was encoded with conservative lower and
upper bounds).

The skill handler will stay in the Have Trajectory state until it receives a notification
that his texec traj timepoint is enabled, i.e., that all temporal requirements to start navi-
gating are met. At this point, the robot will start executing the trajectory through the
dedicated commands of the platform (e.g. the MoveBase node of a ROS-operated robot).
If it reaches its target, the skill handler notifies the activity manager of the success and
exits. Otherwise, if the navigation failed (e.g. the robot faced an obstacle that was not
on its map), the skill handler will go back to planning a trajectory.2

This skill handler illustrates some of the key capabilities needed for acting. Indeed, even in
the case of simple navigation action, one must first refine the planner’s primitive action
into a detailed trajectory. When possible, this should be done ahead of time so that
the execution faces no unneeded latency. Furthermore, this refinement phase lifts some
uncertainty regarding the actual behavior of the planner’s primitive, here by providing
an updated information regarding its duration. Acting further requires to monitor the

2The use of SLAM techniques typically allow a robot to continuously update its map of the environ-
ment to account for newly detected obstacles when computing a new trajectory.
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execution of the action and react to failures.
While, in this example, each activity is started as soon as possible, this not necessary

the best route. Consider for instance an activity to unplug a robot that is currently
charging. The fact that the initial timepoint of this activity becomes enabled denotes
the fact that the robot now has just enough battery to carry out the rest of the plan
(assuming that everything goes according to the plan). Opposed to unplugging as soon
as possible, an often wiser strategy would be to wait until the battery is fully charged or
the robot is needed for another activity.

A skill handler is thus the place where all deliberations that are beyond the scope of
task planning are made at acting time. This approach assumes a downward refinement
property between the high level representation used by the planner and the low level
primitive commands of the platform. Essentially, this means that we assume that the
(high level) effects of an action can be achieved by a skill handler, possibly involving
various local recovery behavior.

5.6.2 Online Refinement of High Level Actions
In some cases, it is either impractical or impossible to come up with a complete high
level plan, for instance because some information might be missing. Sometimes, it is also
desirable for the planner to come up with an abstract plan whose details will be found
later. For instance, in the process of planning a trip to a remote country in a few months,
I am mostly interested in the flights I need to book. However, the details of my activities
at the airport do not need to be known until the last minute.

In this section, we present a way to perform online refinement of high level actions.
A high level action provides a conservative model of its requirements and of its effects.
The action model will be adapted online to provide new subtasks needed to achieve its
intended behavior.

For this purpose, we take the example of an action for transporting an object to a
given location. Since we don’t assume a complete knowledge of the environment, the
initial location of the object might be unknown. Achieving a transport task in these
conditions first requires looking at the possible locations of the object until it is found. It
is only when found that details of the rest of the plan will be known (e.g. how and where
to pick the object). One possibility in this scenario would be to build a contingent plan
that is conditioned on all possible locations of the object. This would result in a highly
combinatorial process. Instead, we use a more tractable approach of having a high level
SearchTransport action whose skill handler will decide online which location to scan next
and add new subtasks that will be refined through a planning process. Once the object
is found, the handler will issue a new transport task that will be refined by the planner
with Pick and Place primitive actions.

The ANML model of the SearchTransport action is given in Appendix B.5.
SearchTransport(r, i, l) requires a robot r to transport an item i to a location l. The
initial model of this action is conservative: (i) it takes a potentially long unknown
duration, and (ii) it requires that both a gripper and the head of r be usable for the
duration of the action. It furthermore states that the location of r is undefined for the
duration of the action but that it will end up in a location from which the surface l can
be reached. Finally, it states that the item i will be in l at the end of the action. This
model essentially state the sufficient resources to achieve the high level goals.

The behavior of the skill handler is given in the (simplified) flow chart of Figure 5.3.
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Init

Select
Next

Surface

Waiting
for scan

Waiting
for end of
Transport

Success Failure

exec (SearchTransport(r, i, l))
→ sub (loc(i))
→ sub (scanned(·))
→ req (all past observations on scanned(·))

Next surface to scan: S
→ planupdate (. . .GoScan(r, S) . . . )

obs (t, loc(i), x)
→ planupdate (. . .Transport(r, i, a) . . . )

active (tend)

All surfaces recently scanned

obs (t, scanned(S),>)
∧obs (t, loc(i), unknown)

Figure 5.3: Simplified flow chart of the skill handler of SearchTransport.

Starting from an Init state, it will first require all new observations on the location of
the object as well as all (past and future) observations regarding which surface has been
scanned.

Given this knowledge, it will then decide which location to look for item i next. This
decision is made by selecting the closest surface S that has not been scanned recently.3
If there is no such surface, then the action is considered as failed. Otherwise, the action
model is adapted to contain a new GoScan(r, S) subtask. The other assertions regarding
the location of the robot and the status of its gripper and head are delayed to after
the realization of the GoScan task. This is achieved by issuing a planupdate (φdel, φadd)
whose elements are given below (for simplicity we omitted the assertions regarding the

3Such a decision should ideally be done in more high-level knowledge-based module (e.g.
ORO[Lem+10]) that is not available in the current architecture.
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gripper and the head):

φdel = {∅,
{ [tstart, tend] loc(r) :r start 7→ r end, . . . }

{ tstart
[30,300]====⇒ tend, . . . }

}

φadd = {{ [ts, te]GoScan(r, S) }
{ [te, tend] loc(r) :r start2 7→ r end, . . . }

{ te
[20,280]====⇒ tend, . . . }

}

This plan update will result in a new unrefined task flaw in the current plan, and
the plan will be extended to refine this task with additional actions. It should be noted
that such a repair mechanism is local as newly inserted actions will take the place of the
original assertions that were removed.

A view of the updated SearchTransport action is given in Figure 5.4 after (i) deciding
to first scan a surface s1, (ii) having repaired the plan to refine the resulting GoScan(r, s1)
task, and (iii) having already executed the first Go action.

Go(r,s1) Scan(r,s1)

GoScan(r,s1)

SearchTransport(r,i,l)

Figure 5.4: Refinement of SearchTransport while scanning a first surface s1. In green are
the actions already executed and in red are the actions currently executing.

This process of selecting a new surface to scan and adding a new GoScan subtask
continues until the location of item i becomes known (i.e. an obs (t, loc(i), x) message is
received). At this point, the handler will add a last Transport subtask and exit once it
has been carried out.

An a posteriori view of the decomposition of SearchTransport after having scanned a
first surface s1 and scanned a second surface s2 where the object was identified is given
in Figure 5.5.
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Go(r,s1) Scan(r,s1) Go(r,s2 Scan(r,s2) Pick(r,i,s2) Go(r,l) Place(r,i,s2)

GoScan(r,s1) GoScan(r,s2) GoPick(r,i,s2) GoPlace(r,i,s2)

Transport(r,i,l)

SearchTransport(r,i,l)

Figure 5.5: Refinement of SearchTransport after the scan of surface s2 revealed the posi-
tion of i. In green are the action already executed, in red are the one currently executing
and in black are the pending ones.

5.7 Experimental Results

5.7.1 Platform Settings
The platform is built on top of the ROS (Robot Operating System) middleware, using
the Gazebo simulator to provide a physics engine for robotic simulation. The simulated
environment contains three tables with colored tapes serving as manipulable objects (Fig-
ure 5.6). A single PR2 robot is simulated and the various components needed for con-
trolling it are made available through standard ROS interfaces (e.g. controllers and joint
positions).

Localization and mapping are performed with the ROS pr2 2dnav package that pro-
vides interfaces for localizing the robot in its environment through SLAM techniques as
well as primitives for sending the robot to given coordinates.

The software Toaster4 provides a central point for gathering observation from multiple
sensors. In our setting, it uses the position of objects from the internal model of gazebo,
thus having complete and exact knowledge of their poses. The position of the robot is
the one computed by pr2 2dnav using SLAM. This position estimation typically differs
from the actual location by a few centimeters, with this error being passed to the relative
positions of objects relatively to the robot.

GTP [WGA16] provides motion planning capabilities for the PR2 robot. Most inter-
estingly for us is its capability to synchronize its internal model with the one advertised
by Toaster and the capability of computing poses and trajectories given object names
(rather than fully defined joint positions). It is used for finding collision free target poses
and computing trajectories for object manipulation, e.g., for picking up an object.

PR2Motion5 provides many ROS actions for actuating a PR2 robot. It is used for
controlling the head and torso poses as well as executing the more involved trajectories
computed by GTP.

5.7.2 Experimental Setting and Results
The system is used for moving objects between tables using the action models previously
described in this chapter. It initially starts with no knowledge about the location of
objects and is given one or multiple tasks of searching and transporting objects.

4https://github.com/laas/toaster
5https://git.openrobots.org/projects/pr2motion-genom3

https://github.com/laas/toaster
https://git.openrobots.org/projects/pr2motion-genom3
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Figure 5.6: PR2 robot executing a plan in the Gazebo simluator, with two of the three
tables being visible.

Figure 5.7: View of the current plan of the PR2 when performing two transportation
tasks.
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None of the positions in the environment are precomputed and skill handlers for
navigation rely on GTP for testing the feasibility of various target poses adapted to the
task at hand, e.g. close enough of an object to allow picking it up while ensuring that
the robot does not collide with the table. The skill handler for picking up objects also
relies on the GTP motion planner for computing the arm trajectories. Said trajectories
are sent to PR2Motion for execution with additional commands actuating the gripper.
Due to incompatibilities between the various pieces of software used, the place action is
performed by simply releasing the object above the table.

The observation database is updated by retrieving the pose of the various components
in the environment from Toaster. This information is filtered when made available to
FAPE to only include the position of objects that are currently visible by the robot (i.e.
the robot looks in their direction and is close by).

The planner is used with no tuning of its default heuristics. When given a planning
request, the planner is first run without checking dynamic controllability during search.
If the plan found is not DC (e.g. a deadline cannot be guaranteed to be met given the
temporal uncertainty), then search is restarted with dynamic controllability checking of
every partial plan. When facing an inconsistent plan, repair is first tried with a timeout
of 200 milliseconds. If no valid plan is found in this time window, replanning is triggered,
only keeping actions that were previously executed and the ones currently executing.
During a planning phase, the activity manager stays active to monitor currently executing
actions but will not dispatch any new action.

All components of the system are allowed to run concurrently and communicate
through message passing. The activity manager is run at a frequency of 20Hz at which it
integrates all observations, dispatches actions and sends planning request to the planner.

We evaluated the system on 5 configurations, each involving 4 objects and three tables.
In each setting, FAPE was given an initial goal to achieve in the form of a transportation
task and two additional goals which were added online. Each objective was associated
with a deadline. In each case, the system was able provide a full plan for the tasks at
hand or prove some of the tasks to be unfeasible and provide a plan for the remaining
ones. The entire plans included between 18 and 26 primitive actions and their executions
required from 3 to 6 minutes.

Two types of action failure occurred in the context of the pick action. The first one
was to find an object to be unreachable by the robot as notified by the motion planner.
The second one was to find out that the object was not actually picked after executing
the pick trajectory, which can be detected by monitoring the position of the gripper. In
the former case, the action was declared as failed and the object as unreachable, causing
the system to abandon the unfeasible task after replanning. In the latter case, the skill
handler would try a second pick before declaring the object as unreachable.

Table 5.1 provides the average and maximal runtimes for various operations involving
the planner. The relatively small difference between between plan repair and replanning
is mostly explained by the relatively short plans at hand and the presence of a single
agent, that make most of the actions interdependent. The need for Dynamic Controlla-
bility arises when a deadline might be violated given the uncertain duration of actions.
Its activation significantly increases the cost of planning but allows the planner to find
dynamically controllable plans in temporally constrained settings. Last, the planner was
able to rule out infeasible plans very quickly, typically at the time of the initial reacha-
bility analysis. This capability was critical to allow the planner to quickly find a possible
combination of goals when facing overconstrained problems.
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Average runtime (ms) Max runtime (ms)
Plan repair 96 200 (timeout)
(Re)Planning (DC not needed) 196 703
(Re)Planning (DC needed) 532 1187
Proving Infeasible Plan 54 123

Table 5.1: Average and maximum runtime of the planner for various planning operations.

5.8 Conclusion
In this chapter we have laid the foundations of a deliberate acting system targeting robotic
platforms. The cornerstone of the system is our expressive chronicle representation that
provides rich temporal and hierarchical constructs to model the capabilities of an au-
tonomous agent as well as the dynamics of the environment. As a result, chronicles are
used as a central component for producing plans and monitoring their execution. The
constraint-based representation of the planning system further provides an excellent basis
for adapting the plan to react to unforeseen contingencies. The system was tested on a
simulated robotic environment and demonstrated to efficiently perform online planning
and acting.

A critical capability for the robustness of the system is to soundly reason on temporal
uncertainty under various observability scenarios. An equally important function in order
to act in a partially observable environment is the capacity of the system to consider
conservative models of high level actions that will be refined, while acting, into more
detailed primitives.



Chapter 6
Conclusion

In this thesis, we have provided a comprehensive view of a system for deliberate acting
in a robotic context.

We have presented a rich model for encoding the capabilities of an autonomous agent
that generalizes the generative and HTN planning models in a single formalism. The
model further provides rich semantics for encoding the temporal aspect of a planning
domain. We developed a planning procedure capable of handling this model. The result-
ing planner uses a constraint-based procedure to explore the space of lifted partial plans.
While the planner already presents good performance in a fully lifted setting, we intro-
duced further techniques for automated reasoning on a ground version of the problem.
Those techniques improve the scalability of the planner, making it competitive with state
of the art temporal planners in a domain independent setting. Beyond the capacity to
encode domain-specific constraints and procedural knowledge, our support for task hier-
archies allows to enhance the scalability of the planner by providing domain-dependent
guidance.

Those core capabilities of the planner have been extended to provide robust plans in
the presence of temporal uncertainty under various observability assumptions. In this
setting, the system is able to reason online on the observations needed to maintain its
plan controllable and adapt its behavior accordingly.

Last, we have discussed the integration of this planning framework in a more general
acting architecture that closes the gap between the high level strategies provided by a
planner and the capabilities of a robotic platform. This is done by leveraging our rich
temporal model for dispatching and monitoring while relying on the planner’s capacity
of repairing an inconsistent plan to react to unforeseen contingencies.

Perspectives and Future Work. There are several directions for extending this work.
First, the planning system currently supports a rather focused model and targets an

efficient handling of temporal, hierarchical and causal relationships. The overall system
would benefit from an extended set of capabilities. Handling resources and numeric
fluents is one such capability that is prominent in many real world problems that we
have disregarded in this thesis. Most constraint-based planning systems support such
capabilities and there is an extensive literature on how such support could be integrated.

Second, most of our work has been based on the assumption that it is safe to rely on
deterministic models of the environment (other than temporal uncertainty) when deciding
for the high-level strategy of the system. Indeed in our framework, uncertainty is either
handled locally by skill handlers or by adapting the plan after detecting a discrepancy
with our model. In many cases, this assumption does not hold and uncertainty needs to
be accounted for in the overall strategy of the agent.

For both planning and acting, the system faces the problem of refining abstract actions
into more concrete ones. From the planner’s point of view, this means refining high-level
actions into primitive ones while for acting it means refining the planner’s primitive
actions into lower level commands. In both cases, this raises the question of when the
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system should refine an abstract action. Indeed, if the system is confident in its capacity
to achieve a given task, it is unnecessary to have a detailed strategy for achieving it.
For instance, if I have a flexible schedule, it might be unnecessary to plan the details of
a trip to another city. However, if my schedule is tight, it might necessary to plan all
details to make sure that I can make it in time to fulfill my other constraints. A similar
capability was provided in our last chapter by manually giving a conservative model to an
high-level action. Such a conservative model would only be applicable if the system had
sufficient resources available, otherwise, it would need to come up with a finer grained
plan to make sure that the system would indeed be able to carry out the task. Ideally,
given a formal hierarchical description of the problem, the system should be able to decide
which task should be refined and when to ensure that (i) the system always keeps a valid,
potentially abstract, plan, (ii) no computational resource is wasted on committing early
to unnecessary refinements, and (iii) all actions are refined in time to allow for a delay
free execution. The current state of affairs in planning is mostly unsatisfactory with this
regard as task planners tend to always come up with unnecessary detailed plan. On the
other hand, most acting systems are only reactive and wait until the last second to refine
actions into primitive commands.

Last, much work remains to be done for extending the general capabilities of the
overall acting system. One such extension is the capacity of the system to reason on its
goals by abandoning the irrelevant or impossible ones as well as generating new ones to
react to the perceived state of the environment. Monitoring is another key capability
whose support is currently mainly delegated to specific skill handlers. A more formal
model would be needed in order for the system to decide when it is safe or desirable to
interrupt an action given the overall state of the system. Considering multi-agent system
with communication constraints would also require additional work both at the planning
level to ensure that a plan is indeed controllable given the communication constraints and
at the acting level to ensure sufficient exchange of information for maintaining a shared
plan.

Taking a step back, the choice of of developing an entirely new planning and acting system
based on a non-strandard model was indeed a challenging task to accomplish in three
years. The many domains spanned by this tool, including planning, acting, robotics and
constraint programming, indeed required a large amount of work, both to build a deep
theoretical and practical understanding of the domains as well as for the implementation
of the many aspects of the system. It further lead to the difficulty in communicating
about such a non-incremental development and, as a result, a large part of the work
remains unpublished at the time of this writing. Nevertheless, we are confident in saying
that the unique combination of features of the system and its overall efficiency was made
possible by taking into account their many requirements when designing of the system.
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Appendix A

Overlength Proofs

A.1 Proof of Proposition 3.3.1
We first suppose that all actions have a single condition. With this assumptions, there
are two sets of trivially reachable elements: fluents in timed initial literals and actions
and fluents appearing in self-supporting causal loops. An action/fluent n is reachable
if there is a path (i.e. sequence of actions/fluents) from one of those trivially reachable
elements to n. Let us note that all fluents in timed initial literals are part of the assumed
reachable set. Furthermore, a self-supporting causal loop necessarily contains an action
with an after-condition [CMR13]. Since after-conditions are ignored at first, it means that
this action will part of the assumed reachable set. Furthermore, propagation will never
remove those from the assumed reachable set because we have an upper bound on their
earliest appearance. We call this the set of truly reachable elements ETrulyReach which is
a subset of the set of assumed reachable elements ErAssReach. We define as ENotReach the
subset of ErAssReach that is not reachable.

An element d is reachable if an element s ∈ ETrulyReach, such that there is a path from
s to d. The true earliest appearance of d is given by mins∈ETrulyReach ea(s) + spp(s, d),
where spp(s, d) is the length of the shortest path from s to d.

At first, our algorithm is optimistic which means that we consider as reachable all
nodes with a path from an element of ETrulyReach ∪ENotReach. To show that earliest
appearances of reachable nodes eventually converge to their true values, we first show
that the earliest appearances of nodes in ENotReach indefinitely increase until their are
removed from the model.

A node n ∈ ENotReach is necessarily an action with an after-condition that was opti-
mistically ignored. The fact that n is not reachable means that its after-condition p is
not reachable, meaning that there is not path form a an element of ETrulyReach to p. If
p is not assumed reachable, then n will be removed. Otherwise we can distinguish two
cases depending on which node in ENotReach provides the earliest start time of p:

• ea(p) = ea(n) + spp(n, p). In this case, this is an unfeasible causal loop involving n
and the earliest appearance of n will be increased.

• there is another node n′ ∈ ENotReach such that ea(p) = ea(n′) + spp(n′, p). In this
case, we can recursively do a similar reasoning on n′: it is either part of an unfeasible
causal loop or depend an a node n′′ ∈ ENotReach. In both cases, it depends on a node
involved in a causal loop and its earliest appearance would be increased meaning
that the earliest appearances of p and then n would increase as well.

We have shown that the earliest appearances of all nodes in ENotReach indefinitely
increase until they are removed. This is also the case of all unreachable nodes that
were once assumed reachable because the sources of all their shortest path is a node in
ENotReach.
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On the other hand, we will eventually reach a point where:

min
s∈ETrulyReach

ea(s) + spp(s, d) = min
s′∈ETrulyReach ∪ENotReach

ea(s′) + spp(s′, d)

because the the earliest appearance of any s′ ∈ ENotReach diverges towards infinity. As
a consequence, earliest appearances of reachable nodes will eventually converge to their
true values.

This result can be extended to actions with more than on condition by observing that,
in a given iteration, the algorithm only uses a single condition of the action: the one that
would make it the latest.

A.2 Proof of Proposition 3.3.2
The proof is split in several definitions and proposition to facilitate the reading. We use
a graph formalism for the rest of this proof: a node is either a fluent or an an elementary
action. We say that there is an edge from x to y if y is x is an action with effect y or if
y is an action with condition x. Each edge e has a label lbl(e) that is the delay from the
condition to the action or from the action to the effect.

A.2.1 Self-dependent set
We first identify sufficient conditions to declare a set of nodes non-reachable. A node
X is a predecessor of a node Y (noted pred(Y ) = X) if the latest value of ea(Y ) was
updated by an edge from X to Y . This is similar to the predecessor labels propagated in
a Dijkstra algorithm. While Algorithm 2 does not maintain this information explicitly, it
would be easy to add a predecessor field for each that would be updated every time the
earliest appearance is modified.

Definition A.2.1 (Predecessor cycle). A predecessor cycle is sequence A1 → a1 → A2 →
a2 . . . An → an → A1 of edges where the source of an edge is the predecessor of its target
(e.g. pred(a1) = A1). Upper case nodes are action nodes and lower case nodes are fluents.

Proposition A.2.1. A predecessor cycle is of strictly positive length (i.e. the sum of the
labels on the edges is strictly greater than 0).

Proof. A cycle of predecessor means that an update of the first element (e.g. A1) triggered
an update of its direct successors (e.g. a1) and all its indirect successors (e.g. A2, a2,
an) including itself. Since the earliest appearance can only be increased as a result of an
update, then the cycle has a strictly positive length (otherwise it would not have resulted
in a greater value).

Proposition A.2.2. In a predecessor cycle, at least one effect edge Ai → ai can be
removed without altering the problem.

Proof. A predecessor cycle represents an invalid combination of first achievers of fluents
in the cycle. It means that having the action Ai as the first achiever for the fluent ai
(for all i ∈ [1, n]) would result in the condition that starting A1 at a given time requires
that A1 had started at an earlier time. This is trivially non-possible hence at least one
fluent ak in the cycle must be first achieved by an action other than Ak. Since we are
dealing with a delete-free model, the effect ak can be removed from Ak without altering
the problem.
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Definition A.2.2 (Self-dependent set). We say that a set Ω of action and fluent nodes
is a self-dependent set if:

• All nodes in Ω have a predecessor in Ω.

• For any fluent f in Ω, all achievers of f are in Ω.

It should be noted that the first element of Definition A.2.2 implies that (i) all elements
of a self-dependent set have been updated at least once (ii) all actions in Ω depend on at
least one fluent in Ω.

Proposition A.2.3. If a node n is part of a self-dependent set Ω, then n is not possible.

Proof. We first show that there is a predecessor cycle composed exclusively of nodes of
Ω. All nodes of Ω have a predecessor and this predecessor is in Ω. Since Ω is finite, there
is at least one node in Ω that is an indirect predecessor of itself.

Since we have a predecessor cycle, we can safely remove an edge of this cycle without
altering the problem. This means that one fluent f in Ω is deprived of one of its achiever.
f gets a new predecessor and its earliest appearance is updated. Note that the new
pred(f) is still in Ω by definition of a self-dependent set.

In this new model, Ω is still a self-dependent set. The above steps can thus be
repeated until one fluent of Ω has no achievers left. This fluent and all actions depending
on it can be deleted. The nodes that are left from Ω still form a self-dependent set, the
above procedure can thus be repeated until all fluents and actions of Ω have been proved
unfeasible.

Example A.1. The graph in Figure A.1 shows a problem with no possible actions
and fluents. We display a possible combination of predecessor edges (in red) to
highlight the presence of a self-dependent set. One self-dependent set in this problem
is {b, A1, A2, a, B}.

We have a cycle of predecessors A1aBb of with an accumulated delay (sum of the
labels) of 1. This cycle can be read as “If A1 is the first achiever of a and B is the
first achiever of b then a can only be achieved at time t if it was achieved at time
t− 1.” This is of course not possible: either b or a needs another first achiever. The
only possibility is to select A2 as first achiever for a and a can be removed from the
effects of A1.

In this equivalent model, A2 is the new predecessor of a which results in a prede-
cessors cycle A2aBb. Consequently, achieving a and b require selecting another first
achiever for one of them. Since we have no other options left, all nodes in this cycle
are not possible.
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Figure A.1: Problem in graph representation. Edges in red represent a possible
assignment of predecessors at some point in propagation.

A.2.2 From propagation to the identification of self-dependent
set

We have identified sufficient conditions to declare a group of node impossible. We now
show how the identification of such set can be integrated in Algorithm 2.

We say that a set of nodes L is late if any node in L has an earliest appearance at
least dmax time units greater than any node not in L; dmax being the maximum delay of
any edge of the graph.

∀x /∈ L, y ∈ L, ea(x) + dmax < ea(y) (A.1)
The intuition behind the definition of a late set is that all late nodes are separated

from non-late nodes by a temporal gap. Furthermore, this temporal gap is big enough so
that the earliest appearances of late nodes could not have been influenced by a non-late
node (i.e. the predecessor of a late node is a late node).
Proposition A.2.4. If L is a set of late nodes, then L is a self-dependent set.
Proof. We prove the two conditions of a set to be self-dependent.

Lets call Y the current predecessor of a node X and eY X the edge from Y to X. At
the last update of X, ea(X) was set to ea(Y ) + lbl(e). We know that ea(Y ) can only
increase and that lbl(e) ≤ dmax. Consequently, we still have ea(Y ) + dmax ≥ ea(X) and
Y is in L. We have shown that if X is in L then pred(X) is in L.

Let us take x a fluent in L. Because a fluent takes the minimum earliest appearance
of all its achievers, no such achiever can be more than dmax time units before it. All
achievers of a fluent in L are thus in L as well.
Corollary 1. Any node in a late set is not reachable.
Proposition A.2.5. Any non-reachable node will eventually be part of a late set.
Proof. All earliest appearances of possible nodes converge towards a finite value. On the
other hand, earliest appearances of non-possible nodes diverge towards +∞. At some
point, the earliest appearance of unreachable nodes will be greater by dmax than the latest
possible node.

A possible implementation of the DeleteInfeasibleNodes function from Algo-
rithm 2 is thus to check whether a late set of late events appeared during the propagation
and delete all those. Such an implementation is guaranteed to finish and remove all
unreachable nodes.



Appendix B
ANML domains

B.1 Blocks-PartHier

type Locat ion ;
type Block < Locat ion ;

predicate c l e a r ( Block b) ;
predicate handempty ( ) ;
function Locat ion on ( Block b) ;

instance Locat ion TABLE, HAND;

action pickup ( Block b) {
duration := 5 ;
[ a l l ] c l e a r (b) == true ;
[ a l l ] on (b) == TABLE :−> HAND;
[ a l l ] handempty == true :−> f a l s e ;

} ;

action putdown ( Block b) {
duration := 5 ;
[ a l l ] c l e a r (b) == true ;
[ a l l ] on (b) == HAND :−> TABLE;
[ a l l ] handempty == f a l s e :−> t rue ;

} ;

action s tack ( Block b , Block c ) {
motivated ;
duration := 5 ;
[ a l l ] on (b) == HAND :−> c ;
[ a l l ] handempty == f a l s e :−> t rue ;
[ a l l ] c l e a r ( c ) == true :−> f a l s e ;
[ a l l ] c l e a r (b) == true ;

} ;

action unstack ( Block b , Block c ) {
duration := 5 ;
[ a l l ] on (b) == c :−> HAND;
[ a l l ] handempty == true :−> f a l s e ;
[ a l l ] c l e a r (b) == true ;
[ a l l ] c l e a r ( c ) == f a l s e :−> t rue ;

} ;

action DoStack ( Block a , Block b) {
motivated ;
: decomposition {

[ a l l ] on ( a ) == b ;
} ;
: decomposition {

[ a l l ] s tack ( a , b) ;
} ;

} ;

B.2 Blocks-FullHier
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type Locat ion ;
type Block < Locat ion ;

predicate c l e a r ( Block b) ;
predicate handempty ( ) ;
function Locat ion on ( Block b) ;

instance Locat ion TABLE, HAND;

action pickup ( Block b) {
motivated ;
duration := 5 ;
[ a l l ] c l e a r (b) == true ;
[ a l l ] on (b) == TABLE :−> HAND;
[ a l l ] handempty == true :−> f a l s e ;

} ;

action putdown ( Block b) {
motivated ;
duration := 5 ;
[ a l l ] c l e a r (b) == true ;
[ a l l ] on (b) == HAND :−> TABLE;
[ a l l ] handempty == f a l s e :−> t rue ;

} ;

action s tack ( Block b , Block c ) {
motivated ;
duration := 5 ;
[ a l l ] on (b) == HAND :−> c ;
[ a l l ] handempty == f a l s e :−> t rue ;
[ a l l ] c l e a r ( c ) == true :−> f a l s e ;
[ a l l ] c l e a r (b) == true ;

} ;

action unstack ( Block b , Block c ) {
motivated ;
duration := 5 ;
[ a l l ] on (b) == c :−> HAND;
[ a l l ] handempty == true :−> f a l s e ;
[ a l l ] c l e a r (b) == true ;
[ a l l ] c l e a r ( c ) == f a l s e :−> t rue ;

} ;

action uncover ( Block a ) {
motivated ;
: decomposition {

[ a l l ] c l e a r ( a ) == true ;
} ;
: decomposition {

[ s t a r t ] c l e a r ( a ) == f a l s e ;
constant Block onA ;
[ s t a r t ] on (onA) == a ;
[ a l l ] ordered (

uncover (onA) ,
unstack (onA , a ) ,
putdown (onA) ) ;

} ;
} ;

action DoStack ( Block a , Block b) {
motivated ;
: decomposition {

[ a l l ] on ( a ) == b ;
} ;
: decomposition {

[ s t a r t ] on ( a ) == TABLE;
[ a l l ] ordered (

uncover ( a ) ,
uncover (b) ,
p : pickup ( a ) ,
s : s tack ( a , b ) ) ;
end (p) = s t a r t ( s ) ;
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} ;
: decomposition {

constant Block other ;
other != TABLE;
[ s t a r t ] on ( a ) == other ;
[ a l l ] ordered (

uncover ( a ) ,
uncover (b) ,
u : unstack ( a , other ) ,
s : s tack ( a , b ) ) ;

end (u) = s t a r t ( s ) ;

} ;
} ;

B.3 RACE

type Area with {
constant boolean isManipulat ionArea ;
constant PreArea p r e a r e a ;
constant ManArea man area ;

} ;
type PlArea < Area ; // area to p lace o b j e c t s
type ManArea < Area ; // area from which the robot manipulates
type PreArea < Area ; // area from which to a c c e s s a manipulat ion area
type NavArea < Area ; // other area where the robot can be

// t h i s would be u s e l e s s with a p r i m i t i v e to check the type o f a v a r i a b l e in ANML
f o r a l l (ManArea a ) { a . i sManipulat ionArea := true ; } ;
f o r a l l ( ( PlArea or PreArea or NavArea ) b) { b . i sManipulat ionArea := f a l s e ; } ;

type Robot with {
constant Arm l e f t a r m ;
constant Arm right arm ;
fluent Area l o c ; // l o c a t i o n o f the robot
fluent TorsoPosture t o r s o ; // posture o f the t o r s o
fluent boolean busy ; // the robot i s working on an e x c l u s i v e task

} ;
type Arm with {

fluent ArmPosture posture ;
fluent boolean f r e e ;
constant Robot owner ;

} ;

type Object with {
fluent ( PlArea or Arm) l o c ; // an o b j e c t i s e i t h e r on a p lace area or in a robot ’ s arm

} ;
type CoffeeJug < Object ;
type MilkPot < Object ;
type SugarPot < Object ;

type ArmPosture ;
instance ArmPosture ArmTuckedPosture , ArmUntuckedPosture , ArmUnnamedPosture ,

ArmToSidePosture , ArmCarryPosture ;

type TorsoPosture ;
instance TorsoPosture TorsoDownPosture , TorsoMiddlePosture , TorsoUpPosture ;

// an o b j e c t on ’ p l ’ can be manipulated from ’man ’ and ’man ’ can be acce s s ed from ’ pre ’
constant boolean connected ( PlArea pl , ManArea man, PreArea pre ) ;

/∗∗∗ Pr imi t ive action s ∗∗∗/

action move base ( Robot r , Area to ) {
motivated ;
end >= s t a r t +5000;
constant Area from ;
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[ a l l ] r . l o c == from :−> to ;
} ;

// only a p p l i c a b l e between a manipulat ion area and i t s pre−area
action move base bl ind ( Robot r , Area to ) {

motivated ;
end >= s t a r t +4000;

constant ManArea man ;

constant Area from ;
from in { man, man . p r e a r e a } ;
to in { man, man . p r e a r e a } ;
from != to ;

[ a l l ] r . l o c == from :−> to ;
} ;

action tuck arms ( Robot r , ArmPosture l e f t p o s , ArmPosture r i g h t p o s ) {
motivated ;
l e f t p o s in { ArmTuckedPosture , ArmUntuckedPosture } ;
r i g h t p o s in { ArmTuckedPosture , ArmUntuckedPosture } ;
end >= s t a r t +4000;
constant ArmPosture r a r m i n i p o s ;
constant ArmPosture l a r m i n i p o s ;
[ a l l ] r . l e f t a r m . posture == l a r m i n i p o s :−> l e f t p o s ;
[ a l l ] r . r ight arm . posture == r a r m i n i p o s :−> r i g h t p o s ;

} ;

action move torso ( Robot r , TorsoPosture new) {
motivated ;
end >= s t a r t +4000;
constant TorsoPosture o ld ;
[ a l l ] r . t o r s o == old :−> new ;

} ;

action p i c k u p o b j e c t ( Robot r , Arm arm , Object obj ) {
motivated ;
end >= s t a r t +4000;
r == arm . owner ;
constant PlArea p l ;
constant ManArea man ;
connected ( pl , man , man . p r e a r e a ) ;
[ a l l ] obj . l o c == pl :−> arm ;
[ a l l ] r . l o c == man ;
[ a l l ] arm . f r e e == true :−> f a l s e ;

} ;

action p l a c e o b j e c t ( Robot r , Arm arm , Object obj , PlArea p l ) {
motivated ;
r == arm . owner ;
end >= s t a r t +4000;
constant ManArea man ;
connected ( pl , man , man . p r e a r e a ) ;
[ s t a r t ] arm . posture == ArmToSidePosture ;
[ a l l ] r . l o c == man ;
[ a l l ] obj . l o c == arm :−> pl ;
[ a l l ] arm . f r e e == f a l s e :−> t rue ;

} ;

action move arm to s ide ( Robot r , Arm arm) {
motivated ;
arm . owner == r ;
end >= s t a r t +4000;
constant ArmPosture o l d p o s t u r e ;
[ a l l ] arm . posture == o l d p o s t u r e :−> ArmToSidePosture ;

// at l e a s t one o f l e f t / r i g h t arms must be untucked at s t a r t
constant Arm any arm ;
any arm in { r . l e f t a rm , r . r ight arm } ;
[ s t a r t ] any arm . posture != ArmTuckedPosture ;

} ;
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action move arms to carryposture ( Robot r ) {
motivated ;
end >= s t a r t +4000;
constant ArmPosture prevLe f t ;
constant ArmPosture prevRight ;
[ a l l ] r . l e f t a r m . posture == prevLe f t :−> ArmCarryPosture ;
[ a l l ] r . r ight arm . posture == prevRight :−> ArmCarryPosture ;
[ a l l ] r . t o r s o != TorsoDownPosture ;

} ;

action o b s e r v e o b j e c t s o n a r e a ( Robot r , PlArea p l ) {
motivated ;
end >= s t a r t +4000;
constant ManArea man ;
connected ( pl , man , man . p r e a r e a ) ;
[ a l l ] r . l o c == man ;

} ;

/∗∗∗∗ High Level Act ions ∗∗∗∗/

action adapt to r so ( Robot r , TorsoPosture pose ) {
motivated ;
: decomposition {

[ a l l ] r . t o r s o == pose ;
} ;
: decomposition {

[ s t a r t ] r . t o r s o != pose ;
[ a l l ] move torso ( r , pose ) ;

} ;
} ;

action t o r s o a s s u m e d r i v i n g p o s e ( Robot r ) {
motivated ;
: decomposition { // both arms are f r e e

[ a l l ] r . l e f t a r m . f r e e == true ;
[ a l l ] r . r ight arm . f r e e == true ;
[ a l l ] adapt to r so ( r , TorsoDownPosture ) ;

} ;
: decomposition { // the re i s an occupied arm

constant Arm arm ;
arm . owner == r ;
[ a l l ] arm . f r e e == f a l s e ;
[ a l l ] adapt to r so ( r , TorsoMiddlePosture ) ;

} ;
} ;

action adapt arms ( Robot r , ArmPosture pose ) {
motivated ;
: decomposition {

[ a l l ] r . l e f t a r m . posture == pose ;
[ a l l ] r . r ight arm . posture == pose ;

} ;
: decomposition { // we want arms to be tucked

constant Arm arm ;
pose == ArmTuckedPosture ;
arm . owner == r ;
[ s t a r t ] arm . posture != ArmTuckedPosture ;
[ a l l ] tuck arms ( r , ArmTuckedPosture , ArmTuckedPosture ) ;

} ;
: decomposition { // we want arms in car ry posture

pose == ArmCarryPosture ;
constant Arm arm ;
arm . owner == r ;
[ s t a r t ] arm . posture != ArmCarryPosture ;
[ a l l ] move arms to carryposture ( r ) ;

} ;
} ;

action arms assume dr iv ing pose ( Robot r ) {
motivated ;
: decomposition { // both arms are f r e e
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[ a l l ] r . l e f t a r m . f r e e == true ;
[ a l l ] r . r ight arm . f r e e == true ;
[ a l l ] adapt arms ( r , ArmTuckedPosture ) ;

} ;
: decomposition { // the re i s an occupied arm

constant Arm arm ;
arm . owner == r ;
[ a l l ] arm . f r e e == f a l s e ;
[ a l l ] adapt arms ( r , ArmCarryPosture ) ;

} ;
} ;

action d r i v e r o b o t ( Robot r , Area to ) {
motivated ;
: decomposition {

[ a l l ] r . l o c == to ;
} ;
: decomposition { // not in manipulat ion area , assume d r i v i n g pose and d r i v e

constant Area from ;
from != to ;
from . i sManipulat ionArea == f a l s e ;
[ s t a r t ] r . l o c == from ;
[ a l l ] c onta in s ordered (

unordered (
t o r s o a s s u m e d r i v i n g p o s e ( r ) ,

a rms assume dr iv ing pose ( r ) ) ,
move base ( r , to ) ) ;

} ;
: decomposition { // in manipulat ion area , f i r s t go to matching pre−manip area

constant ManArea from ;
from != to ;
from . i sManipulat ionArea == true ;
[ s t a r t ] r . l o c == from ;
[ a l l ] c onta in s ordered (

move base bl ind ( r , from . p r e a r e a ) ,
unordered (

t o r s o a s s u m e d r i v i n g p o s e ( r ) ,
a rms assume dr iv ing pose ( r ) ) ,

move base ( r , to ) ) ;
} ;

} ;

action a r m t o s i d e ( Robot r , Arm arm) {
motivated ;
arm . owner == r ;
: decomposition {

[ a l l ] arm . posture == ArmToSidePosture ;
} ;
: decomposition {

[ s t a r t ] arm . posture != ArmToSidePosture ;
[ a l l ] move arm to s ide ( r , arm) ;

} ;
} ;

action move both arms to s ide ( Robot r ) {
motivated ;
: decomposition {

[ s t a r t ] r . l e f t a r m . posture == ArmTuckedPosture ;
[ s t a r t ] r . r ight arm . posture == ArmTuckedPosture ;
[ a l l ] c onta in s ordered (

tuck arms ( r , ArmUntuckedPosture , ArmUntuckedPosture ) ,
unordered (

a r m t o s i d e ( r , r . l e f t a r m ) ,
a r m t o s i d e ( r , r . r ight arm ) ) ) ;
} ;
: decomposition {

constant Arm a ;
a in { r . r ight arm , r . l e f t a r m } ;
[ s t a r t ] a . posture != ArmTuckedPosture ;
[ a l l ] c onta in s ordered ( // to s t i c k to the o r i g i n a l domain , should probably be
unordered in p r a c t i c e

a r m t o s i d e ( r , r . l e f t a r m ) ,
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a r m t o s i d e ( r , r . r ight arm ) ) ;
} ;

} ;

action assume manipulat ion pose ( Robot r , ManArea l ) {
motivated ;
: decomposition { // a l r eady in p o s i t i o n

[ a l l ] {
r . l e f t a r m . posture == ArmToSidePosture ;
r . r ight arm . posture == ArmToSidePosture ;
r . l o c == l ;

} ;
[ a l l ] adapt to r so ( r , TorsoUpPosture ) ;

} ;
: decomposition { // at pre−area , assume pose and go to manipulat ion area

[ s t a r t ] r . l o c == l . p r e a r e a ;
[ a l l ] c onta in s ordered (

unordered (
adapt to r so ( r , TorsoUpPosture ) ,

move both arms to s ide ( r ) ) ,
move base bl ind ( r , l ) ) ;

} ;
: decomposition { // go back to pre−area b e f o r e assuming pose

[ s t a r t ] r . l o c == l ;
constant Arm any arm ;
any arm in { r . l e f t a rm , r . r ight arm } ;
[ s t a r t ] any arm . posture != ArmToSidePosture ;

[ a l l ] c onta in s ordered (
move base bl ind ( r , l . p r e a r e a ) ,
unordered (

adapt to r so ( r , TorsoUpPosture ) ,
move both arms to s ide ( r ) ) ,

move base bl ind ( r , l ) ) ;
} ;

} ;

action l e a v e m a n i p u l a t i o n p o s e ( Robot r , ManArea l ) {
motivated ;
: decomposition {

[ s t a r t ] r . l o c == l ;
[ a l l ] move base bl ind ( r , l . p r e a r e a ) ;

} ;
} ;

action g e t o b j e c t ( Robot r , Object o ) {
motivated ;

constant ManArea man ;
constant PlArea p l ;
connected ( pl , man , man . p r e a r e a ) ;
[ s t a r t ] o . l o c == pl ;
constant Arm arm ;
arm in { r . l e f t a rm , r . r ight arm } ;

: decomposition {
[ s t a r t ] r . l o c == man . p r e a r e a ; // t h i s i s not checked in t h e i r v e r s i o n ( because
l e a d i n g to much backtrack ing ?)
[ a l l ] c onta in s ordered (

assume manipulat ion pose ( r , man) ,
p i c k u p o b j e c t ( r , arm , o ) ) ;

} ;
: decomposition {

[ s t a r t ] r . l o c != man . p r e a r e a ;
[ a l l ] c onta in s ordered (

d r i v e r o b o t ( r , man . p r e a r e a ) ,
assume manipulat ion pose ( r , man) ,
p i c k u p o b j e c t ( r , arm , o ) ) ;

} ;
} ;

action p u t o b j e c t ( Robot r , Object o , PlArea p l ) {
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motivated ;
constant ManArea man ;
connected ( pl , man , man . p r e a r e a ) ;

constant Area i n i t i a l L o c ;
[ s t a r t ] r . l o c == i n i t i a l L o c ;

constant Arm arm ;
[ s t a r t ] o . l o c == arm ;

: decomposition {
i n i t i a l L o c != man ;
i n i t i a l L o c != man . p r e a r e a ;
[ a l l ] ordered (

d r i v e r o b o t ( r , man . p r e a r e a ) ,
assume manipulat ion pose ( r , man) ,
p l a c e o b j e c t ( r , arm , o , p l ) ) ;

} ;
: decomposition {

i n i t i a l L o c == man . p r e a r e a ;
[ a l l ] ordered (

assume manipulat ion pose ( r , man) ,
p l a c e o b j e c t ( r , arm , o , p l ) ) ;

} ;
: decomposition {

i n i t i a l L o c == man ;
[ a l l ] p l a c e o b j e c t ( r , arm , o , p l ) ;

} ;
} ;

// miss ing method to do nothing i f the re i s nothing to do
action move object ( Robot r , Object o , PlArea area ) {

motivated ;
: decomposition {

[ a l l ] ordered (
get : g e t o b j e c t ( r , o ) ,
put : p u t o b j e c t ( r , o , area ) ) ;

// r cannot perform another get or put task c o n c u r r r e n t l y
[ s t a r t ( get ) , end ( get ) ] r . busy == f a l s e :−> f a l s e ;
[ s t a r t ( put ) , end ( put ) ] r . busy == f a l s e :−> f a l s e ;

} ;
} ;

B.4 Cooking Dinner (POSTNU)

type Person ;
instance Person wife , me ;

type Locat ion ;
instance Locat ion work , car , home , k i t chen ;

fluent boolean d inner ready ;
predicate s h o u l d n o t i f y w h e n l e a v i n g ( Person n o t i f i e d , Person n o t i f i e r , Locat ion l ) ;
fluent Locat ion l o c ( Person a ) ;

/∗∗ Action to cook dinner , with u n c o n t r o l l a b l e duration between 25 and 30 minutes ∗/
action cook ( Person p) {

duration : in [ 2 5 , 3 0 ] ;
[ a l l ] l o c (p) == ki tchen ;
[ end ] d inner ready := true ;
: : ( observation conditions ( end ) { /∗ none : always obse rvab l e ∗/ })

} ;

/∗∗ Ask ” r e c e i v e r ” to t ext ” sender ” when l e a v i n g l o c a i o n ” l ” ∗/
action text me when you leave ( Person sender , Person r e c e i v e r , Locat ion l ) {

duration := 1 ;
sender != r e c e i v e r ;
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[ a l l ] l o c ( r e c e i v e r ) == l ;
[ end ] s h o u l d n o t i f y w h e n l e a v i n g ( sender , r e c e i v e r , l ) := true ;

} ;

/∗∗∗ ( Un co nt ro l l ab l e ) Schedule o f Wife ∗∗∗∗/

// s t a r t ==[10,20]==> wi fe work ing
wi f e work ing : in s t a r t+ [ 1 0 , 2 0 ] ;

// wi f e work ing ==[30,60]==> w i f e d r i v i n g
w i f e d r i v i n g : in wi fe work ing + [ 3 0 , 6 0 ] ;

// w i f e d r i v i n g ==[35,40]==> wife home
wife home : in w i f e d r i v i n g + [ 3 5 , 4 0 ] ;

[ w i f e work ing ] l o c ( w i f e ) := work ;
[ w i f e d r i v i n g ] l o c ( w i f e ) := car ;
[ wife home ] l o c ( w i f e ) := home ;

: : ( observation conditions ( w i f e d r i v i n g ) {
[ w i f e d r i v i n g ] s h o u l d n o t i f y w h e n l e a v i n g (me, wife , work ) == true ;

})
: : ( observation conditions ( wife home ) { /∗ none : always obse rvab l e ∗/ })

/∗∗∗ I n i t i a l s t a t e ∗∗∗/

[ s t a r t ] l o c (me) := k i tchen ;
[ s t a r t ] d inner ready := f a l s e ;

/∗∗∗ Goal : d inner be ready at most 5 minutes a f t e r w i f e g e t s home
and no e a r l i e r than 5 minutes b e f o r e ∗∗∗/

[ t−1] d inner ready == f a l s e ;
[ t ] d inner ready == true ;
wife home −5 <= t ;
t <= wife home +5;

B.5 Search and Transport

type Locat ion ;
type Sur face < Locat ion ; // s u r f a c e ( e . g . t a b l e ) where items can be
type RobotLocation < Locat ion ; // p l a c e s where the robot can be

// denotes whether a s u r f a c e can be reached from a given l o c a t i o n
constant boolean reachab le f rom ( Sur face iLoc , RobotLocation rLoc ) ;

// r e s p e c t i v e l y denote the minimal and maximal duration s to go from one p lace to another
constant i n t e g e r m in t r av e l d ur ( RobotLocation from , RobotLocation to ) ;
constant i n t e g e r max trave l dur ( RobotLocation from , RobotLocation to ) ;

type Robot with {
constant Gripper l e f t g r i p p e r ;
constant Gripper r i g h t g r i p p e r ;
constant Head head ;
fluent RobotLocation l o c ;

} ;

type Gripper with {
fluent boolean f r e e ;

} ;

type Head with { // Head o f a robot whose camera are used f o r scanning s u r f a c e s
fluent boolean used ;

} ;
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type Item with {
fluent ( Sur face or Gripper ) l o c ;

} ;

fluent boolean p a t h p l a n n e r f r e e ;

/∗∗ Action f o r going to a g iven l o c a t i o n .
The action i s decomposed in two phases .
The f i r s t one [ s t a r t , t h a v e t r a j ] i s the phase ded icated to planning a t r a j e c t o r y
between the two l o c a t i o n s .
The second one [ t e x e c t r a j , end ] i s the phase where the t r a j e c t o r y p r e v i o u s l y
planned i s executed . ∗/

action Go( Robot r , RobotLocation to ) {
constant RobotLocation from ; // l o c a t i o n o f the robot b e f o r e execut ing i t s t r a j e c t o r y

// cont ingent duration o f the f i r s t phase ( t y p i c a l l y f a s t f o r path planning )
// s t a r t ==[1,4]==> t h a v e t r a j
t h a v e t r a j : in s t a r t + [ 1 , 4 ] ;

// cont ingent duration o f execut ing a ( yet unknown ) t r a j e c t o r y
// t e x e c t r a j ==[min , max]==> end
end : in t e x e c t r a j + [ m i n t r av e l d ur ( from , to ) , max trave l dur ( from , to ) ] ;

// r e q u i r e the path planner to be f r e e during the f i r s t phase
[ s t a r t , t have p lan ] p a t h p l a n n e r f r e e == true :−> t rue ;

// denote the e f f e c t s o f execut ing the t r a j e c t o r y during the second phase : the robot
w i l l go from i t s i n i t i a l l o c a t i o n ( from ) to i t s t a r g e t l o c a t i o n ( to )

[ t e x e c t r a j , end ] r . l o c == from :−> to ;

// f o r c e the planner not to compute the t r a j e c t o r y to e a r l y
t e x e c t r a j <= t h a v e t r a j +10;

} ;

action SearchTransport ( Robot r , Item i , Sur face t a b l e ) {
duration : in [ 3 0 , 3 0 0 ] ; // l a r g e unce r ta in ty regard ing the duration

/∗∗ make sure nobody uses the robot but s t a t e that i t w i l l be in a l o c a t i o n from
which ” t a b l e ” can be reached at the end ∗/

constant RobotLocation r o b o t s t a r t ;
constant RobotLocation robot end ;
r eachab le f rom ( table , robot end ) ;
[ a l l ] r . l o c == r o b o t s t a r t :−> robot end ;

// make sure the robot has at l e a s t one f r e e g r i p p e r
constant Gripper g ;
g in { r . l e f t g r i p p e r , r . r i g h t g r i p p e r } ;
[ a l l ] g . f r e e == true :−> t rue ; // g r i p p e r must be f r e e at s t a r t and w i l l be f r e e at

end

// make sure nobody uses the head as i t w i l l be needed f o r scanning s u r f a c e s and
perform pick / p lace action s

[ a l l ] r . head . used == f a l s e :−> f a l s e ;

// l o c a t i o n o f ” i ” i s i n i t i a l l y unknown , but i t w i l l be on the t a b l e at the end
[ s t a r t ] i . l o c == UNKOWN;
[ end ] i . l o c := t a b l e ;

} ;

action Transport ( Robot r , Item i , Sur face t a b l e ) {
[ s t a r t ] i . l o c != UNKNOWN;
[ a l l ] c onta in s ordered (

GoPick ( r , i ) , GoPlace ( r , i , t a b l e ) ;
} ;

} ;
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action GoScan ( ) {
// ” r ” must be in a l o c a t i o n from which ” s ” i s v i s i b l e
constant RobotLocation l ;
v i s i b l e f r o m ( s , l ) ;
: decomposition{

[ a l l ] r . l o c == l ;
[ a l l ] c onta in s Scan ( r , s ) ;

} ;
: decomposition {

[ s t a r t ] r . l o c != l ;
[ a l l ] c onta in s ordered (

Go( r , l ) ,
Scan ( r , s ) ) ;

} ;
} ;

action Scan ( Robot r , Sur face s ) {
duration : in [ 1 0 , 2 0 ] ;

// ” r ” must be in a l o c a t i o n from which ” s ” i s v i s i b l e
constant RobotLocation l ;
v i s i b l e f r o m ( s , l ) ;
[ a l l ] r . l o c == l ;

// nobody e l s e must be us ing the head whi l e scanning
[ a l l ] r . head . used == f a l s e :−> f a l s e ;

[ end ] s . scanned := true ;
} ;
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