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Abstract
Workflow technology has long been employed for the modeling, validation and

execution of business processes. A workflow is a formal description of a business
process in which single atomic work units (tasks), organized in a partial order, are
assigned to processing entities (agents) in order to achieve some business goal(s).
Workflows can also employ workflow paths (projections with respect to a total
truth value assignment to the Boolean variables associated to the conditional split
connectors) in order (not) to execute a subset of tasks. A workflow management
system coordinates the execution of tasks that are part of workflow instances such
that all relevant constraints are eventually satisfied. Temporal workflows specify
business processes subject to temporal constraints such as controllable or uncon-
trollable durations, delays and deadlines. The choice of a workflow path may be
controllable or not, considered either in isolation or in combination with uncon-
trollable durations. Access controlled workflows specify workflows in which users
are authorized for task executions and authorization constraints say which users
remain authorized to execute which tasks depending on who did what. Access
controlled workflows may consider workflow paths too other than the uncertain
availability of resources (users, throughout this thesis). When either a task du-
ration or the choice of the workflow path to take or the availability of a user is
out of control, we need to verify that the workflow can be executed by verifying
all constraints for any possible combination of behaviors arising from the uncon-
trollable parts. Indeed, users might be absent before starting the execution (static
resiliency), they can also become so during execution (decremental resiliency) or
they can come and go throughout the execution (dynamic resiliency). Temporal
access controlled workflows merge the two previous formalisms by considering sev-
eral kinds of uncontrollable parts simultaneously. Authorization constraints may
be extended to support conditional and temporal features. A few years ago some
proposals addressed the temporal controllability of workflows by encoding them
into temporal networks to exploit “off-the-shelf” controllability checking algorithms
available for them. However, those proposals fail to address temporal controlla-
bility where the controllable and uncontrollable choices of workflow paths may
mutually influence one another. Furthermore, to the best of my knowledge, con-
trollability of access controlled workflows subject to uncontrollable workflow paths
and algorithms to validate and execute dynamically resilient workflows remain un-
explored. To overcome these limitations, this thesis goes for exact algorithms by
addressing temporal and resource controllability of workflows under uncertainty.
I provide several new classes of (temporal) constraint networks and correspond-
ing algorithms to check their controllability. After that, I encode workflows into
these new formalisms. I also provide an encoding into instantaneous timed games
to model static, decremental and dynamic resiliency and synthesize memoryless
execution strategies. I developed a few tools with which I carried out some initial
experimental evaluations.



To me they were nothing but constraints.
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1

Overview

In this chapter I first discuss the context and motivation of this work and the
contributions of my thesis. Then, I summarize the scientific publications that this
thesis has led to and the organization of the contributions.

1.1 Context and Motivations

Workflow technology has emerged as one of the leading technologies for modeling,
(re)designing and executing business processes in several different application do-
mains. For instance, workflows have been used to model processes for industrial
research & development, manufacturing, energy distribution, banking processes,
critical infrastructures and healthcare [34, 89]. The conceptual modeling of work-
flows underlying business processes has been receiving increasing attention over
the last years and many technical aspects have been discussed, including flexi-
bility, structured vs. unstructured modeling, change management, authorization
models, and temporal features and constraints (see, e.g., [34, 109,123]).

A workflow schema (or simply workflow) is a formal description of a business
process in which single atomic work units (tasks), organized in a partial order, are
assigned to processing entities (agents) in order to achieve some business goal(s)
[68]. A workflow management system must coordinate the execution of tasks to
obtain workflow instances.

Recently, attention has been devoted in particular to the issue of expressing
temporal features of workflows, such as task-duration constraints, temporal con-
straints between non-consecutive tasks, delays, deadlines and so on [34]. Moreover,
properties of such temporal workflow models have been defined and analyzed. One
of the most interesting properties is that of dynamic controllability, which en-
sures that a workflow can be executed satisfying all the given temporal constraints
without the workflow management system restricting and/or controlling task du-
rations but only assuming that each duration is within a specified range (temporal
uncertainty) [34].

The authors of [34] also tackled dynamic controllability under another kind
of uncertainty, conditional uncertainty, represented by the fact that some sub-
sets of tasks have to be executed if and only if some conditions (abstracted as
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Boolean propositions) are true. Similarly to what happens for uncontrollable task
durations, the truth-value assignment to such propositions is out of control. For
instance, when a patient enters the emergency room, the severity of his condition is
not known a priori but it is established by a physician, while the workflow is being
executed. Since such a condition discriminates which tasks have, or have not, to
be executed (i.e., the choice of the workflow path), the workflow management sys-
tem must be able to get to the end of the workflow satisfying all relevant temporal
constraints regardless of which tasks have to be executed and which task durations
have to be satisfied. In [34], the authors do not consider workflow instances spec-
ifying both controllable and uncontrollable workflow paths such that the choice
of a controllable workflow path may exclude the choice of an uncontrollable one
and vice versa. That is, they do not address fallback temporal plans, i.e., plans in
which making a decision may exclude some uncontrollable part whose behavior
risks violating some constraint (see, for example, [126]).

Workflows also deal with the management of associated resources in order to
complete business processes. This thesis works, from a security point of view, with
the most trivial of resources: users. When we talk about security in the business
process context, we must also talk about access control models, security policies
and authorization constraints (which act as primitives for security policies).

Therefore, an access-controlled workflow extends a classical workflow by adding
users and authorization constraints. Users are authorized for tasks whereas autho-
rization constraints say which users remain authorized for which tasks depending
on who did what. Role-based access control models (RBAC, [113]) put another
layer of security on top of access controlled workflows injecting the concept of role,
which acts as an interface between users and tasks saying, intuitively, “who can do
what”. For example, in a financial context, a clerk is authorized to process a loan
request, but he is not authorized to sign the contract at the end of the process as
only managers can do so. RBAC models can specify several kinds of constraints
involving roles (e.g., mutual exclusivity, hierarchy, etc.), but they all fail to model
constraints at user level such as, for example, the well-known separation of duties
(SoD) and binding of duties (BoD) [31, 111]. A SoD (resp., BoD) between two
tasks says that the users executing such tasks must be different (resp., equal).

Some proposals attempted at extending RBAC models to address such con-
straints, e.g., [14, 15], leading to a natural question: Does there exist an assign-
ment of tasks to users satisfying all constraints?, or more formally, Is the workflow
satisfiable? If it is, then it means that at least a static plan, precomputed before
starting, to execute the workflow exists. If it is not, then either we decide not to
execute the workflow or we accept that any possible execution will violate at least
one constraint (and then we could, for example, look for a “least bad” plan [47]
maximizing the number of satisfied constraints). Thus, the workflow satisfiability
problem (WSP, [122, 123]) is a constraint satisfaction problem (CSP) where vari-
ables model tasks and domains model authorized users. Although some techniques
have been provided to solve the WSP efficiently (e.g., [49]), a CSP remains in gen-
eral NP-hard [52]. This is due to the non-monotonicity of the relations employed
(e.g., 6= [52]).

When an access controlled workflow does not specify any uncontrollable part
workflow satisfiability is enough to synthesize a valid plan. Instead, when some part
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is out of control (e.g., the choice of the workflow path or the absence of users),
we need, as for temporal workflows discussed above, a controllability approach to
decide in real time which users to commit to which tasks. For example, consider
an access controlled workflow under conditional uncertainty. In this workflow, the
choices of the workflow paths to take are out of control (or by abusing language we
say that these workflow paths are uncontrollable). Differently from the WSP, the
assignment of a user to a task might not be precomputed before starting as the
workflow may in general specify different authorization constraints for different
workflow paths involving the same users for some common tasks which must be
considered in any execution. In that case, we must make this assignment while
executing, typically after having full information on which workflow path we will
go through (online planning).

Another controllability problem in the context of workflows with resources is
the workflow resiliency problem (WRP), i.e., a dynamic WSP coping with the
absence of users. If a workflow is resilient, it is of course satisfiable, but the vice
versa does not hold. A few years ago, Wang and Li defined three levels of resiliency:
static (level 1), decremental (level 2) and dynamic (level 3) [122, 123]. In static
resiliency, up to k users might be absent before the execution starts and never
become available for that execution. In decremental resiliency, up to k users might
be absent before or during execution and, again, they never become available for
that execution. In dynamic resiliency, up to k (possibly different) users might be
absent at any time and they may in general turn absent and available continuously,
before or during the execution. Much work has been carried out to tackle static
resiliency, little for decremental and, to the best of my knowledge, nothing for
dynamic.

Finally, we can of course consider variants of the previously discussed aspects.
For instance, a workflow employing users and temporal constraints could specify
a temporal separation (or binding) of duties. A temporal SoD says that a user is
allowed to carry out two tasks provided a further temporal constraint is satisfied.
For example, a surgeon, who has just carried out a 4-hour intervention, is allowed
to do another one only after resting from 2 to 4 hours. Likewise, an aircraft pilot
must rest for at least 10 hours after a transatlantic flight. These temporal con-
straints must be considered in conjunction with access control as there is a mutual
influence. However, when everything is under control, these constraints boil down
to normal disjunctions for which a satisfiability approach is enough. The interest-
ing part is when some part is, again, out of control. For example, consider again
the transatlantic flight and suppose that once the aircraft lands in America, it
will take off again after 12 hours after the expected landing time (so potentially
the same pilot is fine for the return flight). However, the exact duration of the
outbound flight is uncontrollable. Suppose that it takes normally 10 hours. Once
boarding is complete, the take off could be delayed for extreme weather conditions
and related safety procedures such as, for example, deicing. Deicing is the process
of removing snow and ice from the plane surfaces (especially wings) by “power
washing” the aircraft with chemicals which also remain on the surfaces in order
to prevent the reformation of the ice. If the deicing process takes 3 hours1, the

1 Actually, deicing an aircraft does not take 3 hours, but since all leaving aircrafts have
to do so following the departure scheduling, each plane queues for its turn.



4 1 Overview

flight will land after 13 hours since boarding. As a result, the next take off will be
scheduled after 9 (and no longer 12 hours), so the same pilot is not going to be
fine.

To the best of my knowledge security policies involving temporal, conditional
and resource uncertainty still need to be explored in depth.

When facing uncontrollable parts we can in general act in three main ways:

1. We assume that we know in advance how the uncontrollable part will behave
and make sure that a (possibly different) strategy to operate on the controllable
part exists.

2. We assume that we have a fixed strategy operating on the controllable part
always the same way no matter how the uncontrollable one will behave.

3. We assume that we have a strategy operating (possibly differently) on the
same controllable part making decisions in real time depending on how the
uncontrollable part is behaving.

These are the intuitions behind the three main kinds of controllability: weak (for
presumptuous), strong (for anxious) and dynamic (for grandmasters).

1.2 Contributions

Towards the unexplored directions mentioned in Section 1.1 my contributions in
this thesis are many-fold. Here, I give only a high level overview of them, postpon-
ing a more detailed description to the specific parts of the thesis.

1. I address temporal controllability of workflows specifying controllable and un-
controllable workflow paths and uncontrollable task durations. This part relies
on temporal constraint networks. I provide conditional simple temporal net-
works with uncertainty and decisions (CSTNUDs) as a new temporal network
formalism and then an encoding from temporal workflows into CSTNUDs. I
also address simple temporal networks with decisions (STNDs), a subclass of
CSTNUDs equivalent to (but more compact than) DTP. I provide Esse and
Kappa, two tools for CSTNUDs and STNDs, respectively, with which I carry
out a few experimental evaluations.

2. I address resource controllability of workflows specifying uncontrollable work-
flow paths. This part relies on constraint networks. I provide constraint net-
works under conditional uncertainty (CNCUs) as a new formalism of constraint
networks able to model conditional uncertainty. Then, I provide an encoding
from access controlled workflows into CNCUs. After that, I also address work-
flow resiliency via real-time controller synthesis for timed game automata. I
provide Zeta and Erre, two tools for CNCUs and workflow resiliency, respec-
tively, with which I carry out a few experimental evaluations.

3. I address temporal and resource controllability together. This part relies on
further new extensions of temporal networks whose dynamic controllability is
checked via controller synthesis for the corresponding timed game automata.
I provide access controlled temporal networks (ACTNs) and conditional sim-
ple temporal networks with uncertainty and resources (CSTNURs) in order to
model temporal security policies. I also show how the temporal constraints of
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a temporal role based access control model (TRBAC) can be represented as a
simple temporal network to be connected to the temporal network modeling
the workflow in order to understand if the access controlled workflow can be
executed.

These contributions fall in the areas of constraint satisfaction, uncertainty in AI,
planning and scheduling, algorithms, business process management and security.

1.3 Scientific Publications

The work of this thesis has led to the following published papers and the results of
my work will lead to a few more to be submitted soon. In what follows I summarize
titles, contents and related bib entries.

1. Carlo Combi, Luca Viganò, and Matteo Zavatteri. Security constraints in
temporal role-based access-controlled workflows. In Proceedings of the Sixth
ACM Conference on Data and Application Security and Privacy, CODASPY
2016. ACM, 2016 [41]

Summary. In this paper we provide a mapping between workflow models
and simple temporal networks with uncertainty (STNUs) to properly manage
temporal constraints of workflows. We also provide a mapping between role
temporalities and simple temporal networks (STNs). We discuss how to con-
nect the two resulting networks to make explicit who can do what, when and
we define Security Constraints (SCs) along with Security Constraint Prop-
agation Rules (SCPRs) to prevent users from doing unauthorized actions.
These rules allow the system to propagate security constraints at runtime
depending on what is going on. We provide an algorithm to check whether
a set of SCPRs is safe, and extend an existing execution algorithm for it to
take into account these new security aspects.

2. Carlo Combi, Roberto Posenato, Luca Viganò, and Matteo Zavatteri. Access
controlled temporal networks. In Proceedings of the 9th International Confer-
ence on Agents and Artificial Intelligence - Volume 2 (ICAART 2017), pages
118–131. INSTICC, ScitePress, 2017 [40]

Summary. In this paper, we define Access-Controlled Temporal Networks
(ACTNs) as an extension of Conditional Simple Temporal Networks with
Uncertainty (CSTNUs) by adding users and authorization constraints that
must be considered together with temporal constraints to model a temporal
access control. We show that the dynamic controllability checking can be
done via Timed Game Automata and we provide experimental results using
UPPAAL-TIGA on a concrete real-world case study.

3. Matteo Zavatteri, Carlo Combi, Roberto Posenato, and Luca Viganò. Weak,
strong and dynamic controllability of access-controlled workflows under condi-
tional uncertainty. In Business Process Management (BPM 2017), 2017 [127]

Summary. In this paper, we address controllability analysis for access con-
trolled workflows under conditional uncertainty. We define weak, strong and
dynamic controllability of ACWFs under conditional uncertainty, we present



6 1 Overview

algorithmic approaches to address each of these types of controllability, and
we synthesize execution strategies that specify which user has been (or will
be) assigned to which task.

4. Massimo Cairo, Carlo Combi, Carlo Comin, Luke Hunsberger, Roberto Pose-
nato, Romeo Rizzi, and Matteo Zavatteri. Incorporating decision nodes into
conditional simple temporal networks. In S. Schewe, T. Schneider, and J. Wi-
jsen, editors, 24th International Symposium on Temporal Representation and
Reasoning (TIME 2017), LIPIcs, pages 9:1–9:17, 2017 [19]

Summary. In this paper, we incorporate decision time points into condi-
tional simple temporal networks. A decision time-point is like an observa-
tion time-point with the difference that the truth value assignment to the
associated proposition is under control. The resulting network is called a
CSTN with Decisions (CSTND). We prove that the problem of determining
whether any given CSTND is dynamically consistent is PSPACE-complete.
We present algorithms that address two sub-classes of CSTNDs: (1) those
that contain only decision time-points; and (2) those in which all decisions
are made before execution begins.

5. Matteo Zavatteri. Conditional simple temporal networks with uncertainty and
decisions. In 24th International Symposium on Temporal Representation and
Reasoning (TIME 2017), volume 90 of LIPIcs, 2017 [126]

Summary. In this paper, I propose conditional simple temporal networks
with uncertainty and decisions (CSTNUDs) which introduce decision time
points into the specification in order to operate on a conditional part un-
der control. I model the dynamic controllability checking (DC-checking) of
a CSTNUD as a two-player game in which each player makes his moves in
his turn at a specific time instant. I give an encoding into timed game au-
tomata for a sound and complete DC-checking. I also synthesize memoryless
execution strategies for CSTNUDs proved to be DC.

6. Matteo Zavatteri and Luca Viganò. Constraint networks under conditional
uncertainty. In Proceedings of the 10th International Conference on Agents
and Artificial Intelligence - Volume 2 (ICAART 2018), pages 41–52. INSTICC,
SciTePress, 2018 [128]

Summary. In this paper, we propose constraint networks under conditional
uncertainty (CNCUs), and we define weak, strong and dynamic controlla-
bility of a CNCU. We provide algorithms to check each of these types of
controllability and discuss how to synthesize (dynamic) execution strategies
that drive the execution of a CNCU saying which value to assign to which
variable depending on how the uncontrollable part behaves. We provide Zeta,
a tool that we developed for CNCUs.

1.4 Organization

I divided this thesis in three main parts according to the three main contributions
highlighted in Section 1.2. I discuss essential background in Chapter 2 and related
work in Chapter 3 and then,
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1. I address temporal controllability in Part I, where Chapter 4 summarizes part
of the work in [19] and also provides new contributions, whereas Chapter 5
summarizes the work in [126] with Section 5.7 as a new contribution.

2. I address resource controllability in Part II, where Chapter 6 summarizes the
work in [128] with Section 6.6 summarizing part of the work in [127] and
providing new contributions along with Chapter 7.

3. I address temporal and resource controllability together in Part III, where
Chapter 8 summarizes the work in [40], Chapter 9 provides new contribu-
tions starting from the work in [41] and also adapting it to Chapter 8 as a
minor contribution.

Chapter 10 draws conclusions and discusses future work.





2

Background

In this chapter I provide essential background on temporal networks, timed game
automata, periodic time, temporal role-based access controlled models and on the
workflow satisfiability and resiliency problems.

2.1 Temporal Networks

In this section I provide essential background on the extensions of simple temporal
networks I use in most of this thesis.

2.1.1 Simple Temporal Networks

A simple temporal network (STN, [53]) is a formalism able to model temporal
plans in which all components are under control. For STNs, consistency analysis
is enough to validate the temporal plan.

Definition 2.1 (STN). A simple temporal network (STN) is a pair 〈T , C〉, where:
• T = {X, . . . } is a finite set of time points (continuous variables).
• C = {(Y − X ≤ k), . . . } is a finite set of constraints, where X,Y ∈ T , k ∈
R ∪ ±∞. If (Y −X ≤ k) 6∈ C, then k =∞.

An STN is consistent if there exists a consistent schedule (see Definition 6.5).

Definition 2.2 (Schedule). A schedule is a mapping S : T → R assigning real
values to time points such that if X is executed before Y , then S(X) ≤ S(Y ) (time
points are not scheduled in the past). A schedule is consistent if the assignments
it makes satisfy all constraints (i.e., for each (Y −X ≤ k) ∈ C, S(Y )− S(X) ≤ k
holds).

Before proceeding, I point out an assumption regarding constraints sharing the
same time points (in the same order).

Definition 2.3 (Tightest constraint, STN). Given a set of constraints

C = {(Y −X ≤ k1), (Y −X ≤ k2), . . . , (Y −X ≤ kn)}
the tightest constraint is (Y −X ≤ k) where k = min{ki | (Y −X ≤ ki) ∈ C}.
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Fig. 2.1: STN distance graph.

For example, if

C = {(Y −X ≤ 4), (Y −X ≤ −1), (Y −X ≤ −2)}

then (Y −X ≤ −2) is the tightest constraint. When more constraints involve the
same two time points (in the same position1) I always keep the tightest one.

I represent an STN as a directed weighted graph (called distance graph) where
an edge X → Y labeled by k models Y −X ≤ k. If Y → X has a negative weight
−k, then it means that Y must be executed after minimum k since X (delay). If
X → Y has a positive weight k, then it means that Y must be executed within k
since X (deadline)2.

For example Figure 2.1 shows the distance graph of Z = 〈T , C〉, where:

• T = {X,Y,W}
• C = {(X − Y ≤ −2)︸ ︷︷ ︸

1

, (W − Y ≤ 1), (Y −W ≤ −1)︸ ︷︷ ︸
2

, (W −X ≤ 4)︸ ︷︷ ︸
3

}

In other words, Z specifies three time points X,Y and W requiring that:

1. Y must be executed after minimum 2 since X.
2. W must be executed after minimum 1 and within 1 since Y .
3. W must be executed after maximum 4 since X.

Consistency of STNs is in PTIME and can be tested by hunting down negative
cycles in the corresponding directed weighted graph representation [53]. An early
execution of an STN consists of finding a schedule executing the time points as
soon as possible (e.g., by using Floyd-Warshall [53]).

The STN in Figure 2.1 is consistent. A possible consistent schedule is:

S(X) = 0, S(Y ) = 2, S(W ) = 3.

2.1.2 Simple Temporal Networks with Uncertainty

A simple temporal network with uncertainty (STNU) [104] augments an STN with
a set of contingent links in order to model uncontrollable durations. A contingent
link is a pair of distinct time points specifying a range of allowed values between
their distance. One of these time points is called activation time point and it
1 There is no tightest constraints for C = {(Y −X ≤ k1), (X − Y ≤ k2)}.
2 However, nothing prevents Y from being executed before X. Should this be the case,
the constraints will trivially hold.
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Fig. 2.2: STNU distance graph.

is under control, whereas the other one is called contingent time point and it is
not. The real value assignment to the contingent one depends on the behavior of
unpredictable external events which are only observed to occur while executing
the network.

Definition 2.4 (STNU). A simple temporal network with uncertainty (STNU)
is a tuple Z = 〈T ,L, C〉, where:
• T and C are the same of those given for STNs (Definition 2.1).
• L = {(A, x, y, C), . . . } is a finite set of contingent links, where A,C ∈ T (A is
the activation time point, C the contingent one), A 6= C and 0 < x < y < ∞
(x, y ∈ R).

An STNU is well-defined iff for any pair (A1, x1, y1, C1), (A2, x2, y2, C2) ∈ L such
that A1 6= A2, we have that C1 6= C2.

Thus, an STNU models an (infinite) family of STNs each obtained by fixing a
duration for each contingent link.

The graphical representation of an STNU extends that of an STN by dividing
the set of edges in single edges and double edges. A single edge X → Y labeled by
k still represents a constraints (Y − X ≤ k) ∈ C, whereas a double edge A ⇒ C
labeled by [x, y] represents the contingent link (A, x, y, C). Figure 2.2 shows the
STNU distance graph of Z = 〈T ,L, C〉, where:
• T = {X,A,C}
• L = {(A, 2, 5, C)}
• C = {(C −X ≤ −1)︸ ︷︷ ︸

1

, (X − C ≤ 1)︸ ︷︷ ︸
2

}

In other words, Z specifies three time points X,A,C and a contingent link
(A, 2, 5, C) requiring that:

1. X must be executed minimum one 1 since C
2. X must be executed within 1 since C

Let S be a schedule for Z. Once we executeA, we can only observe the execution
of C which is guaranteed to occur such that S(C)− S(A) ∈ [2, 5].

A schedule for an STNU still involves all time points, but with the difference
that we cannot specify assignments having the form S(C) where C is a contingent
time point. We can only specify assignments S(X), where X is a non-contingent
time point.

Differently from an STN (where consistency is enough), in what follows I give
the definitions for weak, strong and dynamic controllability of an STNU which help
address the satisfaction of constraints under uncertainty. Controllability analysis
is necessary for STNUs and any another kind of network specifying uncontrollable
parts.
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Definition 2.5 (Weak controllability, STNU). An STNU is weakly control-
lable if whenever a schedule is defined for contingent time points only, we can
complete such a schedule by assigning real values to all non-contingent time points
such that the resulting schedule is consistent.

The STNU in Figure 2.2 is weakly controllable. Suppose that S(C) ∈ [2, 5] is
known in advance. We can build a consistent and complete schedule by setting
S(A) = 0 and S(X) = S(C) + 1.

Dealing with weak controllability is quite complex as it always requires one to
predict how all uncontrollable parts will behave before starting the execution. This
leads us to consider the opposite case in which we want to synthesize a schedule
defined for non-contingent time points only which will be always consistent no
matter how the assignments to contingent time points will complete this schedule.
Thus, the second kind of controllability is strong controllability.

Definition 2.6 (Strong controllability, STNU). An STNU is strongly control-
lable if there exists a schedule defined for non-contingent time points only such that
the schedule is always consistent regardless of the assignments to the contingent
time points that will complete it.

The STNU in Figure 2.2 is not strongly controllable. Indeed, there is no way to
precompute S(X) such that S will be consistent for any S(C). The problem lies in
the constraints involving X and C. In a nutshell, the scheduling of X must occur
exactly 1 since C, but C can occur any time in the interval [2, 5] which makes
impossible to set S(X) to a fixed k ∈ R once we have set S(A).

Strong controllability is, however, “too strong”. If an STNU is not strongly
controllable, it could be still executable by refining the schedule in real time de-
pending on what durations the contingent links take. To achieve this purpose, I
provide the definition of dynamic controllability.

Definition 2.7 (Dynamic controllability, STNU). An STNU is dynamically
controllable if a consistent schedule is generated in real time by assigning (possibly
different) real values to non-contingent time points depending on what assignments
to the contingent ones are observed in real time.

The STNU in Figure 2.2 is dynamically controllable. The execution strategy
shown in Listing 2.1 generates a schedule S such that X will be scheduled depend-
ing on when C occurs.

Listing 2.1: Early execution strategy for the STNU in Figure 2.2.
S(A) = 0
wait for C to execute (i.e., for the environment to set S(C)
S(X) = S(C) + 1

As pointed out in [104], it is easy to see that

Strong controllability⇒ Dynamic controllability⇒Weak controllability
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2.1.3 Conditional Simple Temporal Networks

A Conditional Simple Temporal Network (CSTN) [75] (formerly CTP [118]) ex-
tends an STN (but not an STNU) by adding observation time points to model
conditional temporal plans. Each observation time point is associated to a Boolean
proposition. Time points and constraints may be labeled by labels (i.e., conjunc-
tions of literals) saying for which scenarios (truth value assignments to the propo-
sitions) they must appear in the solution. Thus, a CSTN models a family of STNs
each obtained as a projection of the initial CSTN onto a scenario.

Given a set P of Boolean propositions, a label ` = λ1 . . . λn is any finite con-
junction of literals λi, where a literal is either a proposition p (positive literal)
or its negation ¬p (negative literal). The empty label is denoted by �. The label
universe of P, denoted by P∗, is the set of all possible (consistent) labels drawn
from P; e.g., if P = {p, q}, then P∗ = {�, p, q,¬p,¬q, pq, p¬q,¬pq,¬p¬q}. To
ease reading I will often omit the ∧ connector when the context allows and write
pq¬r . . . instead of p ∧ q ∧ ¬r ∧ . . . . Two labels `1, `2 ∈ P∗ are consistent if and
only if their conjunction `1 ∧ `2 is satisfiable. A label `1 entails a label `2 (written
`1 ⇒ `2) if and only if all literals in `2 appear in `1 too (i.e., if `1 is more specific
than `2). A label `1 falsifies a label `2 iff `1 ∧ `2 is inconsistent. For instance, if
`1 = p¬q and `2 = p, then `1 and `2 are consistent since p¬qp is satisfiable, and
`1 entails `2 since p¬q ⇒ p.

Definition 2.8 (CSTN). A conditional simple temporal network (CSTN) is a
tuple Z = 〈T ,OT ,P, O, L, C〉 where

• T is the same of that given for STNs and STNUs (Definition 2.1, Defini-
tion 2.4).
• OT ⊆ T = {P?, Q?, . . . } is a finite set of observation time points
• P = {p, q, . . . } is a finite set of Boolean propositions
• O : OT → P is a bijection assigning a unique proposition to each observation
time point
• L : T → P∗ is a mapping assigning a label to each time point
• C = {(Y −X ≤ k, `), . . . } is a finite set of labeled constraints, where X,Y ∈ T ,
k ∈ R ∪ ±∞ and ` ∈ P∗. If (Y −X ≤ k, `) 6∈ C for some ` ∈ P∗, then k =∞
(for that label)

Definition 2.9 (Scenario, CSTN). A scenario for a CSTN Z = 〈T ,OT ,P, O, L, C〉
is a mapping s : P → {>,⊥} assigning a truth value to each proposition in P. A
scenario s satisfies a label ` (written s |= `) if ` valuates true under the following
interpretation given by s:

1. s |= λ iff (λ = p ∧ s(p) = >) or (λ = ¬p ∧ s(p) = ⊥),
2. s |= ` iff s |= λ1 and . . . and s |= λn for ` = λ1 . . . λn.

The graphical representation of a CSTN extends that of an STN (but not that
of an STNU) by labeling nodes and constraints with labels. An edge X → Y
labeled by 〈k, `〉 represents the labeled constraint (Y −X ≤ k, `) ∈ C. I show the
labels of nodes below them.

Figure 2.3 shows the labeled distance graph of Z = 〈T ,OT ,P, O, L, C〉, where:
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P?
[�]

Q?
[p]

W
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〈−3, p〉
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〈−6, p¬q〉
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Fig. 2.3: CSTN labeled distance graph.

• T = {P?, Q?,W}
• OT = {P?, Q?}
• P = {p, q}
• O(p) = P? and O(q) = Q?
• L(P?) = L(W ) = � and L(Q?) = p.
• C = {(P?−Q? ≤ −3, p)︸ ︷︷ ︸

1

, (Q?−W ≤ −5, pq)︸ ︷︷ ︸
2

, (Q?−W ≤ −6, p¬q)︸ ︷︷ ︸
3

,

(P?−W ≤ −3,�)︸ ︷︷ ︸
4

, (P?−W ≤ −8, p)︸ ︷︷ ︸
5

, (W − P? ≤ 5,¬p)︸ ︷︷ ︸
6

}

In other words, Z specifies three time points P?, Q? and W requiring that:

1. Q? must be executed if s(p) = > and after minimum 3 since P?.
2. W must be executed after minimum 5 since Q? (if s(p) = s(q) = >).
3. W must be executed after minimum 6 since Q? (if s(p) = > and s(q) = ⊥).
4. W must be executed after minimum 3 since P? (always)
5. W must be executed after minimum 8 since P? (if s(p) = >).
6. W must be executed within 5 since P? (if s(p) = ⊥).

Many 〈k, `〉 can be specified for the same X → Y provided their ` are different
(e.g., W → P? in Figure 2.3). Again, if two labels are equal, I keep the smallest k.

A label ` labeling a time point or a constraint is honest if for each literal p
or ¬p in ` we have that ` ⇒ L(P?), where P? = O(p) is the observation time
point associated to p; ` is dishonest otherwise. For example, consider W → Q?
labeled by 〈−1, pq〉 in Figure 2.3. The constraint applies only if s(p) = s(q) = >.
However, the truth value of q is set (by the environment) upon the execution of
Q?, which in turn is relevant iff p was previously assigned true (as L(Q?) = p).
Thus, an honest ` containing q or ¬q should also contain p. A label on a constraint
is coherent if it entails the labels of all variables in the scope of the constraint
(e.g, p labeling the constraint Q? → P?). Label honesty and coherence say when
CSTNs are well-defined [75,126]. Formally:

Definition 2.10 (Well-definedness). A CSTN is well-defined if

• for each X ∈ T and any {p,¬p} ∈ L(X), we have that L(X) ⇒ L(O(p)) and
(O(p)−X ≤ ε) ∈ C (time point label honesty), and
• ` ⇒ L(Y ) ∧ L(X) for each (Y − X ≤ k, `) ∈ C (constraint label coherence),
and `⇒ L(O(p)) for each literal {p,¬p} ∈ ` (constraint label honesty)



2.1 Temporal Networks 15

The CSTN in Figure 2.3 is well-defined. Since CSTNs express uncontrollable
parts (truth value assignments to the propositions) we still need a controllability
approach. In what follows, I provide the definitions of weak, strong and dynamic
controllability as I did for STNUs but with respect to scenarios.

A schedule for a CSTN still involves all time points, but with the difference
that we do not have to define S(X) when the scenario containing the observations
we made so far does not satisfy L(X) (if we do so, the verification of constraints
will ignore that assignment).

Definition 2.11 (Consistent scenario, CSTN). A scenario s is consistent for
a CSTN Z = 〈T ,OT ,P, O, L, C〉 if there exists a schedule S whose domain consists
of all time points X ∈ T such that s |= L(X) and such that for each (Y −X ≤ k, `),
where s |= `3, S(Y )− S(X) ≤ k holds.

Definition 2.12 (Weak controllability, CSTN). A CSTN is weakly control-
lable if whenever a scenario s is known a priori, we can find a consistent schedule
whose domain consists of all time points X ∈ T such that s |= L(X).

The CSTN in Figure 2.3 is weakly controllable. To prove that I show that each
scenario is consistent.

• If s(p) = ⊥, s(q) = ⊥, then S(P?) = 0, S(W ) = 3
• If s(p) = ⊥, s(q) = >, then S(P?) = 0, S(W ) = 3 (impossible scenario)
• If s(p) = >, s(q) = ⊥, then S(P?) = 0, S(Q) = 3, S(W ) = 9
• If s(p) = >, s(q) = >, then S(P?) = 0, S(Q) = 3, S(W ) = 8

Note that well-defined CSTNs may lead to impossible scenarios (i.e., scenarios that
never happen). In this example, s(p) = ⊥, s(q) = > is impossible as s 6|= L(Q?),
thus Q? should not be executed. However, the associated schedule, whose domain
consists of P? and W only, satisfies all constraints between those time points (so
Definition 2.11 is correct).

Like STNUs I proceed by giving the definition for strong controllability.

Definition 2.13 (Strong controllability, CSTN). A CSTN is strongly control-
lable if there exists a unique schedule4 making consistent any scenario.

The CSTN in Figure 2.3 is not strongly controllable. The problem lies in the
pair of constraints P? → W labeled by 〈5,¬p〉 and W → P? labeled by 〈−8, p〉
which say that if s(p) = >, then S(W ) cannot be assigned a value less than 8 and
if s(p) = ⊥, then S(p) must be assigned a value not greater than 5. Therefore,
there is no way of precomputing a static S(W ) without having any information
on what truth value p will be assigned. Note that the CSTN is weakly controllable
because weak controllability assumes to be able to predict the future.

However, the CSTN could be still executable by making scheduling decisions
in real time.
3 Note that s |= L(X) and s |= L(Y ) implicitly (constraint label coherence, Defini-
tion 2.10).

4 The domain of this schedule is T . If for any scenario s there exists X ∈ T such
that s 6|= L(X), then the assignment S(X) is ignored and does not participate in the
solution.
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Fig. 2.4: Streamlining the CSTN in Figure 2.3 (all modifications appear in blue).

Definition 2.14 (Dynamic controllability, CSTN). A CSTN is dynamically
controllable if a consistent schedule is generated in real time by assigning (pos-
sibly different) real values to the time points according to what scenario is being
generated.

The CSTN in Figure 2.3 is dynamically controllable. Listing 2.2 shows a dy-
namic execution strategy to always build a consistent schedule.

Listing 2.2: Early execution strategy for the CSTN in Figure 2.3.
S(P?) = 0
if s(p) = ⊥, then S(W ) = 3
else {
S(Q) = 3
if s(q) = >, then S(W ) = 8
else S(W ) = 9

}

In Figure 2.3 I gave an example of well-defined CSTN with three time points:
P?,W (always executed) and Q? (executed if and only if p = >). Since labeling
time points complicates proofs and reductions towards other models by adding
further conditions such as “if the time point is executed” (i.e., if it is relevant), a
streamlined model was proposed in [21] to convert a CSTN having labels on nodes
into a CSTN having labels on constraints only. Figure 2.4 shows the streamlined
representation of Figure 2.3. The main idea is the following. We add a time point
Z whose execution is fixed at 0 and we remove the labels from all time points
(Figure 2.4). We compute an horizon value h =M ×N , whereM is the maximum
absolute value of any negative edge in the network and N the number of time
points. Considering Figure 2.4 as the streamlined CSTN of Figure 2.3, we have
that M = 8 and N = 4 (once we have added Z), therefore h = 32. We constrain
every time point to occur within h if relevant in the original CSTN (i.e., if its
label is true), and after h otherwise (modeled by as many delay constraints as the
number of disjuncts arising from the negation of the label). For Figure 2.3 “after
h” is modeled by a delay constraint of weight −h−1 = −33 (but any value “greater
than” h is fine).
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Fig. 2.5: CSTNU labeled distance graph.

A streamlined CSTN is dynamically controllable if and only if the original
CSTN is so [21]. Therefore, “streamlining” a CSTN (but in general any temporal
network subject to conditionals) preserves dynamic controllability (or uncontrolla-
bility) of the network getting another network in which all time points are always
executed. Note that in this case well-defined properties such as label honesty, con-
straint honesty and label coherence on constraints become superfluous as they
trivially hold [21].

2.1.4 Conditional Simple Temporal Networks with Uncertainty

Conditional simple temporal networks with uncertainty [74] merge, as the name
suggests, STNUs and CSTNs to address conditional constraints and uncontrollable
durations simultaneously.

Definition 2.15 (CSTNU). A Conditional Simple Temporal Network with Un-
certainty (CSTNU) is a tuple 〈T ,OT ,P, O, L,L, C〉, where:

• T , OT , P, O, L and C are the same of those given for CSTNs (Definition 2.8).
• L is the same of that given for STNUs (Definition 2.4).

A CSTNU is well-defined if (i) L(A) = L(C) for any (A, x, y, C) ∈ L, and
(ii) the well-defined properties for STNUs (Definition 2.4) and CSTNs (Defini-
tion 2.10) hold.

Therefore, any contingent link has a unique implicit label L(A) = L(C).
The graphical representation of a CSTNU extends that of a CSTN and also that

of an STNUs. An edge X → Y labeled by 〈k, `〉 represents the labeled constraint
(Y − X ≤ k, `) ∈ C, whereas a double edge A ⇒ C labeled by [x, y] represents
a contingent link (A, x, y, C) ∈ L. Like CSTNs, I show the labels of nodes below
them.

Figure 2.5 shows the labeled distance graph of Z = 〈T ,OT ,P, O, L,L, C〉,
where:

• T = {P?, A1, C1, A2, C2, E}
• OT = {P?}
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• P = {p}
• O(p) = P?
• L(P?) = L(E) = �, L(A1) = L(C1) = p and L(A2) = L(C2) = ¬p.
• L = {(A1, 1, 2, C1), (A2, 3, 4, C2)}
• C = {(P?−A1 ≤ −2, p)︸ ︷︷ ︸

1

, (P?−A2 ≤ −3,¬p)︸ ︷︷ ︸
2

, (C1 − E ≤ −7, p)︸ ︷︷ ︸
3

,

(C2 − E ≤ −6,¬p)︸ ︷︷ ︸
4

, (E − P? ≤ 11, p)︸ ︷︷ ︸
5

}

In other words, Z specifies six time points P?, A1, C1, A2, C2, E (of which one
is observation), two contingent links (A1, 1, 2, C1), (A2, 3, 4, C2) and requires that:

1. (A1, 1, 2, C1) must be executed if s(p) = > with A1 scheduled after minimum
2 since P?.

2. (A2, 3, 4, C2) must be executed if s(p) = ⊥ with A2 scheduled after minimum
3 since P?.

3. E must be executed after minimum 7 since C1 (if s(p) = >).
4. E must be executed after minimum 6 since C2 (if s(p) = ⊥).
5. E must be executed within 11 since P? (if s(p) = >).

The CSTNU in Figure 2.5 is well-defined. Again, since CSTNUs embed both
CSTNs and STNUs, a controllability approach is needed. A schedule for a CSTNU
still involves all time points, but as for STNUs and CSTNs we can specify assign-
ments only for non-contingent time points and we do not have to define S(X) when
the scenario containing the observations we made so far does not satisfy L(X).

Definition 2.16 (Weak controllability, CSTNU). A CSTNU is weakly con-
trollable if whenever a schedule is defined for contingent time points only and a
scenario s is known in advance, we can complete such a schedule by assigning real
values to all non-contingent time points X such that s |= L(X) in a way that the
resulting schedule is consistent.

The CSTNU in Figure 2.5 is weakly controllable. To prove that I show that
there exists a consistent schedule for each combination scenario/duration.

• If s(p) = ⊥, then S(P?) = 0, S(A1) = 2, S(E) = S(C1)+7 for any S(C1) such
that S(C1)− S(A1) ∈ [1, 2]
• If s(p) = ⊥, then S(P?) = 0, S(A2) = 3, S(E) = S(C2)+6 for any S(C2) such

that S(C2)− S(A2) ∈ [3, 4]

I proceed by giving the definition for strong controllability.

Definition 2.17 (Strong controllability, CSTNU). A CSTNU is strongly con-
trollable if there exists a schedule defined for non-contingent time points only such
that the schedule is always consistent regardless of the real-value assignments to
the contingent time points that will complete it and the generated scenario.

The CSTNU in Figure 2.5 is not strongly controllable. The problem lies in the
constraint P? → E labeled by 〈11, p〉 which says that if s(p) = >, then S(E)
cannot be assigned a value greater than S(P?) + 11. This does not create any
problem if s(p) = >. Assume that S(P?) = 0, then S(E) = 11. Indeed, for any
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duration of A1 ⇒ C1 that constraint will hold if we execute the non contingent
time points as soon as possible. However, if s(p) = ⊥, and A2 ⇒ C2 takes any
duration in [3 + ε, 4], S(E) > 11. Therefore, there is no way of precomputing a
static S(E) without having any information on what truth value p will be assigned.
Again, the CSTNU is weakly controllable because weak controllability assumes to
be able to predict the future.

However, the CSTNU is dynamically controllable.

Definition 2.18 (Dynamic controllability, CSTNU). A CSTNU is dynam-
ically controllable if a consistent schedule is generated in real time by assigning
(possibly different) real values to the relevant non contingent time points accord-
ing to what scenario is being generated and what durations of contingent links are
being observed.

The CSTNU in Figure 2.5 is dynamically controllable. Listing 2.3 shows a
dynamic execution strategy to always build a consistent schedule.

Listing 2.3: Early execution strategy for the CSTNU in Figure 2.5.
S(P?) = 0
if s(p) = ⊥, then {
S(A1) = 2
wait for C1 to execute
S(E) = S(C1) + 7

}
else {
S(A2) = 3
wait for C2 to execute
S(E) = S(C2) + 6

}

I now discuss how we can check dynamic controllability of STNUs, CSTNs, and
CSTNUs. The approach, which is sound and complete, is based on timed game
automata (TGAs).

2.2 Timed Game Automata

A finite automaton is a tuple 〈S,→〉, where S is a finite set of states and → is
a finite set of labeled transitions. S always contains both a starting state and
a subset of final states. Each transition specifies a legal move from one state to
another [69].

A timed automaton [3] refines a finite automaton by adding real-valued clocks
and clock constraints . All clocks increase at the uniform rate keeping track of the
time with respect to a fixed global time frame. Clocks model the timing properties
of a system. Formally,

Definition 2.19 (Timed Automaton). A Timed Automaton (TA) is a tuple
〈Loc,Act ,X ,→, Inv〉, where

• Loc is a finite set of locations. One is initial.
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• Act is a finite set of actions used as transition labels (they can be viewed as
input symbols).
• X is a finite set of real-valued clocks.
• →⊆ Loc ×H(X )× Act × 2X × Loc is the transition relation. An edge (Li, G,
A,R,Lj) represents a transition from location Li to location Lj realizing action
A. G ∈ H(X ) is a guard consisting of a conjunction of clock constraints having
the form c1 ∼ k or c1 − c2 ∼ k with c1, c2 ∈ X , k ∈ Z and ∼∈ {<, ≤, =, >
, ≥}. R ⊆ 2X specifies the set of clocks to reset (i.e., set to 0).
• Inv : Loc → H(X ) is a function assigning an invariant (i.e., a conjunction
of clock constraints) to each location. An invariant is a condition under which
the automaton may stay in that location.

Figure 2.6a shows an example of a TA. L0 is the initial location, drawn as
double circle. The TA has one clock cX which is set to 0 upon the start of any
execution. The TA is allowed to remain in L0 until cX ≤ 3, then it has to leave
the location. The pass transition can be taken whenever cX ≥ 1 and along with
Inv(L0) ensures that the TA enters L1 at any instant such that 1 ≤ cX ≤ 3. When
we take pass, cX resets to 0. After that, we can take the gain transition as soon
as cX ≥ 5. If we do so, the TA gets back to L0 and cX resets to 0. If we don’t,
the TA may remain in L1 forever. However, in order to model uncontrollable parts
timed automata must be extended into timed game automata [98].

Definition 2.20 (Timed Game Automaton). A Timed Game Automaton
(TGA) extends a TA by partitioning the set of transitions into controllable and un-
controllable ones. Uncontrollable transitions have priority over controllable ones.

In other words, if during an execution there are a set of controllable and a set
of uncontrollable transitions we want to take at the same time, then the uncon-
trollable ones go first and might prevent the controllable ones from being taken.

A TGA models a two-player timed game between a controller (ctrl) and the
environment (env). The controller is assigned controllable transitions, whereas the
environment is assigned uncontrollable ones. Moreover, in a TGA a location can
be labeled as urgent in order to express that time freezes in that location.

Figure 2.6b shows an example of a TGA having four clocks (ĉ, cδ, cA and cC).
Solid edges represent controllable transitions, whereas dashed ones uncontrollable
transitions. The initial location is L0, and goal is the location that ctrl must
reach in order to win the game. Consider the following possible run. When all
clocks are equal to 5, we take gain and the current location changes to L1. At the
same time, 5, ctrl takes ExA resulting in the reset of cA. After that, ctrl takes
pass always at time 5. Therefore, the current location becomes L0 and cδ is reset
to 0. At time 6, both ExC and gain are enabled and ctrl decides to take gain. At
the same time, env decides to take ExC. Since ExC has priority, it goes first and,
therefore, cC resets to 0. Then, ctrl can take gain at the same time 6 or later.
After gain, ctrl can take win to enter goal. For this TGA there does not exist
a winning control strategy as env controlling the uncontrollable transitions can
always refuse to take the uncontrollable transition. That is, if env decides to do
so, cC will never be reset, preventing ctrl to take win.
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L0 cX ≤ 3

L1

〈cX ≥ 1, pass, {cX}〉〈cX ≥ 5, gain, {cX}〉

(a) Timed automaton.

L1

goal

L0

〈>, pass, {cδ}〉

〈cδ > 0, gain, ∅〉

〈cC < ĉ, win, ∅〉 〈cA = ĉ, ExA, {cA}〉
〈cC = ĉ ∧ cA < ĉ,

ExC, {cC}〉

(b) Timed game automaton.

Fig. 2.6: Examples of TA and TGA. Empty guards are always true (>).

2.2.1 Controller Synthesis with UPPAAL-TIGA

Controller synthesis for both discrete and timed systems has been addressed in
the past (e.g., [4, 98]). Controller synthesis allows, as the name suggests, for the
synthesis of a controller able to react to the uncontrollable parts of a (timed)
transition system so that a desired behavior is (always) met. Game automata
(GAs) [4] model untimed games, whereas timed game automata (TGAs) extend
GAs by modeling time by means of continuous variables called clocks [4, 98].

UPPAAL-TIGA [9] is a software tool allowing for the specification of (networks
of) TGAs that involve clocks to model the temporal part, synchronization channels
to model the communication between separate systems and also array data struc-
tures and user defined functions as well as integer and Boolean variables to model
a discrete part. UPPAAL-TIGA relies on timed computation tree logic (TCTL) to
express and check a variety of properties such as, for example, safety and live-
ness properties. Also, the query language permits to specify that we are interested
in finding a control strategy satisfying the property we specified. Therefore, this
query language provides path formulae over both discrete and continuous variables
(clocks). Expressions over continuous variables do not involve logic operators such
as 6= or ∨ (Definition 9.3), whereas expressions over discrete variables are not af-
fected by this restriction (see [10] for another definition of automata over clocks
and variables).

Path formulae starting with A<>mean always eventually, whereas those starting
with A[] mean always globally. If the keyword control: appears before a path
formula ϕ, it means that we want to synthesize a controller able to always satisfy
ϕ. In this thesis, I only use control: A<> and control: A[] path formulae to
synthesize controllers for those games that are won if and only if ctrl always
eventually enters a location of interest (e.g., “must reach/avoid win” depending on
how the game is modeled). During any run, a controller follows a (memoryless)
strategy in order to meet the desired behavior defined by ϕ.

A memoryless strategy is a mapping σ : Z → Act ∪ {wait}, where Z models
the entire state of the TGA (i.e., discrete and continuous variables) and Act is a
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(a) TGA in Figure 2.6b. (b) TGA extended with integers.

Fig. 2.7: Examples of (extended) TGAs with UPPAAL-TIGA. Nodes model loca-
tions (double-circled means initial). Solid and dashed edges model controllable
and uncontrollable transitions, respectively. Guards (above, green) and updates
(below, blue) are shown as labels near transitions.

set of actions augmented with wait which means “no action”. Therefore, a strategy
tells ctrl what to do depending on what the state looks like.

Figure 2.7a shows how Figure 2.6b looks like in UPPAAL-TIGA. As I have
already said that TGA is uncontrollable. To prove that we can try to synthesize a
controller by querying the system with control: A<> goal which tells the model
checker to find a strategy to always eventually get to goal.

Listing 2.4 shows the result of the analysis for Figure 2.7a which is the “en-
coding” in UPPAAL-TIGA of Figure 2.6b. The text in output shows the strategy
of env. That is, it shows that env can always beat ctrl by waiting forever either
in L0 (if ctrl does not take pass) or in L1 (it ctrl takes pass). The statement –
Property is NOT satisfied (line 4) tells us that the TGA is uncontrollable.

Listing 2.4: Output of the analysis for Figure 2.7a.
$ verifytga -s -q -w0 TGA.xml TGA.q

Verifying property 1 at line 6
-- Property is NOT satisfied.
$v_gameInfoCounterPlayInitial state:
( tga.L0 )
(c==cdelta && cdelta==cA && cA==cC && cC==0)

Counter strategy to prevent from winning:

State: ( tga.L0 )
While you are in (c==cC && cdelta<=cA && cA<=c), wait.

State: ( tga.L1 )
While you are in (0<c && c==cC && cA<=c), wait.

Instead, Figure 2.7b shows an example of TGA extended with integer variables
consisting of two locations: L0 (initial) and win. The continuous part consists of a
single clock c which starts at 0 in any run. The discrete part consists of an integer
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variable i (initially set to 0). The TGA specifies two controllable transitions (solid
edges) and an uncontrollable one (dashed edge). ctrl can take (i) the controllable
self loop transition at L0 if and only if the continuous value of the clock c is less
than or equal to 1, and (ii) the transition going from L0 to win if and only if the
value of the discrete integer variable i is equal to 2. env can take the uncontrollable
self loop transition at L0 if and only if the continuous value of c is greater than or
equal to 1. If ctrl takes his self loop, then i is incremented by 1, whereas if env
takes his, then i is decremented by 1. If both players take their self loop transitions
at c = 1, then env plays first. ctrl wins if he enters win.

This TGA is controllable. To prove that we try to synthesize a controller using
the same query we used for Figure 2.7a.

Listing 2.5: Output of the analysis for Figure 2.7b.
$ verifytga -s -q -w0 ExtendedTGA.xml ExtendedTGA.q

Verifying property 1 at line 6
-- Property is satisfied.
$v_gameInfoPlayInitial state:
( tga.L0 ) i=0
(c==0)

Strategy to win:

State: ( tga.L0 ) i=1
When you are in (c<1), take transition tga.L0->tga.L0 { c <= 1, tau, i := i

+ 1 }

State: ( tga.L0 ) i=0
When you are in (c<1), take transition tga.L0->tga.L0 { c <= 1, tau, i := i

+ 1 }

State: ( tga.L0 ) i=2
When you are in true, take transition tga.L0->tga.win { i == 2, tau, 1 }

Listing 2.5 shows the strategy for ctrl and says that ctrl must first take
his self loop twice and then the transition going to win before the value of the
clock c reaches 1, otherwise env will always be able to decrement i as many times
as he wants, preventing ctrl from leaving L0. The statement – Property is
satisfied says that the TGA is controllable.

2.2.2 Dynamic Controllability of CSTNUs via TGAs

I summarize here the encoding from CSTNUs into TGAs. Since CSTNUs embed
both STNUs and CSTNs this encoding implicitly works for them too.

The DC-checking problem is the problem of deciding if a CSTNU is DC. We can
answer the DC-checking problem by using sound and complete TGA reachability
algorithms [25, 26]. The DC-checking is modeled as a two-player game between
a controller (ctrl) and the environment (env). The aim of ctrl is to reach a
specific location as soon as all relevant time points have been executed and all
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constraints are satisfied, whereas env’s goal is to prevent ctrl from doing that.
If ctrl wins, the network is DC, otherwise it is not. An important aspect of
this encoding is that ctrl is assigned uncontrollable transitions, whereas env is
assigned controllable ones. This is necessary to allow env’s instantaneous reactions
as in the TGA semantics, uncontrollable transitions go first [25–27]. Considering
the CSTNU in Figure 2.5 the encoding into a TGA (shown in Figure 2.8) is as
follows.

Clocks. X contains a clock cX for each time point X ∈ T and a clock bP for
each proposition p ∈ P. X also contains two special clocks ĉ (modeling the
global time) and cδ (regulating the interplay of the game). cX = ĉ, means
that X has not been executed, whereas cX < ĉ means that X was executed
at time ĉ − cX (when this difference is > 0). Likewise, bP = ĉ means that
s(p) = >, whereas bP < ĉ means that s(p) = ⊥ (each when cP < ĉ). Each
cX and bP may be reset at most once. For the example I am discussing, X =
{ĉ, cδ, cP, cA1, cC1, cA2, cC2, cE, bP}.

Locations. Loc contains three core locations L0 (initial), L1 (urgent) and goal
(urgent), and n− 1 urgent locations L`1 , . . . , L`n−1

where n is the number of
distinct labels in the CSTNU. That is,

n = |{L(X) | X ∈ T } ∪ {` | (Y −X ≤ k, `) ∈ C}|

For this example, Loc = {L0, L1, L�, Lp, goal(= L¬p)} as the distinct labels
are {�, p,¬p}.

Transitions. → contains controllable and uncontrollable transitions to model the
following:
• Game interplay. pass and gain are uncontrollable transitions regulating

the game interplay. In particular gain can be taken only when cδ > 0
modeling the reaction time needed to observe how the uncontrollable part
behaves.

• Non-contingent time point executions. For each non-contingent time point
X there is an uncontrollable self-loop transition

〈L1, cX = ĉ, ExX, {cX}, L1〉

modeling the execution ofX. The guard says thatX has not been executed
yet, while the reset fixes the execution time of X to ĉ−cX by resetting cX.

• Contingent time point executions. For each contingent link (A, x, y, C) ∈ L
there is a controllable self-loop transition

〈L0, cA < ĉ ∧ cC = ĉ ∧ cA ≥ x ∧ cA ≤ y, ExC, {cC, cδ}, L0〉

to allow env to execute the contingent time point C such that C−A ∈ [x, y],
and a fail transition

〈L0, cA < ĉ ∧ cC = ĉ ∧ cA > y, failC, {∅}, goal〉

to allow ctrl to move to goal if env fails or refuses to take the transition.
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ĉ
∧
c
C
2
=

ĉ
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• Truth value assignments. For each proposition p ∈ P there is a controllable
self-loop transition

〈L0, cP < ĉ ∧ cP = 0 ∧ bP = ĉ, pFalse, {bP, cδ}, L0〉

to allow env to assign ⊥ to p, if it decides so. If it does not, the truth value
of p will remain forever >.

• Winning conditions. To check that all relevant time points have been ex-
ecuted and all constraints are satisfied we connect each pair of locations
(L`i−1

, L`i) in the winning path L0 → L� → · · · → L`n−1
→ goal by

means of a set of uncontrollable transitions. Each set of transitions going
from L`i−1 to L`i verifies that if the current (partial) scenario s |= `i, then
all time points labeled by `i must have been executed and all constraints la-
beled by `i are satisfied. If s 6|= `i, a skip transition allows us to ignore this
check. In this way, the problem is decomposed with respect to the specific
labels avoiding the combinatorial explosion of all arising cases. For exam-
ple, the set of transitions going from L� to Lp is generated as follows. In
the scenario where P? has been executed and p assigned > (i.e., s(p) = >),
then A1 and C1 must have been executed, and P?−A1 ≤ −2, C1−E ≤ −7
and E − P? ≤ 11 are satisfied. In other words, the meta conditional con-
straint

(cP < ĉ ∧ bP = ĉ) =⇒ (cA1 < ĉ ∧ cC1 < ĉ ∧ cA1 − cP ≤ −2∧
cE− cC1 ≤ −7 ∧ cP− cE ≤ 11)

refines to

¬(cP < ĉ ∧ bP = ĉ) ∨ (cA1 < ĉ ∧ cC1 < ĉ ∧ cA1 − cP ≤ −2∧
cE− cC1 ≤ −7 ∧ cP− cE ≤ 11)

simplifying to

(cP = ĉ) ∨ (bP < ĉ) ∨ (cA1 < ĉ ∧ cC1 < ĉ ∧ cA1 − cP ≤ −2∧
cE− cC1 ≤ −7 ∧ cP− cE ≤ 11)

since TGAs do not allow negations nor disjunctions of clock constraints
in the guards. Finally, we generate a transition5 for each disjunct (satp,
skip1p,skip

2
p).

DC-checking is done by looking for a control strategy for env to always prevent
ctrl from getting to goal6. If such a strategy exists, the initial CSTNU is not
DC, otherwise it is (as ctrl has a counter-strategy to react to any combination of
env’s moves). The correctness of the encoding is given in [25–27].
5 I model Y − X ≤ k as (ĉ − cY) − (ĉ − cX) ≤ k simplifying to cX − cY ≤ k. I might
write cX− cY ≥ k as a short for X − Y ≤ −k and cX− cY = k as a short for the pair
Y −X ≤ k and X − Y ≤ −k.

6 In UPPAAL-TIGA the query is control: A[] not tga.goal, where tga is the name
of the model.
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2.3 Constraint Networks and Directional Consistency

In this section, I briefly review CNs and the adaptive consistency algorithm for the
related consistency checking [52]. I renamed some symbols for coherence with the
rest of the contributions.

Definition 2.21. A Constraint Network (CN) is a triple Z = 〈V,D, C〉, where

• V = {V1, . . . , Vn} is a finite set of variables
• D = {D1, . . . , Dn} is a set of discrete domains Di = {v1, . . . , vj} (one for each
variable)
• C = {RS1

, . . . , RSn} is a finite set of constraints each one represented as a rela-
tion RS defined over a scope of variables S ⊆ V such that if S = {Vi, . . . , Vr},
then R ⊆ Di × · · · ×Dr.

A CN is consistent if each variable Vi ∈ V can be assigned a value vi ∈ Di such
that all constraints are satisfied.

The constraint satisfaction problem (CSP) is NP-hard [52]. A CN is k-ary if all
constraints have scope cardinality ≤ k and therefore binary when k = 2 [52, 101].

Let Rij be a shortcut to represent a binary relation having scope S = {Vi, Vj}.
A binary CN is minimal if any tuple (vi, vj) ∈ Rij ∈ C belongs to at least one
global solution for the underlying CSP [101]. Thus, a minimal CN models an n-
ary relation whose scope is V and whose tuples represent the set of all solutions.
Besides for a few restricted classes of CNs, the general process of computing a
minimal network is NP-hard [101]. Furthermore, even considering a binary minimal
network, the problem of generating an arbitrary solution is NP-hard if there is no
total order on the variables [66].

Therefore, a first crude technique is that of searching for a solution by exhaus-
tively enumerating (and testing) all possible solutions and stopping as soon as
one satisfies all constraints in C. To speed up the search, we can combine tech-
niques such as backtracking with pruning techniques such as node, arc and path
consistency [97].

A variable Vi is node-consistent if v ∈ Ri for each v ∈ Di. A CN is node-
consistent if each variable is node-consistent. A variable Vi is arc-consistent with
respect to a second variable Vj if for each v ∈ Di, there exists u ∈ Dj such that
(v, u) ∈ Rij . A CN is arc-consistent if every variable is arc-consistent with respect
to any other second variable.

A pair of variables (Vi, Vj) is path-consistent with respect to a third variable
Vk if for any assignment Vi = v, Vj = u, where v ∈ Di and u ∈ Dj , there exists
k ∈ Dk such that (v, k) ∈ Rik and (k, u) ∈ Rkj . A CN is path-consistent if any
pair of variables is path-consistent with respect to any other third variable. Path
consistency is not enough for a backtrack free search [52].

k-consistency guarantees that any (locally consistent) assignment to any subset
of (k − 1)-variables can be extended to a kth (still unassigned) variable such that
all constraints between these k-variables are satisfied. Strong k-consistency is k-
consistency for each j such that 1 ≤ j ≤ k [65]. As a result, 1, 2 and 3-consistency
are node, arc and path consistency.
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Algorithm 1: ADC(Z, d)
Input: A CN Z = 〈V,D, C〉 and an ordering d = V1 ≺ · · · ≺ Vn
Output: A set Buckets of buckets (one for each variable) if Z is consistent,

inconsistent otherwise.
1 for i← n downto 1 do . Partition the constraints as follows:
2 Put in Bucket(Vi) all unplaced constraints mentioning Vi
3 for p← n downto 1 do
4 Let j ← |Bucket(Vp)| and Si be the scope of RSi ∈ Bucket(Vp)

5 S′ ←
⋃j
i=1 Si \ {Vp}

6 RS′ ← πS′(./
j
i=1 RSi)

7 if RS′ 6= ∅ then
8 Bucket(V ′)← Bucket(V ′) ∪ {RS′}, where V ′ ∈ S′ is the “latest” variable

in d.
9 else

10 return inconsistent

11 Buckets = {{Bucket(V )} | V ∈ V}
12 return Buckets

Directional consistency has been introduced to speed up the process of synthe-
sizing a solution for a constraint network limiting backtracking [54]. In a nutshell,
given a total order on the variables of a CN, the network is directional-consistent if
it is consistent with respect to the given order that dictates the assignment order
of variables. In [54], an adaptive-consistency (ADC) algorithm was provided as
a directional consistency algorithm adapting the level of k-consistency needed to
guarantee a backtrack-free search once the algorithm terminates, if the network
admits a solution (see Algorithm 1). The input of ADC is a CN Z = 〈V,D, C〉
along with an order d for V. At each step the algorithm adapts the level of consis-
tency to guarantee that if the network passes the test, any solution satisfying all
constraints can be generated without backtracking. If the network is inconsistent,
the algorithm detects it before the solution generation process starts. ADC ini-
tializes a Bucket(V ) for each variable V ∈ V and first processes all the variables
top-down (i.e., from last to first following the ordering d) by filling each bucket
with all (still unplaced) constraints RS ∈ C such that V ∈ S. Then, it processes
again the variables top-down and, for each variable V , it computes a new scope
S′ consisting of the union of all scopes of the relations in Bucket(V ) neglecting V
itself. After that, it computes a new relation RS′ by joining all RS ∈ Bucket(V )
and projecting with respect to S′ (./ and π are the join and projection operators
of relational algebra). In this way, it enforces the appropriate level of consistency.
If the resulting relation is empty, then Z is inconsistent; otherwise, the algorithm
adds RS ′ to the bucket of the latest variable in S′ (with respect to the ordering
d), and goes on with the next variable. Finally, it returns the set of Buckets (I
slightly modified the return statement of ADC). Note that ADC takes as input
a k-ary CN Z and returns a k′-ary CN Z ′, where k′ ≥ k (an example of a binary
CN turned into a ternary one can be found in [52, chapter 4]).
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(a) Constraint graph.
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(b) Rij ∈ C

Bucket(V4) : R14 , R24 , R34‖
Bucket(V3) : R13‖R123

Bucket(V2) : ‖R12

Bucket(V1) : ‖R1

(c) Run of ADC
V1{a, b, c}

V2{a, b, c}

V3{a, b, c}

V4{a, b, c}

(d) Generat-
ing a solu-
tion

Fig. 2.9: Graphical representation of a binary CN (a). Relational constraint (b).
Run of ADC (c). Solution generation without backtracking (d).

Time and space complexity of ADC are O(n(2z)w∗+1) and O(nzw∗), respec-
tively, where n = |V|, z = maxi=1,...,n |Di| is the maximal cardinality of variables
domains, and w∗ is the induced width of the graph along the order of process-
ing [52, chapter 4]. Informally, w∗ represents the maximum number of variables
that can be affected by the value assumed by another variable; i.e., a characteri-
zation of the topology of the CN.

Any binary CN can be represented as a constraint graph where the set of nodes
coincides with V and the set of edges represents the constraints in C. Furthermore,
nodes are labeled by their domains. Each (undirected) edge between two variables
V1 and V2 is labeled by the corresponding R12 ∈ C. As an example, consider the
constraint graph in Figure 2.9a representing Z = 〈V,D, C〉, where:

• V = {V1, V2, V3, V4}
• D = {D1, D2, D3, D4}, with D1 = D2 = D3 = D4 = {a, b, c}
• C = {R13 , R14 , R24 , R34}.

All Rij ∈ C contain the same tuples; actually, they all specify the 6= constraint
between the pair of variables they connect. That is,

R13 = R14 = R24 = R34 = {(a, b), (a, c), (b, a), (b, c), (c, a), (c, b)}

(Figure 2.9b).
The CN in Figure 2.9a is consistent. To prove that I choose, without loss of

generality (recall that any order is fine for this algorithm [52]), the order d = V1 ≺
V2 ≺ V3 ≺ V4 and run ADC(Z, d) on the CN. I show the output of the algorithm
in Figure 2.9c.

ADC first processes V4 by filling Bucket(V4) with R14 , R24 and R34 (as they
all mention V4 in their scope and are still unplaced). Then, it processes V3 by filling
Bucket(V3) with R13 (but not R34 ). Finally, it leaves Bucket(V2) and Bucket(V1)
empty as all relations mentioning V2 and V1 in their scope have already been
put in some other bucket. Therefore, the initialization phase fills the buckets in
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Figure 2.9c with all relations on the left of ‖ (the newly generated ones will appear
on the right).

In the second phase, the algorithm computes R123 = π123 (R14 ./ R24 ./
R34 ) = {(a, a, a), (a, a, b), (a, a, c), (a, b, a), (a, b, b), (a, c, a), (a, c, c), (b, a, a),
(b, a, b), (b, b, a), (b, b, b), (b, b, c), (b, c, b), (b, c, c), (c, a, a), (c, a, c), (c, b, b),
(c, b, c), (c, c, a), (c, c, b), (c, c, c)} and adds it to Bucket(V3) (the latest variable
in the scope {V1, V2, V3}). Then, it goes ahead by processing Bucket(V3) generating
in a similar way R12 and adding it to Bucket(V2). Finally, it processes Bucket(V2)
by computing R1 and adding it to Bucket(V1). Since the joins yielded no empty
relation, it follows that Z is consistent7.

A solution is generated by assigning the variables following the order d. For
each V ∈ d we just look for a value v in its domain such that the current solution
augmented with V = v satisfies all constraints in Bucket(V ). If the network is
consistent, at least one value is guaranteed to be there. In this way, each solution
can be generated efficiently without backtracking and by assigning one variable at
a time. For instance any (combination of) values for V1 and V2 is fine (recall that
Bucket(V1) and Bucket(V1) only contain universal relations). Assume that V1 = a
and V2 = c. Now we can only choose either a or c for V3 (as (a, c, b) 6∈ R123 ).
Assume that V3 = a. Now the only possible value satisfying R14 , R24 and R34

in Bucket(V4) is b. Therefore, a possible solution is V1 = a, V2 = c, V3 = c and
V4 = b (Figure 2.9d).

2.4 Periodic Time

Periodic time was first addressed by Niezette and Stevenne [105] and then refined
by Bertino et al. [12] and it is one of the base building blocks of temporal RBAC
models that I discuss in Section 2.5.

Periodic time is represented as 〈[begin,end], P〉 where [begin,end] is a time
interval and P a periodic expression. The formalism relies on the notion of calen-
dars.

Definition 2.22 (Calendar). A calendar C is a countable set of contiguous in-
tervals, numbered by integers called indexes of the intervals.

New calendars can be dynamically generated from the existing ones, by means
of the function generate(sp;C0; (x1, . . . , xn)), where sp is a synchronization point
and C0 a reference calendar. The first tick of the new calendar corresponds to the
union of the fist x1 ticks of the reference one, the second to the union of the next
x2 ticks, and so forth.

For example, assume Hours (Figure 2.10a) is the base calendar (i.e. the mini-
mum granularity). The following calendars can be defined:

Days = generate(1;Hours; (24));

7 Note that R12 and R1 should not be recored in Bucket(V2) and Bucket(V1) as they
represent the universal relations R12 = D1 ×D2 and R1 = D1. However, doing so is
superfluous but not wrong.
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Fig. 2.10: Graphical representation of periodic time with calendars.

Months = generate(1;Days; (31, 28, 31, 30, 31, 30, 31, 31, 30, 31, 30, 31,

31, 28, 31, 30, 31, 30, 31, 31, 30, 31, 30, 31,

31, 28, 31, 30, 31, 30, 31, 31, 30, 31, 30, 31,

31, 29, 31, 30, 31, 30, 31, 31, 30, 31, 30, 31);

Weeks = generate(1;Days; (7));

Years = generate(1;Days; (365, 365, 366, 365));

The synchronization point 1 stands for the first hour of the 1st of January 2015.

Definition 2.23 (Subcalendar). A calendar C1 is a subcalendar of a calendar
C2 (written C1 v C2), if each interval of C2 is exactly covered by a finite number
of intervals of C1.

Let me take Weeks and Days as an example. Since 1 week consists of 7 days,
Days vWeeks (Figure 2.10b).

Calendars can (and should) be combined to increase their expressiveness with
expressions such as: the third hour of the first day of each month. Such a combi-
nation of calendars is called periodic expression.

Definition 2.24 (Periodic expression). Given calendars Cd, C1, . . . , Cn, a pe-
riodic expression P is defined as follows:

P =

n∑
i=1

Oi · Ci . r · Cd

where O1 = all , Oi ∈ 2N ∪ {all}, Ci v Ci−1 for i = 2, . . . , n, Cd v Cn and r ∈ N.

The symbol . separates the first part (the starting granules of the intervals)
from the duration of each interval (Cd). For example, the expression

all ·Years + {3, 7} ·Months . 2 ·Months

represents the set of intervals, whose starting granules are the third and the seventh
month of every year (all), which last 2 months.

In the periodic time formalism, two important functions are defined:
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1. the function Π, which models the infinite set of time intervals that belong to
a periodic expression

2. the function Sol , which models the set of granules of a periodic expression P

within the [begin,end] bounds which are formalized as date expressions.

Definition 2.25 (Date Expression). A date expression has the form8 dd/mm/yy : hh
(month, day, year and hour) where:

• dd ∈ {01, . . . , 31}
• mm ∈ {01, . . . , 12}

• yy ∈ {00, . . . , 99}
• hh ∈ {01, . . . , 24}

I point out that at the time of writing the current year is 2018, so when
I write yy, I will always consider the corresponding year 20yy, whereas when
I omit hh1 and hh2 in two date expressions composing an interval of the form
[dd1/mm1/yy1,dd2/mm2/yy2], I will always consider that hh1 = 01 and hh2 = 24.

Definition 2.26 (Function Π). Let P =
∑n
i=1Oi · Ci . r · Cd be a periodic ex-

pression; then Π(P) is a set of time intervals whose common duration is r ·Cd and
whose set S of starting granules is computed as follows:

• If n = 1, S contains all the starting granules of the intervals of C1

• If n > 1, and On = {n1, . . . , nk}, then S contains the starting granules of the
nth1 , . . . , n

th
k intervals of Cn included in each interval of Π(

∑n−1
i=1 Oi · Ci . 1 ·

Cn−1)

Definition 2.27 (Function Sol). Let g be a granule, P a periodic expression,
and begin and end two date expressions (represented as dd/mm/yy : hh). g ∈
Sol([begin,end], P) iff there exists τ ∈ Π(P) such that g ∈ τ and gb ≤ g ≤ ge
where gb, ge are the granules denoting begin and end.

2.4.1 Gap-Order and Periodicity constraints

Periodic expressions, formalized as
∑n
i=1Oi ·Ci . r ·Cd are of course convenient to

be used by designers but are unsuitable to be manipulated in a deductive process.
For this reason intervals [begin,end] consisting of date expressions are trans-
lated in gap-order constraints [110], whereas calendar expressions into periodicity
constraints constraints [116].

Definition 2.28. Let u, l be integers, c be a non-negative integer, and g, g′ vari-
ables ranging over integers. A gap-order constraint is a formula of the form:

• l < g, • g < u, • g = g′, • g + c < g′.

If begin and end are denoted by gb and ge, respectively, the corresponding
gap-order constraints are c1 < g and g < c2, where c1 = gb − 1, and c2 = ge + 1.

8 Please note that the original version specifies the date in the American format
dd/mm/yy : hh.
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Definition 2.29. Let K be a finite set of natural numbers, g an integer variable,
k an element of K, and c ∈ {0, . . . , k − 1}. A simple periodicity constraint is a
formula of the form g ≡k c.

A periodicity constraint of the form g ≡k c denotes the set of integers of
the form c + nk, with n ranging from −∞ to +∞ in Z. In what follows I write
g ≡k (y + c),∀y = 0, . . . , u as a compact notation to represent the disjunction of
simple periodicity constraints:

(g ≡k c) ∨ (g ≡k c+ 1) ∨ · · · ∨ (g ≡k c+ u)

2.4.2 From symbolic expressions to constraints

Any symbolic periodic expression can be translated into an equivalent set of sim-
ple periodicity constraints [12]. The translation of calendars in linear repeating
intervals provided in [105] can be easily extended to periodic expressions.

A linear repeating interval is a mathematical expression of the form kn+[gb, ge]
denoting the sets of intervals including the interval [gb, ge] and all intervals obtained
by shifting [gb, ge] by multiples of k. Any granule g in the intervals defined by
kn + [gb, ge] satisfies one of the constraints g ≡k [gb + y]∀y = 0, . . . , ge − gb and
vice versa [12].

It follows that for each periodic expression P, there exists a disjunction of
simple periodicity constraints such that the set of its solutions is the set of granules
contained in the intervals of Π(P).

When the intervals in Π(P) have the same length, the simple periodicity con-
straints corresponding to P can be represented in the following compact way:

g ≡Periodicity(P) (y + z − 1)

for all y ∈ {1, . . . ,Granularity(P)} and all z ∈ Displacement(P). The values de-
pend on the calendar used to express the constraints, and on the definition of the
calendars appearing in P.

In general, given a symbolic expression P and the basic calendar, the values for
Periodicity(P), Displacement(P), and Granularity(P) can be derived as follows:

• Periodicity(P) is the number n of units of the basic calendar identifying the
periodicity with which the time intervals in Π(P) repeat themselves.

• Displacement(P) is a set of numbers, each one representing the position within
a period where a segment of the span of time defined by P begins.

• Granularity(P) is the length of each segment of time within the period defined
by P. The granularity is expressed using the basic calendar (easily derived from
the part on the right of .).

2.5 Temporal role-based access control models

A temporal role-based access control model (TRBAC, [13]) extends a classic role-
based access control model (RBAC, [113]) by introducing temporal constraints
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enabled active

activate R

deactivate R

(a) States of a role in RBAC.

disabled enabled active

enable R

disable R

activate R

deactivate R

(b) States of a role in TRBAC.

Fig. 2.11: A comparison of the possible states a role can assume in RBAC and
TRBAC.

on role enabling and disabling. As usual in RBAC models users are assigned to
roles and roles are assigned permissions. A role is thus an interface between users
and permissions. If a user changes his/her role(s) the system administrator simply
reassigns him/her to the new role(s). This flexibility is one of the main reason why
these models have a so high industrial impact.

Definition 2.30 (Classical RBAC). A role based access control model (RBAC)
consists of the following components:

• Sets Users, Roles, Perm and Sess, representing the set of users, roles, per-
missions and sessions, respectively.
• UA ⊆ Users × Roles, a many-to-many roles to permissions assignment rela-
tion.
• PA ⊆ Roles× Perm, a many-to-many users to roles assignment relation.
• user : Sess→ Users, a function that assigns each session to a single user.
• role : Sess→ 2Roles, a function that assigns each session to a set of roles.
• RH ⊆ Roles× Roles, a partially ordered role hierarchy (written ≥).

TRBAC was proposed as a temporal extension of RBAC to address tempo-
ral constraints on role enabling and disabling [13]. If a user wants to activate a
role, the role itself has to be first enabled by means of an event expression, a
trigger or a runtime request expression. The status of role differs from that of the
traditional RBAC in which a role can only be active or not active. Instead,
TRBAC introduces the concept of enabling/disabling of a role, thereby extend-
ing the state of the role itself. The classical RBAC made an implicit assumption:
a role is always enabled and can become active if some user decides to acti-
vate it. Instead, in TRBAC the status of a role is enabled at certain moments
and disabled at others. To become active the status of a role has to be first
enabled. So active(R) =⇒ enabled(R). Figure 2.11 shows a comparison be-
tween the states of a role in RBAC and in TRBAC. I proceed by discussing the
basic TRBAC components.

Let (Prios,�) be a totally ordered set of priorities where there are two distinct
members >,⊥ ∈ Prios such that for all x ∈ Prios,⊥ � x � >. I write x ≺ y
meaning that x ≺ y ∧ x 6= y.

Event Expressions and Role Status Expressions model the enabling/disabling
of a role and its status, respectively.
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Definition 2.31 (Event Expressions). Event Expressions serve to change the
status of a role from enabled to disabled or vice versa. They divide in simple
and prioritized as follows:

• Simple Event Expressions have the form enable R or disable R, where R ∈
Roles,
• Prioritized Event Expressions have the form p : E, where p ∈ Prios and E is
an event expression.

Of course, simple event expressions can be viewed as a subset of the prioritized
ones when the priority is “omitted” (i.e. when the system sets it by default to
p = ⊥).

Definition 2.32 (Role Status Expressions). Role status expressions have the
form enabled R or ¬enabled R, where R ∈ Roles.

I now continue by providing the definition of conflicting events which play a
crucial role in defining the semantics of TRBAC.

Definition 2.33 (Conflicting Events). Let E1 = enable R and E2 = disable R
be two event expressions. E1 is in conflict with E2 if R = R′. Formally, either:

conf(enable R) def
= disable R, or

conf(disable R) def
= enable R

Event expressions and role status expressions are the basic building blocks
of the Role Enabling Base (REB), which contains temporal constraints on the
enabling of roles.

Definition 2.34 (Role Enabling Base, Periodic Events, Role Triggers). A
Role Enabling Base (REB) R is a set of elements of the following kinds.

1. Periodic events of the form (I, P, p :E), where
• I is a time interval,
• P is a periodic expression,
• p : E is a prioritized event expression with p ≺ >.

2. Role triggers of the form E1, . . . , En, C1, . . . , Ck → p :E [after ∆t], where:
• Ei are simple event expressions (1 ≤ i ≤ n), and
• Ci are role status expressions (1 ≤ i ≤ k), and
• p : E is a prioritized event expression with p ≺ >.

Priorities (p) and delay expressions (after ∆t) can be omitted. In that case,
by default, p = ⊥ and ∆t = 0. Also, I will use the expression B → p :E to refer to
a trigger, where B is also known as the body of the trigger.

E1, . . . , En, C1, . . . , Ck︸ ︷︷ ︸
B

→ p :E

An example of REB describing a medical domain is depicted in Figure 2.12,
where assuming that NightTime goes from 7PM to 7AM and DayTime from 7AM
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(PE1) . ([01/01/15,∞], NightTime, VH :enable doctor-on-night-duty)

(PE2) . ([01/01/15,∞], DayTime, VH :disable doctor-on-night-duty)

(PE3) . ([01/01/15,∞], DayTime, VH :enable doctor-on-day-duty)

(PE4) . ([01/01/15,∞], NightTime, VH :disable doctor-on-day-duty)

(RT1) . enable doctor-on-night-duty→ H :enable nurse-on-night-duty

(RT2) . disable doctor-on-night-duty→ H :disable nurse-on-night-duty

(RT3) . enable doctor-on-day-duty→ H :enable nurse-on-day-duty

(RT4) . disable doctor-on-day-duty→ H :disable nurse-on-day-duty

(RT5) . enable nurse-on-day-duty→ H :enable nurse-on-training after 2

(RT6) . disable nurse-on-day-duty→ VH :disable nurse-on-training

R

Fig. 2.12: An example of Role Enabling Base.

to 7PM, the REB says that every night a doctor-on-night-duty is enabled (PE1)
and disabled at the end of it (PE2). Similarly, a doctor-on-day-duty is enabled ev-
ery day (PE3) and disabled at the end of it (PE4). Enabling doctor-on-night-duty
implies to enable the corresponding nurse (RT1) and disabling it makes the op-
posite effect (RT2). The same happens for doctor-on-day-duty with (RT3) and
(RT4) but with respect to nurse-on-day-duty that implies in turn to enable
nurse-on-training after 2 hours (RT5) and disable it at the end of the day (RT6).

In Section 9.8, I consider the fragment of TRBAC consisting of non-conflicting
complementary periodic events (e.g., PE1, PE2). I do not consider non-complementary
periodic events because the disabling/enabling of one periodic event could be fired
before the interval spanned by the periodic expression of its complementary ends.
I do not consider conflicting events because I do not deal with conflicts for the
moment. I do not consider runtime request expressions (i.e., requests allowing an
administrator to enable/disable roles dynamically if needed) and thus individual
exceptions because they allow an administrator to override any execution. I also do
not consider role triggers because they may lead to the previous problems. Thus,
under these assumptions, priorities will not influence the behavior of the system.

2.6 Workflow Satisfiability and Resiliency

The standard definition published by the Workflow Management Coalition in [32]
defines a workflow as the automation of a business process, in whole or part,
during which documents, information or tasks are passed from one participant to
another for action, according to a set of procedural rules. The automation of a
business process is defined within a process definition, which identifies the various
process activities, procedural rules and associated control data used to manage the
workflow during process execution.

For workflow satisfiability and resiliency, in this thesis I consider workflows
specifying tasks assigned to users who are the only resources to commit for their
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execution9. More specifically, the workflows I consider have a core mathematical
specification defining a set of tasks Tasks and a partial-order relation ≺⊆ Tasks×
Tasks saying in which order such tasks have to be executed. An access-controlled
workflow (ACWF) extends classic workflows by adding a set of users Users, an
authorization relation UA ⊆ Users× Tasks and a set of constraints C where each
constraint is either a counting or an entailment constraint [49].

A counting constraint is a triple (x, y, Tasks′), where 1 ≤ x ≤ y ≤ |Tasks| and
Tasks′ ⊆ Tasks.

An entailment constraint is a triple (ρ, Tasks′, Tasks′′), where ρ ⊆ Users ×
Users and Tasks′, Tasks′′ ⊆ Tasks. An entailment constraint is:

• Type 1 if |Tasks′| = |Tasks′′| = 1, (e.g., (ρ, {T1}, {T2}))
• Type 2 if |Tasks′| = 1 and |Tasks′′| 6= 1, (e.g., (ρ, {T1}, {T2, T3, . . . }))
• Type 3 if Tasks′ and Tasks′′ are arbitrary sets (e.g., (ρ, {T1, . . . }, {Tj , . . . }))

as defined in [49,122].
A plan is a mapping π : Tasks′ → Users assigning users to tasks. A plan is

initial if Tasks′ = ∅, partial if Tasks′ ⊂ Tasks, and total if Tasks′ = Tasks. A
plan is consistent if it satisfies all constraints involving tasks in its domain. When
the domain of the plan does not contain all tasks but satisfies the constraints for
the tasks it contains, we say that the plan is locally consistent. A plan satisfies
a counting constraint (x, y, Tasks′) if a user performs either no task in Tasks′ or
between x and y. A plan π satisfies an entailment constraint (ρ, Tasks′, Tasks′′)
iff there exist T ′ ∈ Tasks′ and T ′′ ∈ Tasks′′ such that (π(T ′), π(T ′′)) ∈ ρ. I abuse
notation and write π ∪ {π(t) = u} to shorten that the domain of π is extended
by adding t such that π(T ) = u. In this thesis, I only consider Type 1 entailment
constraints and ACWFs having the following core specification.

Definition 2.35. An ACWF is a tuple W = 〈Tasks, Users,UA,≺, C〉, where:

• Tasks = {T1, . . . , Tn} is a finite set of tasks.
• Users = {u1, . . . , um} is a finite set of users.
• UA ⊆ Users × Tasks is the authorization relation. I shorten the set of users
authorized for T as A(T ) = {u | (u, T ) ∈ UA}.
• ≺⊆ Tasks × Tasks is a partial-order relation. I write (T1, T2) ∈≺ (or simply
T1 ≺ T2) meaning that T1 executes before T2.
• C is a set of constraints, each one represented as a binary relation RS, where
S ∈ Tasks× Tasks is the scope, such that if S = {Ti, Tj} for Ti, Tj ∈ Tasks,
then RS ⊆ A(Ti)×A(Tj).

An ACWF is satisfiable if there exists a consistent plan for it.

However, when the availability of users is uncertain, workflow satisfiability is
not enough to guarantee that a consistent plan will always work. Indeed, work-
flow resiliency calls for the synthesis of dynamic plans whose assignments of users
to tasks are in general different depending on if users are absent or not by the
time tasks need to be executed. In [122, 123], Wang and Li defined three levels of
resiliency:

9 Instead, I consider temporal workflows in Section 5.7.
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Algorithm 2: StaticResiliency
Input: W = 〈Tasks, Users,UA,≺, C〉 and 0 ≤ k < |Users|
Output: Resilient if W is statically resilient up to k absent users. Breakable

otherwise.
1 Player2 chooses Absent ⊂ Users s.t. |Absent | ≤ k
2 Users← Users \Absent
3 if there exists a consistent plan π for W then
4 return Resilient . Player1 wins

5 return Breakable . Player2 wins

Algorithm 3: DecrementalResiliency
Input: W = 〈Tasks, Users,UA,≺, C〉 and 0 ≤ k < |Users|
Output: Resilient if W is decrementally resilient up to k absent users.

Breakable otherwise.
1 Absent ← ∅
2 π ← initial plan
3 Executed ← ∅
4 while Executed 6= Tasks do
5 Player2 chooses Users′ ⊂ Users s.t. |Users′ ∪Absent | ≤ k
6 Absent ← Absent ∪ Users′

7 Users← Users \Absent
8 Player1 looks for T ∈ Tasks \ Executed and u ∈ U such that (u, T ) ∈ UA

and π ∪ {π(T ) = u} is locally consistent
9 if no pair (u, T ) exists then

10 return Breakable . Player2 wins

11 π ← π ∪ {π(T ) = u}
12 Executed ← Executed ∪ {T}
13 return Resilient . Player1 wins

• static (level 1)
• decremental (level 2)
• dynamic (level 3)

In static resiliency, up to k users might be absent before an execution of an ACWF
starts and these users will never become available again for that execution. In
decremental resiliency up to k users might be absent before execution or become
so during it. As in the static case, absent users will never become available again
for that execution. In dynamic resiliency, up to k (possibly different) users might
be absent at any time. These users may become absent and become available again
(possibly) many times. It is easy to see that dynamic resiliency ⇒ decremental
resiliency ⇒ static resiliency [122,123].

Each of these levels of resiliency can be seen as a two-player game where a
controller (Player1) plays against an environment (Player2). Algorithm 2, Al-
gorithm 3 and Algorithm 4 summarize formalizations proposed by Wang and Li
in [122] for static, decremental and dynamic resiliency, respectively.



Algorithm 4: DynamicResiliency
Input: W = 〈Tasks, Users,UA,≺, C〉 and 0 ≤ k < |Users|
Output: Resilient if W is dynamically resilient up to k absent users. Breakable

otherwise.
1 π ← initial plan
2 Executed ← ∅
3 while Executed 6= Tasks do
4 Player2 chooses Absent ⊂ Users s.t. |Absent | ≤ k
5 Users′ ← Users \Absent
6 Player1 looks for Tasks ∈ Tasks \ Executed and u ∈ Users′ such that

(u, T ) ∈ UA and π ∪ {π(T ) = u} is locally consistent if no pair (u, T ) exists
then

7 return Breakable . Player2 wins

8 π ← π ∪ {π(T ) = u}
9 Executed ← Executed ∪ {T}

10 return Resilient . Player1 wins
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Related work

3.1 Planning and scheduling

A Simple Temporal Network (STN) [53] models a temporal plan in which all time
points and durations are under control. Consistency analysis determines whether
it is possible to schedule events such that all the given temporal constraints are
satisfied. The consistency checking is done by running the all pairs shortest paths
algorithm [46, 53]. Therefore, the decision problem of consistency for STNs is in
PTIME [53].

Drake [45] is an executive for temporal plans with choices modeled as La-
beled STNs that extend STNs by labeling constraints with environments (set of
instantiated choice variables). There are no decision points, therefore decisions in-
volving discrete variable can be made anytime. After compilation, Drake uses an
Assumption-based Truth Maintenance System to maintain a minimal representa-
tion of the constraints needed to execute the network. During execution, choices
are discriminated by generating conflicts according to the time Drake decides to
schedule some event.

A Disjunctive Temporal Problem (DTP) [53, 114, 115, 117] specifies a set of
disjunctive temporal constraints. The work in [53] allows for the specification
of several intervals between the same pair of time points, whereas that in [115]
(originally appeared in [114]) does not have that restriction. DTP in [115] and
Labeled STNs are equivalent [45]. In [45], it is proved that each disjunction
(l1 ≤ Y −X ≤ u1)∨(l2 ≤ Y −X ≤ u2)∨(l3 ≤ Y −X ≤ u3) (in DTP) can be mapped
into a set of constraints ({x = 1} : l1 ≤ Y −X ≤ u1), ({x = 2} : l2 ≤ Y −X ≤ u2),
({x = 3} : l3 ≤ Y − X ≤ u3) for a choice variable x having domain {1, 2, 3}.
The vice versa is obtained by writing “implication constraints” (as the same choice
could be related to many intervals) and then computing the CNF of the resulting
formula.

Temporal plan networks (TPNs) [79] extend STNs by adding decision nodes
and symbolic constraints to model temporal plans with controllable choices mod-
eled as outgoing edges from a decision node. Taking one of these outgoing edges
means making a particular decision. Time points are not labeled and activities are
modeled as pair of non-decision nodes (start,end). A symbolic constraint is either
Ask(c) (is c true?) and Tell(c) (c is true!) where c a literal. Symbolic constraints
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may exclude activities from being executed. A plan is consistent if it satisfies both
temporal and symbolic constraints. TPNs do not specify more than one temporal
constraint on the same edge. Consistency is checked by means of a backtracking
algorithm which maintains a set of nodes and iterates until this set becomes empty.
Initially the set contains the start node. At any iteration a node is removed from
the set and all nodes reachable from its outgoing edges are added (if the removed
node is not a decision) or just one node is added (if the node is a decision). In the
latter case, the algorithm marks the picked outgoing edge. When the STN arising
from the path going from start to end is inconsistent, the algorithm backtracks to
the last decision node that still has unmarked outgoing edges (i.e., it will try other
decisions).

In [125], a Controllable Conditional Temporal Problem is provided to address
temporal plans with choices. Differently, from LabeledSTNs and TPNs this work
deals with over constrained problems and provides a Best-first Conflict-Directed
Relaxation (BCDR) algorithm to enumerate the best continuous relaxation for
an over-constrained conditional temporal problem with controllable choices. The
work in [125] is an optimization problem.

Other related work involves the management of several kinds of uncertainty in
temporal networks.

Pike [90] is an executive for temporal plans with both controllable and uncon-
trollable choices that achieves plan recognition and adaptation concurrently. Pike
employs temporal plan networks with uncertainty (TPNUs) which extend TPNs
to address both controllable and uncontrollable choices. Pike adapts controllable
choices to uncontrollable ones made by the human. As stated in [90], Pike takes as
input (1) a TPNU, (2) the initial and goal states (sets of PDDL predicates, [64]),
(3) a stream of state estimates (sets of predicates), and (4) a stream of time as-
signments and outcomes to the uncontrollable choices in the TPNU. Pike outputs
(1) a stream of choice assignments to the TPNU’s controllable variables, and (2)
a dispatch of the TPNU’s events, such that there is at least one complete and
consistent candidate subplan for the choice made.

In [87], Léauté and Williams provide a continuous model-based executive for
systems with state variables and continuous dynamics that generates near-optimal
control sequences during execution. Their approach is based on encoding subparts
of the main temporal problem into disjunctive linear programs (DLPs, [5]) re-
formulating them as Mixed-Integer Linear Programs, and on constraint pruning
policies for both state plan constraints and temporal constraints. Their experi-
mental evaluation shows that the adopted pruning policies result in the executive
performing significantly better.

In [124], a Controllable Conditional Temporal Problem (CCTPU) is defined
to address temporal plans with controllable choices and uncontrollable durations.
A Conflict-Directed Relaxation with Uncertainty algorithm (CDRU) is provided
to deal with over constrained temporal problems. When a plan is uncontrollable
some lower or upper bound of some duration (either controllable or not) might be
modified to restore controllability.

In [76], TPNUs are extended to also support uncontrollable durations. The
work deals with strong controllability only. When the plan is infeasible a technique



3.1 Planning and scheduling 43

is implemented to negotiate with a human some relaxation to restore controllabil-
ity.

Simple Temporal Networks with Uncertainty (STNUs) [104] specify contingent
durations as the unique uncontrollable part. The execution of non-contingent time
points cannot influence any contingent duration. Instead, contingent durations do
influence the real-value assignments to the non-contingent time points. However,
such durations never prevent any non-contingent time point from being executed.
Controllability analysis aims to synthesize a strategy making (possibly different)
assignments to non-contingent time points such that all constraints will be eventu-
ally satisfied whatever the contingent durations. The decision problem of dynamic
controllability for STNUs is in PTIME [103].

Conditional Simple Temporal Networks (CSTNs) [75] (formerly CTP, [118])
specify conditional constraints as the unique uncontrollable part. The execution
of time points cannot prevent any truth value assignment from happening. In-
stead, depending on what truth value a propositional variable is assigned some
time point might be excluded, runtime, from the execution of the network. The
decision problem of dynamic controllability for CSTNs is PSPACE-complete [22].
Controllability analysis aims to synthesize a strategy making (possibly different)
assignments to the time points such that all constraints will be eventually satisfied
whatever the truth value assignments to the uncontrollable propositions.

Conditional Simple Temporal Networks with Uncertainty [74] address both
uncertain durations and conditional constraints simultaneously. Any combination
of these two parts influences when (and if) to execute non-contingent time points.
In [37] a sound but not complete algorithm is provided. The complexity of the
decision problem of dynamic controllability is currently unknown.

Timed Game Automata (TGAs) [98] offer sound and complete algorithms to
check the dynamic controllability of temporal networks via controller synthesis.
In [27] a first proposal to synthesize memoryless execution strategies for STNUs
is provided. The approach is based on the synthesis of a controller for a timed
game automaton. After, [25] extended [27] to support temporal networks with
observation time points and disjunctive constraints. Finally, [26] revised [27] and
[25]. All these works also show the theoretical relationships between various kinds
of temporal networks and timed game automata. All encodings from a temporal
network into the corresponding timed game automaton run in polynomial time.

In [19], CSTNs are extended with decision nodes regulating the truth value
assignment for some propositions under control. That work focuses on the com-
plexity analysis of the DC-checking problem proving that it is PSPACE-complete
and provides algorithms for two special cases in which (i) the network specifies
only decisions and no observations and (ii) all decisions are made before any ob-
servation. Uncontrollable durations are not considered.

In [23], a new system of constraint propagation rules for STNUs, which is
sound-and-complete for DC checking, is presented. That system comprises just
three rules which, differently from the ones proposed in all previous works, only
generate unconditional constraints. That work also proves the existence of late
execution strategies for STNUs, and the existence of a faster execution algorithm
for STNUs which runs in O(nk) for an STNUs having a k ≥ 1 contingent links
and n ≥ k time points.
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Simple Temporal Network with Partially Shrinkable Uncertainty (STNPSU)
[82] extend STNUs allowing for the representation of a contingent range in a way
that can be shrunk during execution as long as the shrinking does not go beyond
a given threshold.

In [21], a streamlined model for CSTNs is provided. This model mainly shows
how it is possible to remove labels from time points by rewriting the network in
an equivalent one having labels on constraints only. During execution, previously
labeled nodes that turn irrelevant, will be executed anyway after an horizon, a
point in the future after which the temporal plan can be considered complete.
Therefore, time points which are assigned a value greater than the horizon can be
considered as unexecuted.

Hyper Temporal Networks (HyTNs) are a strict generalization of STNs, in-
troduced to partially overcome the limitation of allowing only conjunctions of
constraint [42]. Compared to STN distance graphs HyTNs allow for a greater flex-
ibility in the definition of the temporal constraints meanwhile offering a pseudo-
polynomial tractability in the consistency checking of the instances.

In [43], Comin and Rizzi solved the CTP by converting it into a Mean Payoff
Game (MPG). They also introduced a variant of dynamic consistency, called ε-DC,
where ε > 0 represents the minimum reaction time of the executive in response
to observations. They presented (1) a sharp lower-bound analysis on the critical
value of the reaction time where the CSTN changes from being DC to non-DC,
(2) a proof that the CTP is coNP-hard, and (3) the first singly-exponential-time
algorithm for solving the CTP.

In [72], Hunsberger and Posenato showed how their DC-checking algorithm
from earlier work [75] can be extended to check the ε-DC property without in-
curring any performance degradation. They also introduced four benchmarks for
testing DC-checking algorithms.

In [73], Hunsberger and Posenato presented another optimization of the ap-
proach presented by Cimatti et al. in which the CTP is viewed as a two-player
game. Its solution is determined by exploring an abstract game tree to find a “win-
ning” strategy, using Monte Carlo Tree Search and Limited Discrepancy Search to
guide its search. An empirical evaluation shows that the new algorithm is compet-
itive with the propagation-based algorithm.

In [20], Cairo et al. improved the analysis of the ε-DC property. They showed
that if ε = 0 (i.e., if the system can react instantaneously), it is necessary to impose
a further condition to avoid a form of instantaneous circularity. In particular, they
(1) proposed a new extension of dynamic consistency, called π-DC, suitable for
systems that can react instantaneously, (2) showed that π-DC is not equivalent to
0-DC, and (3) proposed a sound-and-complete algorithm for checking the π-DC
property having a (pseudo) singly-exponential time complexity in the number of
propositional letters.

In [50], Cui and Haslum extend STNUs by conditioning temporal constraints
on the assignment of controllable discrete variables (decisions) that can be done
at any time. They define dynamic controllability of such networks as the existence
of a strategy that decides on both the values of discrete choice variables and the
scheduling of controllable time points dynamically.
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A Temporal Qualitative Constraint Network (TQCN) specifies a set of variables
and a set of constraints where each constraint is a set of base relations represent-
ing the possible relative positions between two temporal events (i.e., between the
variables modeling them). Consistency analysis consists of deciding if a TQCN is
consistent. That is, if there exists an assignment of values to the variables sat-
isfying all constraints. In [70], an efficient technique to check the consistency of
a TQCN in polynomial time is given, provided the treewidth of the network is
bounded. Optimization problems have also been studied for TQCNs. For example,
in [44], Condotta et al. study the minimal consistency problem (MinCons): given
an integer k, MinCons is the problem of establishing whether or not a TQCN ad-
mits a solution using at most k distinct points on the line. The decision problem of
minimal consistency is NP-complete for both point algebra (PA, [121]) and interval
algebra (IA [1]) (reduction from the 3 coloring problem).

Satisfiability Modulo Theory (SMT, [8]) can describe (simple) temporal net-
works by using a fragment of linear real arithmetic (LRA) called difference logic
(RDL). However, SMT-solvers do not guarantee to find early schedules. SMT can
address weak and strong controllability of temporal networks via quantifier elim-
ination techniques (e.g., [29, 30]). Some SMT-solvers support quantifiers in their
input language (e.g., Z3, [51]), some others don’t (e.g., MathSAT, [24]). Currently,
it is unclear if SMT can address dynamic controllability.

In [106], UPPAAL-TIGA is used to synthesize a controller for timeline-based
plans which consider multivalued state variables and networks of TGAs. Apart
from time points, in this thesis variables are real, Boolean or integer and the
encodings I provide all involve one TGA only.

A constraint network (CN) specifies a finite set of variables, a set of finite
discrete domains (one for each variable) and a set of relational constraints. The
constraint satisfaction problem (CSP) is the problem of finding an assignment of
values to the variables such that all constraints are satisfied. A CN is k-ary if all
constraints have scope cardinality ≤ k and therefore binary when k = 2 [52, 101].
CSP is NP-hard [52]. Moreover, given a minimal network (i.e., a network where the
inference of new constraints from the existing ones is no longer possible) generating
an arbitrary solution is NP-hard as well [66]. This is due to the non-monotonicity
of the relations employed (e.g., 6= [52, 101]). If the relations are monotone (e.g.,
=) the checking is done in n3 where n is the number of variables [101]. The same
holds for non-monotone relations if each variable has no more that 2 elements in its
domain [101]. Consistency checking can be done by exhaustively enumerating (and
testing) all possible solutions and stopping as soon as one satisfies all constraints.
To speed up the search, we can combine techniques such as backtracking with
pruning techniques such as node, arc and path consistency [97]. However, these
pruning techniques are incomplete inference rules [52]. k-consistency guarantees
that any (locally consistent) assignment to any subset of (k − 1)-variables can
be extended to a kth (still unassigned) variable such that all constraints between
these k-variables are satisfied. Strong k-consistency is k-consistency for each j such
that 1 ≤ j ≤ k [65]. As a result, 1, 2 and 3-consistency are node, arc and path
consistency. Directional consistency has been introduced to speed up the process
of synthesizing a solution for a constraint network limiting backtracking [54]. In a
nutshell, given a total order on the variables of a CN, the network is directional-
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consistent if it is consistent with respect to the given order that dictates the as-
signment order of variables. In [54], an adaptive-consistency algorithm (ADC) was
provided as a directional consistency algorithm adapting the level of k-consistency
needed to guarantee a backtrack-free search once the algorithm terminates, if the
network admits a solution. Classic CNs in [52] do not address any uncontrollable
parts.

A Mixed CSP partitions the set of variables in controllable and uncontrollable
and considers both full and no observability (NO). Full observability is when we get
to known the uncontrollable part before making our decisions. In [63], Fargier et al.
provide a consistency algorithm assuming full observability of the uncontrollable
part.

Dynamic constraint satisfaction problems (DCSPs) [100] introduce activity
constraints saying when variables are relevant or not depending on the values
assigned to some other variables. No uncontrollable parts are specified, therefore
the approach in [100] deals with satisfiability only.

Some probabilistic approaches (e.g., [62]) attempted to find the most probable
working solution to a CSP under probabilistic uncertainty.

In a Prioritized Fuzzy Constraint Satisfaction Problem (PFCSP) (e.g., [94]) a
solution threshold states the overall satisfaction degree.

3.2 Controllability of Workflows

In [84] and its extension in [85], Lanz et al, define a set of time patterns for process-
aware information systems (PAIS). Such patterns are defined in four categories.
Category I involves Durations and Time Lags allowing for the specification of
time lags between activities (TP1), durations (TP2) and time lags between events
(TP3). Category II involves Restriction of process execution points allowing for the
specification of fixed date elements (TP4), schedule restricted elements (TP5), time
based restrictions (TP6) and validity period (TP7). Category III involves variabil-
ity allowing for the specification of time dependent variability (TP8). Category
IV involves Recurrent Process Elements allowing for the specification of cyclic ele-
ments (TP9) and periodicity (TP10). A formal semantics of time patterns can be
found in [83].

In [99], Marjanovic et al., define a conceptual model for temporal constraints
of a process schema considering TP1, TP2 and TP4. A validation algorithm to
compute the shortest and longest instances of a process is presented. However, no
runtime part is supported.

In temporal workflow management, the difference between controllable and
uncontrollable XOR splits is introduced in [59] and a technique based on PERT-
nets computes internal activity deadlines in order to meet the global ones. Some
missed deadlines require human interaction for recovery.

In [60], Eder at al., address time constraints in workflow systems and give an
approach aimed at computing activity deadlines so that both the overall process
deadline and all external time constraints are satisfied. Activity durations are
deterministic and therefore the model does not specify starting times that can be
obtained from ending times of activities minus their durations.
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In [58], Eder et al., propose a Timed Workflow Graph to model the temporal
properties of tasks considering TP1, TP2, TP4 and TP5. Nodes model tasks and
edges regulate the control flow. Activity durations are the same no matter the
process instance.

In [61], Eder et al. also give an overview of the early time management ap-
proaches for workflows. They focus on the modeling of temporal aspects, the anal-
ysis of temporal properties, synthesis of schedules, minimization of exceptions aris-
ing from the violation of temporal constraints, monitoring of workflow aspects and
modeling and calculation of temporal properties for distributed workflows.

In [108] Pichler et al., propose temporal conditions in the formulation of XOR-
splits and loops to give process designers explicit control over the temporal be-
havior of the processes they model. Task durations can be out of control. Some
split connectors have an associated condition elapsed ≤ constant discriminating
which branch to take depending on how the condition evaluates. For example, if a
diamond is labeled by elapsed ≤ 100 and the condition is true by the time the con-
nector is executed, then the > branch is chosen, else the ⊥ one. Loops are specified
as activities labeled by while elapsed ≤ constant which are continuously repeated
until the condition is true. An example of application can be the submission of a
paper to a conference. If while elapsed ≤ 100 (i.e., it the submission deadline has
not passed yet) continue to (re)submit the (updated version of the) paper.

The approach of Bettini in [16] can be considered one of the first relevant at-
tempts of using temporal networks for the modeling and validation of workflows.
Nodes model the start and end of activities whereas edges represent the tempo-
ral distance between them. Bettini also defines the concepts of free-schedule and
restricted due-time free-schedule. In the former an agent can take any (allowed)
amount of time to complete activities. In the latter an agent must complete them
within the maximum upper bounds that are tighter than the maximum task du-
rations.

In [35], Combi et al., propose a conceptual model for specifying time-aware
process schema supporting TP1, TP2, TP4, TP5 and TP10. That work also dis-
cusses how consistency can be checked at design time, leaving the management of
the runtime phase as future work.

In [38], Combi et al. move from consistency to controllability of time-aware
process schemas and address temporal controllability of workflows specifying tasks
having uncontrollable durations. The approach maps workflow paths to STNs and
STNUs in order to boil down consistency and controllability analysis to those of
STNs/STNUs and propose a technique to deal with conditional paths. Later, in [39]
the same authors extend the algorithm in [103] to support runtime execution.
They show that the controllability of each single workflow path is not enough to
guarantee the controllability of the whole workflow.

In [81], CSTNUs are employed for the modeling and validation of time-aware
business processes in order to verify their controllability at design time and handle
their execution at run time. The authors provide a set of basic elements describ-
ing a process-aware information system supporting TP1, TP2, TP4 and TP9.
Then, they provide an encoding from these basic components into a corresponding
CSTNU. Finally, they provide an execution algorithm to handle controllability of
the process during runtime. At that time, the algorithm for checking controllability
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of a CSTNU was only known to be sound. In [75], a sound and complete algorithm
for CSTNs was provided discussing issues that affect CSTNUs too. Therefore, [81]
does not guarantee a correct controllability checking of the process, neither at
design nor at runtime (unless this checking is done via TGAs).

In [127], Zavatteri et al., define and address weak, strong and dynamic control-
lability for access-controlled workflows under conditional uncertainty. That work
deals with structured workflows by unfolding workflow paths, considering binary
constraints only (whose labels are the conjunction of the labels of the connected
tasks) and assuming that a total order for the tasks is given in input.

In [18], Cabanillas et al. address the resource allocation for business processes.
They consider an RBAC environment and they do not impose any particular order
on activities. They also address loops. However, the authors clearly state that their
work is unable to address History-Based Allocation of resources. This is because
consistency analysis is not enough.

Modeling languages such as YAWL [119] and BPMN [17] allow for the compo-
sition of constructs regardless of the type and position of the connected elements
leading to unstructured workflows which are well-known to be error prone [86,109].
In [78], Kiepuszewski et al. prove that one can employ a structured approach with-
out losing expressiveness. NestFlow [33] and TNest [34] are structured Process
Modeling Languages (PML) integrating a control flow that can be described by a
well-defined grammar. TNest is the temporal extension of NestFlow. For TNest dy-
namic controllability analysis is boiled down to that of the underlying conditional
simple temporal network with uncertainty (CSTNU).

3.3 Role based access control models, workflow satisfiability
and resiliency

A role based access control model (RBAC [113]) specifies users, roles and permis-
sions. Roles are assigned both users and permissions acting as an interface between
them. Roles are a collection of both users and permissions and are different from
groups which are only a mere collection of users [112]. RBAC models do not spec-
ify constraints at user level. TRBAC [13] extends the classic RBAC by injecting
temporal constraints on role enabling and disabling. Roles may be enabled in some
time intervals and disabled in some others. A user can activate a role only if the
role is enabled (in classic RBAC roles are always enabled).

In [14], Bertino et al. give a language for defining authorization constraints
on role and user assignment to tasks in a workflow. They also provide algorithms
for consistency checking and task assignment. Their proposal assumes that the
workflow enforces a total order on tasks (i.e., no parallel tasks are allowed). Fur-
thermore, temporal constraints are not investigated.

The Temporal Authorization Base model described in [12] is able to enforce
authorization constraints in heterogeneous distributed systems. It allows users to
assign periodic authorizations to other users on sets of objects. This model is quite
expressive. In order to use it in a workflow context, we would need to restrict access
modes to execute and constrain objects to be tasks.
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In [120], Vasilikos et at. use a network of timed automata (TAs) to model dis-
tributed systems and provide BTCTL (behavior timed computational tree logics),
an extension of TCTL [2] to express time-dependent access control policies. Such
a logic allows for expressing security policies in which temporal, data and informa-
tion flow aspects must be considered together. They use synchronization channels
to make the various processes (each one underlain by a different TA) communicate
with each other and present a reduction of a fragment of BTCTL into TCTL+ (a
variation of TCTL). They use UPPAAL as a model checker to validate their sys-
tems with respect to the fragment of BTCTL that can be translated into the logics
supported by UPPAAL (they implemented a translator to automate this task). No
uncontrollable part is supported.

The problem of verifying workflow features related to the assignment of agents
to tasks is known in literature as workflow satisfiability and resiliency. More specif-
ically, the workflow satisfiability problem (WSP) is the problem of finding an as-
signment of users to tasks such that the execution of the workflow gets to the end
satisfying all authorization constraints. The workflow resiliency problem is WSP
under the uncertainty that a maximum number of users may become (temporally)
absent before or during execution. WSP does not address conditional uncertainty
and always synthesizes one execution plan satisfying all constraints before starting.

Several work to tackle workflow satisfiability has been proposed over the last
20 years. In [15], Bertino et al. proposed a seminal work for the specification and
enforcement of authorization constraints in workflow management systems. That
work does not tackle resiliency nor provide a controllability approach.

In [122,123], Wang and Li proposed a role-and-relation based model (R2BAC)
for workflow systems and studied the complexity bounds of workflow satisfiability
and resiliency. Their experimental evaluation involves WSP only.

In [91], Li et al. introduced the notion of resiliency policies in the context of
access control systems and defined the resiliency checking problem (RCP), i.e.,
whether an access control state satisfies a given resiliency policy. They studied the
complexity bound of the RCP and provided a SAT-based approach for RCP. RCP
always means static resiliency.

In [47], Crampton et al. studied the Valued WSP to find the “least bad” plan;
i.e., a plan that maximizes the number of satisfied constraints. Workflow resiliency
is not addressed. After that, Crampton et al. [48] also proposed the BI-objective
WSP as a generalization of [47].

In [77], Khan and Fong defined workflow feasibility (availability in some state)
as the dual of workflow resiliency (availability in every state).

In [95], Mace et al. introduced the quantitative workflow resiliency as a metric
of probability on how likely a workflow terminates given a security policy and a
user availability model. They do so by solving a Markov Decision Process.

In [96], Mace et al. provided WRAD, a tool for workflow resiliency analysis
and design that encodes a workflow specification into the PRIMS model checker.
Workflow resiliency is defined as the maximum probability of finding a complete
and valid plan.

In [107], Paci et al. extended the RBAC-WS-BPEL language to support the
specification of resiliency constraints and provided an algorithm to check if a sys-
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tem is failure-resistant. Although they use different terms, they deal with static
resiliency only.

In [92], Lowalekar et al. provided failure resilience while satisfying security
policies and constraints. They considered both static and decremental resiliency,
but left the investigation for dynamic resiliency as future work.

In [93], Lu et al. studied the dynamic workflow adjustment; i.e., how to min-
imally adjust existing user-task assignments, when a sudden change, such as the
absence of users, occurs.

In [56], dos Santos et al. define a class of Scenario Finding Problems, which
are solutions solving the WSP that also satisfy other properties (e.g., a minimal
number of users must be present). After, in [57], dos Santos et al. solve static
workflow resiliency by pre-computing reachability graphs by model checking the
system, but they do not address decremental nor dynamic resiliency.

Further surveys of literature on workflow satisfiability and resiliency can be
found in [55,88] and [67].



Part I

Temporal Controllability
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Introduction

Temporal networks are a framework to model temporal plans and check the coher-
ence of their temporal constraints which impose a minimal and maximal temporal
distance between the occurrence of the events specified in the plan. Temporal
plans mainly divide in plans having everything under control and plans having
something out of control. The main components of a temporal network are time
points and constraints. Time points are variables having continuous domain and
model the occurrence of events as soon as these variables are assigned real values
(i.e., executed). Constraints regulate the minimal and maximal temporal distance
between the occurrence of pairs of events and are formalized as linear inequalities.

Whenever both these two components are under control we simply deal with a
consistency problem asking us to find an assignment of real values to all time points
satisfying all constraints. Simple temporal networks (STNs) model exactly this
case [53], whereas Labeled STNs in Drake [45] address temporal plans with choices
that are, however, under control; therefore, we keep dealing with a consistency
problem asking us to further find suitable values for such choices.

Instead, when some component is out of control, satisfiability is, in general,
not enough. In such a case, we deal with a controllability problem.

Section 2.1.3, Section 2.1.2 and Section 2.1.4 pointed out that CSTNs address
conditional uncertainty, STNUs address temporal uncertainty, whereas CSTNUs
address both conditional and temporal uncertainty simultaneously. All these three
formalisms are frameworks to model controllability problems.

The controllability of a temporal network implies the existence of a strategy
able to schedule the time points such that all constraints are eventually satisfied.

Controllability mainly divides in weak, strong and dynamic. Weak controlla-
bility ensures the existence of a (possible different) strategy to operate on the
controllable part whenever we are able to predict how the entire uncontrollable
part will behave before the execution starts. Strong controllability is the oppo-
site case ensuring the existence of a strategy always operating the same way on
the controllable part no matter how the uncontrollable part will behave. Dynamic
controllability ensures the existence of a strategy operating on the controllable
part in real time depending on how the uncontrollable one has behaved. Weak
and strong controllability allow for an offline temporal planning, whereas dynamic
controllability allows, in general, for an online temporal planning.

However, none of the formalisms mentioned so far tackles temporal plans in
which some conditional constraints under control may influence (or be influenced
by) some uncontrollable part. An initial discussion is given in [19] where CSTNs
are extended with decision nodes regulating the truth value assignments to some
propositions under control.

Contributions

Towards the modeling and validation of temporal plans in which decisions may
influence (or be influenced by) both conditional and temporal uncertainty, my
specific contributions for the first part of this thesis are the following.
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1. I define simple temporal networks with decisions (STNDs) and provide two
Hybrid SAT-based Consistency Checking (HSCC) algorithms for them.

2. I provide Kappa, a tool I developed for STNDs along with an experimental
evaluation. I also provide an algorithm to generate random STNDs.

3. I prove that STNDs and disjunctive temporal problems (DTPs, [115]) are
equivalent by reducing STNDs to DTPs and vice versa in polynomial time.

4. I define conditional simple temporal networks with uncertainty and decisions
(CSTNUDs) as a unified formalism for temporal networks expressing uncon-
trollable parts in order to also model fallback temporal plans.

5. I provide an encoding into timed game automata (TGAs) for a sound and com-
plete dynamic controllability checking for any CSTNUD. TGAs also allow for
the synthesis of memoryless execution strategies for executing a (controllable)
CSTNUD.

6. I provide Esse, a tool I developed for CSTNUDs along with an experimental
evaluation. I also provide an algorithm to generate random CSTNUDs.

7. I provide a language to specify temporal workflows under conditional and
temporal uncertainty. I define weak, strong and dynamic controllability of such
workflows and give an encoding from temporal workflows into CSTNUDs for
a sound and complete dynamic controllability checking.

Organization

Chapter 4 defines simple temporal networks with decisions (STNDs) along with
two HSCC algorithms to check consistency and synthesize single or all consistent
scenarios. Then, it provides Kappa a tool for STNDs along with an experimental
evaluation and an algorithm to generate random STNDs. Finally, it proves the
equivalence between STNDs and DTPs provided in [115]. Chapter 5 defines condi-
tional simple temporal networks with uncertainty and decisions (CSTNUDs) and
extends the encoding from CSTNUs into TGAs given in Section 2.2.2 in order
to adapt it to CSTNUDs. Then, it proceeds by discussing the correctness of the
encoding and provides Esse, a tool for CSTNUDs along with an experimental
evaluation and an algorithm to generate random CSTNUDs. Finally, it provides a
process modeling language for temporal workflows under conditional and tempo-
ral uncertainty, defines the controllability of such workflows and gives an encoding
from temporal workflows into CSTNUDs for a dynamic controllability checking.
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Simple Temporal Networks with Decisions

In this chapter I focus on simple temporal networks with decisions (STNDs).
STNDs are STNs plus decision time points [19, 126]. Since STNDs do not specify
any uncontrollable part, a consistency approach is enough. STNDs are a compact
framework to represent temporal workflows patterns where the choice of the work-
flow path to take is under control. In Section 5.7 I will discuss of how decisions
time points permit to choose a specific workflow path.

4.1 Syntax

Each decision time point is associated to a Boolean proposition. Time points and
constraints may be labeled by labels (i.e., conjunctions of literals) saying for which
scenarios (truth value assignments to the propositions) they must appear in the
solution. Thus, an STND models a family of STNs each obtained as a projection of
the initial STND onto a scenario. An STND is consistent if there exists a consistent
scenario (i.e., a scenario such that the corresponding STN projection is consistent).

Definition 4.1. A Simple Temporal Network with Decisions (STND) is a tuple
S = 〈T ,DT ,P, O, L, C〉, where:

• T = {X,Y, . . . } is a set of time points.
• DT ⊆ T = {D!, E!, . . . } is a set of decision time points.
• P = {d, e, . . . } is a set of Boolean propositions.
• O : P → DT is a bijection assigning a unique proposition to each decision time
point D! that controls the truth value assignment to d.
• L : T → P∗ is a function assigning labels to time points.
• C is a set of labeled constraints each having the form (Y −X ≤ k, `), where
X,Y ∈ T , k ∈ R ∪ ±∞ and ` ∈ P∗.

The STN-projection of an STND S with respect to a scenario s (written πs(S)) is
an STN 〈Ts, Cs〉 built as follows:

• Ts = {X | X ∈ T ∧ s |= L(X)}
• Cs = {(Y −X ≤ k) | (Y −X ≤ k, `) ∈ C ∧ s |= `}
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S is consistent if there exists a scenario s such that πs(S) is consistent. A solution
is a pair 〈s, S〉, where s is a scenario, S is a schedule with domain Ts, and S(Y )−
S(X) ≤ k holds for each (Y −X ≤ k) ∈ Cs.

I graphically represent an STND exactly as I represented a CSTN in Sec-
tion 2.1.3. For instance, Figure 4.1a models the following STND S = 〈T ,DT ,P, O, L, C〉:

• T = {A!, B!, C!, D,E}
• DT = {A!, B!, C!}
• P = {a, b, c}
• O(a) = A!, O(b) = B!, O(c) = C!
• L(A!) = L(D) = L(E) = �, L(B!) = a, L(C!) = ab
• C = {(A! − B! ≤ −2, a), (A! − D ≤ −5,�), (A! − C! ≤ 0, ab), (E − A! ≤
10,¬a), (E − B! ≤ 6, a¬b), (E − C! ≤ 4, ab¬c), (D − E ≤ −7,�), (B! − C! ≤
−1, ab), (B!−A! ≤ 5, a), (C!−B! ≤ 2, ab)}.

Figure 4.1b–Figure 4.1e model all of the STN-projections of S.

Definition 4.2 (Well-defined STND). An STND is well-defined if and only if
labels are honest and coherent like in CSTNs (Definition 2.10) with two differences
for label honesty:

1. For each X ∈ T , if λ ∈ L(X), where λ = {d,¬d} and d ∈ P, then L(X) ⇒
L(O(d)) and (O(d)−X ≤ 0, L(X)) ∈ C.

2. For each D! ∈ DT , where D! = O(d), we have that d 6∈ L(D!) (no self labeling).

The first modification says that X can be executed at the same time of D!
(but instantaneously after D! since time points executed at the same instant must
follow an order of execution). This is because d is under control. The second
modification serves to avoid the following circularity: If L(D!) = d, then D! can
be executed if and only if d = > (i.e., instantaneously after itself), but d can
be assigned a truth value only upon the execution of D!. This problem does not
happen with observation time points as time point label honesty would insert
the implicit negative loop (O(p) − P? ≤ −ε). However, for decision time points
(O(d)−D! ≤ 0) trivially holds.

Figure 4.1a is an example of well-defined STND modeling a temporal plan with
3 decisions (A!, B! and C!) and two (instantaneous) activities (D and E). A! is
the first time point to execute. We execute B! if and only if we decided > for a
(L(B!) = a) and C! if we further decided > for b too (L(C!) = ab). Instead, A!,
D and E are always executed (L(A!) = L(D) = L(C) = �). We can execute B!
(if we decide so) after at least 2 (B! → A! labeled by 〈−2, a〉) and within 5 time
units since A! was executed (A!→ B! labeled by 〈5, a〉). The same happens for C!
with respect to B! (after 1 and within 2 time units since B!). Instead, we always
execute D after minimum 5 time units since A! (D → A! labeled by 〈−5,�〉) and
E after 7 time units since D (E → D labeled by 〈−7,�〉). Furthermore,

• if we decided ⊥ for a, then we must execute E within 10 time units since A!
(A!→ E labeled by 〈10,¬a〉), whereas
• if we decided > for a and ⊥ for b, then we must execute E within 6 time units

since B! (B!→ E labeled by 〈6, a¬b〉), and finally
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A!
[�]

B!
[a]

C!
[ab]

D
[�]

E
[�]

〈5,
a〉

〈−
2,
a〉

〈−5,�〉

〈2, ab〉

〈−1, ab〉

〈0, ab
〉

〈4, ab¬
c〉

〈−7,�〉

〈6, a¬b〉
〈10,¬a〉

(a) Simple Temporal Network with Decisions.

A!

B! C!

D E

5

−2

−5

2

−1
0

−7

(b) STN-projection onto s(a) = s(b) = s(c) = >.

A!

B! C!

D E

5

−2

−5

2

−1
0

4

−7

(c) STN-projection onto s(a) = s(b) = >, s(c) = ⊥.

A!

B!

D E

5

−2

−5 −7

6

(d) STN-projection onto s(a) = >, s(b) = ⊥, s(c) ∈
{>,⊥}.

A! D E
−5 −7

10

(e) STN-projection onto s(a) = ⊥, s(b), s(c) ∈ {>,⊥}.

Fig. 4.1: An example of STND and related STN-projections (where thick red edges
highlight negative cycles).

• if we decided > for both a and b and ⊥ for c, then we must execute E within
4 time units since C! (C!→ E labeled by 〈4, ab¬c〉)
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Algorithm 5: STND-HSCC1(S)
Input: An STND S = 〈T ,DT ,P, O, L, C〉.
Output: A solution 〈s, S〉 for S if S is consistent; “inconsistent” if S is

inconsistent. STN-CC is a consistency checking algorithm for STNs.
1 ϕ←

∧
p∈P(p ∨ ¬p) . Make every assignment possible

2 while true do
3 s← SAT-SOLVE(ϕ) . Try to find a satisfying assignment s
4 if ϕ is unsatisfiable then
5 return inconsistent

6 〈Ts, Cs〉 ← πs(S) . Project S onto s
7 if STN-CC(〈Ts, Cs〉) then
8 return 〈s, S〉 . where S is a valid schedule for 〈Ts, Cs〉
9 ϕ← ϕ ∧ CYCLE-CUT(S, 〈Ts, Cs〉) . Cut the negative cycle

Negative values on edges model delays whereas positive ones model deadlines.
I propose here two hybrid SAT-based consistency checking algorithms (HSCC)

to check the consistency of an STND and I report on the experimental evaluation
that I carried out with Kappa, a tool for STNDs. The approach is based on shortest
paths algorithms and SAT solvers.

4.2 STND-HSCC1

In this section I provide STND-HSCC1 a hybrid SAT-based consistency checking
(HSCC) algorithm to check the consistency of an STND. Algorithm 51 maintains
a formula ϕ specifying CNF clauses over propositions in P. Initially ϕ allows for
all possible truth value assignments. In each round of the algorithm we ask the
SAT solver for a truth value assignment making ϕ true. Such an assignment (if
any) corresponds to a scenario s over which we can project the STND and check
if the resulting STN is consistent (“SAT-solver influences directed weighted graph
algorithm”). If so, we return this scenario and a valid schedule for the projected
STN (i.e., a solution). Otherwise, we apply De Morgan’s rules to the negation
of the relevant part of the scenario containing the negative cycle (CYCLE-CUT in
Algorithm 6) and add the resulting clause to ϕ and go ahead with the next round
(“directed weighted graph algorithm influences the SAT-solver”). If ϕ has become
unsatisfiable it means that all STN-projections are inconsistent and therefore the
initial STND is inconsistent. This makes the approach hybrid.

More concretely, an example of round for Figure 4.1a is as follows. Suppose
that

SAT-SOLVE(ϕ) = ab¬c

that is, s(a) = s(b) = > and s(c) = ⊥. Since the STN πab¬c(S) is inconsistent
(Figure 4.1c admits a negative cycle), we will add to ϕ the clause ¬(a ∧ b ∧ ¬c),
which simplifies to (¬a ∨ ¬b ∨ c), to ask the SAT solver for a different truth value

1 I renamed STND-CC [19] to STND-HSCC1. I also simplified the algorithm to ease reading.
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Algorithm 6: CYCLE-CUT(S, 〈Ts, Cs〉)
Input: An STND S = 〈T ,DT ,P, O, L, C〉 and one of its negative cycles 〈Ts, Cs〉
Output: A clause ψ expressing the cut of the relevant part of the negative cycle.

1 ψ ← > . ψ will contain the relevant part of s
2 foreach constraint c ∈ Cs do
3 ψ ← ψ ∧ `c . where `c is the corresponding label of c in S
4 return DeMorgan(¬(ψ)) . the clause expressing the cut of the negative cycle

assignment excluding this projection (if any). Figure 4.1a is consistent if and only
if

s(a) = s(b) = s(c) = >
A possible schedule for this projection (shown in Figure 4.1b) is

S(A!) = 0, S(B!) = 2, S(C!) = 3, S(D) = 5, S(E) = 12

Any other combination leads to a projection containing a negative cycle (Fig-
ure 4.1c-4.1e).

The complexity of STND-HSCC1 is O(22|P|(|T |2 + |T ||C|+ |P|) as initializing ϕ
is linear in |P|, each SAT solver call has cost 2|P|, the projection has cost |T |+ |C|,
STN-CC has cost |T ||C| using Bellman-Ford, the time to apply De Morgan’s laws
is linear in |P| and the maximum number of iterations of the while loop is 2|P|.

4.3 STND-HSCC2

In this section, I provide STND-HSCC2, a faster HSCC algorithm for STNDs.
STND-HSCC1 is correct [19], but it suffers from the limitation that the projec-

tions are tested only when the SAT solver returns a complete truth value assign-
ment. Consider Figure 4.1a and assume that the SAT solver starts on the formula
ϕ = (a ∨ ¬a) ∧ (b ∨ ¬b) ∧ (c ∨ ¬c) which makes every truth value assignment pos-
sible. Suppose that in the search tree the SAT solver decides ⊥ for a proposition
d going down to the left and > going down to the right, and assume that the
default policy is going down to the left. The first truth value assignment returned
is a = ⊥, b = ⊥ and c = ⊥ (corresponding to the scenario s(a) = s(b) = s(c) = ⊥).
Now STND-HSCC1 would project Figure 4.1a onto s to obtain the STN shown in
Figure 4.1e and eventually detect the negative cycle. However, the negative cy-
cle could have been detected much earlier, say, when a was assigned ⊥. Indeed,
all projections of any scenario containing s(a) = ⊥ boil down to Figure 4.1e (no
matter which Boolean values are assigned to b and c). Therefore, a clever imple-
mentation of this algorithm calls for an early detection of negative cycles. However,
before proceeding with it, I must refine the concept of scenario and projection so
that they support “unknown” propositions (i.e., propositions that have not been
assigned a value yet).

Definition 4.3. A scenario is (now) a mapping s : P → {>,⊥,−} assigning either
true, false or unknown to each proposition d ∈ P. A scenario s satisfies a label `
if ` evaluates to true under the following interpretation given by s:
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Algorithm 7: STND-HSCC2(S, all)
Input: An STND S = 〈T ,DT ,P, O, L, C〉 and a Boolean value all meaning all

consistent scenarios iff all = >.
Output: A single or all scenarios s along with schedule(s) S for the projection

πs(S) if S is consistent, “inconsistent” if S is inconsistent.
1 ϕ←

∧
p∈P(p ∨ ¬p) . Make every assignment possible

2 Sols = ∅ . The set of (all) consistent scenarios (global variable)
3 Hook a listener to run of the SAT solver and make it detect negative cycles as

early as possible (on blocks (below) define the event-driven behavior).
4 SAT-SOLVE(ϕ)
5 if Sols = ∅ then
6 return inconsistent

7 return Sols
8 on assume d = > or assume d = ⊥: . Partial model
9 Build a scenario s from the current truth value assignment extended with

s(d) = > or s(d) = ⊥ (depending on the case)
10 〈Ts, Cs〉 ← πs(S) . Get the STN projection
11 if BellmanFord(〈Ts, Cs〉) detects a negative cycle then
12 ϕ← ϕ ∧ CYCLE-CUT(S, 〈Ts, Cs〉) . Add clause on the fly

13 on solution found: . Complete model
14 Build a scenario s from the current truth value assignment
15 〈Ts, Cs〉 ← πs(S) . Get the STN projection
16 if BellmanFord(〈Ts, Cs〉) does not detect any negative cycle then
17 Sols ← Sols ∪ {〈s, S〉} . S is a schedule for 〈Ts, Cs〉
18 if all = > then
19 ϕ← ϕ ∪ (¬s) . Exclude this consistent scenario

20 else
21 CYCLE-CUT(S, 〈Ts, Cs〉) . Cut the negative cycle

1. s |= λ iff (λ = d ∧ s(d) = >) or (λ = ¬d ∧ s(d) = ⊥),
2. s |= ` iff s |= λ1 and . . . and s |= λn for ` = λ1 . . . λn.

s never satisfies any literal whose embedded proposition d is unknown (i.e., s 6|= λ,
iff λ ∈ {d,¬d} and s(d) = −).

The definition of STN projection remains the same as that given at the
end of Definition 4.1 but extended to the new definition of scenario. As a re-
sult, Figure 4.1e now becomes a representative also for any scenario s such that
s(a) = ⊥ and s(b), s(c) ∈ {>,⊥,−}. Another example is Figure 4.1d, extending
s(c) ∈ {>,⊥} to s(c) ∈ {>,⊥,−}. Now I have everything I need to hunt down
inconsistent scenarios as early as possible.

STND-HSCC2 (Algorithm 7) is a faster algorithm to check the consistency of
STNDs. It allows for the synthesis of a single or all scenarios admitting a consistent
schedule for the corresponding STN-projection. STND-HSCC2 still initializes a CNF
formula ϕ making all truth value assignments possible. Then, it starts the SAT-
solver and hooks a listener to the corresponding run. Such a listener is able to
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operate on ϕ by adding CNF clauses on the fly if needed and is triggered by two
main events: assume and solution found.

• An assume (d = > or d = ⊥) event (Algorithm 7, lines 8-12) triggers an action
of the listener to “look ahead” if the STN-projection obtained by projecting
the STND onto the scenario built from the current truth value assignment and
extended with this assumption contains a negative cycle. If so, we extend ϕ
by adding (on the fly) a CNF clause modeling the negation of the part of s
containing a negative cycle in order to avoid getting the same scenario again.
If the projection is consistent, STND-HSCC2 does nothing and lets the run go.
• A solution found event (Algorithm 7, lines 13-21) extends the behavior of the

listener described for assume as follows. When triggered, the listener builds a
scenario from the current truth value assignment (which does not need to be
extended with anything else this time). Then, it checks if the corresponding
STN-projection contains a negative cycle. If it does not, then it computes an
(early) schedule S for the STN projected onto s and adds the pair 〈s, S〉 to the
set of solutions. Then, if all consistent scenarios are sought, a clause negating
the current consistent scenario is added to ϕ. Instead, if the projection contains
a negative cycle, then it acts as for assume events.

Eventually, when the run of the SAT solver ends, either Sols = ∅ (and thus
the starting STND is inconsistent), or Sols contains at least 1 solution (scenario-
schedule).

The complexity of STND-HSCC2 is O(|P|22|P|(|T |2+ |T ||C|+ |P|) as each call of
the SAT solver now also tests projections whenever the truth value of a new literal
is assumed. Although the complexity looks a little bit worse, the experimental
evaluation will show that STND-HSCC2 is actually a better choice overall, thanks to
its pruning technique aimed at detecting inconsistent scenarios early. If an STND
is consistent for all 2|P| scenarios, STND-HSCC1 will perform better.

4.4 Correctness

I proceed by discussing correctness of STND-HSCC1 and STND-HSCC2 and by re-
porting on the experimental evaluation that I carried out to compare STND-HSCC2
with STND-HSCC1.

Definition 4.4. A consistency algorithm (for a temporal network) is sound if
whenever it says “inconsistent”, the temporal network is really inconsistent, and
it is complete if the algorithm says “inconsistent” for each inconsistent temporal
network.

STND-HSCC1 and STND-HSCC2 are sound and complete because they are based
on a SAT-solver that allows for the iteration on all models. Whenever we add a
clause, we exclude a relevant part of a scenario that we do not want to get anymore.
The sooner, the better (STND-HSCC2).

Besides the SAT solver, all other internal sub-procedures (mostly, algorithms
for directed weighted graphs) are well known to be sound and complete, and run
in polynomial time. A possible bottleneck is, however, given by the size of the
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initial set of constraints C of the STND. In the worst case, an STND may specify
((2|T | + 1)|T |2) constraints. This happens when all time points are decision time
points (T = DT ) labeled by �, the STND graph is dense (admits |T |2 edges
X! → Y !) and each edge X! → Y ! is labeled by 2|T | + 1 labels 〈k, `〉 (the +1
considers the case ` = �), where each 〈k1, `1〉 is such that there does not exist
any (superfluous) 〈k2, `2〉 such that `2 ⇒ `1 and k1 < k2; e.g., 〈−3, a〉 is enough
to make 〈−2, ab〉 hold on the same edge.

4.5 Kappa: A Tool for STNDs

I developed Kappa, a tool for STNDs that takes in input a specification of an
STND and acts both as a solver and a solution verifier. Kappa relies on SAT4J [11],
a Java library compliant with the IPASIR interface that specifies how to interact
with a SAT solver [6].

Kappa implements both STND-HSCC1 and STND-HSCC2. I extended STND-HSCC1
so that it allows for the synthesis of all consistent scenarios as well. In this way,
I was able to carry out a more accurate experimental evaluation comparing the
two algorithms when seeking single or all consistent scenarios. Listing 4.1 shows
Kappa’s help screen.

Listing 4.1: Kappa’s help screen.
Usage: java -jar kappa.jar <Network.stnd> <Action> <Network.s> [--silent]
Action:

--hscc1 seeks a single consistent scenario (STND-HSCC1)
--hscc1-all seeks all consistent scenarios (STND-HSCC1)
--hscc2 seeks a single consistent scenario (STND-HSCC2)
--hscc2-all seeks all consistent scenarios (STND-HSCC2)
--verify verifies (all) synthesized solution(s)
--silent suppresses output (optional)

The input language of Kappa comprises the following three main sections. The
section Propositions

Propositions {
p q ... r

}

specifies the set P, here comprising of p, q, . . . , r as an example. The section
TimePoints

TimePoints {
...
(D! : d : p !q ...)
(X : : p !q ...)
...

}

specifies the sets T and DT as well as the mappings O and L, and provides here
examples of the specification of: a decision time point D! with d = O(D!) and
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L(D!) = p¬q . . . and a general time point X 6∈ DT ∪ OT with L(X) = p¬q. The
section Constraints

Constraints {
...
(X - Y <= 10 : !d)
...

}

specifies the set C and provides here an example of the specification of a constraint
(X − Y ≤ 10,¬d) ∈ C.

Listing 4.2 shows the specification of Figure 4.1a.

Listing 4.2: The specification of Figure 4.1a in the input language of Kappa.
1 Propositions {
2 a b c
3 }
4
5 TimePoints {
6 (A! : a : )
7 (B! : b : a )
8 (C! : c : a b)
9 (D : )

10 (E : )
11 }
12
13 Constraints {
14 (A - B <= -2 : a)
15 (A - D <= -5 : )
16 (A - C <= 0 : a b)
17 (E - A <= 10 : !a)
18 (E - B <= 6 : a !b)
19 (E - C <= 4 : a b !c)
20 (D - E <= -7 : )
21 (B - C <= -1 : a b)
22 (B - A <= 5 : a)
23 (C - B <= 2 : a b)
24 }

Given an STND specification file Network.stnd, we check the consistency of
the network by running one of the following:

1 $ java -jar kappa.jar Network.stnd --hscc1 Network.sol
2 $ java -jar kappa.jar Network.stnd --hscc2 Network.sol
3 $ java -jar kappa.jar Network.stnd --hscc1-all Network.sol
4 $ java -jar kappa.jar Network.stnd --hscc1-all Network.sol

where (1) seeks a single consistent scenario using STND-HSCC1, (2) does the same
using STND-HSCC2, whereas (3) and (4) seek all consistent scenarios by using
STND-HSCC1 and STND-HSCC2, respectively. If the STND is consistent, Kappa saves
to file (Network.sol) the solution(s). We verify the synthesized solution(s) by run-
ning
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$ java -jar kappa.jar Network.stnd --verify Network.sol

I ran Kappa on the STND in Figure 4.1a. I used a FreeBSD virtual machine run
on top of a VMWare ESXi Hypervisor using a physical machine equipped with an
Intel i7 2.80GHz and 20GB of RAM. The VM was assigned 16GB of RAM and full
CPU power. Kappa proved in about 274 milliseconds for --hscc1 and in about
264 milliseconds for --hscc2 that the STND in Figure 4.1a is consistent. Kappa
verified that the unique consistent scenario is s(a) = s(b) = s(c) = > whose
associated schedule is that given at the end of the second section (see Listing 4.3
as an example of use). This example is available at http://regis.di.univr.it/
ExampleSTND.tar.bz2.

Listing 4.3: Analyzing and verifying the STND in Figure 4.1a with Kappa. Z is
a special time point that must occur before any other. This is to avoid getting
schedules with negative numbers.
$ java -jar kappa.jar Example.stnd --hscc2-all Example.hscc2.all.sol
hscc2
all = true
Consistent
Saving schedules for 1 scenario(s) to
Example.hscc2.all.sol

$ java -jar kappa.jar Example.stnd --verify Example.hscc2.all.sol
Scenario: a b c
Schedule: {Z = 0, A = 0, B = 2, C = 3, D = 5, E = 12}
SAT!

I also implemented Kappa in order to carry out an automated experimental
evaluation to compare the performances of STND-HSCC1 and STND-HSCC2 when
seeking single or all consistent scenarios.

I generated 2200 STNDs partitioned in 11 sets of benchmarks each one contain-
ing 100 consistent STNDs and 100 inconsistent STNDs. Regardless of the set, each
STND has exactly 100 time points. The first set (100TimePoints/10Decisions)
specifies 10 decision time points, the second set (100TimePoints/11Decisions)
specifies 11 decision time points and so on, up to the eleventh one (100TimePoints/-
20Decisions) that specifies 20 decision time points. Each STND has a maxi-
mum number of constraints of |T | × |DT |. Time points and constraints are ran-
domly labeled so that the resulting STND is well defined. The weights on la-
beled edges range from -100 to 100. These sets of benchmarks are available at
http://regis.di.univr.it/EE_STND2018.tar.bz2.

Algorithm 8 shows the pseudo-code of the algorithm I developed to to generate
the networks.

I ran Kappa on these sets of benchmarks without imposing any timeout. I ran
it four times in order to collect data (time and space) for both STND-HSCC1 and
STND-HSCC2 when seeking a single or all consistent scenarios.

I show the graphical data in Figure 4.2, where x-axes always represent the
number (#) of decision time points (i.e., the set of benchmarks under analysis)

http://regis.di.univr.it/ExampleSTND.tar.bz2
http://regis.di.univr.it/ExampleSTND.tar.bz2
http://regis.di.univr.it/EE_STND2018.tar.bz2
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Algorithm 8: STND-Generator(n, k,m, l, u)
Input: An exact number of time points n, an exact number of decision time

points k ≤ n, a maximal number of constraints m, a lower and upper
bound for the weights l ≤ u.

Output: A well-defined STND where each proposition will label some
component.

1 Let Z ← 〈T ,DT ,P, O, L, C〉 . Empty STND
. Generate time points and related propositions

2 DT ← {Di! | 1 ≤ i ≤ k}
3 P ← {di | 1 ≤ i ≤ k}
4 O(di) = Di! for 1 ≤ i ≤ k
. Generate the rest of time points

5 T ← DT ∪ {Xi | 1 ≤ i ≤ (n− k)}
6 L(D1!) = � . One decision must be unlabeled
. Label time points as follows

7 for X ∈ T where X 6= D1! do
8 L(X) = �
9 maxLength ← Random(0, |P|) . Random length of the label

10 for i← 0 to maxLength do
11 p← Random(P) . Random proposition
12 if L(X) ∧ p ∧ L(O(p)) is consistent then
13 L(X)← L(X) ∧ p ∧ L(O(p))

. Generate constraints
14 for i← 1 to m do
15 X,Y ← two Random time points in T
16 if L(X) ∧ L(Y ) is consistent then
17 maxLength ← Random(0, |P|) . Random extension of the label
18 for j ← 0 to maxLength do
19 p← Random(P) . Random proposition
20 if L(X) ∧ L(Y ) ∧ p ∧ L(O(p)) is consistent then
21 `← L(X) ∧ L(Y ) ∧ p ∧ L(O(p))

22 k ← Random(l, u) . Random weight
23 Add (Y −X ≤ k, `) to C

. Final check
24 if Some proposition never appears in any label then
25 Throw away the network

26 return Z

and y-axes represent either the average time elapsed or space consumed when
analyzing the instances in that set.

Figure 4.2a shows the results of the analysis run on the sets of benchmarks
containing consistent STNDs when seeking a single consistent scenario. The graph
shows that STND-HSCC2 is significantly faster than STND-HSCC1 for STNDs speci-
fying more than 16 decision time points. Figure 4.2b shows the results of the same
analysis when seeking all consistent scenarios: despite a normal general worsening
of performances (all consistent scenarios are sought and not just one) STND-HSCC2
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Fig. 4.2: Experimental evaluation with Kappa.

starts begin faster than STND-HSCC1 for STNDs specifying more that 20 decisions.
Figure 4.2c shows the results of the analysis on the sets of benchmarks containing
inconsistent STNDs. STND-HSCC2 has no competitors here, whereas STND-HSCC1
starts having a serious exponential blow up for STNDs specifying more than 14
decisions. Figure 4.2d shows the average space consumed when synthesizing all
consistent scenarios. The curve grows exponentially according to the number of
decision time points (recall that STND-HSCC1 and STND-HSCC2 return the same set
of consistent scenarios in such an analysis).

Finally, I verified all synthesized solutions. No constraint was violated.

4.6 Equivalence with DTP

Disjunctive temporal problems (DTPs) allow for disjunctions of temporal con-
straints (i.e., alternatives) in a temporal problem. For example, we might want
that once an event modeled by a time point X happened, another event modeled
by a time point Y happens either after 10 (seconds, minutes, hours, . . . ), or within
5. Such a constraint would look like

(X − Y ≤ −10) ∨ (Y −X ≤ 5)
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Any assignment of real values to X and Y satisfies the constraint if it satisfies (at
least) one disjunct.

Differently from the first proposals of disjunctive temporal networks where
disjunctions of intervals were allowed on the same pairs of time points only [53],
the work I consider here is the one in [115] (originally proposed in [114]) not having
such a restriction. I refer to the formalism in that work as the disjunctive temporal
network (DTN).

Definition 4.5. A disjunctive temporal network (DTN) is a pair 〈T , C〉, where

• T is the usual finite set of time points, and
• C is a finite set of temporal constraints each one having the form

(Y1 −X1 ≤ k1) ∨ · · · ∨ (Yn −Xn ≤ kn)︸ ︷︷ ︸
n disjuncts (atoms)

where Xi, Yi ∈ T and ki ∈ R. A temporal constraint is non-disjunctive if it
contains one and only one disjunct, disjunctive otherwise.
A DTN is consistent if there exists an assignment of real values to the time
points (i) always satisfying all non-disjunctive constraints, and (ii) satisfying
at least one disjunct for each disjunctive constraint.

We write D(i) to shorten the ith disjunctive constraint and more specifically
D(i, j) to refer to the jth disjunct of the ith disjunctive constraint [115].

Since DTNs allow for the specification of disjunctions over different pairs of
time points, as a minor contribution, I graphically represent a DTN through a
colored multi graph, where black edges model non-disjunctive constraints (i.e., those
constraints that must always hold), whereas colored edges (different from black)
model disjunctive constraints (i.e., those D(i)s for which only a non-empty subset
of disjuncts must hold). Each disjunctive constraint is assigned to a different color.

To give an example, consider the following DTN whose corresponding colored
multi graph is shown in Figure 4.3a.

• T = {X,Y,W}

• C = {
must always hold︷ ︸︸ ︷

(Y −X ≤ 5), (X −W ≤ −2),

D(1)︷ ︸︸ ︷
D(1,1)︷ ︸︸ ︷

(Y −X ≤ 4),

D(1,2)︷ ︸︸ ︷
(W − Y ≤ −7),

(X − Y ≤ −2)︸ ︷︷ ︸
D(2,1)

, (Y −W ≤ 10)︸ ︷︷ ︸
D(2,2)︸ ︷︷ ︸

D(2)

}

The DTN in Figure 4.3a is consistent, the assignment X = 0, Y = 3 andW = 5
satisfies:

• all black constraints
• D(1, 1) (but not D(1, 2)) for D(1)
• D(2, 1) (and also D(2, 2)) for D(2)

I now proceed by proving that STNDs and DTNs are equivalent. I first give a
strongly polynomial time encoding from DTNs to STNDs and then the vice versa.
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Fig. 4.3: Representing and encoding DTNs into STNDs.

4.6.1 Encoding DTNs into STNDs

I encode the DTN in Figure 4.3a into the corresponding STND in Figure 4.3b as
follows.

I generate a “core” STND containing all time points and all non-disjunctive
constraints of the starting DTN and labeling them by � since all time points must
always assigned a value and all non-disjunctive constraints must always be satisfied
(black time points and constraints in Figure 4.3b).

For each disjunctive constraint D(i) in the DTN, I add to the STND as many
decision time points Dij ! as the number of disjuncts D(i, j). These decision time
points are not constrained to any other time point in the STND (i.e., free to
take any value). Any disjunct D(i, j) in the DTN appears as a constraint in the
STND labeled by dij (the proposition associated to Dij !) so that when dij = >,
the disjunct of the DTN (labeled constraint in the STND) must hold and when
dij = > we are not obliged to satisfy it. Furthermore, I must impose that at
least one disjunct D(i, j) for any disjunctive constraint D(i) must hold (otherwise,
it would be possible to disable them all by setting all dij to ⊥). I enforce this
condition by adding a negative self loop labeled by ¬dij1 . . .¬dijn on any time
point of the STND.

In Figure 4.3b I added four decision time points D11!, D12!, D21! and D21! and
the labeled constraints X → Y labeled by 〈4, d11〉, Y → W labeled by 〈−7, d12〉,
Y → X labeled by 〈−2, d21〉 and W → Y labeled by 〈10, d22〉 to switch on and
off D(1, 1), D(1, 2), D(2, 1) and D(2, 2) through the truth value assignments to
d11!, d12!, d21! and d22!. Finally, I added two negative self loops Y → Y labeled by
〈−1,¬d11¬d12〉 and 〈−1,¬d21¬d22〉 to prevent a disjunctive constraint D(i) from
being excluded. Note that the “−1” is meaningless: any negative number (e.g., −3,
−159 or −ε) is fine for this purpose. Likewise, the time point Y is meaningless
too. Any time point would be fine for this purpose (e.g., X → X labeled by the
same constraints). Negative self loops are the more intuitive way to enforce these
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conditions. However, nothing would have prevented me from creating cycles of
negative sum with respect to these labels involving many time points.

To ease reading, I colored the STND in Figure 4.3b with the same colors of the
DTN in Figure 4.3a and showed the added negative cycles in red.

This encoding is strongly polynomial. The number of time points in the STND
is the number of time points in the DTN plus as many decision time points as the
number of disjuncts in the DTN (finite number), whereas the number of constraints
in the STND is the the number of non-disjunctive constraints and disjuncts D(i, j)
in the DTN plus the number of disjunctive constraintsD(i) to model negative loops
(finite number).

Any consistent scenario in the STND says which disjuncts (at least one for
each disjunctive constraint) are satisfied for the synthesized solution. If the STND
is inconsistent, so it the DTN.

4.6.2 Encoding STNDs into DTNs

I encode the STND in Figure 4.4a into the corresponding STND in Figure 4.4b as
follows.

First of all, if the STND is not streamlined, I streamline it to get an STND
having labels on constraints only (the process for streamlining CSTNs given at the
end of Section 2.1.3 is applicable to STNDs too). Then, I generate a “core” DTN
having the same set of time points of the STND and all constraints labeled by �
in the STND as non-disjunctive constraints in the DTN.

For each proposition d (associated to a decision time point D!) in the STND,
I add to the DTN a time point d and the disjunctive constraint

(d−D! ≤ 0)︸ ︷︷ ︸
means d = ⊥

∨ (D!− d ≤ −1)︸ ︷︷ ︸
means d = >

where the former says that d “occurs within” D!, whereas the latter says that d
occurs after (minimum 1) since D! (same way of reasoning of streamlined networks
and horizons).

Now, every constraint X → Y labeled by 〈k, d¬ef . . . 〉 (in the STND) implies
the following “meta constraint” in the DTN:

(D!− d ≤ −1︸ ︷︷ ︸
d

∧ e− E! ≤ 0︸ ︷︷ ︸
¬e

∧F !− f ≤ −1︸ ︷︷ ︸
f

. . . )⇒ Y −X ≤ k

which can be rewritten as

¬(D!− d ≤ −1 ∧ e− E! ≤ 0 ∧ F !− f ≤ −1 . . . ) ∨ Y −X ≤ k

and finally simplified to

(d−D! ≤ 0)︸ ︷︷ ︸
¬d

∨ (E!− e ≤ −1)︸ ︷︷ ︸
e

∨ (f − F ! ≤ 0)︸ ︷︷ ︸
¬f

· · · ∨ (Y −X ≤ k)

Note that for any D! and d I define ¬(D! − d ≤ −1) ≡ d − D! ≤ 0 and ¬(d −
D! ≤ 0) ≡ D! − d ≤ −1 (as a consequence of the first disjunctive constraint I
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Fig. 4.4: Encoding STNDs into DTNs.

added). Therefore, for any labeled constraint in the STND I add such a disjunctive
constraint to the DTN.

In Figure 4.4b I add two time points a and b and the following constraints:

• B!−A! ≤ 10
• D(1) : (a−A! ≤ 0) ∨ (A!− a ≤ −1)
• D(2) : (b−B! ≤ 0) ∨ (B!− b ≤ −1)
• D(3) : (A!− a ≤ −1) ∨ (b−B! ≤ 0) ∨ (B!−A! ≤ 7)
• D(4) : (B!− b ≤ −1) ∨ (C −B! ≤ −5)
• D(5) : (b−B! ≤ 0) ∨ (A!− C ≤ −3)

I show the “colored” DTN graph in Figure 4.4b. Now, the DTN is consistent
if and only if the STND is so. A solution of the DTN corresponds to a consistent
scenario in the STND. The truth value assignment to the propositions in the
STND depends on the real value assignments to the time points modeling those
propositions in the DTN. For any proposition d in the STND, d is false iff in the
DTN the time point d has a value not greater than D! and d is true in the STND
iff in the DTN the value of time point d is greater than D! (the assignment to the
other time points defines a schedule consistent for the scenario).

This encoding is strongly polynomial. The number of time points in the DTN
is the same of that in the STND plus as many time points as the number of propo-
sitions in the STND, whereas the number of constraints in the DTN is given by the
number of unlabeled constraints in the STND (non-disjunctive constraints in the
DTN), plus as many disjunctive constraints as the number of labeled constraints in
the STND (whose labels are different from �). Also, for any disjunctive constraint
D(i) in the DTN, the number of disjuncts of D(i) is n+ 1 where n is the number
of literals contained in the label of the corresponding constraint in the STND and
the “+1” refers to the inequality (numeric value of the constraint).



4.7 Conclusions 71

4.7 Conclusions

I defined simple temporal networks with decisions (STNDs) and provided STND-HSCC1
and STND-HSCC2 to synthesize a single or all consistent scenarios. These novel algo-
rithms rely on a SAT solver and well-known shortest paths algorithms for directed
weighted graphs. STND-HSCC1 tests STN-projections for negative cycles by iter-
ating on complete models returned by the SAT solver, whereas STND-HSCC2 on
partial ones. If the projected STN is inconsistent, I add a clause to the SAT solver
to exclude the relevant part of that scenario, else I let the solver go. I provided
Kappa, a tool for STNDs. I also discussed how to generate random temporal
networks and carried out an experimental evaluation. In general STND-HSCC2 is a
better choice than STND-HSCC1.

STNDs are equivalent to DTNs which are a possible formalism to represent a
DTP [115]. However, STNDs offer a more compact language to model any DTP.
Also, STNDs are more compact than Labeled STNs (employed in Drake [45])
because Labeled STNs do not label nodes. Drake can make decisions anytime,
whereas STNDs can make them only upon the execution of a decision time point.
Also, STNDs employ a more structured approach and never change any constraints
during execution. STNDs differ from TPNs [79] because decisions are not modeled
as the choice of the outgoing edge from a decision node. STNDs differ from [125]
as they model a decision problem and not an optimization problem. STNDs differ
from all formalisms specifying uncontrollable parts (e.g., STNUs [104], CSTNs [75],
CSTNUs [36,74], TPNUs [90]) as all components are under control.





5

Conditional Simple Temporal Networks with
Uncertainty and Decisions

In this chapter I address fallback temporal plans. I start by discussing a current
limitation of CSTNUs that I solve in this chapter.

Figure 5.1 shows an example of CSTNU having two observation time points
P?, D? and four contingent links (A1, 1, 6, C1), (A2, 8, 12, C2), (A3, 3, 5, C3) and
(A4, 6, 10, C4). P? is the first time point to execute, whereas E is the last. If P?
assigns > to p (i.e., s(p) = >), then A2 and C2 along with the constraints labeled
by ¬p turn irrelevant as s 6|= ¬p. If P? assigns ⊥ to p (i.e., s(p) = ⊥), we will
ignore A1, C1 and all constraints labeled by p. Likewise, if D? assigns > (resp., ⊥)
to d, we will ignore A4 and C4 (resp., A3 and C3) and all constraints labeled by ¬d
(resp., d). The CSTNU in Figure 5.1 is uncontrollable. For example, assume that
each contingent time point (if relevant) takes its maximal duration. If s(p) = >
and s(d) = ⊥, then the execution sequence is

P? = 0, A1 = 1, C1 = 7, D? = 8, A4 = 9, C4 = 19, E = 20

which violates E → P? labeled by 〈−21,¬d〉 requiring that E must be executed
after 21 since P?. If s(p) = ⊥ and s(d) = >, then the execution sequence is

P? = 0, A2 = 1, C2 = 13, D? = 14, A3 = 15, C3 = 20, E = 21

which violates P?→ E labeled by 〈20, d〉 requiring that E must be executed within
20 since P?. So,

What if we could decide d?

To achieve this purpose, I extend CSTNUs by injecting decision time points. A
decision time pointD! dualizes an observation one P? as the truth value assignment
to the associated proposition is under control (recall STNDs, Chapter 4). As a
result, the controllable and uncontrollable part may now mutually influence one
another. That is, deciding some truth value may restrict (or even exclude) some
uncontrollable part and vice versa. Several interesting cases may arise depending
on if a few truth values are decided before or after having full information on how
the uncontrollable part will or have behaved. I go ahead with this discussion by
taking Figure 5.2 as an example. There, I took the initial CSTNU in Figure 5.1 and
substituted decision time points for observation ones in all possible combinations.
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Fig. 5.1: Example of uncontrollable CSTNU.

I discuss these examples by focusing on the combinations of minimal and maximal
durations of contingent links only. If it works for them, then it must work for any
other combination of durations.

1. In Figure 5.2a P ! is a decision time point. The resulting CSTNUD is uncon-
trollable. If we decide p (i.e., assign > to p), then observe ¬d (i.e., D? assigns
⊥ to d) and C1, C4 take their maximal durations, then we will have to execute
E at 20 violating (P?−E ≤ −21,¬d) as P? is executed at 0. Conversely, if we
decide ¬p, then observe d and C2 and C3 take their maximal durations, then
we will have to execute E at 21 (violating E − P? ≤ 20, d).

2. In Figure 5.2b D! is a decision time point. The resulting CSTNUD is DC.
Assume that we observe p. Regardless on what duration C1 takes, we can
only decide d. Indeed, if we decided ¬d, regardless of the duration of C4 we
would have to execute E before time 21 violating (P?−E ≤ −21,¬d). Assume
now that we observe ¬p. If C2 takes its minimal duration, d is the only good
decision. If we decided ¬d and then C4 took its minimal duration, we would
execute E at 18 violating (P?−E ≤ −21,¬d). On the contrary, if C2 takes its
maximal duration then we can only decide ¬d. If we decided d and C3 took its
maximal duration, we would have to execute E at 21 violating (E−P? ≤ 20, d).

3. In Figure 5.2c P ! and D! are both decision time points. The resulting STNUD
(i.e., a CSTNUD without the “C” meaning no observation time points) is of
course1 dynamically controllable. If we decide p, then deciding d is always
going to be fine. If we decide ¬p, then we will decide either d or ¬d depending
on how long C2 lasts. If C2 takes its minimal duration, then we will decide
d (but not ¬d since C4 could then take its minimal duration). If C2 takes its

1 If a network is DC (e.g., Figure 5.2b), then turning controllable some uncontrollable
part (e.g., Figure 5.2c) cannot worsen the situation turning the network uncontrollable
(it is like turning a ∀ into an ∃). The vice versa does not hold in general.
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(a) A decision before any uncontrollable part.
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(b) A decision after all observations and some contingent.
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(c) A decision after another decision and a contingent.

Fig. 5.2: Possible cases of the CSTNU in Figure 5.1 when substituting decision
time points for observation ones.
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maximal duration, then we will decide ¬d (but not d since if C3 could then
take its maximal duration).

Hence, decisions are dynamic.

5.1 Syntax

Definition 5.1 (CSTNUD). A Conditional Simple Temporal Network with Un-
certainty and Decisions (CSTNUD) is a tuple 〈T ,OT ,DT ,P, O, L,L, C〉, where:
1. T ,OT ,P, L,L, C are exactly the same of those given for CSTNUs (Def-

inition 2.15). Furthermore, I denote the set of contingent time points as
Contingent = {C | (A, x, y, C) ∈ L}.

2. DT ⊆ T = {D!, . . . } is a set of decision time points such that OT ∩DT = ∅.
3. O : P → DT ∪ OT is a bijection associating a unique observation or decision

time point to each proposition. If O(p) ∈ OT , then p is called observable,
whereas if O(d) ∈ DT , then d is called decidable. OP ⊆ P = {p | O(p) ∈ OT }
and DP ⊆ P = {d | O(d) ∈ DT } shorten the sets of all observable and
decidable propositions, where OP ∩ DP = ∅ (any proposition is either under
control or out of control).

A CSTNUD is well-defined if and only if well-definedness properties for the “un-
derlying” CSTNU part and STND part hold.

5.2 Semantics

I model the execution semantics of a CSTNUD as a two-player game in which
Player1 models the controller and Player2 models the environment. I employ
execution sequences [102] to model the state of the game and define players’ strate-
gies as mappings from execution sequences considered at specific time instants to
moves.

A sequence 〈x1, x2, . . . , xn〉 is a totally ordered collection of elements such that
for any pair of elements xi, xj , if i < j (resp., i > j), then it means that xi
is before (resp., after) xj . I abuse notation and write 〈x1, x2, . . . , xn〉 ∪ 〈xp〉 to
mean the appending operation resulting in 〈x1, x2, . . . , xn, xp〉 where n < p. I
write xi ∈ 〈x1, x2, . . . , xn〉 iff there exists j ∈ N, 1 ≤ j ≤ n such that xi = xj
(membership), and |〈x1, x2, . . . , xn〉| = n (cardinality). A partial schedule for a
subset of time points T ′ ⊆ T is a mapping ST ′ : T ′ → R assigning a real value to
each X ∈ T ′. A partial schedule for a subset of Boolean propositions P ′ ⊆ P is a
mapping SP′ : P ′ → {>,⊥} assigning either > or ⊥ to each p ∈ P ′. I write b for
a generic Boolean value (i.e., b ∈ {>,⊥}). I write ST ′ ∪ {ST ′(Y ) = k} to shorten
that the domain of ST ′ extends by adding time point Y such that ST ′(Y ) = k.
Similarly, I write SP′ ∪ {SP′(p) = b} for Boolean propositions.

Definition 5.2 (Instantiation sequence). An instantiation sequence is a quadru-
ple 〈E,K, SE , SK〉, where E is a finite sequence of distinct time points in T , K is
a finite sequence of distinct propositions in P, and SE, SK are partial schedules
whose domains are E and K, respectively.
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Definition 5.3 (Execution sequence). An execution sequence Z = 〈E,K, SE , SK〉
is an instantiation sequence satisfying the following properties:

• SE Monotonicity: For any pair Xi, Xj ∈ E if i < j, then SE(Xi) ≤ SE(Xj).
• Time Point Label Honesty: For each X ∈ E and each literal λ ∈ L(X)
where λ ∈ {p,¬p}, then O(p) ∈ E and O(p) is before X, p ∈ K, SK(p) = >
(if λ = p) and SK(p) = ⊥ (if λ = ¬p). Also, SE(O(p)) < SE(X) (if p ∈ OP)
and SE(O(p)) ≤ SE(X) (if p ∈ DP).

Z∗ represents the set of all execution sequences. tlast(Z) = max {SE(X) | X ∈ E}
represents the last time instant in which a time point was executed in Z. last(Z) =
{X | X ∈ E ∧ SE(X) = tlast} represents the set of the last executed time point(s).

Therefore, an execution sequence models the ordered sequence of executed time
points and assigned propositions according to the well-definedness of a CSTNUD.
As an example, consider again Figure 5.2b. Assume that we execute P? at 0 and
observe ¬p. Assume then that we execute A2 at 1 and observe C2 to occur at 13
(i.e., at its maximal duration). The execution sequence is:

Z = 〈〈P?, A2, C2〉, 〈p〉, {SE(P?) = 0, SE(A2) = 1, SE(C2) = 13}, {SK(p) = ⊥}〉

I can now compute the current partial scenario as the conjunction of all positive
and negative literals arising from all propositions in K according to SK and define
local consistency.

Definition 5.4 (Current partial scenario). Given any Z = 〈E,K, SE , SK〉,
the current partial scenario is given by a label `cps = λ1 ∧ · · · ∧ λk, where for each
pi ∈ K, λi = pi (if SK(pi) = >) and λi = ¬pi (if SK(pi) = ⊥).

For Z, `cps = ¬p since p ∈ K and SK(p) = ⊥.

Definition 5.5 (Local consistency). An execution sequence Z = 〈E,K, SE , SK〉,
is locally consistent if and only if for each (Y − X ≤ k, `) ∈ C where X,Y ∈ E
and `cps ⇒ `, SE(Y )− SE(X) ≤ k holds.

Z is locally consistent since the schedule SE satisfies (A2 − P? ≤ 1,¬p) and
(P? − A2 ≤ −1,¬p). An execution sequence evolves over time according to the
evolution of the game that Player1 (the controller) plays against Player2 (the
environment). Each player follows a strategy saying what moves to make and when.
Moreover, many moves can be made at the same time instant (provided that they
respect an order) and sometimes moves are mandatory.

Definition 5.6 (Move). A move m is either X meaning “execute time point
X” or (p, b) meaning “assign b ∈ {>,⊥} to proposition p”. A move for Player1

requires that X is a non-contingent time point and p is a decidable proposition. A
move for Player2 requires that X is a contingent time point and p is an observable
proposition. M∗1 and M∗2 represent the sets of all moves for Player1 and Player2,
respectively.
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A move-based strategy is a mapping from execution sequences considered at
particular time instants to moves augmented with a wait condition modeling the
absence of move. A strategy tells a player to make a move at a particular time
instant only if the move is applicable at that particular time. Therefore, a strategy
specifies applicability conditions saying when a move can be made, obligations
saying when a move has to be made and postconditions saying how the execution
sequence evolves accordingly.

Definition 5.7 (Move-based strategy). A move-based strategy for Player1 is
a mapping σ1 : Z∗ × R→M∗1 ∪ {wait} such that its applicability conditions are:

1. For any execution sequence Z and any time instant t, σ1(Z, t) is applicable
iff t ∼ tlast(Z), where ∼ is > if last(Z) contains a contingent time point C
or an observation time point P? such that K contains its related proposition
p (reaction time enforcement), ≥ otherwise.

2. For any execution sequence Z and any time instant t, σ1(Z, t) = X is applicable
if (1) holds and X is an unexecuted non-contingent time point such that the
current partial scenario entails L(X) (i.e., X 6∈ E ∧X 6∈ Contingent ∧ `cps ⇒
L(X)).

3. For any execution sequence Z and any time instant t, σ1(Z, t) = wait is
applicable if (1) holds and there is no obligation at time t.

The unique obligation involves decidable propositions requiring that whenever
a decision time point D! has been executed and its related proposition d has not
been assigned yet, then the strategy must issue a move to assign d a truth value
instantaneously. That is,

D! ∈ E ∧ d 6∈ K =⇒ σ1(Z, SE(D!)) = (d, b)

for any decision time point D! ∈ DT .
A move-based strategy for Player2 is a mapping σ2 : Z∗ ×R→M∗2 ∪ {wait}

such that its applicability conditions are:

1. For any execution sequence Z and any time instant t, σ2(Z, t) is applicable iff
t ≥ tlast(Z) (no reaction time enforcement needed).

2. For any execution sequence Z, any time instant t and any contingent link
(A, x, y, C) ∈ L, σ2(Z, t) = C is applicable if (1) holds, A has already been
executed, C has not, and executing C at this time satisfies C−A ∈ [x, y] (i.e.,
A ∈ E ∧ C ∈ Contingent ∧ C 6∈ E ∧ t− SE(A) ∈ [x, y]).

3. For any execution sequence Z and any time instant t, σ2(Z, t) = wait is
applicable if (1) holds and there is no obligation at time t.

Obligations are of two kinds. The first obligation involves observable proposi-
tions requiring that whenever an observation time point P? has been executed and
its related proposition p has not been assigned yet, then the strategy must issue a
move to assign p a truth value instantaneously. That is,

(P? ∈ E ∧ p 6∈ K) =⇒ σ2(Z, SE(P?)) = (p, b)

for any observation time point P? ∈ OT .
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The second obligation involves contingent links (A, x, y, C) requiring that if A
has already been executed, C has not and the current time t is the last instant at
which C can be executed, then the strategy must issue a move to execute C at t.
That is,

(A ∈ E ∧ C 6∈ E ∧ t− SE(A) = y) =⇒ σ2(Z, t) = C

for any (A, x, y, C) ∈ L and any real time instant t ∈ R.
Postconditions for both σ1 and σ2 are the same. If the strategy tells the player

to execute a time point X at time t, then Z updates by appending X to E and
extending SE such that SE(X) = t. If the strategy tells the player to assign the truth
value b to the proposition p, then Z updates by appending p to K and extending
SK such that SK(p) = b. In symbols:

• If σi(Z, t) = X, then Post(Z, σi, t) = 〈E ∪ 〈X〉,K, SE ∪ {SE(X) = t}, SK〉
• If σi(Z, t) = (p, b), then Post(Z, σi, t) = 〈E,K ∪ 〈p〉, SE , SK ∪ {SK(p) = b}〉

Getting back to our example we have that tlast(Z) = 13 and last(Z) = {C2}.
Suppose that current time is t = 14. σ1(Z, 14) = D! is applicable since t > tlast
and D! has not been executed yet, whereas σ1(Z, 14) = (d,>) is not since D! 6∈ E.
If σ1(Z, 14) = D! is taken into consideration (i.e., Z ′ = Post(Z, σ1, t)), then
σ1(Z

′, 14) = (d,>) instantaneously after.

I model Player2 as the most powerful player possible. If Player1 can beat this
(worst-case of) environment, then Player1 must be able to beat any other less
powerful environment playing the same game. To achieve this purpose I model
the game in turns. That is, at any time instant t, there exist two turns: T1(t)
(occurring first) and T2(t) (occurring last). Player1 makes his moves in T1(t),
whereas Player2 makes his in T2(t). If player i does not make any move in Ti(t),
then he loses forever the possibility to play at time t. As a result, Player2, making
his moves in T2(t), is guaranteed to always have full information on what Player1
has done in T1(t) (worst-case scenario). In what remains of this section I define the
concept of snapshot modeling an execution sequence at a particular time instant t
(after the players are done in T1(t) and T2(t)), continuous game evolution modeling
how the execution sequence evolves and winning conditions for each player.

Definition 5.8 (Snapshot). Let Z = 〈E,K, SE , SK〉 be any execution sequence.
Z(t) = 〈E′,K ′, S′E , S′K〉 models the snapshot of Z at time t, where

• E′ = 〈X | X ∈ E ∧ SE(X) ≤ t〉2
• K ′ = 〈p | p ∈ K ∧O(p) ∈ E′〉
• ∀X ∈ E′, S′E(X) = SE(X)
• ∀p ∈ K ′, S′K(p) = SK(p)

To give an example, let me get back to the execution sequence I have discussed
before. At t = 11,

Z(11) = 〈〈P?, A2〉, 〈p〉, {SE(P?) = 0, SE(A2) = 1}, {SK(p) = ⊥}〉

2 That is, E′ is the subsequence of E up to time point Xi where SE(Xi) ≤ t′ (sequence
comprehension).
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Definition 5.9 (Continuous game evolution). Let t ∈ R≥0 be the global time.
The continuous game evolution is modeled by an infinite sequence of snapshots
Z(t) defined as:

Z(t) =

{
T2(T1(〈∅, ∅, ∅, ∅〉, t), t) if t = 0

T2(T1(Z(t− ε), t), t) if t > 0

Ti(Z, t) =

{
Z if σi(Z, t) = wait

Ti(Post(Z, σi, t), t) otherwise

where Ti(t) models the evolution of Z during turn i at time t according to σi,
whereas an (arbitrary small) ε > 0 models the reaction time.

Definition 5.10 (Winning conditions). Player1 wins the game if and only
if the game evolution leads to a snapshot Z(t) such that for each unexecuted time
point X, `cps falsifies L(X) and for each constraints (Y −X ≤ k, `) where X,Y ∈ E
and `cps ⇒ `, SE(Y )−SE(X) ≤ k holds. Player2 wins otherwise. σi is a winning
strategy if player i wins the game by following σi.

Definition 5.11 (Dynamic controllability). A CSTNUD is dynamically con-
trollable if Player1 has a winning strategy such that for any t > 0 and any pair
of execution sequences Z1, Z2,

If σ2(Z1, t
′) = σ2(Z2, t

′) for 0 ≤ t′ < t, then σ1(Z1, t) = σ1(Z2, t)

In other words, whenever Player2 has made the same sequence of moves up
to time t− ε, then Player1 will make the same move(s) at time t.

5.3 Dynamic Controllability of CSTNUDs via TGAs

In this section I extend and optimize the encoding from CSTNUs into TGAs given
in Section 2.2.2.

5.3.1 Extension

Consider, as an example, Figure 5.3 depicting the encoding of the CSTNUD in
Figure 5.2b. Once again, there are three core locations but this time I borrow a
few names from Section 2.2.2 and rename them to T1 (ex L1), T2 (ex L0) and win
(ex goal). T1 and T2 model the two turns T1(t) and T2(t) when global time is > 0.
T2 is the initial location. The winning path is computed in the same way, only
renaming each L`i to w`i . gain and pass regulate the turns at any time instant t.
I still have a clock cX for each X ∈ T (considering decision time points too) and
a clock bP for each p ∈ P (considering decidable propositions too).

Let me now discuss how to model the truth value assignment to the decidable
propositions. Dually to observable propositions, for each decidable proposition
d ∈ DP, I generate an uncontrollable self-loop transition 〈T1, cD < ĉ ∧ cD =
0 ∧ bD = ĉ, dFalse, {bD}, T1〉 at T1. If we take this transition, it means that we
decide ¬d. If we don’t take it, it means that we decide (actually confirm) d. In
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the former case, such a transition has to be taken at the same instant at which D!
was executed but instantaneously after ExD was taken. In this way, I model “how”
to decide the truth values of the propositions in DP. All other transitions remain
the same as those given for CSTNUs.

5.3.2 Optimizations

I have discussed the main extension of the encoding that concerns how to make
decisions in our temporal plan. That is, how to assign truth values to the decidable
propositions upon the execution of decision time points. Let me now optimize
this whole encoding. I refine the guard of each uncontrollable self-loop at T1 by
exploiting what I know of the CSTNUD. That is, I extend the guards so that they
enforce time point label honesty as well as the partial order among the time points
when not ambiguous. I first discussed in this optimization in [40] but there I dealt
with disjunctive constraints and exploited internal data structures provided by the
UPPAAL-TIGA software. Here, I propose a more formal definition avoiding such
data structures. Moreover, in [40] I did not address decisions.

As an example of this optimization, consider time points A1 and A4 of the
CSTNUD in Figure 5.2b. L(A1) = p and L(A4) = ¬d. Recall that the encoding
models p and d as two dedicated clocks bP and bD such that if one of these clocks is
equal to (resp., less than) ĉ, once its related observation or decision time point has
been executed, then the related proposition is > (resp., ⊥). Moreover, time point
label honesty also requires that P? − A1 ≤ −ε (observations) and D! − A4 ≤ 0
(decisions).

Therefore, considering the time point label honesty property for CSTNUDs, it
is possible to extend the guards of ExA1 and ExA4 by appending bP = ĉ ∧ cP <
ĉ∧ cP > 0 and bD < ĉ∧ cD < ĉ∧ cD ≥ 0, respectively. The former models the fact
that A1 must be executed if only if p = > (i.e., bP = ĉ), which also implies that
A1 must be executed after P? (i.e., P? has been executed (cP < ĉ)) and a positive
amount of time ε has elapsed (cP > 0). The latter models the fact that A4 must
be executed if only if d = ⊥ (i.e., bD < ĉ), which also implies that A4 must be
executed after D! (i.e., D! has been executed (cD < ĉ)) either instantaneously or
after a positive amount of time has elapsed (cD ≥ 0).

Definition 5.12 (Encoding time point label honesty). A label encoder is a
mapping Lenc : T → H(X ) translating the label of a time point into the equiva-
lent clock constraint Lenc(X) = LOPenc(X)∧LDPenc(X), where LOPenc(X) and LDPenc(X)
encode all literals containing observable and decidable propositions, respectively:

• LOPenc(X) :
∧
p∈L(X)(bP = ĉ∧cP < ĉ∧cP > 0)

∧
¬q∈L(X)(bQ < ĉ∧cQ < ĉ∧cQ >

0).
• LDPenc(X) :

∧
d∈L(X)(bD = ĉ∧cD < ĉ∧cD ≥ 0)

∧
¬f∈L(X)(bF < ĉ∧cF < ĉ∧cF ≥

0). �

I now focus on constraints. Consider the pair of constraints P?→ A1, A1 → P?
labeled by 〈1, p〉 and 〈−1, p〉, respectively in the CSTNUD that I am discussing.
Such constraints say that A1 must be executed after 1 and within 1 since P? (thus,
exactly after 1 since P?). These constraints also have an important characteris-
tic: L(A1) coincides with the label of the constraints. Therefore, whenever A1 is
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ĉ
∧
b
P
=

ĉ
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ĉ
∧
c
C
1
=

ĉ
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ĉ
∧
c
A
3
>

5
,failC

3
,∅〉

〈c
A
4
<

ĉ
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ĉ
∧
c
P
−

c
A
1
=

1∧
c
C
1
−

c
D
=

1
,sat

p ,∅〉

〈c
P
=

ĉ
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executed, the constraints must hold. Thus, I extend the original guard of ExA1
(formerly cA1 = ĉ) to cA1 = ĉ ∧ cP < ĉ ∧ cP = 1, where the new conjuncts say
that P? has already been executed (cP < ĉ) and A1 − P? ∈ [1, 1] (cP = 1). More
formally:

Definition 5.13 (Encoding predecessors). Given a CSTNUD, a predecessor
of a time point Y ∈ T is a time point X ∈ T such that there exists a constraint
(X − Y ≤ −x, L(Y )) ∈ C where x > 0. Π : T → 2T returns the predecessors
of a given time point and it is formalized as Π(Y ) = {X | (X − Y ≤ −x, `) ∈
C ∧ x > 0 ∧ ` = L(Y )}. A predecessor encoder is a mapping Πenc : T → H(X )
translating each X ∈ Π(Y ) (along with its temporal bounds) into an equivalent
clock constraint as follows: Πenc(Y ) =

∧
X∈Π(Y ) cX < ĉ ∧ cX ≥ x ∧ cX ≤ y, where

cX ≥ x models (X − Y ≤ −x, L(Y )) and cX ≤ y models (Y − X ≤ y, L(Y )) (if
any). �

Therefore, for each non-contingent time point X, the guard of ExX becomes
cX = ĉ ∧ Lenc(X) ∧Πenc(X).

5.3.3 An optimized encoding for checking DC of CSTNUDs

Let me now join my extension and optimizations to define the full encoding.

Definition 5.14. Encoding CSTNUDs into TGAs is achieved by extending and
optimizing the encoding for CSTNUs discussed in Section 2.2.2 to:

1. model transitions to operate on decidable propositions (Section 5.3.1),
2. enforce time point label honesty in the transition guards (Definition 5.12 in

Section 5.3.2), and
3. enforce predecessors in the transition guards (Definition 5.13 in Section 5.3.2).

I point out that (1) serves to adapt the encoding to CSTNUDs, whereas (2)
and (3) are optimizations to boost the model checking phase (therefore, they are
also applicable to the old encoding for CSTNUs).

5.4 Correctness and Complexity of the Encoding

In this section, I prove the correctness and discuss the complexity of the encoding
provided in Definition 5.14 in Section 5.3.

A controllability algorithm for a temporal network is sound if whenever the
algorithm says “uncontrollable”, the temporal network is really uncontrollable and
it is complete if the algorithm says “uncontrollable” for each uncontrollable tem-
poral network (e.g., see [75]). A controllability algorithm is correct if it is sound
and complete.

Theorem 5.1. Encoding CSTNUDs into TGAs according to Definition 5.14 is
correct.
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Proof. To prove that, I start by showing that the encoding in Section 5.3 correctly
models the move-based semantics given in Section 5.2. A state of the TGA is given
by a pair (L,~c), where L is a locations and ~c represents the values of all clocks.
The state of a CSTNUD during execution is given by its execution sequence Z.
I show that the game interplay correctly models the continuous game evolution
given in Definition 5.9 for all t > 0. I exclude the case for t = 0, so Player1 does
not play in T1(0) and Player2 does not play in T2(0) either.

(Invariant) At any instant t > 0 the snapshot Z(t) = 〈E,K, SE , SK〉 corre-
sponds to a state of the TGA (L,~c) in which L = T2 and ~c is as follows: ĉ = t,
cδ = 0, for each X ∈ T , cX < ĉ and ĉ− cX = k (if X ∈ E ∧ SE(X) = k), cX = ĉ

otherwise. For each p ∈ P, cP < ĉ ∧ bP = ĉ (if p ∈ K and SK(p) = >) and
cP < ĉ ∧ bP < ĉ (if p ∈ K and SK(p) = >), cP = bP = ĉ otherwise. Finally,
Player2 has finished taking controllable transitions at t.

When t = 0 (i.e., ĉ = 0) Player2 cannot play in T2 as no controllable transition
is enabled. Player1 cannot play either because the current location is not T1 and
he can only get there after a positive amount of time has elapsed. Therefore, at
t = 0, Z(0) = 〈∅, ∅, ∅, ∅〉.

When t > 0 (i.e., ĉ > 0) both Player1 and Player2 can play in their respective
turns T1(t) and T2(t). Player1 can take gain to enter T1 at time t. Player2
cannot prevent him from doing so because gain, being urgent, has priority over
any other controllable transition that Player2 could take at that time. So, Player1
plays first. Once entered T1, Player1 can take (in general) a non-empty sequence
of transitions to execute a few non contingent time points and decide the truth
values of some decidable propositions (if he has executed some decision time points
instantaneously before). Such a sequence is finite since there is a finite number of
time points to execute and a finite number of decidable propositions to assign (one
for each decision time point). Furthermore, each time point (resp., proposition) can
be executed (resp., assigned a value) only once. When this sequence of transitions
is over, Player1 ends his turn by taking pass to lead the run back to T2. Since
T1 is urgent, time has not elapsed. Therefore, the sequence of transitions taken
at T1 corresponds to the sequence of moves made by Player1 in T1(t). Instead, if
Player1 wants to wait at time t, he can either take gain and pass immediately
after or just avoid taking gain. Now, at T2, Player2 does the same for contingent
time points and observable propositions if some observation time points have been
executed by Player1 in T1(t). When Player2 is done, the sequence of transitions
taken, models the sequence of moves made in T2(t). Since Player2 does not make
any other move in T2(t), Z(t) no longer changes.

Player1 and Player2 are driven by their strategies σ1 and σ2 which say what
moves to make (i.e., transitions to take) in T1(t) and T2(t) (i.e., locations T1 and
T2) at any time t depending on the current Z. The purpose of σ1 is to keep Z(t)
locally consistent, whereas that of σ2 is the opposite.

The strategies also satisfy their applicability conditions as Player1 can make
his moves in T1(t) according to σ1 iff Player2 has not played yet in T2(t), whereas
Player2 can make his moves in T2(t) according to σ2 if and only if either Player1
has not played in T1(t) or Player2 is not done in T2(t). I have already proved that
for any t > 0, Player1 plays first.
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The strategies satisfy their obligations as each time Player1 executes a decision
time point D!, he also assigns the associated decidable proposition d a truth value
as well. This occurs at the same time but instantaneously after the execution of
D!. Player1 assigns > to d by not taking dFalse and assigns ⊥ to d by taking
pFalse. If Player1 takes the transition, then he will never be able to take it again
in the same or following turns (as the guard of pFalse invalidates). If he does not,
then he will never be able to take dFalse in any T1(t

′) where t′ > t. Likewise,
σ2 satisfies its similar obligation for observable propositions. Furthermore, σ2 also
satisfies the obligation regarding contingent time points as the encoding generates a
failC transition for each contingent time point C (belonging to a (A, x, y, C) ∈ L)
allowing Player1 to move to win if Player2 does not take ExC within its maximum
upper bound y. Since Player2 wants to prevent Player1 from getting to win, σ2
is obliged to schedule C such that C −A ∈ [x, y].

Both σ1 and σ2 satisfy their postconditions: the reset of cX clocks says when
the time points were executed, whereas the values of bP clocks say what truth
values the propositions have been assigned. Finally, winning conditions are mod-
eled differently with respect to the player. For Player1 they are abstracted as a
winning path checking that all time points and constraints whose labels are not fal-
sified by `cps have been executed and satisfied, respectively. For Player2 winning
conditions correspond to schedule a contingent time point at a particular time or
decide a truth value for an observable propositions (or any combination of these
moves) such that Player1 is unable to satisfy at least one constraint and ends up
blocked somewhere while going through the winning path before entering win.

Theorem 5.2. Any CSTNUD can be encoded into a TGA in polynomial time
(with respect to the size of the network).

Proof. Let S = 〈T ,OT ,DT ,P, O, L,L, C〉 be any CSTNUD, let Labels = {L(X) |
X ∈ T } ∪ {` | (Y −X ≤ k, `) ∈ C} be the set of different labels in the CSTNUD
and let length : P∗ → N be the mapping returning the length of a label (i.e., the
number of literals), where

length(`) =

{
0 if ` = �
n if ` = λ1 ∧ · · · ∧ λn)

The encoding generates 3+ |Labels|−1 locations: T1, T2, win and (|Labels|−1)
w`i . Thus

Locations(S) = O(|Labels|)

The encoding also generates a polynomial number of transitions: 2 transitions
for the game interplay (gain and pass), 2 transitions for each observation time
point P? (ExP? and pFalse), 2 transitions for each decision time point D! (ExD
and dFalse), 2 transitions for each contingent time point C (ExC and failC), 1
transition for each remaining non-contingent time point X (ExX) and w transitions
going from T2 to win (winning path). Since the number of different labels is fixed
in the CSTNUD in input, I am left to prove that each set of transitions connecting
w`i−1

to w`i is polynomial in the label `i = λ1 ∧ . . . λn. The encoding generates a
set of 1 + 2 × length(`i) transitions: 1 sat verifying that all time points labeled
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STN

STND CSTN

CSTND

STNU

STNUD

CSTNU

CSTNUD

Fig. 5.4: A hierarchy of simple temporal networks. An arrow A → B means that
formalismB embeds formalism A. I highlight new (sub)formalisms as grayed boxes.

by `i have been executed and all constraints labeled by `i are satisfied, and 2 ×
length(`i) skip transitions (for each λ ∈ `i there is a skip transition testing that
the related observation or decision time point has not been executed and another
skip transition testing if the literal does not hold (i.e., if ¬λi holds). Therefore,
w = 1 +

∑
`∈Labels\{�}(1 + 2 × length(`)), and consequently the total number of

transitions is

Transitions(S) = 2 + |P|+ |T |+ |Contingent |+ w = O(|P|+ |T |+ |Labels|)

Furthermore, the encoders to enforce time point label honesty and the partial order
of time points run in polynomial time too. Indeed, for any non-contingent time
pointX, Lenc(X) scans all literals in L(X) once, andΠenc(X) scans all constraints
in C once. Therefore, even though a CSTNUD can express an exponential number
of constraints (worst case O(2n) labeled constraints where n = |P|), the function
Locations(S) + Transitions(S) does not employ any component of the CSTNUD
as an exponent. A more precise statement is that this encoding is linear in the
size of the CSTNUD given in input.

5.5 Expressiveness of CSTNUDs

In this section, I discuss the expressiveness of CSTNUDs by providing a hierarchy
of simple temporal networks (three of which are new) and showing that all other
subformalisms can be embedded into CSTNUDs. Figure 5.4 shows the hierarchy,
where an edge A → B means that formalism B embeds formalism A (e.g., STN
→ CSTN means that CSTNs can embed STNs).

Defining CSTNUDs as an extension of CSTNUs implicitly results in also defin-
ing three new kinds of networks:
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1. Simple temporal networks with decisions (STNDs), where the bottom formal-
ism STN is augmented with decisions (Chapter 4).

2. Simple temporal networks with uncertainty and decisions (STNUDs), where
STNUs are augmented with decisions.

3. Conditional simple temporal networks with decisions (CSTNDs), where CSTNs
are augmented with decisions.

I now discuss the straightforward encodings from STNs, STNUs, CSTNs,
STNDs, STNUDs, CSTNDs and CSTNUs into CSTNUDs.

5.5.1 Encoding STNs into CSTNUDs

I encode an STN 〈T , C〉 (Section 2.1.1) into a CSTNUD 〈T ′,OT ′,DT ′,P ′, O′, L′,L′, C′〉
as follows:

1. T ′ = T .
2. OT ′ = DT ′ = P ′ = L′ = ∅.
3. O is undefined.
4. L′(X) = � for each X ∈ T .
5. C′ = {(Y −X ≤ k,�) | (Y −X ≤ k) ∈ C}.

5.5.2 Encoding STNUs into CSTNUDs

I encode an STNU 〈T ,L, C〉 (Section 2.1.2) into a CSTNUD 〈T ′,OT ′,DT ′,P ′, O′, L′,L′, C′〉
as follows:

1. T ′ = T .
2. OT ′ = DT ′ = P ′ = ∅.
3. L′ = L.
4. O is undefined.
5. L′(X) = � for each X ∈ T .
6. C′ = {(Y −X ≤ k,�) | (Y −X ≤ k) ∈ C}.

5.5.3 Encoding CSTNs into CSTNUDs

I encode a CSTN 〈T ,OT ,P, O, L, C〉 (Section 2.1.3) into a CSTNUD 〈T ′,OT ′,DT ′,P ′, O′, L′,L′, C′〉
as follows:

1. T ′ = T .
2. OT ′ = OT .
3. P ′ = P.
4. DT ′ = L′ = ∅.
5. O′ = O.
6. L′(X) = L(X) for each X ∈ T .
7. C′ = C.
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5.5.4 Encoding STNDs into CSTNUDs

I encode an STND 〈T ,DT ,P, O, L, C〉 (Chapter 4) into a CSTNUD 〈T ′,OT ′,DT ′,P ′, O′, L′,L′, C′〉
as follows:

1. T ′ = T .
2. DT ′ = DT .
3. P ′ = P.
4. OT ′ = L′ = ∅.
5. O′ = O.
6. L′(X) = L(X) for each X ∈ T .
7. C′ = C.

5.5.5 Encoding STNUDs into CSTNUDs

A Simple Temporal Network with Uncertainty and Decisions (STNUD, [126]) is
a tuple 〈T ,DT ,P, O, L,L, C〉, where T is a set of time points, DT ⊆ T is a set
of decision time points, P is a set of decidable propositions, O : P → DT is a
bijection assigning a unique decision time point to each proposition, L is a set
of contingent links and C is a set of labeled constraints. I encode an STNUD
〈T ,DT ,P, O, L,L, C〉 into a CSTNUD 〈T ′,OT ′,DT ′,P ′, O′, L′,L′, C′〉 as follows:

1. T ′ = T .
2. DT ′ = DT .
3. P ′ = P.
4. OT ′ = ∅.
5. L′ = L.
6. O′ = O.
7. L′(X) = L(X) for each X ∈ T .
8. C′ = C.

5.5.6 Encoding CSTNDs into CSTNUDs

A Conditional Simple Temporal Network with Decisions (CSTND, [19, 126]) is a
tuple 〈T ,OT ,DT ,P, O, L, C〉, where T is a set of time points, OT ⊆ T is a set
of observation time points, DT ⊆ T is a set of decision time points, P is a set of
decidable and observable propositions, O : P → DT ∪ OT is a bijection assigning
a unique decision or observation time point to each proposition and C is a set of
labeled constraints. I encode a CSTND 〈T ,OT ,DT ,P, O, L, C〉 into a CSTNUD
〈T ′,OT ′,DT ′,P ′, O′, L′,L′, C′〉 as follows:

1. T ′ = T .
2. OT ′ = OT .
3. DT ′ = DT .
4. P ′ = P.
5. O′ = O.
6. L′(X) = L(X) for each X ∈ T .
7. L′ = ∅.
8. C′ = C.
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5.5.7 Encoding CSTNUs into CSTNUDs

I encode a CSTNU 〈T ,OT ,P, O, L,L, C〉 (Section 2.1.4) into a CSTNUDs
〈T ′,OT ′,DT ′,P ′, O′, L′,L′, C′〉 as follows:

1. T ′ = T .
2. OT ′ = OT .
3. DT ′ = ∅.
4. P ′ = P.
5. O′ = O.
6. L′(X) = L(X) for each X ∈ T .
7. L′ = L.
8. C′ = C.

Similar encodings apply between all other formalisms A → B in Figure 5.4
(e.g., [74] shows how to encode STNs, CSTNs and STNUs into CSTNUs).

5.6 Esse: A Tool for CSTNUDs

I developed Esse, a tool for CSTNUDs that takes in input the specification of a
CSTNUD and acts both as a solver for dynamic controllability and as an executor
simulator. Esse is available at http://regis.di.univr.it/Esse.tar.bz2 along
with the case studies discussed in this thesis and the set of benchmarks used in [126]
containing 1000 randomly generated CSTNUDs. Esse is a software that completely
supersedes the first prototype provided in [126], although, for comparison purposes,
I also compiled a different version of Esse implementing the old UPPAAL-TIGA
encoding.3

Esse relies on UPPAAL-TIGA for the model checking phase, but it differs from
the previous prototype for two main reasons. First, it makes the interaction with
UPPAAL-TIGA transparent. I no longer need to run UPPAAL-TIGA manually as
Esse handles it internally. Second, the new UPPAAL-TIGA encoding is optimized
by exploiting Boolean variables (instead of clocks) to model propositions and or-
ganizing all clocks in array data structures. These two modifications result in the
model checking phase performing better and Esse becoming usable also for de-
signers with little or no knowledge on TGAs. Listing 5.1 shows Esse’s help screen.

Listing 5.1: Esse’s help screen.
Usage: java -jar esse.jar <Network.cstnud> <Action> dynamic <Network.s> [N]

[--silent]

<Action>:
--check internally encodes the CTSNUD in input into an UPPAAL-TIGA

specification ready to check dynamic controllability (saves
the strategy to Network.s)

3 Due to a few coding issues, it was not possible to use directly the old prototype in
the environment that I set up for the experimental evaluation. In order to make the
comparison I compiled a different version of Esse supporting the old approach.

http://regis.di.univr.it/Esse.tar.bz2
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--execute performs [N] (default 1) executions of the CSTNUD in input
(if controllable) according to the strategy (.s) synthesized
by UPPAAL-TIGA.

--silent suppresses output (optional)

Examples:
java -jar esse.jar Network.cstnud --check dynamic Network.s
java -jar esse.jar Network.cstnud --execute dynamic Network.s 10

The input language of Esse extends that of Kappa by also allowing for the
specification of observation time points (? identifier instead of ! in the TimePoint
section) and contingent links. The section TimePoints

TimePoints {
...
(D! : d : p !q ...)
(P? : p : !q ...)
(X : : p !q ...)
...

}

specifies the sets T , OT and DT as well as the mappings O and L, and provides
here examples of the specification of: a decision time point D! with d = O(D!)
and L(D!) = p¬q . . . , an observation time point P? with p = O(P?) and L(D!) =
¬q . . . (note the substitution of ? for !), and a general time point X 6∈ DT ∪ OT
with L(X) = p¬q. The section ContingentLinks

ContingentLinks {
...
(A1,10,20,C1)
...

}

specifies the set L and provides here an example of the specification of a contingent
link (A1, 10, 20, C1) ∈ L. All other sections remain the same.

Listing 5.2 shows the specification of Figure 5.2b into Esse’s input language.
I omit the specifications of Figure 5.2a and Figure 5.2c as they are very similar
(the only things that change are the suffixes ! and ? for P and D depending on the
case).

Listing 5.2: Specification of Figure 5.2b.
1 Propositions {
2 d p
3 }
4
5 TimePoints {
6 (P? : p : )
7 (A1 : p)
8 (C1 : p)
9 (A2 : !p)
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10 (C2 : !p)
11 (D! : d : )
12 (A3 : d)
13 (C3 : d)
14 (A4 : !d)
15 (C4 : !d)
16 (E : )
17 }
18
19 ContingentLinks {
20 (A1,1,6,C1)
21 (A2,8,12,C2)
22 (A3,3,5,C3)
23 (A4,6,10,C4)
24 }
25
26 Constraints {
27 (A1 - P <= 1 : p)
28 (P - A1 <= -1 : p)
29 (A2 - P <= 1 : !p)
30 (P - A2 <= -1 : !p)
31 (D - C1 <= 1 : p)
32 (C1 - D <= -1 : p)
33 (D - C2 <= 1 : !p)
34 (C2 - D <= -1 : !p)
35 (A3 - D <= 1 : d)
36 (D - A3 <= -1 : d)
37 (A4 - D <= 1 : !d)
38 (D - A4 <= -1 : !d)
39 (E - C3 <= 1 : d)
40 (C3 - E <= -1 : d)
41 (E - C4 <= 1 : !d)
42 (C4 - E <= -1 : !d)
43 (E - P <= 20 : d)
44 (P - E <= -21 : !d)
45 }

Given a specification of a CSTNUD, we can check the CSTNUD’s dynamic
controllability and then carry out N execution simulations (if DC) by running

$ java -jar esse.jar Network.cstnud --check dynamic Network.s
$ java -jar esse.jar Network.cstnud --execute dynamic Network.s N

I ran Esse on the specifications of Figure 5.2a, Figure 5.2b and Figure 5.2c
to check whether or not they were dynamically controllable. I used a Linux vir-
tual machine run on top of a VMWare ESXi hypervisor using a physical machine
equipped with an Intel i7 2.80GHz and 20GB of RAM for the experimental evalu-
ation. The VM was assigned full CPU power and 16GB of RAM (which is plenty,
since UPPAAL-TIGA is provided for 32bit architectures). For Figure 5.2a the anal-
ysis took 3.85 seconds answering Uncontrollable, for Figure 5.2b the analysis
took 3.23 seconds answering Controllable and saving a 119-action strategy for
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Player1 of 268KB, and for Figure 5.2c the analysis took 3.05 seconds answering
Controllable and saving a 92-action strategy for Player1 of 196KB, as shown in
Listing 5.3.

Listing 5.3: Example of DC-checking for Figure 5.2a, Figure 5.2b and Figure 5.2c.
$ java -jar esse.jar A.cstnud --check dynamic A.s
Checking A.cstnud with UPPAAL-TIGA
Running UPPAAL-TIGA ...
Uncontrollable (strategy for Player2 exists)

$ java -jar esse.jar B.cstnud --check dynamic B.s
Checking B.cstnud with UPPAAL-TIGA
Running UPPAAL-TIGA ...
Saving a 119-action strategy to B.s

$ java -jar esse.jar C.cstnud --check dynamic C.s
Checking C.cstnud with UPPAAL-TIGA
Running UPPAAL-TIGA ...
Saving a 92-action strategy to C.s

The same analyses would have taken 2 minutes for Figure 5.2a and about 2
minutes 21 seconds for both Figure 5.2b and Figure 5.2c using the old UPPAAL-
TIGA encoding.4 Therefore, Esse carried out the analysis 31.16 times faster on
Figure 5.2a, 43.65 times faster on Figure 5.2b and 46.53 times faster on Figure 5.2c.
Finally, I executed the latter two controllable cases. The simulator correctly sched-
uled all non-contingent time points satisfying all constraints. Listing 5.4 shows
three random executions for Figure 5.2b:

Listing 5.4: Three random executions for Figure 5.2b
$ java -jar esse.jar B.cstnud --execute dynamic B.s 3
P = 0.1
p = true
A1 = 1.1
C1 = 4.0
D = 5.0
d = true
A3 = 6.0
C3 = 9.1
E = 10.1
Verifying ... SAT!

P = 0.1
p = false
A2 = 1.1
C2 = 9.3

4 Moreover, I noted that the performance of the model checking phase also depends on
the order of the statements (clocks in particular) in the UPPAAL-TIGA specification.
Two specifications defining the same clocks in different orders might perform differ-
ently. That is why the times for Figure 5.2a, Figure 5.2b and Figure 5.2c in this thesis
differ from those given in [126] when using Esse compiled for the old encoding.
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D = 10.3
d = true
A3 = 11.3
C3 = 14.7
E = 15.7
Verifying ... SAT!

P = 0.1
p = false
A2 = 1.1
C2 = 13.1
D = 14.1
d = false
A4 = 15.1
C4 = 23.2
E = 24.2
Verifying ... SAT!

In the first execution Player1 observes p and C1 = 4, and therefore decides d.
In the second execution Player1 observes ¬p and C2 = 9.3, and therefore decides
d. In the third execution Player1 observes ¬p and C2 = 13.1, and therefore decides
¬d.

The development of Esse allowed me to carry out again the experimental eval-
uation discussed in [126] and verify performance improvements. When I generated
that set of benchmarks for [126] I did not enforce any particular distribution of
CSTNUDs for which the analysis outputs consistent, inconsistent or timeout nor
did I fix any particular number for any component (e.g., 100 time points as I dis-
cussed in Section 4.5). Each CSTNUD in that set has 5 to 20 time points, max
b |T |5 c contingent links, max b |T |5 c observation time points, max b |T |5 c decision time
points, a number of constraints obtained as the floor of 5 to 10% of |T |2− 2× |L|.
The CSTNUDs were generated by trying to maximize these numbers which looked
a good setting to avoid both under-constrained and over-constrained networks (re-
sulting in a concrete chance of getting both controllable and uncontrollable CST-
NUDs). Algorithm 9 shows the pseudo code of the generator, which was embedded
in the first prototype in [126] and used to generate the set of benchmarks.

I ran the analysis on this set, always following the same order, by imposing a
time out of 900 seconds on each instance. I show the graphical data in Figure 5.5,
where x-axes represent the number (#) of analyzed instances, whereas y-axes
represent either the overall time elapsed or space consumed. The analysis proved
that 326 networks were DC and 27 non-DC. The remaining networks reached
the timeout limit. I executed each CSTNUD proved dynamically controllable 1000
times by randomly assigning truth values to observable propositions and durations
to contingent links. No execution crashed.

Figure 5.5a shows the DC-checking on the whole set of benchmarks com-
paring the performances of Esse with those of the old experimental evaluation
in [126]. Figure 5.5b shows the space consumed by the strategies related to those
CSTNUDs proved dynamically controllable. The strategies synthesized by Esse
take more disk space than those synthesized by UPPAAL-TIGA (average space of
Esse’s is 912.63KB, average space of UPPAAL-TIGA’s is 351.83KB). This is be-
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Algorithm 9: CSTNUD-Gen(nTPs,maxObs,maxDec,maxCL,maxConstr)

Input: The number of time points (nTPs), the maximum number of observation time points
(maxObs), the maximum number of decision time points (maxDec), the maximum
number of contingent links (maxCL), and the maximum number of constraints
(maxConstr).

Output: A well-defined CSTNUD with at least 1 observation, 1 decision, 1 contingent link
and such that each proposition labels some component. That is, a real CSTNUD.

1 Check that (maxObs + maxDec + (2 ∗maxCL)) ≤ nTPs . it must be possible
2 Z ← 〈T ,OT ,DT ,P, O, L,L, C〉 . Empty CSTNUD
. Final cardinality of sets OT , DT and L

3 nObs ← Random(1,maxObs), nDec ← Random(1,maxDec), nCL← Random(1,maxCL)
. Generate observation time points and related propositions

4 OT ← {Pi? | 1 ≤ i ≤ nObs}, P ← {pi? | 1 ≤ i ≤ nObs}, O(pi) = Pi? for 1 ≤ i ≤ nObs,
T ← OT
. Generate decision time points and related propositions

5 DT ← {Di! | 1 ≤ i ≤ nDec}, P ← P ∪ {di? | 1 ≤ i ≤ nDec}, O(di) = Di! for 1 ≤ i ≤ nDec,
T ← T ∪ DT
. Generate contingent links where each xi = Random(1, 10) and yi = Random(11, 20)

6 L ← {(Ai, xi, yi, Ci) | 1 ≤ i ≤ nCL}, T ← T ∪ {A,C | (A, x, y, C) ∈ L}
. Generate the rest of time points

7 T ← T ∪ {Xi | 1 ≤ i ≤ (nTPs − nObs − nDec − (2 ∗ nCL))}
8 p← Random element in P
9 P = O(p), L(P ) = � . One decision/observation must be unlabeled
. Label time points as follows

10 Unlabeled ← [OT ,DT , {T \ OT \ DT \ {C | (A, x, y, C) ∈ L}] . List
11 Remove P from Unlabeled . already assigned �
12 maxLength ← Random(0, |P|) . Max length of a label
13 while Unlabeled 6= ∅ do
14 X ← pop first element from Unlabeled
15 tmp ← Random sample of P of size maxLength
16 L(X) = �
17 while tmp 6= ∅ do
18 p← pop a proposition from tmp and decide a sign for it
19 P ← O(p)
20 if L(P) has already been specified and P 6= X and L(X) ∧ L(P ) ∧ (¬)p is

consistent then
21 L(X)← L(X) ∧ L(P ) ∧ (¬)p if X is an activation time point then
22 L(C) = L(X) where C is the associated contingent

. Generate constraints
23 for i← 1 to maxConstr do
24 X,Y ← two Random time points in T
25 Check that X 6= Y and X,Y do not specify a contingent link
26 `← L(X) ∧ L(Y )

27 Randomly decide to extend ` . Probability of this choice is 1
2

28 if so then
29 Get a sample of propositions from P not appearing in ` and try to extend ` the

same way as we did with time points
30 k ← Random(−100, 100)
31 Add (Y −X ≤ k, `) to C

. Final check
32 if Some proposition never appears in any label then
33 Throw away the network

34 return Z
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(a) Dynamic controllability checking on all
CSTNUDs with the old encoding (blue,
above) and the new one (green, below).
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(b) Strategy space consumed by UPPAAL-
TIGA (blue, below) and Esse (green,
above) for dynamically controllable CST-
NUDs.
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(c) Strategy loading time (green, below),
then 1000 executions (blue, above).

Fig. 5.5: Time and space analysis with Esse on 1000 CSTNUDs.

cause UPPAAL-TIGA returns a strategy in text format that is not directly usable,
whereas Esse translates it into a dedicated data structure of objects ready for the
execution. Figure 5.5c shows how long it takes to load the strategies in memory
and then carry out 1000 execution simulations.

I also carried out a second experimental evaluation in which I analyzed time
performances and space consumption with respect to the number of contingent
links, observation time points and decision time points. I used a FreeBSD virtual
machine run on top of a VMWare ESXi Hypervisor using a physical machine
equipped with an Intel i7 2.80GHz and 20GB of RAM. The VM was assigned
16GB of RAM and full CPU power. I generated 1800 CSTNUDs partitioned in 9
sets of benchmarks each one containing 100 dynamically controllable CSTNUDs
and 100 uncontrollable. These sets of benchmarks are available at http://regis.
di.univr.it/EE_CSTNUD2018.tar.bz2.

The first (three) sets (6tps/0c1o1d, 6tps/1c1o1d and 6tps/2c1o1d) specify
CSTNUDs with 1 observation time point, 1 decision time point and differ for
the number of contingent links which range from 0 to 2 (note that 6tps/0c1o1d
actually specifies CSTNDs).

The second (four) sets (6tps/1c0o1d, 6tps/1c1o1d, 6tps/1c2o1d and 1c3o1d)
specify CSTNUDs with 1 contingent link, 1 decision time point and differ for the

http://regis.di.univr.it/EE_CSTNUD2018.tar.bz2
http://regis.di.univr.it/EE_CSTNUD2018.tar.bz2
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number of observation time points which range from 0 to 3 (note that 6tps/1c1o1d
is the same of that contained in the first three sets and that 6tps/1c0o1d actually
specifies STNUDs).

The third (four) sets (6tps/1c1o0d, 6tps/1c1o1d, 6tps/1c1o2d and 6tps/1c1o3d)
specify CSTNUDs with 1 contingent link, 1 observation time point and differ for
the number of decision time points which range from 0 to 3 (again, 6tps/1c1o1d
is the same of that contained in the first three sets and in the second four sets and
that 6tps/1c1o0d actually specifies CSTNUs).

Regardless of the set, each CSTNUD has exactly 6 time points and a maximum
number of constraints of 35% of |T | × (|DT |+ |OT |+ |L|). Time points and con-
straints are labeled randomly. The minimum and maximum values for the ranges
of contingent links are 1 and 5, whereas the weight values for labeled constraints
range from -10 to 10. The generator is similar to the previously discussed one (just
enforcing these new policies). I proceed to discuss the graphical data regarding
time and space shown in Figure 5.6 where x-axes always represent the ranging
number of a specific component (i.e., the set of benchmarks under analysis) and y-
axes represent either the average time elapsed or space consumed when analyzing
the instances in that set.

In Figure 5.6a I focused on the time performances with respect to the number
of contingent links (first three sets). The results show that augmenting the number
of contingent links results in augmenting the time of the analysis too. Note that
uncontrollable networks suffer less from this problem.

In Figure 5.6b I focused on the time performances with respect to the number of
observation time points (second four sets). The results show that augmenting the
number of observation time points results in augmenting the time of the analysis
too. This is mainly because the resulting TGA has a longer winning path. Both
controllable and uncontrollable CSTNUDs suffer from this issue.

In Figure 5.6c I focused on the time performances with respect to the number
of decision time points (third four sets). The results show that augmenting the
number of decisions results in augmenting the time of the analysis too. Again,
because we get a longer winning path. However, the general time of the analysis is
worse than the corresponding analysis with respect to observation time points. This
is because decisions are under control and therefore, during the validation phase,
runs of the TGA detecting some constraint violation may be excluded (making the
right decision) in order to continue the analysis and look for (another) strategy.

Figure 5.6d, Figure 5.6e and Figure 5.6f show the space consumption with
respect to the number of contingent links, observation and decision time points,
respectively. Despite a general expected growth in size when augmenting the spe-
cific uncontrollable components, the results confirm, as shown by the previous
rough analysis in Figure 5.5b, that the strategies saved by Erre consume more
space than those saved by UPPAAL-TIGA.

Finally, I executed all controllable CSTNUDs proved dynamically controllable
1000 times by randomly assigning truth values to observable propositions and du-
rations to contingent links. Overall, Esse simulated 900,000 of random executions.
No one crashed.
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Fig. 5.6: Experimental evaluation with Esse.

5.7 Modeling Temporal Workflows Under Uncertainty

In this section, I define a structured process modeling language (PML) to specify
temporal workflows under conditional and temporal uncertainty (simply shortened
as TWFs), then I define weak, strong and dynamic controllability of TWFs and
finally provide an encoding from TWFs into CSTNUDs. I start with a motivational
example that I use throughout the section.
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5.7.1 Motivating Example

As a motivating example, I consider simplification of a goods delivery process that
I show in Figure 5.7. The WF starts by processing orders collected online at least
1 hour ago (ProcO). This task lasts from 1 to 2 hours and its duration is under
control. Then, after exactly 1 hour, the execution flow enters a conditional block
and splits into two mutually exclusive branches depending on whether the order
requires a one-day delivery or not (diamond labeled by 1dd?). If 1dd? = > (i.e.,
if 1dd? is true), then the goods in the order must be delivered within 1 day and a
fast collection process (FastC) starts after exactly 1 hour since the flow has split.
FastC lasts from 1 to 3 hours and its exact duration is out of control. Instead, if
1dd? = ⊥ (i.e., if 1dd? is false), then no express delivery is required and the flow of
execution continues in the other branch with a normal collection process (NormC)
starting after exactly 1 hour since the flow has split. NormC lasts from 10 to 20
hours and its exact duration is out of control. This conditional block lasts from 3
to 22 hours (dashed edge between the two leftmost diamonds) and concludes after
exactly 1 hour since the task in the chosen branch completed.

Now that the shipment is ready, we must choose the correct delivery method in
order to satisfy the temporal constraints. Therefore, after exactly 1 hour the flow
of execution enters another conditional block but this time we can decide which
delivery method to use (diamond labeled by hurry!). There are two different types
of delivery, each one specifying an uncontrollable duration. If we decide to hurry
up, we assign hurry! = > and go for a fast delivery (FastD) which takes 1 to 12
hours, whereas if we don’t, we assign hurry! = ⊥ and go for a normal delivery
(NormD), which takes 24 to 48 hours. The conditional block lasts globally from 3
to 50 hours (dashed edge between the two rightmost diamonds) and completes
after one hour since the task in the chosen branch completed. The whole process
completes after minimum another hour. The WF lasts at most 1 day in case of
one-day delivery (dashed edge above), and (more than) 1 to 3 days (dashed edge
below) otherwise. The goal of this temporal plan is to always satisfy the temporal
constraints no matter what, which means guaranteeing customer satisfaction.

5.7.2 Process Modeling Language

I consider a structured approach employing a fragment of BPMN decorated with
temporal ranges.

I restrict the analysis on loop-free workflows and follow the ideas of the struc-
tured approach of the conceptual model TNest [34], where the specification of a
workflow is given by a workflow schema, where nodes correspond to activities and
arcs represent the control flow defining dependencies between the order of execu-
tion of such activities. There exist two different types of activity: tasks (rounded
boxes) and connectors (diamonds). Tasks represent elementary work units that
cannot be decomposed further. Connectors (or gateways in BPMN) represent in-
ternal activities executed by the workflow management system to achieve a correct
and coordinated execution of tasks. Connectors are restricted to being of two types:
total (+) and conditional split (×). A connector is total when it splits the flow
of the execution into n > 1 parallel branches or it joins n > 1 incoming parallel
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〈B〉

(a) Process

T
[x, y]

(b) Task with
controllable du-
ration

T
〈〈x, y〉〉

(c) Task with
uncontrollable
duration

(d) Skip
〈B1〉 〈B2〉

[x, y]

(e) Sequence

+

〈B1〉

〈B...〉

〈Bn〉

+

[x1, y1]

[xn, yn]

[z1, k1]

[zn, kn]

[zr, kr]

(f) Parallel

×
cond? or dec!

〈B>〉

〈B⊥〉

×

[x1, y1]

cond or dec

[x2, y2]

¬cond or ¬dec

[z1, k1]

[z2, k2]

[zr, kr]

(g) Choice

T1

. . .
T2

. . .

〈S1|E1〉[x, y]〈S2|E2〉

(h) Relative constraint task to task

T
. . .

[x, y]〈S|E〉

(i) Relative constraint start to task

T
. . .

〈S|E〉[x, y]

(j) Relative constraint task to end

[x, y] : {c,¬d, . . . }

(k) Global (conditional) duration
constraint

Fig. 5.8: A fragment of a structured (temporal) BPMN.

branches into a single outgoing flow. A connector is conditional when it splits a
single flow of execution in exactly two mutually-exclusive branches or it joins two
mutually-exclusive branches into a single one.

Differently from TNest, the encoding provided here has the following charac-
teristics:

• BPMN components model the workflow
• Conditional blocks specifying decisions are supported
• Tasks with both controllable and uncontrollable durations are supported
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• Conditional relative constraints between any combination of start or end of
the process and tasks and relative constraints to restrict a global duration of
a parallel or a conditional block are supported.

Figure 5.8 shows the process modeling language that I propose to model TWFs
under conditional uncertainty.

Each workflow block can be thought of as a symbol in a context-free grammar.
In particular, a process can be thought of as the starting symbols of such a grammar
embedding the non-terminal symbol block 〈B〉 (Figure 5.8a). A terminal block
can be a task whose duration is under control (Figure 5.8b) or out of control
(Figure 5.8c) or a skip (Figure 5.8d). A non-terminal block can be a sequence
(Figure 5.8e), a parallel (Figure 5.8f) or a conditional block where the associated
condition can be under control (dec!) or out of control (cond?) (Figure 5.8g).

Several relative constraints (drawn as dashed edges) may be expressed to re-
strict the duration of a parallel (Figure 5.8f) or conditional block (Figure 5.8g),
between the start and/or the end of two different tasks (Figure 5.8h), between the
start of the process and the start or end of a task (Figure 5.8i), the vice versa but
with respect to the end of the process (Figure 5.8j) or between the start and the
end of the whole process (Figure 5.8k). In the latter case, I also (optionally) aug-
ment the label with a finite set of literals {c,¬d, . . . } requiring that the constraint
holds only if the observations and decisions are according to the set of literals (e.g.,
[0, 24] : {1dd?} and [25, 72] : {¬1dd?} labeling the relative constraints between the
start and the end of the process in Figure 5.7). If a literal appears in this set, then
all other literals according to the conditional nesting levels of the blocks (if any)
should appear too. Also, this set should never contain pairs of inconsistent lit-
erals such as {d,¬d}. These last two assumptions are, however, captured by the
well-definedness properties of CSTNUDs [126], so enforcing them at design time
is not mandatory. If the resulting CSTNUD is not well-defined, the controllability
algorithm will find out.

Relative constraints do not breach the structuredness of the temporal workflow
as they only impose further temporal constraints which have nothing to do with
the information flow that is regulated by the grammar. The example in Figure 5.7
introduced in Section 5.7.1 is a structured TWF under conditional and temporal
uncertainty.

5.7.3 Controllability of temporal workflows under uncertainty

In this section, I define weak, strong and dynamic controllability of TWFs specifi-
able with the language in Figure 5.8. My main goal is the synthesis of execution
strategies saying when to schedule tasks and connectors, and what decisions to
make so that in the arising WF path the execution satisfies all relevant temporal
constraints. I recall that the uncontrollable parts I deal with are: (i) truth value
assignments to cond? variables and (ii) uncontrollable task durations.

Definition 5.15. Let B = {cond?, dec!, . . . } be the set of Boolean variables asso-
ciated to all conditional split connectors. A scenario s : B → {⊥,>} is a complete
truth value assignment to the Boolean variables in B. A scenario has a control-
lable part consisting of the assignments to the variables dec! (decision scenario,
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ds) and an uncontrollable part consisting of the assignments to the variables cond?
(condition scenario, cs). ΣD and ΣC model the space of all decision and condition
scenarios.

A workflow path (WF path) is the projection of a workflow onto a scenario.
That is, a new unconditional WF in which all components incoherent with the
truth value assignment are removed. For example, if in an execution of Figure 5.7
we observe “one-day delivery” (s(1dd?) = >) and then we decide not to hurry up
(s(hurry!) = ⊥), the WF path that arises is ProcO → FastC → NormD as NormC
and FastD are removed. We write T1 → · · · → Tn instead of Start → Split →
T1 → · · · → Join→ . . . Tn → End to save space and ease reading.

Definition 5.16. Let UTasks be the set of all tasks with uncontrollable durations.
A situation sit : UTasks→ R is a complete real value assignment to all tasks having
uncontrollable durations.

For example, if in the previous WF path FastC lasts 2 hours and NormC 14
hours, then sit(FastC) = 2 and sit(NormC) = 14 (note that ProcO has a controllable
duration so the domain of sit does not contain it).

Definition 5.17. A drama is a pair δ = (cs, sit), where cs is a condition scenario
and sit a situation. The set of all dramas is denoted by ∆.

Dramas allow us to reason on all possible combinations of uncontrollable be-
haviors by fixing them one at a time.

Definition 5.18. A temporal reference is r ::= Start(P ) | Start(T ) | End(T ) |
Execute(C) | End(P ), where P is the whole process, T a task and C a connector.
The set of all temporal references is denoted by R. If T ∈ UTasks, then End(T ) is
uncontrollable, else controllable. All other temporal references are controllable.

Definition 5.19. A schedule is a mapping ψ : R → R from temporal references
to real time instants saying when the events modeled by these references occur.
A schedule is consistent if the assignments it makes satisfy all relevant temporal
constraints involving tasks and connectors whose related events are in the domain
of ψ. The set of all schedules is denoted by Ψ .

Thus, a schedule containing Start(P ) = 0 means “start the process at 0”.

Definition 5.20. An execution strategy is a mapping σ : ∆→ ΣD × Ψ from dra-
mas to pairs (σd, σt), where σd is a decision strategy mapping dramas to decision
scenarios and σt is a temporal strategy mapping dramas to schedules. An execution
strategy is viable if for every drama δ there exists a decision scenario σd(δ) such
that the corresponding schedule σt(δ) is consistent.

I write [σt(δ)]r, instead of σt(δ)(r), to denote when the reference r is scheduled
in ψ = σt(δ) and I write [σt(δ)]dec!, instead of σd(δ)(dec!), to denote the truth
value assignment to the controllable Boolean variable dec!.

Definition 5.21. A TWF is weakly controllable if there exists a viable strategy.
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That is, once fixed a drama we can find a decision scenario and a schedule
for which the resulting WF path is consistent. The TWF in Figure 5.7 is weakly
controllable (I don’t discuss the strategy).

Definition 5.22. A TWF is strongly controllable if there exists a viable strategy
working for all dramas.

That is, a single decision scenario and a single schedule make consistent all
WF paths. The TWF in Figure 5.7 is not strongly controllable mainly because the
decision hurry! depends on both the 1dd? condition and the NormC duration (see
the discussion for dynamic controllability).

To define dynamic controllability I first define the history of a drama.

Definition 5.23. The history H(t, δ, σt) of the drama δ = (cs, sit) at the real time
instant t > 0 for the temporal strategy σt is the pair (Hcs(t, δ, σ

t),Hsit(t, δ, σ
t)),

where

• Hcs(t, δ, σ
t) = {(cond?, cs(cond?)) | [σt(δ)]Execute(C) < t} is the condition

scenario history representing the set of uncontrollable truth value assignments
observed before t (upon the execution of the corresponding conditional split
connectors C having associated cond? variables) in the schedule σt(δ),
• Hsit(t, δ, σ

t) = {(T, [σt(δ)]End(T ) − [σt(δ)]Start(T )) | [σt(δ)]End(T ) < t} is the
situation history representing the set of uncontrollable task durations observed
before t in the schedule σt(δ).

Consider Figure 5.7 and assume that Start(P ) = 0, Start(ProcO) = 1,
End(ProcO) = 2 and Execute(C) = 1, where C is the conditional split connector
having 1dd? associated. Suppose that we observe the request for a one-day deliv-
ery. Then, Hcs(t, δ, σ

t) = ∅ at t = 3, whereas Hcs(t, δ, σ
t) = {1dd?} at t = 3 + ε.

Similarly, suppose that Start(FastC) = 4 and End(FastC) is observed at 6. Then,
Hsit(6, δ, σ

t) = ∅, whereas Hsit(6 + ε, δ, σt) = {(FastC, 2)}.

Definition 5.24. An execution strategy σ = (σt, σd) is dynamic if σt and σd are
dynamic, where:

• A decision strategy σd is dynamic if for any pair of dramas δ1, δ2 ∈ ∆ and
any time instant t > 0, whenever the drama histories look the same, then the
strategy makes the same decisions. That is, for all δ1, δ2 ∈ ∆ and any dec!,
if Hδ(t, δ1, σt) = Hδ(t, δ2, σt), then [σd(δ1)]dec! = [σd(δ2]dec!.
• A temporal strategy σt is dynamic if for any pair of dramas δ1, δ2 ∈ ∆ and
any time instant t > 0, whenever the drama histories look the same, then the
strategy schedules the controllable temporal references at the same times. That
is, for all δ1, δ2 ∈ ∆ and any controllable r ∈ R, if Hδ(t, δ1, σt) = Hδ(t, δ2, σt),
then [σt(δ1)]r = [σt(δ2)]r.

Definition 5.25. A TWF is dynamically controllable if there exists a dynamic
execution strategy.

The TWF in Figure 5.7 is dynamically controllable. Assume that ProcO always
lasts 1 hour (otherwise the process is not controllable). If 1dd? = >, then regardless
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of the duration of FastC, we will always go for a FastD as for any combination of
durations the process will end within 1 day. Instead, suppose now that 1dd? = ⊥.
We will go for FastD or NormD depending on the duration of NormC (I focus again on
the combinations of minimal and maximal durations of NormC, FastD and NormD).
If NormC takes its minimal duration, we cannot, in general, choose FastD because
if FastD lasted 1 hour (its minimal duration), the process would end in 20 hours
providing a one-day delivery service to the customers who did not pay for it. In
this case, we will always choose NormD because if NormD lasts its minimal duration
the process ends after 43 hours, whereas if NormD lasts its maximal duration, then
the process ends after 67 hours. Either way, the process ends within 3 days but
after 1 day. Instead, if NormC takes its maximal duration, we must always go
for FastD. If we went for NormD, and NormD took its maximal duration, then we
would end the process after 77 hours violating the guarantee that the goods will
be delivered within 3 days. This combination is correct because if FastD lasts its
minimal duration, then the process ends after 30 hours, whereas if FastD lasts its
maximal, then the process ends after 41 hours. Either way, the process ends after
1 day and within 3 days.

Hence, the controllability of TWFs boils down to that of CSTNUDs when
temporal references are modeled as time points, tasks with uncontrollable dura-
tions as contingent links, conditional split connectors as observation time points
(cond? variables) or decision time points (dec! variables), tasks with controllable
durations, delays, deadlines and relative constraints as requirement links.

5.7.4 Encoding TWFs into CSTNUDs

Table 5.1 provides the encodings from each workflow block discussed in Figure 5.8
into the corresponding CSTNUD fragment. I used a compact notation to specify
the constraints in the CSTNUD fragments called requirement link. That is, X → Y
labeled by [x, y], ` shortens the pair of constraints X → Y and Y → X labeled by
〈y, `〉 and 〈−x, `〉, respectively. The start and end of the process are encoded into
two non-contingent time points S and E whose labels are both � (row 1). All arcs
regulating the control flow are encoded into requirement links labeled by the same
intervals and extended with propositional labels according to the nesting level in
which the WF block appears.

A task T is encoded into a pair of time points TS and TE modeling its start
and end. The labels of these tasks are according to the nesting level of the WF
block in which the task appears. If T specifies a controllable duration, then T is
encoded into a requirement link, whereas if T specifies an uncontrollable duration,
then T is encoded into a contingent link. Either way, the link is labeled by the
same interval and propositional label (row 2). Again, the label on contingent links
is the same of the activation and contingent time points (thus not shown).

A skip connector is encoded as a requirement link whose label ` is the con-
junction of the labels of the connected time points in the resulting CSTNUD (row
3). Similarly, a sequence is encoded into a requirement link connecting the ending
time point of the first block to the starting one of the second. The requirement
link is again labeled by the same interval and the conjunction of the labels of the
connected time points (row 4).
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Table 5.1: Encoding TWFs into CSTNUDs. Ranges [x, y] (0 < x < y < ∞) and
〈〈x, y〉〉 model controllable and uncontrollable durations (0 ≤ x ≤ y ≤ ∞), resp.

Workflow Block CSTNUD Fragment

〈B〉
[x1, y1] [x2, y2]

S
[�]

. . . E
[�]

[x1, y1],� [x2, y2],�

T
[x, y] or T

〈〈x, y〉〉 TS
[`]

TE
[`]

[x, y], `
or TS

[`]
TE
[`]

[x, y]

[x, y] [x, y], `

〈B1〉 〈B2〉
[x, y]

. . . . . .
[x, y], `

+

〈B1〉

〈B...〉

〈Bn〉

+

[x1, y1]

[xn, yn]

[z1, k1]

[zn, kn]

[zr, kr]

PS
[`]

. . .
[` ∧ . . . ]

. . .
[` ∧ . . . ]

. . .
[` ∧ . . . ]

PE
[`]

[x2, y1], `

[xn, yn], `

[z1, k1], `

[zn, kn], `

[zr, kr], `

×
cond? or dec!

〈B>〉

〈B⊥〉

×

[x1, y1]

cond or dec

[x2, y2]

¬cond or ¬dec

[z1, k1]

[z2, k2]

[zr, kr]

P? or P !
[`]

. . .
[` ∧ p ∧ . . . ]

. . .
[` ∧ ¬p ∧ . . . ]

PE
[`]

[x2, y1], ` ∧ p

[x2, y2], ` ∧ ¬p

[z1, k1], ` ∧ p

[z2, k2], ` ∧ ¬p

[zr, kr], `

T. . .
[x, y]〈S|E〉

or T. . .
〈S|E〉[x, y]

S
[�]

TS |TE
[`]

[x, y], `
or TS |TE

[`]
E
[�]

[x, y], `

T1. . . T2. . .
〈S1|E1〉[x, y]〈S2|E2〉

T 1
S |T 1

E

[`1]

T 2
S |T 2

E

[`2]

[x, y], `1`2

[x, y] : {c,¬d, . . . }
S
[�]

E
[�]

[x, y], c¬d . . .

Parallel blocks are encoded by substituting requirement links for arcs regulating
the control flow. Total split and join connectors are modeled as two time points PS
(“parallel start”) and PE (“parallel end”) whose labels are the same according to
the nesting level. If a relative temporal constraint restricting the global duration
of the entire block is specified (dashed edge labeled by [zr, kr]), then I encode it as
a requirement link in the CSTNUD (row 5). Conditional blocks are encoded the
same way but with two modifications. First, if the conditional split connector is
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associated to a cond? variable, then an observation time point models it, whereas
if it is associated to a dec! variable, then a decision time point models it. Second,
the propositional labels of all time points and links modeling the sub-blocks are
augmented with a positive literal p (> branch) and a negative one ¬p (⊥ branch)
(row 6).

Relative constraints (dashed edges) are all encoded as requirement links con-
necting the time points corresponding to the “references” of the connected compo-
nents and are labeled by the same intervals and conjunction of the labels of the
corresponding time points in the CSTNUD (rows 7, 8 and 9).

Figure 5.9 shows the CSTNUD encoding the TWF in Figure 5.7. There, the
observation time point O? models the conditional split connector and o models
the associated 1dd? (OE models the corresponding join connector), whereas the
decision time point H! models the conditional split connector and h models the
associated dec! (HE models the corresponding join connector). The requirement
link ProcOS → ProcOE labeled by [1, 2],� models ProcO, whereas the contingent
links (FastCS, 1, 3, FastCE), (NormCS, 10, 20, NormCE), (FastDS, 1, 12, FastDE) and
(NormDS, 24, 48, NormDE) model FastC, NormC, FastD and NormD. Therefore, the
truth value assignment to o as well as the real value assignments to the contin-
gent time points FastCE, NormCE, FastDE and NormDE (modeling the end of the
corresponding tasks) are out of control, whereas any other component is under
control.

I have discussed a process modeling language for workflows under uncertainty.
Then, I have provided an encoding from TWFs into CSTNUDs. Now, I check
dynamic controllability of the motivating example discussed in this section by
feeding Esse with the CSTNUD in Figure 5.9 whose specification is given in
Listing 5.5.

Listing 5.5: Specification of Figure 5.9.
1 Propositions {
2 o h
3 }
4
5 TimePoints {
6 (S : )
7 (ProcOS : )
8 (ProcOE : )
9 (O? : o : )

10 (FastCS : o)
11 (FastCE : o)
12 (NormCS : !o)
13 (NormCE : !o)
14 (OE : )
15 (H! : h : )
16 (FastDS : h)
17 (FastDE : h)
18 (NormDS : !h)
19 (NormDE : !h)
20 (HE : )
21 (E : )
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22 }
23
24 ContingentLinks {
25 (FastCS,1,3,FastCE)
26 (NormCS,10,20,NormCE)
27 (FastDS,1,12,FastDE)
28 (NormDS,24,48,NormDE)
29 }
30
31 Constraints {
32 (S - ProcOS <= -1 : )
33 (ProcOE - ProcOS <= 2 : )
34 (ProcOS - ProcOE <= -1 : )
35 (O - ProcOE <= 1 : )
36 (ProcOE - O <= -1 : )
37 (FastCS - O <= 1 : o)
38 (O - FastCS <= -1 : o)
39 (NormCS - O <= 1 : !o)
40 (O - NormCS <= -1 : !o)
41 (OE - FastCE <= 1 : o)
42 (FastCE - OE <= -1 : o)
43 (OE - NormCE <= 1 : !o)
44 (NormCE - OE <= -1 : !o)
45 (H - OE <= 1 : )
46 (OE - H <= -1 : )
47 (FastDS - H <= 1 : h)
48 (H - FastDS <= -1 : h)
49 (NormDS - H <= 1 : !h)
50 (H - NormDS <= -1 : !h)
51 (HE - FastDE <= 1 : h)
52 (FastDE - HE <= -1 : h)
53 (HE - NormDE <= 1 : !h)
54 (NormDE - HE <= -1 : !h)
55 (E - S <= 24 : o)
56 (S - E <= 0 : o)
57 (E - S <= 72 : !o)
58 (S - E <= -25 : !o)
59 (OE - O <= 22 : )
60 (O - OE <= -3 : )
61 (HE - H <= 50 : )
62 (H - HE <= -3 : )
63 (HE - E <= -1 : )
64 }

The workflow in Figure 5.7 dynamically controllable (because the underlying
CSTNUD is so). The workflow is also weakly controllable because strong controlla-
bility⇒ dynamic controllability⇒ weak controllability. However, it is not strongly
controllable mainly because the decision to hurry up is dynamic and depends on
both the 1dd? condition and the NormC duration.

Listing 5.6 shows a few execution simulations in which I isolated the scenarios
of interest to prove that hurry! is made dynamically.
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Listing 5.6: Random executions of the CSTNUD in Figure 5.9.
1 $ java -jar esse.jar DP.cstnud --execute dynamic DP.s 10000
2 Execution 1 | Execution 2 | Execution 3
3 -------------------------------------------------------------------------
4 S = 0.1 | S = 0.1 | S = 0.1
5 ProcOS = 1.1 | ProcOS = 1.1 | ProcOS = 1.1
6 ProcOE = 2.1 | ProcOE = 2.1 | ProcOE = 2.1
7 O = 3.1, o = true | O = 3.1, o = false | O = 3.1, o = false
8 FastCS = 4.1 | NormCS = 4.1 | NormCS = 4.1
9 FastCE = 6.1 | NormCE = 23.5 | NormCE = 18.6

10 OE = 7.1 | OE = 24.5 | OE = 19.6
11 H = 8.1, h = true | H = 25.5, h = true | H = 20.6, h = false
12 FastDS = 9.1 | FastDS = 26.5 | NormDS = 21.6
13 FastDE = 21.1 | FastDE = 33.1 | NormDE = 47.0
14 HE = 22.1 | HE = 34.1 | HE = 48.0
15 E = 23.1 | E = 35.1 | E = 49.0
16 Verifying ... SAT! | Verifying ... SAT! | Verifying ... SAT!

In all executions ProcO lasts exactly 1, starts at 1.1 and ends at 2.1 (lines
5,6). In the first execution, the handled order requires a one-day delivery (line 7)
so FastC starts at 4.1 and is observed to end at 6.1 (lines 8,9). FastD is chosen,
starts at 9.1 and is observed to end at 21.1 (lines 12,13). The process completes in
time at 23.1 (line 15). In the second execution, the handled order does not require
a one-day delivery so NormC starts at 4.1 and is observed to end at 23.5. Then,
FastD is chosen (and not NormD as this type of delivery could lasts 48 hours making
the process terminate at 75.5), starts at 26.5 and is observed to end at 33.1. The
process completes in time at 35.1. In the third execution, the handled order does
not require a one-day delivery either so NormC starts at 4.1 and is observed to end
at 18.6. This time NormD is chosen (and not FastD as this type of delivery could
lasts 1 hour making the process terminate at 23.6), starts at 21.6 and is observed
to end at 47.0. The process completes in time at 49. This case study is available
at http://regis.di.univr.it/DP.tar.bz2.

5.8 Conclusions

I defined conditional simple temporal networks with uncertainty and decisions
(CSTNUDs) as a unified formalism. CSTNUDs implicitly embed all minor tem-
poral network formalisms based on STNs (see Figure 5.4 for a hierarchy of simple
temporal networks). I modeled the DC-checking via controller synthesis for timed
game automata and provided an encoding from CSTNUDs into TGAs as an opti-
mized extension of that given for CSTNUs in [25, 26]. I discussed the correctness
and complexity of such an encoding and I provided Esse, a tool for CSTNUDs.
I also discussed how to generate random temporal networks and carried out two
experimental evaluations. I showed how temporal networks can be employed for
the modeling, validation and execution of temporal workflows under conditional
and temporal uncertainty.

CSTNUDs differ from STNs [53], Labeled STNs [45], TPNs [79], DTNs [117]
and STNDs [19, 126] (see Chapter 4 for the latter) as none of these formalisms

http://regis.di.univr.it/DP.tar.bz2
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specifies any uncontrollable part (consistency analysis is enough). CSTNUDs differ
from TPNUs [90] and CSTNUs [36, 74] (and thus also from STNUs [104] and
CSTNs [75]) because these formalism do not employ decisions. CSTNUDs differ
from CCTPU [124] as a CCTPU do not employ observations and also differ from
[76], which includes decisions, observations and uncontrollable durations, because
that work deals with strong controllability only.



Part II

Resource Controllability
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Introduction

Assume that we are given a resource-scheduling problem under uncertainty, and
that we are then asked to schedule (some of the) resources in a way that meets
all relevant constraints, or to prove that such a scheduling does not exist. We are
also permitted to make our scheduling decisions as we like.

In this part I face two kinds of uncontrollable parts: conditional uncertainty
and resource uncertainty (i.e., the uncontrollable availability of resources).

In recent years, a considerable amount of research has been carried out, espe-
cially in the temporal networks community, to investigate controllability analysis
in order to deal with temporal and conditional uncertainty, either in isolation or
simultaneously. A number of extensions of simple temporal networks have been
proposed and already discussed in Section 2.1 and Part I.

Research has also been carried out in the “discrete” world of classic constraint
networks (CNs) [52] in order to address different kinds of uncertainty. For example,
a mixed constraint satisfaction problem (Mixed CSP, [63]) divides the set of vari-
ables in controllable and uncontrollable, whereas a dynamic constraint satisfaction
problem (DCSP, [100]) introduces activity constraints saying when variables are
relevant depending on what values some other variables have been assigned. Prob-
abilistic approaches such as [62] aim instead at finding the most probable working
solution.

Despite all this, a formal model to extend classic CNs [52] with conditional un-
certainty adhering to the modeling ideas employed by CSTNs (Section 2.1.3) is still
missing. In a CSTN, for instance, time points (variables) and linear inequalities
(constraints) are labeled by conjunctions of literals where the truth value assign-
ments to the embedded Boolean propositions are out of control. Every proposition
has an associated observation time point, a special kind of time point that reveals
the truth value assignment to the associated proposition upon its execution (i.e.,
as soon as it is assigned a real value). Equivalently, this truth value assignment
can be thought of as being under the control of the environment.

Imagine now that the availability of users is out of control.

What can go wrong?

Some users might wake up feeling sick and call in to say that they are not going to
come to work. Other users could be involved in a traffic jam on their way to work.
And other users could simply decide to go on strike. In such a case, we must make
sure that a successful execution is still possible with the only remaining users who
agree not to leave until the workflow completes.

Are we safe now?

No, we are not. The situation could get worse than the previous one. Some of
the users (with which the execution started) might get a call sadly announcing
an emergency in the family. In such a case, we must make sure that a successful
execution is still possible with, again, the only remaining users who might, this
time, leave before the workflow completes.

Are we safe now?
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Still, no. We could have our worst day ever. Some users might not arrive in
time at work or might not arrive at all. Others could leave before the workflow
ends and never come back in time to finish the work they started. Others could be
absent only for a short period of time, for example to go to the doctor to collect
some medical prescriptions. And so on. In such a case, we must make sure that at
any time we have enough users left to keep executing the tasks until the workflow
completes.

Now we are safe.

The previous three examples provide the intuitions behind the three main kinds
of workflow resiliency defined in [122,123] byWang and Li. Static resiliency is when
users are absent before starting and do not come back (first scenario). Decremental
resiliency is when they can also become absent during execution but, again, they
do not come back (second scenario). Dynamic resiliency is when (possibly different
sets of) users can become and stay absent for any (possibly big) time interval; they
can also come back and become absent over and over again (third scenario).

Some works have addressed workflow resiliency probabilistically, e.g., [95, 96],
whereas other works addressed it by modifying the constraints, e.g., [48,93]. Most
of these approaches consider only static resiliency (e.g., [57,92,107]), but one con-
siders also decremental resiliency (e.g., [92]). However, to the best of my knowledge,
dynamic resiliency remains unexplored (see also [55] for a recent survey).

For the sake of simplicity — and since these contributions are one of the first
attempts to address the issues mentioned above — when used to abstract work-
flows, the formalisms proposed in this part will always consider a single workflow
and assume to run one instance of that workflow at a time. However, I point out
that this is not a limitation because multiple processes (or multiple instances of the
same process) can be connected in parallel before translating this macro process
into the corresponding underlying formalism. This will allow, for example, to con-
sider resource scheduling problems, in which multiple processes share resources.
The same ideas can be applied to Part I and Part III too.

Contributions

Towards the modeling, validation and execution of plans dealing with conditional
uncertainty or the uncertain availability of the resources, my contributions in this
part are the following.

1. I define constraint networks under conditional uncertainty (CNCUs) as an
extension of classic constraint networks and give the semantics for weak, strong
and dynamic controllability of a CNCU.

2. I provide algorithms to check each of these types of controllability and to
execute a controllable CNCU.

3. I provide Zeta, a tool I developed for CNCUs along with an experimental
evaluation. I also provide an algorithm to generate random CNCUs.

4. I provide a language to specify access controlled workflows under conditional
uncertainty. I define the controllability of such workflows and give an encoding
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from access controlled workflows to CNCUs for the weak, strong and dynamic
controllability checking.

5. I focus on the uncertain resource availability and I provide encodings into
timed game automata extended with variables to model static, decremental
and dynamic resiliency as instantaneous games.

6. I show how to get dynamic plans for each kind of resiliency via controller
synthesis by using UPPAAL-TIGA and provide Erre, a tool for resiliency
analysis along with an experimental evaluation. I also provide an algorithm to
generate random access-controlled workflows.

Organization

Chapter 6 introduces constraint networks under conditional uncertainty along with
the semantics and the algorithms to check weak, strong and dynamic controlla-
bility and execute a controllable CNCU. It also discusses correctness results of
the proposed algorithms and provides Zeta, a tool for CNCUs along with an ex-
perimental evaluation and an algorithm to generate random CNCUs. Finally, it
provides a process modeling language for access controlled workflows under con-
ditional uncertainty, defines the controllability of such workflows and gives an
encoding from access controlled workflows to CNCUs for a dynamic controllability
checking. Chapter 7 addresses static, decremental and dynamic resiliency. It pro-
vides three encodings from access controlled workflows into instantaneous timed
games and provides Erre, a tool for workflow resiliency along with an experimen-
tal evaluation and an algorithm to generate random access controlled workflows.





6

Constraint Networks Under Conditional
Uncertainty

In this chapter, I extend the CNs discussed in Section 2.3 to address conditional
uncertainty. I call this new kind of network Constraint Network under Conditional
Uncertainty (CNCU). CNCUs are obtained by extending CNs with

• a set of Boolean propositions whose truth value assignments are out of control
(or, equivalently, can be thought of as being under the control of the environ-
ment),
• observation variables to observe such truth value assignments, and
• labels to enable or disable a subset of variables and constraints, and therefore

introduce an (implicit) notion of partial order among the variables.

Like temporal networks discussed in Part I, I will also talk about execution
meaning that we execute a variable by assigning it a value and we execute a CNCU
by executing all relevant variables. Variables and constraints are relevant if they
must be considered during execution. Like observation time points, each observa-
tion variable P? is associated to a (unique) Boolean proposition p. When P? is still
unexecuted, the truth value of p is unknown, whereas when P? executes, it becomes
known. Despite all this, my specification is mathematically backward-compatible
with classic CNs (when there are no observation variables and no partial order).

6.1 Syntax

Labels and label operations are the same of those defined for CSTNs, CSTNUs
and CSTNUDs (Section 2.1.3, Section 2.1.4 and Chapter 5). I further consider the
difference of two labels `1 and `2 as a new label `3 = `1 − `2 consisting of all
literals of `1 minus those shared with `2. For instance, if `1 = p¬q and `2 = p,
then `1 − `2 = ¬q and `2 − `1 = �.

Definition 6.1. A constraint network under conditional uncertainty (CNCU) is
a tuple 〈V,D, D,OV,P, O, L,≺, C〉, where:

• V = {V1, V2, . . . } is a finite set of variables.
• D = {D1, D2, . . . } is a set of discrete domains.
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ProcR
{alice, bob, charlie}

[�]

LogR
{alice, bob, charlie}

[�]

P?
{wf}

[�]

BusiC
{alice, bob, charlie, david}

[¬p]

Q?
{wf}

[p]

PersC
{alice, bob}

[p]

Sign
{bob}

[�]

(R1,¬p)
(R1,�)

(R2,¬p)

(R3,¬
p)

(R4, p)

(R5,¬p)

(R6, p ∧ q)
(R6, p ∧ ¬q)

Fig. 6.1: Binary CNCU modeling the loan origination process.

• D : V → D is a mapping assigning a domain to each variable, where more
variables can share the same domain.
• OV ⊆ V = {P?, Q?, . . . } is a set of observation variables.
• P = {p, q, . . . } is a set of Boolean propositions whose truth values are all
initially unknown.
• O : P → OV is a bijection assigning a unique observation variable P? to each
proposition p. When P? executes, the truth value of p becomes known and no
longer changes.
• L : V → P∗ is a mapping assigning a label ` to each variable V saying when V
is relevant.
• ≺⊆ V × V is a precedence relation on the variables. I write (V1, V2) ∈≺ (or
V1 ≺ V2) to express that V1 is assigned before V2.
• C is a finite set of labeled relational constraints of the form (RS , `), where
S ⊆ V and ` ∈ P∗. If S = {V1, . . . , Vn}, then RS ⊆ D(V1)× · · · ×D(Vn).

I graphically represent a (binary) CNCU by extending the constraint graph dis-
cussed for CNs into a labeled constraint (multi)graph, where each variable is also
labeled by its label L(V ), and the edges are of two kinds: order edges (directed
unlabeled edges) and constraint edges (undirected labeled edges). An order edge
V1 → V2 models V1 ≺ V2. A constraint edge between V1 and V2 models (R12 , `).
Many constraint edges may possibly be specified between the same pair of vari-
ables, as long as ` is different (e.g., (R1 ,�) and (R1 ,¬p) between ProcR and LogR
in Figure 6.1).

Consider now the CNCU in Figure 6.1 modeling an access controlled work-
flow under conditional uncertainty describing a loan origination process (LOP) for
customers whose financial records have already been approved. The LOP starts
by processing a request (ProcR) with Alice, Bob and Charlie being the only au-
thorized users. After that, the request is logged for future accountability purposes
(LogR) with the same users of ProcR authorized for this task. The flow of execution
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Table 6.1: Labeled relational constraints of the CNCU in Figure 6.1.

(a) (R1,�)

ProcR LogR
alice bob
alice charlie
bob alice
bob charlie

charlie alice
charlie bob

(b) (R1,¬p)
ProcR LogR
alice alice
alice charlie
bob bob
bob charlie

charlie alice
charlie bob
charlie charlie

(c) (R2,¬p)
LogR BusiC
alice bob
alice charlie
alice david
bob alice
bob charlie
bob david

charlie alice
charlie bob
charlie david

(d) (R3,¬p)
ProcR BusiC
alice bob
alice charlie
alice david
bob alice
bob charlie
bob david

charlie alice
charlie bob
charlie david

(e) (R4, p)

ProcR PersC
charlie alice
charlie bob

(f) (R5,¬p)
BusiC Sign
alice bob

charlie bob
david bob

(g) (R6, p ∧ q)
PersC Sign
alice bob

(h) (R6, p∧¬q)
PersC Sign
bob bob

then splits into two (mutually-exclusive) branches upon the execution of the ob-
servation variable P? acting as a “conditional split connector” which sets the truth
value of p according to the discovered type of loan. A workflow engine (wf) is au-
thorized to execute this conditional split connector. If p is true, it means that the
workflow will handle a personal loan and that the flow of the execution continues
by preparing a personal contract (PersC), with Alice and Bob the only authorized
users. Moreover, when processing personal loans, different security policies hold
depending on what truth value a second Boolean variable (q) is assigned (see be-
low). The truth value of q is set upon the execution of the observation variable Q?
(acting as a second “conditional split connector”) whose authorized user is again
wf. Note that no variable will be prevented from executing depending on the value
of q, only the users assigned to them will. Instead, if p is false, the workflow will
handle a business loan and the flow of execution continues by preparing a business
contract (BusiC) with Alice, Bob, Charlie and David authorized users. Regardless
of the truth values of p and q the LOP concludes with the signing of the contract
(Sign) with Bob the only authorized user. Finally, the labeled constraints enforce
the following security policies, where I recall that a separation of duties (SoD)
(resp., binding of duties (BoD)) between two tasks says that the users executing
such tasks must be different (resp., equal).

• (R1,�) calls for a SoD between ProcR and LogR (always, Table 6.1a), whereas
(R1,¬p) requires that the users executing ProcR and LogR are not relatives
whenever p turns out to be false (Table 6.1b).
• (R2,¬p) calls for a SoD between LogR and BusiC (implicitly when p is false,

Table 6.1c).
• (R3,¬p) calls for a SoD between ProcR and BusiC (implicitly when p is false,

Table 6.1d).
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• (R4, p) calls for a SoD between ProcR and PersC and also requires that the
users executing these two tasks must not be relatives (implicitly when p is
true, Table 6.1e).

• (R5,¬p) calls for a SoD between BusiC and Sign (implicitly when p is false,
Table 6.1f).

• (R6, p ∧ q) calls for a SoD between PersC and Sign if p and q are both true
(Table 6.1g), whereas (R6, p ∧ ¬q) calls for a BoD between the same variables
if p is true and q is false (Table 6.1h).

In this example, Alice and Bob are married and thus the only relatives.
In the rest of this section, I say when CNCUs are well-defined. I inherit the

notions of label honesty and coherence from those given for CSTNs in Section 2.1.3.

Definition 6.2. A CNCU 〈V,D, D,OV,P, O, L,≺, C〉 is well defined iff all labels
are consistent and the following properties hold.

• Variable Label Honesty. L(V ) is honest for any V ∈ V, and O(p) ≺ V for any
p or ¬p belonging to L(V ). That is, V only executes when the honest L(V )
becomes completely known and evaluates to true; e.g., BusiC after P? if ¬p in
Figure 6.1.
• Constraint Label Honesty. ` is honest for any (RS , `) ∈ C. That is, RS only
applies when the honest ` becomes completely known and evaluates to true;
e.g., (R6, p ∧ q) in Figure 6.1 if after P? and Q?, p and q are observed true.
• Constraint Label Coherence. ` ⇒ L(V ) for any (RS , `) ∈ C and any V ∈ S.
That is, the label of a constraint is at least as specific as any label of the
variables in its scope; e.g., (R6, p ∧ q) in Figure 6.1.
• Precedence Relation Coherence. For any V1, V2 ∈ V, if V1 ≺ V2 then L(V1) ∧
L(V2) is consistent. That is, no partial order can be specified between variables
not taking part together in any execution; e.g. PersC and BusiC in Figure 6.1.

The CNCU in Figure 6.1 is well-defined.

6.2 Semantics

In this section, I give the semantics for weak, strong and dynamic controllability of
CNCUs. My goal is to synthesize execution strategies saying which value to assign
to which variable (and in which order) so that in the arising projection (see below)
the execution satisfies both the partial order and all constraints.

Definition 6.3. A scenario s : P → {⊥,>} is a complete truth value assignment
to the Boolean propositions in P. A scenario s satisfies a label ` (in symbols,
s |= `), if ` is true under the interpretation given by s. Σ models the set of all
scenarios.

Consider Figure 6.1 and s(p) = > and s(q) = ⊥. We have that s |= L(PersC)
and s 6|= L(BusiC) (as L(BusiC) = ¬p would require s(p) = ⊥).

Definition 6.4. Let Z = 〈V,D, D,OV,P, O, L,≺, C〉 be a CNCU and s any sce-
nario. The projection of Z onto s is a CN Zs = 〈Vs,D, Cs〉 such that:
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• Vs = {V | V ∈ V ∧ s |= L(V )}
• Cs = {RS | (RS , `) ∈ C ∧ s |= `}

For example, the projection of Figure 6.1 with respect to s(p) = > and
s(q) = ⊥ results in a CN, where Vs = {ProcR, LogR, P?, PersC, Sign} and
Cs = {R1, R4, R6}, where R1 is the relation of the original (R1,�) ∈ C (Ta-
ble 6.1a), R4 is (R4, p) (Table 6.1e), whereas R6 is (R6, p∧¬q) and not (R6, p∧ q)
or the intersection of the two (Table 6.1h).

Definition 6.5. A schedule for a subset of variables V ′ ⊆ V is a mapping
ψ : V ′ →

⋃
V ∈V′ D(V ) from variables to values saying which values are assigned

to which variables. A schedule is consistent if the assignments it makes satisfy all
constraints. Ψ represents the set of all schedules.

Consider V ′ = {ProcR, LogR, P?, Sign} containing the relevant variables when
the truth values of p and q are still unknown. A consistent schedule is

ψ(ProcR) = charlie, ψ(LogR) = alice, ψ(P?) = wf, ψ(Sign) = bob

satisfying the only relevant constraint (R1,�) (Table 6.1a). However, a schedule
is nothing but a fixed plan for executing a bunch of variables (not even saying
in which order). The interesting part is how we generate it. To do so, we need a
strategy. Let ∆ be the set of all possible orderings on the variables of a CNCU.

Definition 6.6. An execution strategy is a pair σ = (σv, σo) where σv : Σ → Ψ
is a value strategy mapping scenarios to schedules, whereas σo : Σ → ∆ is an
order strategy mapping scenarios to total orderings on the variables. An execution
strategy is viable if for any s ∈ Σ, there exists an ordering σo(s) such that the
schedule σv(s) is consistent.

I write [σv(s)]V (instead of σv(s)(V )) to denote the value assigned to V and
[σo(s)]V (instead of σo(s)(V )) to denote the index of V in the order σo(s).

The first kind of controllability is weak controllability which ensures that each
projection is consistent.

Definition 6.7. A CNCU is weakly controllable (WC) if there exists a viable
execution strategy.

Figure 6.1 is weakly controllable. I prove that at the end of Section 6.3.1. Like
temporal networks, dealing with weak controllability is quite complex as it always
requires one to predict what the truth value assignments to the Boolean proposi-
tions will be before starting the execution. This leads me to consider the opposite
case in which I want to synthesize a strategy working for all possible scenarios
(or in other words, a solution which is not influenced by the uncontrollable part).
Thus, the second kind of controllability is strong controllability.

Definition 6.8. A CNCU is strongly controllable (SC) if there exists a viable
execution strategy σ working for all scenarios.
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Figure 6.1 is not strongly controllable. I discuss why that at the end of Sec-
tion 6.3.2. Strong controllability is, however, “too strong”. If a CNCU is not strongly
controllable, it could be still executable by refining the schedule in real time de-
pending on the scenario being generated. To achieve this purpose, I introduce
dynamic controllability. Since the truth values of propositions are revealed incre-
mentally, I first introduce the formal definition of history that I use to define
dynamic controllability.

Definition 6.9. Given a strategy σ, a scenario s and a variable V , the scenario
history H(V, s, σ) of V in s with respect to σ is the set of truth value assignments
observed before V upon the execution of the corresponding observation variables
P? in the schedule σ(s). Formally,

H(V, s, σ) = {(p, s(p)) | [σo(s)]P? < [σo(s)]V }

for any P? ∈ OV.

Consider the ordering ProcR ≺ LogR ≺ P? ≺ Q? ≺ BusiC ≺ PersC ≺ Sign, the
scenario s(p) = s(q) = >, a strategy σ and the variable Sign. ThenH(Sign, s, σ) =
∅ before P? and Q? execute, H(Sign, s, σ) = {(p,>)} after P? and before Q?
executes, and H(Sign, s, σ) = {(p,>), (q,>)} after P? and Q? execute.

Definition 6.10. An execution strategy σ = (σv, σo) is dynamic if σv and σo are
dynamic, where:

• A value strategy σv is dynamic if whenever the scenario history looks the same,
then the strategy assigns the same values to the same variables. That is, for
all s1, s2 ∈ Σ and any V ∈ V, if H(V, s1, σ) = H(V, s2, σ), then [σv(s1)]V =
[σv(s2)]V .
• An order strategy σo is dynamic if whenever the scenario history looks the
same, then the strategy orders the variables always in the same way. That is,
for all s1, s2 ∈ Σ and any V ∈ V, if H(V, s1, σ) = H(V, s2, σ), then [σo(s1)] =
[σo(s2)].

Definition 6.11. A CNCU is dynamically controllable if there exists a dynamic
and viable execution strategy.

Figure 6.1 is dynamically controllable. I prove that at the end of Section 6.3.3.
Abusing grammar, I use WC, SC and DC as both nouns and adjectives (the

use will be clear from the context). As for temporal networks [104], it is easy to
see that SC ⇒ DC ⇒ WC.

6.3 Controllability Checking Algorithms

In this section, I provide the algorithms to check the three kinds of controllability
introduced in Section 6.2. Since I am going to exploit directional consistency, I
first need to address how to get a suitable total order for the variables meeting the
restrictions specified by ≺. I will always classify as uncontrollable those CNCUs
for which no total order exists. Although for weak and strong controllability the
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problem of getting an order is important up to a certain extent (I only need to make
sure that one exists), it will be absolutely necessary to get the most conservative
order when dealing with dynamic controllability, otherwise the algorithm faces for
sure incompleteness (see Section 6.3.3).

Given a CNCU, to get a possible total order coherent with ≺, I build a directed
graph G where the set of nodes is V and the set of edges is such that there exists a
directed edge V1 → V2 in G for any (V1, V2) ∈≺. I refer to this graph as G = 〈V,≺〉.
For example, in Figure 6.1, G is the graph that remains after removing all labels
and constraint edges.

From graph theory, we know that an ordering of the vertexes of a directed
acyclic graph (DAG) meeting a given restriction ≺ can be found in polynomial
time by running the TopologicalSort algorithm on G [46, 80]. At every step,
TopologicalSort chooses a vertex V without any predecessor (i.e., one without
incoming edges), outputs V and removes V and all directed edges from V to any
other vertex (equivalently, removes every (V, V2) ∈≺). Then, TopologicalSort
recursively applies to the reduced graph until the set of vertexes becomes empty.
If no total order exists, TopologicalSort gets stuck in some iteration because
of a cycle Vi → · · · → Vi, which makes impossible to find a vertex without any
predecessor.

6.3.1 Weak controllability checking

The idea behind the weak controllability checking (WC-checking) is quite simple:
every projection must have a total order and a solution. Given a CNCU Z =
〈V,D, D,OV,P, O, L,≺, C〉, I run the classic ADC on each projection Zs according
to a complete scenario s. Since each Zs is a classic CN, any ordering (meeting the
relevant part of ≺ for Zs) will be fine. I get one by running TopologicalSort
on Gs = 〈Vs,≺s〉, where ≺s= {(V1, V2) | (V1, V2) ∈≺ ∧V1, V2 ∈ Vs} (this is the
relevant part of ≺). After that, I synthesize a strategy σ(s) by generating a solution
for the projection Zs following the ordering d computed initially (Algorithm 10,
line 4). Although Definition 6.7 says that one strategy is enough, my approach is
able to handle all possible strategies for each scenario s as during the solution-
generation process the value assignments do not depend on any uncontrollable
part. WC-checking (Algorithm 10) shows the pseudo-code of the algorithm.

The CNCU in Figure 6.1 is WC. To prove that, I give an assignment of values
to variables for each scenario.

• If s(p) = ⊥, s(q) = {⊥,>}, then ψ(ProcR) = alice, ψ(P?) = wf, ψ(LogR) =
charlie, ψ(BusiC) = david, ψ(Sign) = bob with ProcR ≺ P? ≺ LogR ≺
BusiC ≺ Sign.
• If s(p) = >, s(q) = >, then ψ(ProcR) = charlie, ψ(P?) = wf, ψ(PersC) =
alice, ψ(Q?) = wf, ψ(Sign) = bob, ψ(LogR) = alice and ProcR ≺ P? ≺
PersC ≺ Q? ≺ Sign ≺ LogR.
• If s(p) = >, s(q) = ⊥, then ψ(ProcR) = charlie, ψ(P?) = wf, ψ(PersC) =
bob, ψ(Q?) = wf, ψ(Sign) = bob, ψ(LogR) = bob and ProcR ≺ P? ≺ PersC ≺
Q? ≺ Sign ≺ LogR.
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Algorithm 10: WC-checking (Z).
Input: A CNCU Z = 〈V,D, D,OV,P, O, L,≺, C〉
Output: A set of solutions each one having the form 〈s, d,Buckets〉, where s is a

scenario, d an ordering for Vs and Buckets is a set of buckets (one for
each variable in Vs) if Zs is WC, uncontrollable otherwise.

1 Solutions ← ∅
2 foreach s ∈ Σ do . for each scenario
3 Let Zs be the projection of Z onto s
4 d← TopologicalSort(G) . where G← 〈Vs,≺s〉
5 if no order is possible then
6 return uncontrollable

7 Buckets ← ADC(Zs, d)
8 if Zs is inconsistent then
9 return uncontrollable

10 Solutions ← Solutions ∪ {〈s, d,Buckets〉}
11 return Solutions

Note that in the first scenario, the value of s(q) is not important because Q?
is not executed when s(p) = ⊥. Therefore, the first case holds for both s(p) =
⊥, s(q) = ⊥ and s(p) = ⊥, s(q) = >. The relevant part of the complexity of
WC-checking is 2|P|×Complexity(ADC ) as the worst case is a CNCU specifying
2|P| complete scenarios (all other sub-algorithms run in polynomial time).

6.3.2 Strong controllability checking

The strong controllability checking (SC-checking) does not need to unfold all honest
scenarios at all. From an algorithmic point of view it is even easier to understand: a
single ordering and a single solution must work for all projections. To achieve this
purpose, I start with a simple operation: I wipe out all the labels in the CNCU.
Then, I run ADC on this “super-projection” by choosing an order obtained by
TopologicalSort run on the related G (Algorithm 11). Strong controllability
forces solutions (if any) to also satisfy constraints that are inconsistent one another.
If the buckets survive to the filling phase (i.e., no empty relation is added), ADC
tries to hunt down an empty relation enforcing the adequate level of k-consistency.
If this resulting network is consistent, it means that there exists (at least) a solution
which is so strong that it does not depend on any uncontrollable part (i.e., a
solution that just works).

The CNCU in Figure 6.1 is not SC. Although a total order exists once we have
wiped out all the labels (d = ProcR ≺ P? ≺ PersC ≺ Q? ≺ LogR ≺ BusiC ≺ Sign),
there is no way to find a consistent assignment to Sign that always works for the
initial CNCU. It is not difficult to see that the problem lies in the constraints of the
original CNCU shown in Table 6.1. In the first phase, when ADC fills the buckets,
each original constraint (RS , `) is deprived of its label ` (becoming (RS ,�)) and
added to the bucket of the latest variable in S.

Consider the original (R6, p ∧ q) (Table 6.1g) and (R6, p ∧ ¬q) (Table 6.1h).
ADC transforms them into (two) unlabeled constraints (R6,�) and then adds both



6.3 Controllability Checking Algorithms 125

Algorithm 11: SC-checking (Z)
Input: A CNCU Z = 〈V,D, D,OV,P, O, L,≺, C〉
Output: A tuple 〈d,Buckets〉, where d is a total ordering for V and Buckets is a

set of buckets (one for each variable) if Z is SC, uncontrollable
otherwise.

1 Compute a CN Z∗ ← 〈V,D, C∗〉 where C∗ ← {RS | (RS , `) ∈ C}
2 d← TopologicalSort(G) . where G← 〈V,≺〉
3 if no order is possible then
4 return uncontrollable

5 return ADC(Z∗, d)

to Bucket(S). Since the labels of the two relations are the same, Bucket(Sign)
actually contains the intersection of the two (as both must hold). However,
({(a, b)},�) ∩ ({(b, b)},�) = (∅,�).

In other words, in Figure 6.1 Bob always does the signing. The problem is
that the user who prepares the personal contract must be different according to
which truth value q will be assigned. If the system calls for a SoD (i.e., s(q) = >),
then Alice prepares the contract, else Bob does it. However, the intersection of the
users allowed to carry out this task according to q is empty, which means that the
user who prepares the contract for a personal loan cannot be decided before the
execution starts.

The complexity of SC-checking is |C|+Complexity(ADC). Despite computing
a total ordering and wiping out the labels on variables run in polynomial time, I
recall that in the worst case C may specify K − 1 relational constraints (where K
is the number of all subsets of V) and each relation may in turn appear (2|P| + 1)
times according to all possible different labels.

6.3.3 Dynamic controllability checking

The dynamic controllability checking (DC-checking) addresses the most appealing
type of controllability. If a CNCU is not SC, it could be DC by deciding which value
to assign to which variable depending on how the uncontrollable part behaves. This
subsection discusses this algorithm. I start with LabeledADC (Algorithm 13), a
main sub-algorithm I make use of, which extends ADC to address the conditional
part by refining the adding or tightening of constraints to the buckets and the
constraint-propagation.

When I add a constraint (RS , `) to a Bucket(V ), I lighten ` by removing all
literals p or ¬p in ` that will still be unknown by the time V executes. That is,
those whose related observation variables are either V itself or will be assigned
after V according to d.

When propagating constraints, LabeledADC enforces the adequate level of
k-consistency for all combinations of relevant (partial) scenarios arising from the
conjunctions of all labels related to the constraints in the buckets. That is, for
each V , it runs CCclosure on the set Closure = {` | (RS , `) ∈ Bucket(V )}. After
that, it generates a new constraint (RSn , `n) for each `n ∈ Closure, where Sn is
the union of the scopes of the constraints in Bucket(V ) (whose labels are entailed
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Algorithm 12: CCclosure(Labels)
Input: A set of labels Labels
Output: The closure of all possible consistent conjunctions

1 Closure ← Labels
2 do
3 Pick two labels `1 and `2 from Closure
4 if `1 ∧ `2 is consistent and `1 ∧ `2 6∈ Closure then
5 Closure ← Closure ∪ {`1 ∧ `2}

6 while Any adding is possible
7 return Closure

Algorithm 13: LabeledADC(Z, d)
Input: A CNCU Z = 〈V,D, D,OV,P, O, L,≺, C〉 and an ordering

d = V1 ≺ · · · ≺ Vn
Output: A set Buckets of buckets (one for each variable) if Z is consistent

along d, inconsistent otherwise.
1 foreach (RS , `) ∈ C do . Partition constraints as follows
2 Let V be the latest variable in S according to d
3 Let `Rem be the conjunction of all literals p or ¬p in ` such that either

V = P? or V ≺ P? in d, where P? = O(p) . Remove unknown literals
4 Add (RS , `− `Rem) to Bucket(V )

5 foreach V in d taken in reverse order do . Process buckets
6 Closure ← CCclosure({` | (RS , `) ∈ Bucket(V )})
7 for `n ∈ Closure do . new constraint’s label
8 Entailed ← {RS | (RS , `) ∈ Bucket(V ) ∧ `n ⇒ `}
9 Sn ←

⋃
RS∈Entailed S \ {V } . new constraint’s scope

10 Compute Rtmp ←./RS∈Entailed RS . enforce k-consistency
11 if Rtmp = ∅ then
12 return inconsistent

13 if Sn 6= ∅ then . propagate the new constraint
14 RSn ← πSn(Rtmp) . Project onto the new scope
15 Let Vn be the latest variable in Sn according to d
16 Compute `Rem as before but w.r.t. `n
17 Add (RSn , `n − `Rem) to Bucket(Vn)

18 Buckets ← {{Bucket(V )} | V ∈ V}
19 return Buckets

by `n) deprived of V . RSn contains all tuples surviving the join of the entailed
constraints projected onto Sn (as in the classic ADC). If no empty relation is
computed, then the new constraint is added to the bucket of the latest variable
in Sn (if any). If Sn = ∅, then it means that the algorithm computed a (implicit)
unary constraint for V .

Finally, LabeledADC returns the set of buckets from which any solution can
be built according to d (or inconsistent if no solution exists).
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Algorithm 14: DC-checking (Z)
Input: A CNCU Z = 〈V,D, D,OV,P, O, L,≺, C〉
Output: A tuple 〈d,Buckets〉, where d is an ordering for V and Buckets is a set

of buckets (one for each variable) if Z is DC along d, uncontrollable
otherwise.

1 G← 〈V,≺〉 . All variables, whole partial order
2 foreach ordering d ∈ AllTopologicalSorts(G) do
3 Buckets ← LabeledADC(Z, d)
4 if Z is consistent (along d) then
5 return 〈d,Buckets〉

6 return uncontrollable

However, given an ordering d, if LabeledADC “says no”, it could be a matter
of wrong ordering. Consider PersC, Q? and Sign in Figure 6.1, and assume that
those three variables are ordered as PersC ≺ Q? ≺ Sign. Furthermore, consider
Table 6.1 and suppose that PersC = alice. When Q? is executed (Q? = wf), the
truth value of q becomes known (recall that in this partial scenario s(p) = >).
If s(q) = >, then Sign = bob and (alice, bob) ∈ (R6, p ∧ q) (Table 6.1g), but if
s(q) = ⊥, then Sign = bob and (alice, bob) 6∈ (R6, p ∧ ¬q) (Table 6.1h).

More simply, if Alice executes PersC and afterwards s(q) = ⊥, then no valid
user remains for Sign as our example calls for a binding of duties between the
two tasks (Table 6.1h). If Bob executes PersC and afterwards s(q) = >, then
the problem is the same (so there is no user who can be assigned conservatively
to PersC without any information on the truth value of q). Fortunately, PersC
and Q? are unordered (no precedence is specified between the two variables). This
situation allows me to act in a more clever way: What if I executed Q? before
executing PersC? In such a case, I would have full information on s(q) and my
strategy would be: if s(q) = >, then Alice, else Bob.

Formally, DC-checking (Algorithm 14) works by looking for an ordering d
coherent with ≺ such that LabeledADC “says yes” when analyzing Z along d. If
no ordering works, then the network is uncontrollable. DC-checking iterates on
all possible orderings by using internally the AllTopologicalSorts algorithm
[80]. Every time a total order is found, DC-checking runs LabeledADC on the
CNCU with respect to that order. If the CNCU is consistent, then DC-checking
stops and returns the order and the sets of buckets.

For example, the CNCU in Figure 6.1 is DC along the ordering d1 = ProcR ≺
LogR ≺ P? ≺ Q? ≺ BusiC ≺ PersC ≺ Sign and uncontrollable along d2 =
ProcR ≺ LogR ≺ P? ≺ BusiC ≺ PersC ≺ Q? ≺ Sign (as PersC is assigned before
Q?).

I execute a CNCU proved to be DC as follows. Let `s be the label corresponding
to the current scenario. Initially `s = �. For each variable V along the ordering d,
if V is relevant for `s (i.e., if s |= L(V )), then I look for a value v in the domain of
V satisfying all relevant constraints in Bucket(V ). If V is irrelevant (as `s falsifies
L(V )), then I ignore V and go ahead with the next variable (if any). Moreover, if
V is an observation variable, where p is the associated proposition, then `s extends
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to `s∧p iff p is assigned true (i.e., s(p) = >), and to `s∧¬p otherwise. In this way,
a partial scenario extends to a complete one, one observation variable at a time.

A strategy to execute the CNCU in Figure 6.1 is the following: Charlie executes
ProcR, Alice LogR and the workflow engine executes the first conditional split
connector (always). If s(p) = ⊥, then David executes BusiC. If s(p) = >, then the
workflow engine executes the second split connector to have full information on q.
If s(q) = >, then Alice executes PersC, else Bob. Bob executes Sign (always).

The complexity of DC-checking is |V|! × Complexity(LabeledADC) as in
the worst case there are |V|! orderings. I leave the investigation of the complexity
of LabeledADC as future work.

6.4 Correctness of the Algorithms

I discuss some correctness results of the algorithms I proposed in Section 6.3. I
start by defining what soundness and completeness for a controllability checking
algorithm are.

Definition 6.12. A controllability algorithm is sound if, whenever it classifies a
CNCUs as uncontrollable, the CNCU is really uncontrollable, and it is complete
if, whenever a CNCU is uncontrollable, the algorithm classifies it as so. A control-
lability algorithm is correct if it is sound and complete.

I sketch the proofs of the soundness and completeness of my algorithms. Given
a CNCU Z and any scenario s ∈ Σ, WC-checking runs TopologicalSort and
subsequently ADC on Zs. If no total order exists for Zs or Zs is inconsistent, then
the original CNCU is uncontrollable as there is no way to satisfy the constraints
if s happens (regardless of whether we know it before starting the execution).
Thus, WC-checking is sound. WC-checking is also complete because it does
so for all possible scenarios guaranteeing that if some projection is inconsistent
or no total order exists for that projection, WC-checking will find out. Thus,
WC-checking is correct.

SC-checking first wipes out the conditional part of the original CNCU ob-
taining a super-projection whose set of constraints corresponds to the intersection
of all sets of constraints (even inconsistent with each other) related to all pos-
sible projections. Afterwards, SC-checking runs TopologicalSort and then
ADC on the resulting super-projection. Hence, SC-checking is sound and com-
plete as it computes a total order in a correct way (provided one exists) with
TopologicalSort which is known to be correct [46, 80] and tests the resulting
projection along that order with ADC which is known to be sound and com-
plete [52]. Since all variables and constraints are kept, we are sure that a solution
(if any) will satisfy the “for all scenarios”-part as requested by Definition 6.8.

Note that WC-checking and SC-checking carry out the analysis on (possi-
bly many) unconditional CNs. I point out that the chosen ordering according to ≺
given in input to ADC never breaches soundness and completeness of ADC but
might only affect its complexity (see the discussion on induced width in [52]).

LabeledADC extends ADC to accommodate the propagation of labeled con-
straints. When it adds a constraint to the bucket of a variable V it lightens the label
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of the constraint by removing all literals whose truth value will be still unknown
by the time V executes. This is because the observation variables associated to the
propositions embedded in those literals will be executed after V or coincide with
V itself. For this reason, we must be conservative and consider the constraint as if
it just held, since we are unable to predict “what is going to be”. LabeledADC
propagates the constraints enforcing the adequate level of k-consistency for all
possible combinations of honest (partial) scenarios arising from the labels of the
constraints in a bucket. If LabeledADC detects an inconsistency, it means that
there exists a (partial) scenario for which the value assignments to the variables
of the CNCU (along with the ordering in input) will violate some constraint. I
believe that DC-checking is correct as it runs LabeledADC on all possible or-
derings. If LabeledADC detects inconsistency for all orders (or no total ordering
exists), then the CNCU is uncontrollable (soundness), whereas if LabeledADC
finds an order for which LabeledADC “says yes”, then the CNCU is dynamically
controllable with respect to that order (completeness). I leave a formal proof as
future work.

6.5 Zeta: A tool for CNCUs

I developed Zeta, a tool for CNCUs that takes in input a specification of a CNCU
and acts both as a solver for weak, strong and dynamic controllability and as an
execution simulator. Listing 6.1 shows Zeta’s help screen.

Listing 6.1: Zeta’s help screen.
Usage: java -jar zeta.jar <network.cncu> ACTION <network.ob> [N] [--silent]

ACTION:
--WCchecking performs weak controllability checking.
--SCchecking performs strong controllability checking.
--DCchecking performs dynamic controllability checking.
--execute performs [N] executions of a (weakly/strongly/dynamically)

controllable network. If N is not specified, then the
default value is 1.

--silent [--silent] suppresses the output (optional). If --silent
is specified, then check the return value when doing --WC,
--SC and --DCchecking. 0 means controllable, 1 means
uncontrollable.

Examples:
---------
java -jar zeta.jar Network.cncu --WCchecking Network.ob
java -jar zeta.jar Network.cncu --SCchecking Network.ob
java -jar zeta.jar Network.cncu --DCchecking Network.ob
java -jar zeta.jar Network.cncu --execute Network.ob 1000

The input language comprises five main sections. The section Domain

Domains {
...
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(D : v1 ... vn)
...

}

specifies the set D and provides here an example of D = {v1, . . . , vn}. The section
Proposition is exactly the same of that given for Kappa and Esse. The section
Variables

Variables {
...
(P : p : q !r ...)
(X : : p q !r ...)
...

}

specifies the sets V, OV as well as the mappings O,D and L, and gives here an
example of an observation variable P? such that O(p) = P? and L(P?) = q¬r and
a normal variable X where L(X) = pq¬r. The section Precedence

Precedence {
...
(V1 < V2)
...

}

specifies the precedence relation ≺ and provides here an example of V1 ≺ V2. The
section Constraints

Constraints {
...
(X Y ... : (v1 ...) ... : p !q ...)
...

}

specifies the set C and provides here an example of (RS , `), where S = {X,Y, . . . },
` = p¬q . . . and R = {(v1, . . . ), . . . }.

Given a CNCU specification file network.cncu, weak, strong and dynamic
controllability are respectively checked by running

$ java -jar zeta.jar network.cncu --WCchecking network.ob
$ java -jar zeta.jar network.cncu --SCchecking network.ob
$ java -jar zeta.jar network.cncu --DCchecking network.ob

If the CNCU is proved controllable, Zeta saves to file the order and buckets needed
to later generate any solution (for weak controllability, Zeta does so for any com-
plete scenario). A controllable CNCU is executed by running

$ java -jar zeta.jar network.cncu --execute network.ob [N]

where [N] (default 1) is the number of simulations we want to carry out. For
weak controllability, Zeta executes the CNCU with respect to each complete sce-
nario, whereas for strong and dynamic, it executes the CNCU generating a random
scenario (that is why Zeta allows for multiple simulations).

Listing 6.2 shows the specification of Figure 6.1 into Zeta’s input language.
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Listing 6.2: Specification of Figure 6.1 in Zeta’s input language.
1 Domains {
2 (D1 : alice bob charlie)
3 (D2 : alice bob charlie david)
4 (D3 : alice bob)
5 (D4 : wf)
6 (D5 : bob)
7 }
8
9 Propositions {

10 p q
11 }
12
13 Variables {
14 (ProcR : : D1 : )
15 (LogR : : D1 : )
16 (P : p : D4 : )
17 (Q : q : D4 : p)
18 (BusiC : : D2 : !p)
19 (PersC : : D3 : p)
20 (Sign : : D5 : )
21 }
22
23 Precedence {
24 (ProcR < LogR)
25 (ProcR < P)
26 (P < Q)
27 (P < BusiC)
28 (P < PersC)
29 (LogR < BusiC)
30 (PersC < Sign)
31 (BusiC < Sign)
32 (Q < Sign)
33 }
34
35 Constraints {
36 # (R1, )
37 (ProcR LogR : (alice bob) (alice charlie) (bob alice) (bob charlie)
38 (charlie alice) (charlie bob) : )
39 # (R1, !p)
40 (ProcR LogR : (alice alice) (alice charlie) (bob bob) (bob charlie)
41 (charlie alice) (charlie bob) (charlie charlie) : !p)
42 # (R2, !p)
43 (LogR BusiC : (alice bob) (alice charlie) (alice david) (bob alice)
44 (bob charlie) (bob david) (charlie alice) (charlie bob)
45 (charlie david) : !p)
46 # (R3, !p)
47 (ProcR BusiC : (alice bob) (alice charlie) (alice david) (bob alice)
48 (bob charlie) (bob david) (charlie alice) (charlie bob)
49 (charlie david) : !p)
50 # (R4, p)
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51 (ProcR PersC : (charlie alice) (charlie bob) : p)
52
53 # (R5, !p)
54 (BusiC Sign : (alice bob) (charlie bob) (david bob) : !p)
55
56 # (R6, p q)
57 (PersC Sign : (alice bob) : p q)
58
59 # (R6, p !q)
60 (PersC Sign : (bob bob) : p !q)
61 }

I ran Zeta on the CNCU in Figure 6.1. I used a FreeBSD virtual machine run
on top of a VMWare ESXi Hypervisor using a physical machine equipped with an
Intel i7 2.80GHz and 20GB of RAM. The VM was assigned 16GB of RAM and full
CPU power. Zeta proved in about 234 milliseconds that the CNCU in Figure 6.1
is weakly controllable (saving an ob-file of 12Kb), is not strongly controllable (in
about 200 milliseconds) but is dynamically controllable in about 274 milliseconds
(saving an ob-file of 8Kb). For weak and dynamic controllability, the CNCU was
correctly executed. This example is available at http://regis.di.univr.it/LOP_
LNAI2018.tar.bz2. Listing 6.3 shows the output of Zeta.

Listing 6.3: WC, SC and DC-checking of Figure 6.1 with Zeta.
$ java -jar zeta.jar Example.cncu --WCchecking Example.weak.ob
Weakly Controllable

$ java -jar zeta.jar Example.cncu --SCchecking Example.strong.ob
Uncontrollable

$ java -jar zeta.jar Example.cncu --DCchecking Example.dynamic.ob
Dynamically Controllable

Listing 6.4 shows one execution simulation for weak controllability. In the exe-
cution, Zeta provides a solution (i.e., a consistent schedule plus a total order) for
each scenario. Zeta just picks up a random user for each variable among those
valid for the specific projection.

Listing 6.4: Execution simulations for Figure 6.1 (weak controllability).
$ java -jar zeta.jar Example.cncu --execute Example.weak.ob
====================================
Scenario: !p
Order: ProcR -> P -> LogR -> BusiC -> Sign
------------------------------------
ProcR = alice
P = wf
LogR = charlie
BusiC = david
Sign = bob
------------------------------------
Verifying ... SAT!

http://regis.di.univr.it/LOP_LNAI2018.tar.bz2
http://regis.di.univr.it/LOP_LNAI2018.tar.bz2
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====================================
====================================
Scenario: p q
Order: ProcR -> P -> PersC -> Q -> Sign -> LogR
------------------------------------
ProcR = charlie
P = wf
PersC = alice
Q = wf
Sign = bob
LogR = alice
------------------------------------
Verifying ... SAT!
====================================
====================================
Scenario: p !q
Order: ProcR -> P -> PersC -> Q -> Sign -> LogR
------------------------------------
ProcR = charlie
P = wf
PersC = bob
Q = wf
Sign = bob
LogR = bob
------------------------------------
Verifying ... SAT!
====================================

Listing 6.5 shows three (random) execution simulations for dynamic controllability.
In the execution, Zeta always provides a solution no matter which scenario will
arise (I isolated the executions generating all scenarios).

Listing 6.5: Execution simulations for Figure 6.1 (dynamic controllability).
$ java -jar zeta.jar Example.cncu --execute Example.dynamic.ob 3
====================================
Order: ProcR -> LogR -> P -> Q -> BusiC -> PersC -> Sign
------------------------------------
ProcR = charlie
LogR = alice
P = wf, p = true
Q = wf, q = false
PersC = bob
Sign = bob
------------------------------------
Verifying ... SAT!
====================================
====================================
Order: ProcR -> LogR -> P -> Q -> BusiC -> PersC -> Sign
------------------------------------
ProcR = charlie
LogR = alice
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P = wf, p = true
Q = wf, q = true
PersC = alice
Sign = bob
------------------------------------
Verifying ... SAT!
====================================
====================================
Order: ProcR -> LogR -> P -> Q -> BusiC -> PersC -> Sign
------------------------------------
ProcR = charlie
LogR = alice
P = wf, p = false
BusiC = david
Sign = bob
------------------------------------
Verifying ... SAT!
====================================

Once again, having a tool allowed me to carry out an automated experimen-
tal evaluation to compare the performances of DC-checking. I summarize my
findings in the following.

I generated 3000 CNCUs partitioned in 3 sets of benchmarks: weak/, strong/
and dynamic/. Each set contains a directory 6vars/ specifying CNCUs with 6
variables and 5 sub-directories 2obs/, 3obs/, 4obs/, 5obs/ and 6obs/ partitioning
them by the number of observation variables, where each Xobs contains 2 further
directories controllable/ and uncontrollable/, each one containing 100 CN-
CUs. I generated the networks such that: (i) all weakly controllable CNCUs are nei-
ther strongly nor dynamically controllable and (ii) all dynamically controllable CN-
CUs are not strongly controllable. For example, weak/6vars/3obs/controllable
contains weakly controllable CNCUs (only) with 6 variables, 3 of which are obser-
vation variables, strong/6vars/4obs/uncontrollable contains strongly uncon-
trollable CNCUs with 6 variables, 4 of which are observation variables, whereas
dynamic/6vars/6obs/controllable contains dynamically (and not strongly)
controllable CNCUs with 6 (observation) variables.

In this way, for each kind of controllability I have the same number of con-
trollable and uncontrollable CNCUs specifying the same number of variables and
varying the number of observation ones. These sets of benchmarks (along with the
analysis that I am about to discuss) are available at http://regis.di.univr.
it/EE_CNCU_LNAI2018.tar.bz2.

Regardless of the set, each CNCU has exactly 6 six variables, where each vari-
able has the same 6 values in its domain. Each CNCU specifies a maximum number
of relational constraints of 40% of |V|× |OV|, where each (binary) relation (Rij , `)
has a maximum number of tuples of 50% of |D(Vi)| × |D(Vj)| and the label ` is
generated randomly. Furthermore, all variables are unlabeled and no partial order
is specified. This contributes to generating “hard” instances for DC-checking as
it forces it to run on potentially all orders.

Algorithm 15 shows the pseudo code of the generator I developed to generate
this set of benchmarks. I proceed by discussing the graphical data of the experi-

http://regis.di.univr.it/EE_CNCU_LNAI2018.tar.bz2
http://regis.di.univr.it/EE_CNCU_LNAI2018.tar.bz2
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Algorithm 15: CNCU-Gen(n, o,m, c, k)
Input: An exact number of variables v, an exact number of observation

variables o, an exact number of values m, a maximum number of
constraints c, a maximum number of tuples k per constraint.

Output: A well-defined CNCU. If the output network contains observation
variables then each proposition will label some component.

1 Z ← 〈V,D, D,OV,P, O, L,≺, C〉 . Empty CNCU
. Generate a single domain

2 D ← {v1, . . . , vm}
. Generate variables and related propositions

3 OV ← {Pi? | 1 ≤ i ≤ o}
4 P ← {pi | 1 ≤ i ≤ o}
5 O(di) = Pi? for 1 ≤ i ≤ o
. Generate the rest of time points

6 V ← OV ∪ {Vi | 1 ≤ i ≤ (n− o)}
7 L(V ) = � for V ∈ OV
. Generate constraints

8 for i← 1 to c do
9 V1, V2 ← two Random variables in V

10 R{V1,V2} ← ∅
11 `← �
12 maxLength ← Random(0, |P|) . Random extension of the label
13 for j ← 0 to maxLength do
14 p← Random(P) . Random proposition
15 if ` ∧ p is consistent then
16 `← ` ∧ p

17 for j = 1 to k do
18 t← Random(v1, v2) . For (v1, v2) ∈ D(V1)×D(V2)

R{V1,V2} ← R{V1,V2} ∪ {t}
19 C ← C ∪ (R{V1,V2}, `)

. Final check
20 if Some proposition never appears in any label then
21 Throw away the network

22 return Z

mental evaluation in Figure 6.2 (time) and Figure 6.3 (space), where x-axes always
represent the number of observation variables (i.e., the set of benchmarks under
analysis) and y-axes represent either the average time elapsed or the space con-
sumed when saving the “order and buckets” of a controllable CNCU in the specific
set.

Figure 6.2a shows the time performance of WC-checking on weakly con-
trollable CNCUs only. The results confirm that augmenting observation variables
worsens the time performance of the analysis. No other comparison is possible here
since this set of benchmarks contains neither strongly nor dynamically controllable
CNCUs.

Figure 6.2b shows the time performance of WC-checking, SC-checking
and DC-checking on weakly uncontrollable CNCUs. I recall that a weakly un-
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Fig. 6.2: Experimental evaluation with Zeta (time).

controllable CNCU cannot be strongly controllable nor dynamically controllable.
Therefore, when CNCUs are uncontrollable for all three kinds of controllabil-
ity, SC-checking is faster than WC-checking which, in turn, is faster than
DC-checking to prove uncontrollability of the CNCUs.

Figure 6.2c shows the time performance of WC-checking, SC-checking and
DC-checking on strongly controllable CNCUs. I recall that a strongly control-
lable CNCU is also weakly and dynamically controllable. Therefore, when CNCUs
are controllable for all three kinds of controllability, SC-checking is faster than
DC-checking which, in turn, is faster than WC-checking to validate the CN-
CUs (note that in this case any order is fine for DC-checking).

Figure 6.2d shows the time performance of SC-checking on strongly un-
controllable CNCUs. Note that a strongly uncontrollable CNCU could be weakly
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Fig. 6.3: Experimental evaluation with Zeta (space).

and/or dynamically controllable (that’s why I excluded WC-checking and DC-checking
from this comparison). The graph shows little difference on the average times,
which is because of the conditional part that is wiped out.

Figure 6.2e shows the time performance of WC-checking and DC-checking
on dynamically controllable CNCUs. I recall that a dynamically controllable
CNCU is also weakly but in general can be not strongly controllable (in the
sets I generated these networks so that they were not SC). Therefore, when CN-
CUs are dynamically but not strongly controllable, WC-checking is faster than
DC-checking to validate them. This is because WC does not need to brute-force
all the orders.

Figure 6.2f shows the time performance of SC-checking and DC-checking
on dynamically uncontrollable CNCUs. I recall that a dynamically uncontrollable
CNCU is also strongly uncontrollable (but could be weakly controllable, which is
why WC-checking was excluded from this comparison). Therefore when CNCUs
are dynamically uncontrollable, SC-checking is faster than DC-checking to
prove uncontrollability. This depends on the fact that the conditional part is wiped
out but also that SC-checking does not brute-force all the orders.

Figure 6.3a shows the space consumption of WC-checking for weakly con-
trollable CNCUs, confirming that augmenting the number of observations will
augment the size of the saved strategy. I recall that all variables in any CNCU are
unlabeled, therefore K observation variables imply 2K saved solutions.

Figure 6.3b shows the space consumption of WC-checking, SC-checking
and DC-checking for strongly controllable CNCUs (which are also weakly and
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dynamically controllable). SC-checking saves strategies that are smaller than
those saved by DC-checking, which, in turn, are smaller than those saved by
WC-checking. This graph reveals that in a strategy, unfolding all scenarios
(WC-checking) is worse than keeping them compact (DC-checking). This is
also confirmed by Figure 6.3c, which shows the difference in space consumption
between WC-checking and DC-checking for dynamically controllable CNCUs
(which are also weakly but not strongly controllable).

Finally, I executed all controllable CNCUs 1000 times. No one crashed.

6.6 Modeling access controlled workflows under uncertainty

In this section, I define a process modeling language to specify access controlled
workflows under conditional uncertainty (simply shortened as ACWFs), then de-
fine weak, strong and dynamic controllability of ACWFs and finally provide an
encoding from ACWFs to CNCUs.

6.6.1 Motivating Example

As a running, motivating example coming from the financial domain, I consider
(an excerpt of) a simplified loan origination process that I show in Figure 6.4. The
workflows has 7 tasks, 5 roles (Clerk, Auditor, AMLOfficer, IRSOfficer and
Manager) and 6 users (alice, bob, evie, kate, mike and ted). Clerk contains
alice and bob, Auditor contains bob and kate, AMLOfficer contains mike only,
IRSOfficer contains evie only, Manager contains kate and ted.

A Clerk starts the workflow by processing a loan request (ProcR). After that,
the flow of execution splits by entering an unconditional parallel block (leftmost
diamond). In this block an Auditor checks the financial records of the customer
(CheckFR) and at the same time another further verification takes place depending
on if the amount of money requested is huge or not (diamond labeled by hugeA?).
If hugeA? = >, then an AMLOfficer carries out an anti money laundering as-
sessment (AntiML). If hugeA? = ⊥, an IRSOfficer carries out a simple tax fraud
assessment. The Auditor who executes CheckFR must be different from the Clerk
who executed ProcR, (as some users, e.g., bob, might belong to both roles) and
must also not be a relative of the AMLOfficer who executed AntiML nor of the
IRSOfficer who executed TaxFA (different is not necessary since the bank re-
quires AMLOfficers and IRSOfficers to be external disjoint consultants). After
that both the internal conditional block and the external parallel one (in this or-
der) complete and the flow of execution enters a new conditional block to carry out
the final tasks depending on if the loan has been approved or not (diamond labeled
by app?). If app? = >, then a Manager prepares the contract (PrepC) and another
one, who must be different from the first, signs it (Sign). If app? = ⊥, then the
same Clerk who executed the initial ProcR rejects the request (Reject). Regard-
less of the chosen branch, the workflow completes by executing the rightmost split
connector.
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〈B〉

(a) Process

t
(r1, . . . , rn)

(b) Task
(c) Skip

〈B1〉 〈B2〉

(d) Sequence

+

〈B1〉

〈B...〉

〈Bn〉

+

(e) Parallel

× cond?

〈B>〉

〈B⊥〉

×

cond

¬cond

(f) Choice

t1
(ri, . . . , rn)

t2
(rj , . . . , rk)

{ρ1,¬ρ2 . . . }

(g) Authorization constraint

Fig. 6.5: A fragment of a structured (access controlled) BPMN.

6.6.2 Process Modeling Language

I consider again a structured approach similar to the fragment of BPMN I discussed
in Section 5.7.2 but with an authorization part instead of a temporal part. I inject
a role-based access-control model (RBAC, [113]) and formalize authorization con-
straints at user level into the process specification. Figure 6.5 shows the process
modeling language I propose to model ACWFs under conditional uncertainty.

Differently from CSTNUDs, since CNCUs do not model decisions (yet), I as-
sume that each conditional split connector is associated to a unique proposition
whose truth value assignment is uncontrollable.

Instead, as for the structured fragment given in Figure 5.8, I assume that all
tasks of the workflow are implicitly labeled by labels according to the nesting levels
of the choice blocks (this is implicit since the workflow is structured).

The RBAC part of a business process consists of roles, users and tasks as
the set of permissions. Roles are associated to both users and tasks, acting as
an interface between them. The UA relation remains the same, whereas the TA
(task-assignment) relation replaces PA in Definition 2.30. I write

• users(r) = {u | (u, r) ∈ UA} for the set of users belonging to a role r
• roles(t) = {r | (t, r) ∈ TA} for the set of roles authorized for a task t.

I abuse notation and write users(t) = {u | (u, t) ∈ UA ∧ r ∈ roles(t)} for the set
of users authorized for a task.

I label a task t by a finite set of roles {r1, . . . , re} ⊆ Roles meaning that
(t, r1), . . . , (t, re) ∈ TA (Figure 6.5b). Assigning roles to tasks models “who does
what”.

I express authorization constraints as undirected dashed edges between pairs
of tasks t1, t2 (i.e., tasks that do not belong to mutually exclusive workflow paths)
as a finite set of binary relations {ρ1,¬ρ2 . . . } over users (ρi ⊆ Users × Users)
where each relation may appear positive (ρ) or negative (¬ρ) and such that if
u1 ∈ users(t1) and u2 ∈ users(t2) and the pair (u1, u2) also satisfies all (¬)ρi in the
set, then any execution assigning t1 to u1 and t2 to u2 satisfies the authorization
constraint (Figure 6.5g).
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Like temporal relative constraints discussed in Figure 5.8, adding authorization
constraints does not breach the structuredness of the workflow either. The example
in Figure 6.4 introduced in Section 6.6.1 is a structured ACWF under conditional
uncertainty.

6.6.3 Controllability of ACWFs under conditional uncertainty

In this section, I define weak, strong and dynamic controllability of ACWFs under
(conditional) uncertainty. My goal is to synthesize execution strategies identifying
which users to commit for which tasks (and in which order) so that in the arising
workflow path the execution satisfies both the partial order and all authorization
constraints between tasks.

Let Components be the set of components of the WF containing tasks (ti),
connectors (ci) and two special symbols P and E representing the start and end of
the process. Users is the set of users. Let B = {cond?, . . . } be the set of Boolean
variables associated to the conditional split connectors.

Definition 6.13. A scenario s : B → {⊥,>} is a complete truth value assignment
to the Boolean variables in B. Σ models the space of all scenarios.

A WF path is the projection of a WF onto a scenario. That is, a new uncondi-
tional WF in which all components incoherent with the truth value assignment are
removed. For example, Figure 6.4 specifies 4 WF paths (I omitted the connectors
to ease reading):

1. ProcR→ CheckFR→ AntiML→ PrepC→ Sign (if hugeA? and app?)
2. ProcR→ CheckFR→ TaxFA→ PrepC→ Sign (if ¬hugeA? and app?)
3. ProcR→ CheckFR→ AntiML→ Reject (if hugeA? and ¬app?)
4. ProcR→ CheckFR→ TaxFA→ Reject (if ¬hugeA? and ¬app?)

Definition 6.14. A plan is a mapping π : Components→ Users×N from compo-
nents to users and (positive) integers saying which users execute which components
and in which order. If π(X) = (u1, i1) and π(Y ) = (u2, i2) and i1 < i2, then u1
executes X before u2 executes Y . A plan is consistent if the assignments it makes
satisfy all authorization constraints involving tasks in its domain and the partial
order. Π represents the set of all plans.

However, a plan is nothing but a fixed schedule for executing a bunch of com-
ponents. The interesting part is how we generate it. To do so, we need a strategy.

Definition 6.15. An execution strategy is a mapping σ : Σ → Π from scenarios
to plans whose domains consist of the components coherent with the scenario. An
execution strategy is viable if for s ∈ Σ, there exists a consistent plan σ(s).

To avoid heaving the notation, I write [σ(s)]X (instead of σ(s)(X)) to denote
the pair (u, i) assigned to the component X in the plan π = σ(s). I am now ready
to provide the three main kinds of controllability.

Definition 6.16. An ACWF under conditional uncertainty is weakly controllable
if there exists a viable strategy (every WF path is consistent).
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Figure 6.4 is weakly controllable. To prove that I give an assignment of users
to tasks for each WF path previously discussed.

1. ProcR = bob, AntiML = mike, CheckFR = kate, PrepC = ted, Sign = kate
2. ProcR = alice, TaxFA = evie, CheckFR = bob, PrepC = kate, Sign = ted
3. ProcR = alice, AntiML = mike, CheckFR = kate, Reject = alice
4. ProcR = alice, TaxFA = evie, CheckFR = bob, Reject = alice

However, weak controllability requires one to predict how the entire uncon-
trollable part will behave (i.e., it requires to predict the future). This leads me
to discuss the opposite kind of controllability, where a single assignment makes
consistent all WF paths no matter which one we take during execution.

Definition 6.17. An ACWF under conditional uncertainty is strongly control-
lable if there exists a viable strategy working for all scenarios.

Figure 6.4 is not strongly controllable. The problem lies in the authorization
constraints specified between CheckFR and AntiML and between CheckFR and
TaxFA. Suppose that before starting we decide we will assign bob to CheckFR.
If during execution we observe hugeA? = >, thus the WF goes for AntiML with
no user available for it since bob and mike are brothers. Then, we could change
our mind and decide to assign kate (instead of bob) to CheckFR so that mike for
AntiML would be fine as kate and mike are not relatives. But if during execution
hugeA? = ⊥, evie would not be OK for TaxFA as she is kate’s sister. Therefore,
there is no way to preassign a user to CheckFR.

Yet, the WF is still executable as long as we decide (during execution) which
user to assign to CheckFR after observing which truth value hugeA? has been
assigned. This leads me to consider the most appealing type of controllability:
dynamic controllability, a history-based controllability.

Definition 6.18. The history H(t, s, σ) of a task t in the scenario s for the strat-
egy σ is the set of truth value assignments observed before t upon the execution of
the corresponding conditional split connectors c having associated uncontrollable
Boolean variables cond? in the strategy σ(s). Formally,

H(t, s, σ) = {(cond?, s(cond?)) | [σ(s)]c = (uc, ic) ∧ [σ(s)]t = (ut, it) ∧ ic < it}

where cond? is the Boolean variable associated to the conditional split connector
c and uc, ut ∈ Users are the users executing c and t, respectively.

For example, consider Reject in Figure 6.4, a scenario s such that s(hugeA?) =
⊥ and s(app?) = > and any dynamic strategy σ for s (see below). Before the
conditional split connector labeled by hugeA? executes, H(Reject, s, σ) = ∅ and
H(Reject, s, σ) = {¬hugeA} after. Likewise, before the conditional split connector
labeled by app? executes we have that H(Reject, s, σ) is still equal to {¬hugeA}
and H(Reject, s, σ) = {¬hugeA, app} after.

Definition 6.19. An execution strategy σ is dynamic if for any pair of scenarios
s1, s2 ∈ Σ and any task t, whenever the scenario history looks the same, then the
strategy assigns the same users and integers to the same components of the WF.
That is, for all s1, s2 ∈ Σ and any t ∈ Tasks, if H(t, s1, σ) = H(t, s2, σ), then
[σ(s1)]X = [σ(s2)]X for any X ∈ Components.
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Definition 6.20. An ACWF under conditional uncertainty is dynamically con-
trollable if there exists a dynamic execution strategy.

The ACWF in Figure 6.4 is dynamically controllable. An example of dynamic
execution strategy is the following. ProcR = alice (always). Then, the WfMS
executes the leftmost total connector and conditional split connector labeled by
hugeA?. If hugeA? = >, then CheckFR = kate and AntiML = mike. After that,
the WfMS executes the corresponding join connectors and also the second split
connector labeled by app?. If app? = >, then PrepC = ted and Sign = kate,
whereas if app? = ⊥, then Reject = alice. The process concludes with the WfMS
executing the last join connector. Instead, beside the execution of the connectors
(which is the same), if hugeA? = ⊥, then CheckFR = bob and TaxFA = evie. After
that, if app? = >, then PrepC = kate and Sign = ted, whereas if app? = ⊥, then
Reject = alice. The important thing is to execute the conditional split connector
labeled by hugeA? before executing CheckFR (as being in a parallel block, CheckFR
could be executed before the connector). ACWFs like our example in Figure 6.4
are witnesses of the ordering problem.

Hence, it should not be difficult to see that weak, strong and dynamic con-
trollability of ACWFs boil down to those of CNCUs when tasks are modeled as
variables, conditional split connectors as observation variables, the partial order
as order edges and authorization constraints as constraints edges.

6.6.4 Encoding ACWF into CNCUs

As I did for temporal workflows and CSTNUDs I provide here an encoding from
ACWF to CNCUs. Table 6.2 shows such an encoding.

All arcs regulating the control flow are encoded as order edges in the CNCU.
The start and end of a process are encoded as two variables S and E occurring

before and after all other variables, respectively. L(S) = L(E) = � since the start
and the end of a process always occur. wf is the unique authorized user for these
variables. No constraint edge involves S and E (Table 6.2, row 1).

A task t having authorized roles r1, . . . , rn is encoded as a homonymous variable
whose domain consists of the union of all users belonging to r1, . . . , rn authorized
for t; i.e., users(t), whereas its label contains the propositions modeling the Boolean
variables associated to the conditional split connectors according to the nesting
level of the block in which the task appears (Table 6.2, row 2).

Skip and sequence blocks are encoded as order edges connecting the last vari-
able of the left block to the first one of the right (Table 6.2, rows 3,4).

Parallel and conditional blocks are straightforwardly encoded mirroring the
partial order of the ACWFs in the CNCU. If the block is a parallel, a variable PS
models the total split connector, whereas a variable PE models the join connector.
L(PS) = L(PE) according to the nesting level of the block in the ACWF. All labels
of the variables modeling 〈B1〉, 〈B...〉 and 〈Bn〉 in the ACWF (if any) must entail
L(PS). If a block is a choice then an observation variable P? having associated
proposition p models the conditional split connector. PE still models the join con-
nector. Again, L(P?) = L(PE) but this time as well as entailing L(P?), all labels
of the variables modeling 〈B>〉 and 〈B⊥〉 in the ACWF (if any) are augmented
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Table 6.2: Encoding access-controlled workflows into CNCUs.

Workflow Block CNCU Fragment

〈B〉 S
[�]

{wf}
. . . E

[�]

{wf}

t
(r1, . . . , rn) T

[`]

{users(t)}

〈B1〉 〈B2〉 . . . . . .

+

〈B1〉

〈B...〉

〈Bn〉

+ PS

[`]

{wf}

. . .
[` ∧ . . . ]

. . .
[` ∧ . . . ]

. . .
[` ∧ . . . ]

PE

[`]

{wf}

× cond?

〈B>〉

〈B⊥〉

×

cond

¬cond

P?
[`]

{wf}

. . .>
[` ∧ p ∧ . . . ]

. . .⊥
[` ∧ ¬p ∧ . . . ]

PE

[`]

{wf}

ti
(rm, . . . , rn)

tj
(rz, . . . , rk)

{ρ1,¬ρ2, . . . }
Ti

[`i]

{users(ti)}
Tj

[`j ]

{users(tj)}

(ρ1 ∩ ¬ρ2 . . . , `i ∧ `j)

Table 6.3: Relations of the example in Figure 6.6.

(a) (RS1 ,�)

ProcR CheckFR
alice bob
alice kate
bob kate

(b) (RS2 , h)

CheckFR AntiML
kate mike

(c) (RS3 ,¬h)
CheckFR TaxFA

bob evie

(d) (RS4 , a)

CheckFR PrepC
bob kate
bob ted
kate ted

(e) (RS5 , a)

PrepC Sign
kate ted
ted kate

(f) (RS6 , a)

ProcR Reject
alice alice
bob bob

with p or ¬p, respectively (Table 6.2, row 6). All variables modeling connectors
are all executed by wf.

An authorization constraint between two tasks is encoded as a constraint edge
whose relation is the intersection of all relations appearing on the authorization
constraint in the WF block and the label is the conjunction of the labels of the
variables modeling tasks (Table 6.2, row 7).

Figure 6.6 shows the CNCU encoding the ACWF in Figure 6.4. S and E
encode the start and end of the process. PS and PE encode the total split and join
connectors of the unconditional parallel block. H? and HE encode the conditional
split and join connectors of the leftmost conditional block (h models hugeA?).
A? and AE encode the conditional split and join connectors of the rightmost
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conditional block (a models app?). ProcR, CheckFR, AntiML, TaxFA, PrepC, Sign
and Reject model the homonymous tasks.

Table 6.3 shows the labeled relational constraints of Figure 6.6 translating
the authorization constraints of the workflow in Figure 6.4. (S1 = {ProcR,
CheckFR}, S2 = {CheckFR, AntiML}, S3 = {CheckFR, TaxFA}, S4 = {CheckFR,
PrepC}, S5 = {PrepC, Sign} and S6 = {ProcR, Reject} shorten the scopes). Any
relation has the form Rtitj where ti and tj are variables modeling tasks. A tuple
(ui, uj) ∈ Rtitj means that ti = ui and tj = uj satisfies the authorization con-
straint between ti and tj . For example, (alice, bob) ∈ (R1,�) (Table 6.3a) means
that any execution assigning alice to ProcR and bob to CheckFR will satisfy the
authorization constraint between them.

I have discussed a process modeling language for ACWFs under conditional
uncertainty. Then, I have provided an encoding from ACWFs into CNCUs. Now,
I check weak, strong and dynamic controllability of the case study I am discussing
by feeding Zeta with the CNCU in Figure 6.6 whose specification is given in
Listing 6.6. The implementation of this case study is available at http://regis.
di.univr.it/LOP.tar.bz2.

Listing 6.6: Specification of Figure 6.6.
1 Domains {
2 (System : wf)
3 (ProcRDom : alice bob)
4 (CheckFRDom : bob kate)
5 (AntiMLDom : mike)
6 (TaxFADom : evie)
7 (PrepCDom : kate ted)
8 (SignDom : kate ted)
9 (RejectDom : alice bob)

10 }
11
12 Propositions {
13 h a
14 }
15
16 Variables {
17 (S : : System : )
18 (ProcR : : ProcRDom : )
19 (PS : : System : )
20 (CheckFR : : CheckFRDom : )
21 (H : h : System : )
22 (AntiML : : AntiMLDom : h)
23 (TaxFA : : TaxFADom : !h)
24 (HE : : System : )
25 (PE : : System : )
26 (A : a : System : )
27 (PrepC : : PrepCDom : a)
28 (Sign : : SignDom : a)
29 (Reject : : RejectDom : !a)
30 (AE : : System : )
31 (E : : System : )

http://regis.di.univr.it/LOP.tar.bz2
http://regis.di.univr.it/LOP.tar.bz2


6.6 Modeling access controlled workflows under uncertainty 147

32 }
33
34 Precedence {
35 (S < ProcR)
36 (ProcR < PS)
37 (PS < CheckFR)
38 (PS < H)
39 (CheckFR < PE)
40 (H < AntiML)
41 (H < TaxFA)
42 (AntiML < HE)
43 (TaxFA < HE)
44 (HE < PE)
45 (PE < A)
46 (A < PrepC)
47 (A < Reject)
48 (PrepC < Sign)
49 (Sign < AE)
50 (Reject < AE)
51 (AE < E)
52 }
53
54 Constraints {
55 (ProcR CheckFR : (alice bob) (alice kate) (bob kate) : )
56 (CheckFR PrepC : (bob kate) (bob ted) (kate ted) : a)
57 (PrepC Sign : (kate ted) (ted kate) : a)
58 (CheckFR AntiML : (kate mike) : h)
59 (CheckFR TaxFA : (bob evie) : !h)
60 (ProcR Reject : (alice alice) (bob bob) : !a)
61 }

The workflow in Figure 6.4 is weakly, dynamically but not strongly control-
lable mainly because the user committed to CheckFR cannot be preassigned before
having full information on the truth value assignment of hugeA?.

For weak controllability there are 4 possible assignments to the variables ac-
cording to the 4 possible scenarios (Listing 6.7).

Listing 6.7: Random executions for Figure 6.6 (weak controllability)
1 $ java -jar zeta.jar LoanOriginationProcess.cncu --execute

LoanOriginationProcess.weak.ob
2 ====================================
3 Scenario h a
4 Order: S -> ProcR -> PS -> H -> AntiML -> HE -> CheckFR -> PE -> A -> PrepC

-> Sign -> AE -> E
5 ------------------------------------
6 S = wf
7 ProcR = bob
8 PS = wf
9 H = wf

10 AntiML = mike
11 HE = wf
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12 CheckFR = kate
13 PE = wf
14 A = wf
15 PrepC = ted
16 Sign = kate
17 AE = wf
18 E = wf
19 ------------------------------------
20 Verifying ... SAT!
21 ====================================
22 ====================================
23 Scenario !h a
24 Order: S -> ProcR -> PS -> H -> TaxFA -> HE -> CheckFR -> PE -> A -> PrepC

-> Sign -> AE -> E
25 ------------------------------------
26 S = wf
27 ProcR = alice
28 PS = wf
29 H = wf
30 TaxFA = evie
31 HE = wf
32 CheckFR = bob
33 PE = wf
34 A = wf
35 PrepC = kate
36 Sign = ted
37 AE = wf
38 E = wf
39 ------------------------------------
40 Verifying ... SAT!
41 ====================================
42 ====================================
43 Scenario h !a
44 Order: S -> ProcR -> PS -> H -> AntiML -> HE -> CheckFR -> PE -> A ->

Reject -> AE -> E
45 ------------------------------------
46 S = wf
47 ProcR = alice
48 PS = wf
49 H = wf
50 AntiML = mike
51 HE = wf
52 CheckFR = kate
53 PE = wf
54 A = wf
55 Reject = alice
56 AE = wf
57 E = wf
58 ------------------------------------
59 Verifying ... SAT!
60 ====================================
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61 ====================================
62 Scenario !h !a
63 Order: S -> ProcR -> PS -> H -> TaxFA -> HE -> CheckFR -> PE -> A -> Reject

-> AE -> E
64 ------------------------------------
65 S = wf
66 ProcR = alice
67 PS = wf
68 H = wf
69 TaxFA = evie
70 HE = wf
71 CheckFR = bob
72 PE = wf
73 A = wf
74 Reject = alice
75 AE = wf
76 E = wf
77 ------------------------------------
78 Verifying ... SAT!
79 ====================================

Listing 6.8 shows a few dynamic executions in which I have isolated the scenar-
ios of interest to prove that the user committed to CheckFR is different depending
on the uncontrollable truth value assignment of hugeA?.

Listing 6.8: Random executions for Figure 6.6 (dynamic controllability)
1 $ java -jar zeta.jar LoanOriginationProcess.cncu --execute

LoanOriginationProcess.dynamic.ob 1000
2 ...
3 ====================================
4 Order: S -> ProcR -> PS -> H -> CheckFR -> AntiML -> TaxFA -> HE -> PE -> A

-> PrepC -> Sign -> Reject -> AE -> E
5 ------------------------------------
6 S = wf
7 ProcR = alice
8 PS = wf
9 H = wf, h = true

10 CheckFR = kate
11 AntiML = mike
12 HE = wf
13 PE = wf
14 A = wf, a = false
15 Reject = alice
16 AE = wf
17 E = wf
18 ------------------------------------
19 Verifying ... SAT!
20 ====================================
21 ====================================
22 Order: S -> ProcR -> PS -> H -> CheckFR -> AntiML -> TaxFA -> HE -> PE -> A

-> PrepC -> Sign -> Reject -> AE -> E
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23 ------------------------------------
24 S = wf
25 ProcR = alice
26 PS = wf
27 H = wf, h = false
28 CheckFR = bob
29 TaxFA = evie
30 HE = wf
31 PE = wf
32 A = wf, a = true
33 PrepC = kate
34 Sign = ted
35 AE = wf
36 E = wf
37 ------------------------------------
38 Verifying ... SAT!
39 ====================================
40 ...

In all executions alice executes ProcR (lines 7,25). If bob was committed to
ProcR, kate would be only valid user to execute CheckFR, but then if hugeA?
was assigned ⊥ there would be no valid user for TaxFA. alice is fine because
allows both bob and kate to be committed to CheckFR. All variables representing
components not modeling tasks are executed by wf. Any execution waits to have
full information on hugeA? before deciding which user to commit to CheckFR (note
that in the order of variables H? is executed before CheckFR).

In the first execution, the amount of money is huge (line 9) so we know that will
go for AntiML where mike is the only user available, thus kate executes CheckFR
(line 10). This execution does not approve the loan request (line 14), so alice
executes Reject (line 15).

In the second execution, the amount of money is not huge (line 27) so we know
that will go for just TaxFA where evie is the only user available, thus bob executes
CheckFR (line 28). This execution approves the loan request (line 32), so kate
executes PrepC (line 33) and ted executes Sign (line 34).

6.7 Conclusions

I defined constraint networks under conditional uncertainty (CNCUs) to address
a kind of CSP under conditional uncertainty. I defined weak, strong and dynamic
controllability of a CNCU and provided algorithms to check each type of control-
lability. I developed Zeta, a tool for CNCUs for an experimental evaluation. I
also discussed an algorithm to generate random CNCUs. I showed how CNCUs
can be employed for the modeling, validation and execution of access controlled
workflows under conditional uncertainty.

CNCUs differ from classic CNs [52] and DCSPs [100] as these formalisms do
not employ any uncontrollable part. CNCUs differ from Mixed CSPs [63] as CN-
CUs do not have the restriction of working under full observability. CNCUs differ
from probabilistic approaches such as [62] as CNCUs have exact controllability
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algorithms. CNCUs differ from all formalisms of temporal networks mentioned
before as they do not deal with temporal constraints.





7

Workflow Resiliency

In this chapter I address workflow resiliency; i.e., a controllability analysis with
respect to the uncertain availability of the employed resources, here users.

I start by modeling the games for static, decremental and dynamic resiliency
defined by Wang and Li in [122, 123] as timed game automata extended with
variables and use the controller synthesis technique discussed in Section 2.2.1 to
first answer the problem of deciding if any access controlled workflow is resilient or
breakable and then to also synthesize a memoryless execution strategy to execute
a resilient access controlled workflow. The encodings I provide do not employ
clocks as in classic workflow resiliency temporal constraints are not investigated.
Since UPPAAL-TIGA extends TGAs with variables and user defined functions,
these encodings can be realized in UPPAAL-TIGA. Like the formalization given
in Chapter 5, throughout this chapter Player1 models a controller and Player2

models the environment.

7.1 Motivating Example

As a motivating example, I consider an adaptation of a standard workflow/business-
process describing a loan origination process (LOP) for eligible customers whose
financial records have already been approved. I tuned the example in order to focus
on a few characteristics of interest. This example is different from that I gave in
Figure 6.1.

The workflow shown in Figure 7.1 follows a structured approach, specifying
4 tasks, 4 roles, 7 users and 4 authorization constraints. The LOP starts with
a pre-processing clerk (PreClerk), who processes a request (ProcR). After that,
the flow of execution splits unconditionally (leftmost diamond labeled by +) and
enters a parallel block, where an auditor (Auditor) logs the just processed request
for future accountability purposes (Log) and a post-processing clerk (PostClerk)
prepares the contract (PrepC). The order of these two tasks does not matter.
Finally, the flow of execution joins and exits the parallel block (rightmost diamond
labeled by +) with a manager (Manager) who signs the contract (Sign). In this
workflow, PreClerk contains Alice, Bob and Charlie, Auditor contains David
and Emma, PostClerk contains Bob, David and Emma, and Manager contains



154 7 Workflow Resiliency

ProcR
(PreClerk)

{a, b, c}

+

Log
(Auditor)

{d, e}

PrepC
(PostClerk)

{b, d, e}

+
Sign

(Manager)

{f, g}

¬Rel

6= ∧¬Rel

6=

¬Rel

Fig. 7.1: A simplification of a loan origination process.

(a) R{ProcR,Log}
ProcR Log

a d
a e
b e
c d
c e

(b) R{ProcR,PrepC}
ProcR PrepC
a b
a d
a e
b e
c b
c d
c e

(c) R{Log,PrepC}
Log PrepC
d b
d e
e b
e d

(d) R{PrepC,Sign}
PrepC Sign
b f
b g
d f
d g
e g

Fig. 7.2: Relational constraints of the ACWF in Figure 7.1.

Frank and Grace. In Figure 7.1 directed edges model the partial order among
tasks, whereas undirected edges model security policies. Following the modeling
language introduced in Figure 6.5 roles are shown inside tasks. For convenience I
also show corresponding users below. I shorten Alice, Bob, Charlie, David, Emma,
Frank and Grace as a, b, c, d, e, f, g. Bob and David are brothers, whereas Emma
is Frank’s daughter. Note that some user may belong to more than one role.

The access controlled workflow enforces four security policies:

1. the users who execute ProcR and Log must not be relatives
2. a separation of duties between ProcR and PrepC must hold and the users who

execute them must not be relatives
3. a separation of duties between Log and PrepC must hold
4. the users executing PrepC and Sign must not be relatives

The formal specification of the ACWF in Figure 7.1 is

• Tasks = {ProcR, Log, PrepC, Sign}
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• Users = {a, b, c, d, e, f, g}
• UA = {(a, ProcR), (b, ProcR), (c, ProcR), (d, Log), (e, Log), (b, PrepC), (d, PrepC),

(e, PrepC), (f, Sign), (g, Sign)}
• ≺= {(ProcR, Log), (ProcR, PrepC), (Log, Sign), (PrepC, Sign)}
• C = {R{ProcR,Log}, R{ProcR,PrepC}, R{Log,PrepC}, R{PrepC,Sign}} (see Figure 7.2).

The workflow in Figure 7.1 is satisfiable. A possible plan is that in which Alice
processes the request, David logs it, Bob prepares the contract and Frank signs it:

π(ProcR) = a, π(Log) = d, π(PrepC) = b, π(Sign) = f

The workflow in Figure 7.1 is also statically, decrementally and dynamically
resilient up to 1 user. Note that static resiliency is not a matter of which order
is chosen (meeting the restrictions imposed by ≺) to execute tasks as the users
are removed before starting. Dynamic resiliency is also a matter of order. Take
Log and PrepC in Figure 7.1 as an example. The ACWF is resilient provided that
we execute Log before PrepC. Assume we don’t and reverse the order of execution
(both orders are fine with respect to ≺). Assume also the best case in which
no user is absent before starting and thus Charlie processes the request (in this
scenario, all users authorized for PrepC and Log will be available). Player2 breaks
the execution by making Bob absent before PrepC. Then, since PrepC and Log
must be executed by two different users, Player2 will remove David (if Emma
prepared the contract PrepC) or Emma (if David did so). In this way, the only
user remaining for Log will be equal to the one who prepared the contract. This
problem does not happen if we execute Log first.

7.2 Workflow Resiliency via Controller Synthesis

In this section, I encode a general ACWFW = 〈Tasks, Users,UA,≺, C〉 into (three
slightly different) TGAs to check static, decremental and dynamic resiliency. These
encodings are similar and, of course, that for dynamic resiliency subsumes that
for decremental resiliency, which in turn subsumes that for static resiliency. All
encodings have the following components in common (Figure 7.3).

The “core” of the TGA consists of 3 urgent locations: Turn1 (initial), Turn2
and Win (which, if reached, implies resiliency). Each task T ∈ Tasks is assigned a
unique incremental integer starting from 0. So is each user u ∈ Users. Mapping
tasks and users to integers allows me to employ them as indexes over array data
structures I am going to use in UPPAAL-TIGA. Without loss of generality, when
intended as indexes, I abuse notation and write u and T meaning their assigned
integers.

I model the availability of users as a Boolean vector Avail indexed on users.
Hence, if Avail [u] = >, it means that u is available, and absent otherwise. The
initial state of Avail consists of all elements set to true, meaning that all users
are available. Likewise, I keep track of which user executed which task by means
of a task vector task whose index ranges over tasks. If task [T ] = u, then task
T was executed by user u. The initial state of task consists of all elements set
to −1, meaning that all tasks have not been executed yet. The set of clocks is
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U

Turn1

U

Turn2

U

Win

sGain

winsTask1

. . .

sTaskn

mAbs1

. . .

mAbsm

(a) Skeleton of the TGA for the static resiliency checking.

U

Turn1

U

Turn2

U

Win

dGain

{dec,dyn}Pass

windTask1

. . .

dTaskn

mAbs1

. . .

mAbsm

(b) Skeleton(s) of the TGA(s) for decremental (dec) and
dynamic (dyn) resiliency checkings. The encodings only
differ for the pass transition.

Fig. 7.3: Skeletons of the encodings for static (a) and decremental (if decPass) and
dynamic (if dynPass) resiliency checking (b). All locations are urgent (Turn1 is
the initial one). mAbsi transitions make users absent. sTaski transitions model task
executions. sGain, dGain, {dec,dyn}Pass model the game interplay. win allows
Player1 to move to Win when all tasks have been executed and all constraints
are satisfied. Player2 takes uncontrollable transitions (dashed edges), whereas
Player1 controllable ones (solid edges).

empty as I model resiliency as an instantaneous game. However, I keep using TGA
reachability algorithms and prioritization of uncontrollable transitions to model
the sudden absence of users. I maintain an integer variable k (initially set to 0) to
model the current number of absent users and an integer constant maxAbsent to
model the maximum number of absent users.

7.2.1 Static Resiliency

Figure 7.3a shows the skeleton of the encoding of an ACWF into a TGA for the
static resiliency checking, whereas Figure 7.4 shows the concretization in UPPAAL-
TIGA for the ACWF in Figure 7.1. The encoding is as follows.

Player2 (the environment) can make a user u absent by taking the correspond-
ing uncontrollable self loop transition at Turn1 labeled by mAbs. The TGA specifies
as many mAbs transitions as the number of users in Users (i.e., one for each user).
The guard and update of the transition making absent a general user u are:

Guard: k < maxAbsent ∧Avail [u] = >
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Update: k := k + 1,Avail [u] := ⊥

The guard says that u is available (Avail [u] = >) and that it is still possible to
remove users (k < maxAbsent), whereas the update makes u absent (Avail [u] :=
⊥) also incrementing the number of absent users (k := k + 1).

Since uncontrollable transitions have priority over controllable ones, Player2
is always able to remove as many users as he wants (up to maxAbsent) before
Player1 gets control of the game by taking sGain whose guard and update are:

Guard: >
Update: (no update)

The guard is always true, whereas the update makes no effect on the state of the
system.

At Turn2, Player1 assigns users to tasks, by taking the corresponding con-
trollable self loop transitions labeled by sTask. For each task T ∈ Tasks and
authorized user u ∈ A(T ), there is an sTask transition whose guard and update
of are:

Guard: task [T ] = −1 ∧Avail [u] = > ∧Π(T ) ∧∆(T, u)
Update: task [T ] := u

where
Π(T ) =

∧
T ′≺T

task [T ′] 6= −1

models the condition that all tasks preceding T have already been executed, and

∆(T, u) =
∧

T ′∈Π(T )∧R{T ′,T}∈C

(⊥
∨

(u′,u)∈R{T ′,T}

task [T ′] = u′))

models, for each T ′ ≺ T , which the allowed tuples matching task [T ] = u are.
As an example, consider the sTask transition modeling “Bob prepares the con-

tract”. From the formal specification of the ACWF in Figure 7.1 we have that

• Π(PrepC) = task [ProcR] 6= −1 as ProcR ≺ PrepC and that
• ∆(PrepC, b) = (⊥ ∨ task [ProcR] = a ∨ task [ProcR] = c) as Bob can prepare

the contract if and only if either Alice or Charlie processed the request (Fig-
ure 7.2b).

This is an optimization to speed up the model-checking phase disabling this tran-
sition when neither Alice nor Charlie executed ProcR. Note that ∆(T, u) also con-
tains the disjunct ⊥ because when a pair (T, u) does not match any pair (u′, T ′)
where T ′ is a predecessor of T (i.e., when T ′ ≺ T and for all u′ ∈ A(T ′) we have
that (u′, u) 6∈ R{T ′,T}) it means that u is not going to be fine for T no matter
who executed T ′. In that case, ⊥ creates a “dead end” falsifying the guard of the
transition so that the model-checking phase will not search for a solution exploring
impossible runs (a second optimization).

Finally, Player1 moves to Win by taking the controllable win transition whose
guard and update are:

Guard: over() ∧ sat()
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Update: (no update)

where, over() =
∧
T∈Tasks task [T ] 6= −1 is a condition modeling that all tasks have

been executed, and

sat() = >
∧

R{Ti,Tj}∈C
(

∨
(ui,uj)∈R{Ti,Tj}

(task [Ti] = ui ∧ task[Tj ] = uj))

is another condition valuating to true if and only if all constraints are satisfied. In
our example, we have that

over() = >∧task [ProcR] 6= −1∧task [Log] 6= −1∧task [PrepC] 6= −1∧task [Sign] 6= −1

whereas, e.g., the subpart of sat verifying R{Log,PrepC} (Figure 7.2c) is (task [Log] =
d ∧ task [PrepC] = b) ∨ (task [Log] = d ∧ task [PrepC] = e) ∨ (task [Log] = e ∧
task [PrepC] = b) ∨ (task [Log] = e ∧ task [PrepC] = d).

7.2.2 Decremental and Dynamic Resiliency

The encodings for decremental and dynamic resiliency both extend that for static
resiliency and differ from one another just for the guard of one single transition.
I show the skeleton of the encodings in Figure 7.3b and the concretization in
UPPAAL-TIGA in Figure 7.5 and Figure 7.6, respectively. The extensions are as
follows.

I add a Boolean variable done initially set to ⊥. I use this variable to guarantee
that at any round (i) Player1 executes one and only one task, and (ii) Player2
waits for Player1 to finish (Algorithm 3 and Algorithm 4). I extend the sGain
transition (Figure 7.3a) into a dGain transition (Figure 7.3b) by refining the guard
and update in

Guard: >
Update: done := ⊥

In this way, every time the run gets to Turn2, Player1 can execute one task only.
I extend sTask transitions (Figure 7.3a) into dTask transitions (Figure 7.3b) by
refining the guard and update as follows

Guard: task [T ] = −1 ∧ · · · ∧∆(T, u) ∧ done = ⊥
Update: task [T ] := u, done := >

That is, each of these transitions can be taken only if done = ⊥, and once taken
done is set to > to prevent Player1 from taking more than one.

I add an uncontrollable transition decPass going from Turn2 to Turn1 to regu-
late the turns in which the players play while the workflow executes (Figure 7.3b).
This transition is the only difference between the encodings for decremental and
dynamic resiliency.

In case of decremental resiliency the guard and update are:

Guard: done = > ∧ ¬over()
Update: (no update)

whereas in case of dynamic resiliency they are:
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Guard: done = > ∧ ¬over()
Update: restore()

where restore() is an update function operating on the state of the system to, as
Wang and Li said, reset the access control state [122, 123]. restore() contains a
statement Avail [u] := > for any u ∈ A(T ) to make users available again and a
statement k := 0 to reset the counter of absent users. All other components remain
the same.

Finally, regardless of the type of resiliency we want to check, a controller can
be synthesized by model checking the system with control: A<> tga.Win. If the
workflow is resilient, a controller exists and the synthesized strategy is the dynamic
plan for executing the workflow. If it does not, then the workflow is breakable and
no strategy exists. In such a case, the analysis confirms that Player2 has a counter-
strategy to always break the execution no matter which users we decide to commit.
We will always fail.

7.3 Correctness and Complexity of the Encodings

In this section, I first prove the correctness of the three encodings for static, decre-
mental and dynamic resiliency, and then I analyze their complexity.

For the correctness part, I prove that each encoding generates a TGA such
that any run of the TGA corresponds to a run of the corresponding game defined
by Wang and Li, whereas for the complexity I prove that these encodings are
generated in polynomial time.

7.3.1 Static resiliency

Theorem 7.1. The encoding for static resiliency given in Section 7.2 correctly
models Algorithm 2.

Proof. The encoding for static resiliency given in Section 7.2 generates a TGA
whose internal state consists of the following components:
Constants

1. n unique and consecutively integer constants T1, . . . , Tn (starting from 0) to
employ tasks as indexes.

2. m unique and consecutively integer constants u1, . . . , un (starting from 0) to
employ users as indexes.

3. An integer constant maxAbsent hardcoding the maximum number of absent
users.

Vectors

4. A Boolean vector Avail indexed on users whose elements are initially all set
to >.

5. An integer vector task indexed on tasks whose elements are initially all set to
−1.

Variables
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7. An integer variable k initially set to 0, modeling the current number of absent
users.

Functions

8. A function over() modeling “all tasks executed”.
9. A function sat() modeling “all constraints satisfied”.

The state of this TGA is a pair (L, V ), where L is a location and V any data
structure handling components (1)-(7).

I recall that all locations are urgent, thus any run of this TGA starts and also
ends at 0. That is, all actions are instantaneous but their order of consideration is
regulated by both the state of the TGA, which may falsify some guards, and the
prioritization of the transitions, when controllable and uncontrollable transitions
are taken simultaneously.

Turn1 is the initial location, where Player2 (i.e., the environment) plays. The
initial state of the system is (Turn1, V0), where V0 is

• k = 0,
• Avail [u] = > for all u ∈ Users,
• task [T ] = −1 for all T ∈ Tasks.

When the run starts, Player2 can make absent as many users as he likes (up to
maxAbsent) by taking the mAbs-transitions. Every time Player2 takes one of these
transitions k is incremented by 1. Since all mAbs transitions are uncontrollable,
Player1 is unable to interrupt Player2 by taking sGain (the unique controllable
transition having source at Turn1). When Player2 is done, Player1 can take
sGain to enter Turn2, the location in which he can assign (available) users to
tasks. When Player1 enters Turn2, the current state of the system is (Turn2, V1),
where V1 is such that

• k ≤ maxAbsent ,
• Avail [u] = ⊥ for each user u turned absent,
• task [T ] = −1 for all T ∈ Tasks.

This state corresponds to choosing Absent ⊂ Users such that |Absent | ≤ k
(Algorithm 2, lines 1-2). Now at Turn2, Player2 will not play anymore. In this
location, Player1 can assign (available) users to (unexecuted) tasks by taking one
and only one sTask-transition for each pair (u, T ), where u is an available user
authorized for the unexecuted task T . These transitions also specify conditions
on predecessors (if any) and corresponding constraints related to them1. When
Player1 is done (i.e., when all sTask transitions are disabled), the run can be
ended up in two possible states.

The first possibility is the state (Turn2, V ′2), where V ′2 is:

• k ≤ maxAbsent ,
• Avail [u] = ⊥ for each user u turned absent,
• task [T ] = −1 for some T ∈ Tasks.

1 This is an optimization to speed up the model checking phase pruning impossible runs.
Removing this optimization would slow down the model checking phase but would not
destroy the correctness of the approach.
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If this is the case, it means that for some task T there is no authorized and available
user u such that the partial plan extended with T = u is locally consistent. In
other words, the workflow is breakable if Player2 removes all users u such that
Avail [u] = ⊥ before starting.

The second possibility is the state (Turn2, V ′′2 ), where V ′′2 is:

• k ≤ maxAbsent ,
• Avail [u] = ⊥ for each user u turned absent,
• task [T ] 6= −1 for all T ∈ Tasks.

If this is the case, it means that all tasks have been assigned a user. Player1
generates such an assignment according to ≺ and the related constraints. How-
ever, this assignment is not necessarily consistent as it verifies only part of the
constraints as a speed up technique. Now, if Player1 can take the win-transition
it means that both the functions sat() and over() are true. That is, it means that
a consistent plan π exists (Algorithm 2, lines 3-4). If he cannot, then it means that
the workflow is breakable as there is no way to satisfy the constraints with any
of the possible assignments under the absence of the users removed by Player2

(Algorithm 2, lines 3 and 5-6). Therefore, the final state is (Win, V3), where V3 is

• k ≤ maxAbsent ,
• Avail [u] = ⊥ for each user u turned absent,
• task [T ] = u for each (u, T ) such that T ∈ Tasks, u ∈ A(T ), and π(T ) = u,

where π is consistent. The model checking phase looks for a control strategy for
Player1 to always eventually enter Win, which is equivalent to saying that Player1
can always eventually enter Win if and only if the ACWF is statically resilient.

7.3.2 Decremental resiliency

Theorem 7.2. The encoding for decremental resiliency given in Section 7.2 cor-
rectly models Algorithm 3.

Proof. For decremental resiliency the state of the TGA also contains a variable
done that is used to regulate the interplay of the game between Player1 and
Player2.

As for static, when the run is in Turn1, Player2 can take as many mAbs-
transitions as he likes before starting. However, since the encoding for decremental
resiliency adds an uncontrollable transition from Turn2 to Turn1, Player2 can
make users absent also during execution.

Therefore, all states discussed for static resiliency extend by adding the Boolean
variable done. Therefore, (Turn1, V0), where V0 is

• k = 0,
• done = ⊥,
• Avail [u] = > for all u ∈ Users,
• task [T ] = −1 for all T ∈ Tasks.

When Player2 is done in his turn, Player1 can take (the now renamed) dGain
transition to enter Turn2.

At Turn2, before Player1 starts playing, the current state of the system is
(Turn2, V1), where V1 is such that
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• k ≤ maxAbsent ,
• done = ⊥ (note that dGain sets done to ⊥),
• Avail [u] = ⊥ for each user u turned absent,
• task [T ] = −1 for all T ∈ Tasks.

This corresponds to (extending) the set of absent users (Algorithm 3, lines 5-7).
At Turn2, Player1 can make one assignment only as all dTask guards extend

by adding the clause done = ⊥ and all updates set done to >. This corresponds to
extending the partial plan π with one assignment only (Algorithm 3, line 8). Note
that this assignment (if any) does not guarantee consistency. However, this is not
a problem since if the run gets to Win, then it must have made an assignment such
that π was locally consistent. Therefore, such an assignment models Algorithm 3,
lines 12-13.

The decPass transition allows Player2 to get back to Turn1. This is an uncon-
trollable transition. However, this transition cannot prevent Player1 from making
his assignment as decPass will be available only when Player1 is done and there is
still some task to execute. That is, as soon as done is set to > as a consequence of
one dTask transition. At Turn1, Player2 can again make absent a few more users
(if any are left for this operation). When Player2 is done with this turns, dGain
allows Player1 to make the next assignment. This run ends when assignments
are no longer possible. As for static resiliency, this happens for two possibilities:
(Turn2, V ′2) and (Turn2, V ′′2 ), where (Turn2, V ′2) is

• k ≤ maxAbsent ,
• done = ⊥,
• Avail [u] = ⊥ for each user u turned absent,
• task [T ] = −1 for some T ∈ Tasks,

and (Turn2, V ′′2 ) is

• k ≤ maxAbsent ,
• done = >,
• Avail [u] = ⊥ for each user u turned absent,
• task [T ] 6= −1 for all T ∈ Tasks.

In any of these two states Player2 cannot go back to Turn1 as done = ⊥ (and
no action of Player1 sets it to >). In the first case, the workflow is breakable,
whereas in the second case, the workflow might be resilient (if the synthesized
plan is always consistent). If this is the case, then the final state is (Win, V3) where
V3 is

• k ≤ maxAbsent ,
• done = >,
• Avail [u] = ⊥ for each user u turned absent,
• task [T ] = u for each (u, T ) such that T ∈ Tasks, u ∈ A(T ), and π(T ) = u.

7.3.3 Dynamic resiliency

Theorem 7.3. The encoding for dynamic resiliency given in Section 7.2 correctly
models Algorithm 4.
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Proof. The encoding for dynamic resiliency refines that for decremental by adding
the restore of the absent users at the end of any turn. This is implemented by a
function restore() in the update of dynPass. Everything else remains the same.

Theorem 7.4. Each encoding discussed in Section 7.2 is generated in polynomial
time.

Proof. I start by discussing the encoding for static resiliency, then I extend the
discussion to dynamic resiliency passing through decremental resiliency.

Given an ACWF W = 〈Tasks, Users,UA,≺, C〉, the encoding for static re-
siliency builds a TGA consisting of 3 locations, |Users| (uncontrollable) mAbs-
transitions, 1 sGain transition,

∑
T∈Tasks |A(T )| sTask transitions, where in the

worst case there are |Tasks|×|Users| transitions (all users authorized for all tasks),
and 1 win transition. Also, users and tasks are mapped to as many integer con-
stants as them, over() contains exactly |Tasks| conjuncts task [T ] 6= −1 and sat()
contains |C| conjuncts2, where each conjunct represents a relation R{Ti,Tj} ∈ C by
means of a disjunction3 of pair-conjunctions (task [Ti] = up ∧ task [Tj ] = uz) for
each (up, uz) ∈ R{Ti,Tj}. In other words, the size of sat is

∑
R{Ti,Tj}∈C

|R{Ti,Tj}|,
where abusing notation |R{Ti,Tj}| represents the number of tuples contained
in the relation. The worst case is that in which all relations have equal size
S = |R{Ti,Tj}| = · · · = |R{To,Tp}| and thus sat() has length of S × |C|. The
guards and updates of mAbs, sGain and win transitions specify a fixed number of
statements. sTask transitions might specify conditions on predecessors and related
constraints. The worst case is that in which we degenerate ≺ such that T1 ≺ T2
for any T1, T2 ∈ Tasks (unexecutable ACWF). In this way each transition would
have |Tasks| predecessors and related conditions which are a polynomial number
of pairs involving the task whose execution is modeled by the transitions and the
predecessors.

Since all subcomponents are generated in polynomial time, the overall com-
plexity that sums them all up is polynomial.

Decremental resiliency “worsens” this encoding by adding done in some of the
the guards of the transitions and an uncontrollable transition going from Turn2 to
Turn1. Therefore, the upper bound of the complexity coincides with that of the
encoding for static resiliency.

Dynamic resiliency “worsens” the encoding for decremental resiliency by adding
restore() in the update of dynPass. The length of this function is |Users| + 1 as
it resets the availability of all users and resets k to 0. Therefore, the upper bound
of the complexity coincides with that of the encoding for static and decremental
resiliency.

7.4 Erre: A Tool for Workflow Resiliency

I developed Erre, a tool for workflow resiliency that takes as input a specification
of an ACWF (Definition 2.35) and acts both as a solver for the three kinds of
resiliency and as an executor simulator. Listing 7.1 shows Erre’s help screen.
2 I neglect the unique > at the beginning of the conjunction.
3 I neglect the unique ⊥ at the beginning of the disjunction.
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Listing 7.1: Erre’s help screen.
Usage: java -jar erre.jar <Workflow.wf> <Action> <static|decremental|

dynamic> <k> <Workflow.s> [N] [--silent]

<Action>:
--check internally encodes the workflow in input into an UPPAAL-TIGA

specification ready to check static, decremental or dynamic
resiliency up to k users (saves the strategy to Workflow.s)

--execute performs [N] (default 1) executions of the workflow in input
(if resilient) according to the strategy (.s) synthesized by
UPPAAL-TIGA.

--silent suppresses output (optional)

Examples:
java -jar erre.jar CaseStudy.wf --check dynamic 2 CaseStudy.s
java -jar erre.jar CaseStudy.wf --execute dynamic 2 CaseStudy.s 10

The input language of Erre comprises the following three main sections. The
section Users

Users {
u1 ... un

}

specifies the set Users and provides here an example of Users = {u1, . . . , un}. The
section Tasks

Tasks {
...
(T1 : u1 u2 ...)
...

}

specifies the set Tasks and the authorization relation UA and provides here an
example of Tasks = {T1, . . . } such that UA = {(u1, T1), (u2, T1), . . . }. The section
Precedence

Precedence {
...
(T1 < T2)
...

}

specifies ≺ and provides an example of T1 ≺ T2. The section Constraints

Constraints {
...
(T1 T2 : (u1 u2) ...)

...
}



168 7 Workflow Resiliency

specifies the set C and provides here an example of (RS), where S = {T1, T2},
R = {(u1, u2), . . . }.

Given an ACWF specification file Workflow.wf, we check, for example, static
(1), decremental (2) and dynamic (3) resiliency up to 1 users by running

1 $ java -jar erre.jar Workflow.wf --check static 1 Workflow.s
2 $ java -jar erre.jar Workflow.wf --check decremental 1 Workflow.s
3 $ java -jar erre.jar Workflow.wf --check dynamic 1 Workflow.s

If the ACWF is proved resilient, Erre saves to file the dynamic plan needed to
later execute it. We execute (once) a resilient ACWF by running

$ java -jar erre.jar Workflow.wf --execute static 1 Workflow.s [N]

where [N] (default 1) is the number of simulations we want to carry out. For
static resiliency, Erre randomly removes a subset of users whose cardinality is up
to k before starting the execution. For decremental resiliency Erre also removes
random users during execution, whereas for dynamic resiliency Erre randomly
removes and puts back users at any time.

Listing 7.2 shows the specification of Figure 7.1 into Erre’s input language.

Listing 7.2: Specification of Figure 7.1.
1 Users {
2 a b c d e f g
3 }
4
5 Tasks {
6 (ProcReq : a b c)
7 (Log : d e)
8 (PrepContr : b d e)
9 (Sign : f g)

10 }
11
12 Precedence {
13 (ProcReq < Log)
14 (ProcReq < PrepContr)
15 (Log < Sign)
16 (PrepContr < Sign)
17 }
18
19 Constraints {
20 (ProcReq Log : (a d) (a e) (b e) (c d) (c e))
21 (ProcReq PrepContr : (a b) (a d) (a e) (b e) (c b) (c d) (c e))
22 (Log PrepContr : (d b) (d e) (e b) (e d))
23 (PrepContr Sign : (b f) (b g) (d f) (d g) (e g))
24 }

I ran Erre on the ACWF in Figure 7.1 to check each type of resiliency up to
1 absent user. I used a FreeBSD virtual machine run on top of a VMWare ESXi
Hypervisor using a physical machine equipped with an Intel i7 2.80GHz and 20GB
of RAM. The VM was assigned 16GB of RAM and full CPU power. Erre proved in



7.4 Erre: A Tool for Workflow Resiliency 169

394ms that the ACWF in Figure 7.1 is statically resilient saving a dynamic plan of
36Kb (152-action strategy). Then, Erre proved in about 394ms that the ACWF
is decrementally resilient saving a dynamic plan of 36Kb (147-action strategy).
Finally, Erre proved in 410ms that the ACWF is also dynamically resilient saving
a dynamic plan of 60Kb (239-action strategy). For each kind of resiliency, the
ACWF was correctly executed. This example is available at http://regis.di.
univr.it/ExampleResiliency.tar.bz2.

Listing 7.3 shows a few execution simulations of Figure 7.1 for static, decre-
mental and dynamic resiliency.

Listing 7.3: Execution simulations for static, decremental and dynamic resiliency.
1 $ java -jar erre.jar ACWF.wf --execute static 1 ACWF.dyn.1.s 1
2 Resiliency level = 1 (static)
3 maxAbsent = 1
4 Execution 1
5 ------------------
6 Absent = {f}
7 ProcR = a
8 Log = d
9 PrepC = b

10 Sign = g
11 ------------------
12 Verifying ... SAT!
13
14 $ java -jar erre.jar ACWF.wf --execute decremental 1 ACWF.dec.1.s 1
15 Resiliency level = 1 (decremental)
16 maxAbsent = 1
17 Execution 1
18 ------------------
19 Absent = {}
20 ProcR = a
21 Absent = {}
22 Log = d
23 Absent = {c}
24 PrepC = b
25 Absent = {c}
26 Sign = f
27 ------------------
28 Verifying ... SAT!
29
30 $ java -jar erre.jar ACWF.wf --execute dynamic 1 ACWF.dyn.1.s 1
31 Resiliency level = 1 (dynamic)
32 maxAbsent = 1
33 Execution 1
34 ------------------
35 Absent = {d}
36 ProcR = a
37 Absent = {}
38 PrepC = b
39 Absent = {e}
40 Log = d

http://regis.di.univr.it/ExampleResiliency.tar.bz2
http://regis.di.univr.it/ExampleResiliency.tar.bz2
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Algorithm 16: ACWF-Gen(n, u, c, k)
Input: An exact number of tasks n, and exact number of users u, a maximum

number of constraints c, a maximum number of tuples k per constraint.
Output: An ACWF according to Definition 2.35.

1 W ← 〈Tasks, Users,UA,≺, C〉 . Empty ACWF
. Generate tasks

2 Tasks← {Ti | 1 ≤ i ≤ n}
3 Users← {ui | 1 ≤ i ≤ u}
. Generate authorization relation

4 for T ∈ Tasks do
5 A(T ) = Users

. Generate constraints
6 for i = 1 to c do
7 T1 ← Random(Tasks)
8 T2 ← Random(Tasks)
9 R{T1,T2} ← ∅

10 for j = 1 to k do
11 t← Random(u1, u2) . For (u1, u2) ∈ A(T1)×A(T2)

R{T1,T2} ← R{T1,T2} ∪ {t}
12 C ← C ∪R{T1,T2}

13 return W

41 Absent = {}
42 Sign = f
43 ------------------
44 Verifying ... SAT!

For static resiliency (first simulation) Frank is absent before the execution
starts. For decremental resiliency (second simulation) nobody is absent until Log
finishes and Charlie becomes absent after Log. For dynamic resiliency (third simu-
lation) David is absent before starting but arrives after ProcR and Emma becomes
absent after PrepC but comes back after Log.

Having Erre also allowed me to carry out an experimental evaluation against
a set of random ACWFs.

I generated 1000 ACWFs partitioned in 5 sets of benchmarks each one contain-
ing 100 dynamically resilient workflows (up to 2 absent users) and 100 dynami-
cally breakable workflows (for 2 absent users). These sets of benchmarks are avail-
able at http://regis.di.univr.it/EE_Resiliency2018.tar.bz2. The first set
(2Tasks) specifies workflows with 2 tasks, the second set (3Tasks) specifies work-
flows with 3 tasks and so on, up to the fifth one (6Tasks) that specifies workflows
with 6 tasks. Regardless of the set, each workflow has exactly 6 users authorized
for all tasks and specifies a maximum number of relational constraints of 10% of
|Tasks|2, where each relation R{T1T2} has a maximum number of tuples of 60%
of |A(T1)| × |A(T2)|. Furthermore, each workflow does not specify any partial or-
der. Again, authorizing all users for all tasks and not restricting the partial order
contributes to generate hard instances. Algorithm 8 shows the pseudo-code of the

http://regis.di.univr.it/EE_Resiliency2018.tar.bz2
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Fig. 7.7: Experimental evaluation with Erre (time).

algorithm I developed to generate the networks. In the following I discuss the data
I collected (time and space).

Figure 7.7 shows the graphical results of the experimental evaluation in which
I focused on time, where x-axes always represent the number of tasks (i.e., the set
of benchmarks under analysis) and y-axes represent the average time elapsed when
analyzing the instances in that set. I ran Erre on these sets of benchmarks without
imposing any timeout. For each set, I ran the analysis for static, decremental and
dynamic resiliency on dynamically resilient workflows for both 1 and 2 absent
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users and I also ran the analysis for dynamic resiliency on workflows dynamically
breakable for 2 absent users.

Figure 7.7a compares the time performances of the analysis for static, decre-
mental and dynamic resiliency run on all workflows dynamically resilient up to 2
absent users. I recall that a dynamically resilient workflow (up to k absent users)
is also decrementally and statically resiliency (up to the same k) as dynamic re-
siliency ⇒ decremental resiliency ⇒ static resiliency. The figure confirms, as I
expected, that dynamic resiliency is harder than decremental resiliency which in
turn is harder than static resiliency.

Figure 7.7b, Figure 7.7c and Figure 7.7d show the time differences when run-
ning, on the same workflows, the analysis for 1 absent user (dashed line) and 2
absent users (solid line) for static, decremental and dynamic resiliency, respec-
tively. The results confirm that incrementing the number of absent users can only
worsen the validation phase (particularly for workflows specifying more than 3
tasks).

Figure 7.7e shows how long it takes on average to break a workflow which is
not dynamically resilient up to 2 absent users. The results show that the analysis
worsens significantly for workflows specifying more than 3 tasks.

Instead, Figure 7.8 shows the graphical results of the experimental evaluation
in which I focused on space, where x-axes still represent the number of tasks (i.e.,
the set of benchmarks under analysis) and y-axes represent the average space
consumed by the synthesized strategies when analyzing the instances in that set.

Figure 7.8a compares the space consumption when synthesizing memoryless
execution strategies for static, decremental and dynamic resiliency run on all work-
flows resilient up to 2 absent users. The figure confirms that “dynamic strategies”
consume more space than “decremental strategies” which in turn consume more
space than “static ones”. However, for the analyzed instances there is no a huge
difference between decremental and dynamic strategies.

Figure 7.8b, Figure 7.8c and Figure 7.8d show the space differences when syn-
thesizing strategies for statically, decrementally and dynamically resilient work-
flows up to 1 absent user (dashed line) and 2 absent users (solid line), respectively.
The results confirm that incrementing the number of absent users results in synthe-
sizing bigger strategies (particularly for workflows specifying more than 3 tasks).

Instead, Figure 7.8e, Figure 7.8f and Figure 7.8g show the differences in size
of the strategies saved by UPPAAL-TIGA (dashed lines) and those saved by Erre
(solid lines) for statically, decrementally and dynamically resilient workflows, re-
spectively, each up to 2 absent users. Differently from the experimental evaluation
that I carried out for CSTNUDs, where there the strategies saved by Esse con-
sumed more space than those saved by UPPAAL-TIGA (Section 5.6), here the
results show that the strategies saved by Erre are smaller. The main reason is
that the encodings for static, decremental and dynamic resiliency do not employ
any clocks. Therefore, the synthesized strategies do not have any condition on
(conjunction of) clock constraints (where in Esse, one clock constraint means one
more object to serialize to file). When dealing with these encodings, the strategies
returned by UPPAAL-TIGA only specify discrete states and corresponding actions.

Finally, I executed 1000 times each resilient workflow for each type of resiliency.
Each execution removed randomly up to 1 or 2 users according to the level of
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Fig. 7.8: Experimental evaluation with Erre (space).
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resiliency of the synthesized strategy. Overall, Erre simulated 3,000,000 of random
executions. No one crashed.

7.5 Conclusions

I addressed static, decremental and dynamic resiliency. I provided three encodings
into extended timed game automata to model these games and proved that my
encodings are correct and run in polynomial time. I developed Erre, a tool for
workflow resiliency and carried out an experimental evaluation in which I discussed
how I generated random access controlled workflows.

The work in this chapter differs from [95,96] as it is not probabilistic. It differs
from [47, 48] as I do not propose a “max-SAT” approach. It differs from [91, 107]
as those works deal with static resiliency only. It differs from [77] as workflow
feasibility (availability in some state) is the dual of workflow resiliency (thus in-
comparable). It also differs from [92] which deals with static and decremental
resiliency only.



Part III

Temporal And Resource Controllability Together





177

Introduction

In Chapter 5 I used CSTNUDs to model temporal workflows. This new type of
temporal network is able to address uncertain task durations, conditional con-
straints, decisions, classic temporal constraints such as delays and deadlines and
relative constraints. However, CSTNUDs fail to address resource controllability
as they do not deal with users nor with authorization constraints and they are
thus unsuitable to underly a temporal workflow for which access control must be
considered.

In Chapter 6 I used CNCUs to model access controlled workflows. This new
type of constraint network is able to address authorization constraints and con-
ditional uncertainty. However, CNCUs fail to address temporal controllability as
they do not deal with temporal constraints.

In this part I merge some of the contributions of Part I with some of the
contributions of Part II to deal with temporal and resource controllability together.
I extend CSTNUs by first injecting users and authorization constraints and then I
adapt the DC checking. Such an extension allows for the modeling of the temporal
workflow satisfiability problem (TWSP). I have already discussed that the WSP is
the problem of finding an assignment of tasks to users so that the execution gets to
the end without violating any authorization constraint (e.g., [123]). In a temporal
context, in addition to saying which user we commit, we must also say when we do
so. In other words, such an extension allows me to deal with situations in which
users, authorization and temporal constraints must be considered all together and
not orthogonal at all.

In fact workflows and access control have traditionally been approached as
orthogonal, independent formalisms, but there is a large number of relevant cases
in which they cannot be considered to be so as I discussed in Section 1.1.

Some work has been done (although not in a temporal context) to specify the
access control model and the workflow in two levels by means of logical theories,
such that the intersection of these two theories provides the means to operate on
the access-controlled workflow; see, e.g., [7]. However, approaches relying on simply
abstracting a workflow as a logical formula are not suitable for my aim. Indeed,
doing so would not allow me to reason on uncontrollable parts and therefore on
the runtime execution.

Contributions

Towards the modeling, validation and execution of plans dealing with resources,
temporal and conditional uncertainty, my contributions in this part are the fol-
lowing.

1. First, I define Access-Controlled Temporal Networks (ACTNs) as an extension
of CSTNUs by the injection of users and authorization constraints, motivated
by the need to handle workflows subject to both temporal constraints and
access control simultaneously.

2. I give the execution semantics of ACTNs in terms of real-time execution deci-
sions (RTEDs, [25, 26,28,71]).
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3. I extend the encoding for CSTNUs into TGAs for, again, a sound and complete
dynamic controllability checking. I use a concrete, real-world case study from
the e-health domain. I prove that the encoding of ACTNs into TGAs runs in
polynomial time and it is correct.

4. I provide Conditional Simple Temporal Network with Uncertainty and Re-
sources (CSTNURs) by extending CSTNUs with resources, temporal expres-
sions and runtime resource constraints (RRCs).

5. I give the semantics of CSTNURs in RTEDs.
6. I extend the encoding into TGAs given for CSTNUs in order to model resource

commitments for time point executions and RRCs and I model and validate
an example from the air transport domain.

7. I prove that CSTNURs can also be encoded into Conditional Disjunctive Tem-
poral Networks with Uncertainty (CDTNUs) and discuss pro and cons.

8. I provide a translation from periodic time into STNs as well as a connection
mapping connecting this STN to the ACTN or the CSTNUR describing a
temporal access controlled plan. In this way, I enforce a TRBAC model on top
of ACTNs and CSTNURs.

Organization

Chapter 8 introduces access controlled temporal networks (ACTNs) along with
their semantics in real time execution decisions (RTEDs) and an encoding from
ACTNs into TGAs to check the dynamic controllability and synthesize execution
strategies. It also discusses correctness results of the proposed algorithms. Each
authorization constraint expresses a temporal range, (i.e., a real interval within
which the occurrences of the events it connects are constrained to happen), a label
modeling the conditional part and an authorization policy expressing which the
authorized users are. In general, an ACTN is a temporal network disjunctive in its
nature since its time points can be executed by different users and authorization
constraints between time points may be different depending on the executing users.
In Section 9.6 I discuss the relation between CSTNURs and CDTNUs. Chapter 9
introduces conditional simple temporal networks with uncertainty and resources
(CSTNURs) along with their semantics in RTEDs and an encoding into TGAs
to check the dynamic controllability and synthesize execution strategies. It also
discusses correctness results of the proposed algorithms. CSTNURs differ from
ACTNs for two main aspects. First, each user is associated to a temporal expres-
sion for each time point he is authorized for. Second, runtime resource constraints
work on these temporal expressions and their effect might be different depending
on which order the time points are executed. Section 9.8 introduces a translation
from periodic time to STNs to model the temporal constraints of a given TR-
BAC instance. Then, it provides a connection mapping to enforce the temporal
constraints on role enabling and disabling on CSTNURs and also on ACTNs.
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Access Controlled Temporal Networks

In this chapter I extend CSTNUs by injecting users and authorization constraints,
motivated by the need to handle workflows subject to both temporal constraints
and access control simultaneously. Each authorization constraint expresses a tem-
poral range, a label modeling the conditional part, and an authorization policy
expressing which the authorized users are. I call this new kind of temporal net-
work: Access Controlled Temporal Network (ACTN).

I start by considering a simple but real-world (thus fully realistic) case study
which is a simplification of the official guidelines for the treatment of STEMI
patients (i.e., patients with ST-Elevation Myocardial Infarction), published by the
American College of Cardiology/American Heart Association (see the discussion
in [34]). None of the previous approach discussed in Part I and Part II can handle
such a “simple” example as they handle either temporal or resource controllability
in isolation.

8.1 Motivating Example

Figure 8.1 shows the workflow modeling the STEMI guidelines. There, task du-
rations, delays and temporal ranges are in minutes. The workflow starts with a
patient evaluation (PatEv), in which an EmergencyDoctor establishes if the patient
is in need of immediate medical attention. Should this be the case the Boolean
variable urgent is set to > (i.e., true), and ⊥ (i.e., false), otherwise. PatEv lasts
minimum 5 and maximum 10 minutes. After minimum 1 and within 3 minutes
since PatEv has finished, the workflow management system executes the condi-
tional split connector (i.e., the first diamond component encountered).

The conditional split connector splits the flow of the execution in order to
decide in which branch the execution must continue according to what truth value
urgent has been assigned. Once the branch to follow has become known, the
first task in it starts after 1 and within 5 minutes since the join connector has
terminated. If the patient is urgent, a surgery intervention (SurInt) takes place.
As soon as the intervention has finished, a Surgeon has to manage the patient’s
stay in the Intensive Care Unit (ICUStayM). This task lasts at least 2 minutes and
at most 4. In addition, following the Temporal Separation of Duties (TSoD) policy,
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PatEv
[5, 25]

EmergencyDoctor

× urgent?

SurInt
[60, 210]

Surgeon

ICUStayM
[2, 4]

Surgeon

FibTh
[60, 65]

Cardiologist

ThAst
[2, 10]

Cardiologist

× LTTh
[5, 10]

Cardiologist

[1, 3]

Yes

[1, 5]
[3 + ε, 6]
[1, 3] : 6=

[2 + ε, 5]
[1, 2] :=

No

[1, 5]

[1, 6]

[1, 6]

[1, 3]

S[0, 30]S S[0,∞]S : 6=

S[0,∞]S : 6= ∧¬Relatives

Fig. 8.1: Official STEMI guidelines (excerpt). I model TSoD as [1, 3] :6=, TBoD
as [1, 2] :=. Ranges [x, y] and [x + ε, y] model all durations t s.t. x ≤ t ≤ y and
x < t ≤ y, respectively.

whenever ICUStayM starts within 3 minutes since the end of SurInt, the Surgeons
executing the two tasks must be different. TSoD does not apply if this temporal
distance is greater than 3.

If the patient is not urgent, a fibrinolytic therapy (FibTh) takes place. This task
lasts at least 60 and at most 65 minutes, and according to the guidelines, it has
to start within 30 minutes since PatEv has started. After FibTh has terminated, a
therapy assessment (ThAst) starts with minimal and maximal allowed durations of
2 and 10 minutes, respectively. Following the Temporal Binding Of Duties (TBoD)
policy, if the start of ThAst is within 2 minutes since the end of FibTh, then the
same Cardiologist must execute the two tasks. TBoD does not apply if this
temporal distance is greater than 2 minutes.

Regardless of the chosen branch, after the last task in that branch has finished,
a long term therapy assessment (LTTh) starts. The minimal and maximal durations
for this task are 5 and 10 minutes, respectively. A security policy requires that the
Cardiologist executing LTTh must be (i) different from and not a relative of the
one who executed PatEv, and different from the one who executed ThAst if the
patient was not urgent.

I consider a role-based access control environment in which EmergencyDoctor
contains the users john and lara, Surgeon contains bob, tom and sara, and
Cardiologist contains lara, kate and rick.

8.2 Syntax

An Access-Controlled Temporal Network (ACTN) extends a CSTNU by adding a
set of users U and turning C into a set of sets each one containing (possibly several
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disjunctive) authorization constraints. Users are in charge of executing time points,
whereas authorization constraints say which users are authorized to execute the
time points they connect.

Given a finite setR = {ρ1, . . . , ρn} of relations, an authorization policy α is any
conjunction of relations drawn from R, each one appearing as ρ or ¬ρ if different
from the neutral relation ∗ (i.e., that allowing all tuples). If a relation appears as
ρ (respectively, ¬ρ), then we say that ρ is positive (respectively, negative). The
neutral authorization policy, i.e., that consisting of ∗ only, is denoted by ~.

A pair (u1, u2) satisfies an authorization policy α iff (u1, u2) satisfies each ρ ∈ α
and does not satisfy each ρ such that ¬ρ ∈ α. An authorization policy α1 entails
another authorization policy α2 (written α1 ⇒ α2) iff α1 contains all the relations
appearing in α2. Two authorization policies α1 and α2 are consistent if α1 ∧ α2 is
satisfiable, and equivalent if both α1 entails α2 and α2 entails α1 (i.e., α1 ⇒ α2

and α2 ⇒ α1).
For example, suppose that U = {john, lara, tom, bob, sara, rick, kate}

and R = {∗, 6=,Relatives}, with 6= denoted as {(u1, u2) | u1, u2 ∈ U ∧ u1 6= u2}
and Relatives = {(john, kate), (kate, john)}. Consider the authorization policy
α defined as 6= ∧¬Relatives given in Figure 8.1 between PatEv and LTTh saying
that the physician giving the patient the long term therapy must be different and
not a relative of the physician who did the initial evaluation. If john carries out
the initial PatEv, then lara can execute LTTh as (john, lara) satisfies α. That is,
(john, lara) does not satisfy = nor Relatives.

Definition 8.1. An Access-Controlled Temporal Network (ACTN) is a tuple
〈T ,OT ,P, O, L,L,U ,UA,R, C〉, where:

• T , L,OT , O,P,L are the same as for a CSTNU (Definition 2.15).
• U is a non-empty finite set of users.
• UA ⊆ U × T is the authorization relation. A(X) = {u | (u,X) ∈ UA} is the
set of users authorized for X.
• R is a finite set of relations ρ ⊆ U × U , with ∗ = U × U the neutral relation.
• C is a set of sets such that each set CXY ∈ C consists of a (possibly many)
authorization constraints of the form (x ≤ Y − X ≤ y, ` : α)1 where
x, y ∈ R ∪ ±∞, Y,X ∈ T , ` ∈ P∗, α is an authorization policy. Also, when
|CYX | > 1 then each contained constraint represents a disjunct (only one will
be considered runtime).
• ` = L(X) ∧ L(Y ) for each (x ≤ Y −X ≤ y, ` : α) ∈ CXY , and `, L(X), L(Y )
entail L(P?) for each p,¬p ∈ `, L(X) and L(Y ).
• For each pair (x1 ≤ Y −X ≤ y1, `1 : α1), (x2 ≤ Y −X ≤ y2, `2 : α2) belonging
to the same set CXY , if [x1, y1] = [x2, y2], then α1 6= α2 (note that `1 = `2).
• For each (A, x, y, C) ∈ L, A is non-contingent and A(A) = A(C).
• For each (A1, x1, y1, C1), (A2, x2, y2, C2) ∈ L, A1 6≡ A2 and C1 6≡ C2.

The ACTN-graph extends the CSTNU-graph by labeling requirement links
(recall the notation used in Section 5.7.4) X → Y by (possibly many) la-
bels of the form [x, y], ` : α each one corresponding to the authorization con-

1 (x ≤ Y −X ≤ y, ` : α) shortens (Y −X ≤ y, ` : α) and (X − Y ≤ −x, ` : α). I assume
CXY = CYX .
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straint (x ≤ Y − X ≤ y, ` : α) ∈ CXY . Figure 8.2 shows the ACTN mod-
eling the workflow in Figure 8.1 considering access control. PatEv is mapped
to (A1, 5, 25, C1) and its authorized users are A(A1) = A(C1) = {john, lara}
who belong to the role EmergencyDoctor. SurInt and ICUStayM are mapped
to (A2, 60, 210, C2) and (A3, 2, 4, C3), respectively, and their authorized users are
A(A2) = A(C2) = A(A3) = A(C3) = {bob, sara, tom}, who belong to the role
Surgeon. FibTh, ThAst and LTTh are mapped to (A4, 60, 65, C4), (A5, 2, 10, C5),
and (A6, 5, 10, C6), respectively, and their authorized users are A(A4) = A(C4) =
A(A5) = A(C5) = A(A6) = A(C6) = {lara, kate, rick}, who belong to the role
Cardiologist (note that lara is a specialist in two medical fields, so she belongs
to two roles).

I model the conditional split and join connectors (diamonds) by means of U?
and E, and I connect all the components by means of authorization constraints,
which also impose relative constraints among two non-sequential tasks specifying
authorization policies. For example, I model the TSoD between tasks SurInt and
ICUStayM by means of the authorization constraint2 C2

[1,3],u: 6=−−−−−→ A3 saying that
once C2 has been executed (i.e., SurInt has been completed), say by bob at time
t = 90 , then either tom or sara can execute A3 (i.e., start ICUStayM) from time 91

to 96. The second authorization constraint C2
[3+ε,6],u:~−−−−−−−→ A3 ensures that TSoD

does not apply otherwise allowing all users to execute A3 from time 93 + ε to 96
(I use ε to make sure that no overlap exists between [1, 3] and [3 + ε, 6]).

8.3 Semantics

I give the execution semantics of ACTNs in terms of real-time execution decisions
(RTEDs). Intuitively, an RTED is a decision to commit some users(s) to execut-
ing a set of time points, or a decision to wait for something to happen or an
instantaneous reaction.

In what follows, I adapted the RTEDs for CSTNUs given in [26] by also re-
naming a few symbols and adding details for explanatory purposes. For an ACTN,
the controller (ctrl) seeks a strategy for committing available users to executing
all relevant control time points (i.e., the part under control) such that all relevant
constraints in C will eventually be satisfied no matter what durations the environ-
ment (env) chooses for contingent links and truth values for propositions. Thus,
RTEDs exist for both ctrl and env3. I study the interplay between these two
RTEDs in terms of partial and full outcomes, which determine how the state of
the whole system evolves.

I assume that each contingent link (A, x, y, C) is (i) tied to one range [x, y] only,
and (ii) executed by one user only who, once he has executed A, remains blocked
until the execution of C. I leave as future work the generalization of the approach
to handle situations in which users are given less (or more) time for the same task.
However, I point out that most of these assumptions adapt straightforwardly to

2 C2
[1,3],u: 6=−−−−−→ A3 models (1 ≤ A3 − C2 ≤ 3, u : 6=) ∈ CA3C2 .

3 Here, I use ctrl and env instead of Player1 and Player2.
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sensitive workflows such as our running example where we do not want a Surgeon
to be multi-tasking putting at risk patients’ life.

The set of all available users is Avail ⊆ U , so that u ∈ Avail means that u is
available and busy otherwise. The initial state is Avail = U meaning that all users
are available. Blocking users guarantees that the same user can be committed for
more than one task in a parallel block ensuring this user will be always executing
one task at a time.

Definition 8.2. A partial schedule for an ACTN is a pair

PS = (OccTP ,KnownProp)

where OccTP is a set of triples (u,X, k) meaning that user u executed time point
X at time k, and KnownProp is a set of pairs (p, b) meaning that p has been
assigned b ∈ {>,⊥}.

I represent the current partial scenario (i.e., the scenario being generated upon
the execution of the observation time points) by means of the label `cps consisting
of the conjunction of the already known literals. That is,

`cps = {p | (p,>) ∈ KnownProp} ∪ {¬q | (q,⊥) ∈ KnownProp}

Executed(OccTP) = {X | (u,X, k) ∈ OccTP} is the set of executed time
points and Instants(OccTP) = {k | (u,X, k) ∈ OccTP} is the set of time in-
stants in which the time points in Executed(OccTP) were executed. For each
X ∈ Executed(OccTP), I represent the time instant k in which X was executed as
time(X) and the user who executed it as user(X).

I represent the time instant of the last executed time point as

last = max {v | v ∈ Instants(OccTP)}

if OccTP = ∅, then last = −∞. PS is called locally consistent if all (u,X, k) ∈
OccTP satisfy the constraints in C. The set of all possible partial schedules is
represented by PS∗.

The solution generated dynamically (i.e., the real-time execution decisions
adding triples (u,X, k) to PS) answers the workflow satisfiability problem without
needing to do such an assignment before starting the execution of the workflow.
If the network is proven to be dynamically controllable, we are guaranteed that a
dynamic execution strategy generating such an assignment runtime, depending on
what is going on, always exists.

Definition 8.3. An RTED for ctrl has two forms: wait or (t,ControlTP).

• ∆ctrl = wait is applicable only if a contingent time point has been activated
(i.e., the activation time point A has been executed but the related contingent
C has not).
• ∆ctrl = (t,ControlTP) represents the conditional constraint “if env does noth-
ing before time t, then for each pair (u,X) ∈ ControlTP , commit the user u to
execute the time point X at time t”. Such an RTED is applicable iff t > last ,
ControlTP is a non empty set of pairs of available users and unexecuted time
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points. That is, for each (u,X) ∈ ControlTP , X 6∈ Executed(OccTP) and
u ∈ Avail . Finally, for each (u1, X1), (u2, X2) ∈ ControlTP , if X1 and X2 are
(different) activation points, then u1 6= u2. If X1 is an activation point and X2

is not, then we execute X2 first. This is because activation points block users.

An RTED for the environment env (in symbols, ∆env) has two forms: wait or
(t,ContingentTP).

• ∆env = wait is applicable only if no contingent point C has been activated.
• ∆env = (t,ContingentTP) represents the conditional constraints “if ctrl does
nothing before or at time t, then execute the time points in ContingentTP
at time t”. Such a decision is applicable iff t > last , ContingentTP is a non
empty subset of unexecuted contingent points whose ranges of allowed durations
contain t.

The sets of all RTEDs for ctrl and env are represented by ∆∗ctrl and ∆∗env,
respectively.

In other words, ∆ctrl deals with the parts under control: users and non-
contingent time points. ∆env deals with the parts out of control: contingent time
points and truth value assignments.

Definition 8.4. Let PS = (OccTP ,KnownProp) be a partial schedule in which at
least one contingent time point C has been activated and is allowed to be executed
at last . An instantaneous reaction IR is a decision

(1) to execute a set IC of such time points at time last , or
(2) to assign truth values for each proposition associated to the observation time

points in OccTP that has not been assigned yet (I model such an assignment
as a set IB of pairs (p, b) with p ∈ P and b ∈ {>,⊥}), or

(3) to do both actions.

I represent an instantaneous reaction IR as a pair (IC , IB). The set of all in-
stantaneous reactions is represented by IR∗.

If last happens to be the last possible time at which a currently-activated
contingent time point C can execute, then the instantaneous reaction must include
C. Similarly, if t is the time in which an observation time point P? was executed,
the instantaneous reaction must include a truth value assignment for p.

Of course, env can carry out more than one IR. I now define how ∆ctrl and
∆env are handled. Since both players can either wait or conditionally commit to
executing a set of time points, there are four possible cases (I point out that a
wait decision is not applicable for both ctrl and env simultaneously).

Definition 8.5. The partial outcome of ∆ctrl and ∆env are modeled as Op(OccTP ,
∆ctrl, ∆env) neglecting any IR. There are four possible cases.

(1) Op(OccTP , wait, (t,ContingentTP)) = OccTP∪{(user(A), C, t) | C ∈ ContingentTP}
and for each C ∈ ContingentTP ,Avail = Avail ∪ user(C), where A is the ac-
tivation time point that activated C.
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(2) Op(OccTP , (t1,ControlTP), (t2,ContingentTP)) = OccTP∪{(user(A), C, t2) |
C ∈ ContingentTP} if t2 < t1 and for each C ∈ ContingentTP ,Avail =
Avail ∪ user(C), where A is the activation time point that activated C.

(3) Op(OccTP , (t,ControlTP), wait) = OccTP ∪{(u,X, t) | (u,X) ∈ ControlTP}
and for each (u,A) ∈ ControlTP ,Avail = Avail \ u.

(4) Op(OccTP , (t1,ControlTP), (t2,ContingentTP)) = OccTP∪{(u,X, t1) | (u,X) ∈
ControlTP} if t1 ≤ t2 and for each (u,A) ∈ ControlTP ,Avail = Avail \ u.

For example, Op(OccTP , (0, {(john, A1)}), wait) = OccTP ∪ {(john, A1, 0)}.
(1) says that env can execute the time points in ContingentTP at time t if ctrl

decides to do nothing at that time. (2) says that env can execute the time points
in ContingentTP if he decided to do so before ctrl executes his. (3) is similar to
(1) but with respect to ctrl. (4) says that when ctrl decides to execute a set of
time points before or at the same time of those env has decided to execute, ctrl
moves first to allow env to react instantaneously (Definition 8.6).

Definition 8.6. The full outcome of ∆ctrl and ∆env are modeled as O(OccTP ,
∆ctrl, ∆env, IR) and defined as I did for Op(OccTP , wait, (t,ContingentTP)) ex-
cept that in cases (3) and (4) OccTP is augmented with {(C, t) | C ∈ IC} (appli-
cable if C has been activated), and KnownProp is augmented with {(p, b) | (p, b) ∈
IB} (applicable if P? has been executed). Either way t = last .

The full outcome says how the state of the system (i.e., PS) evolves according
to the interplay of ctrl’s and env’s RTEDs.

Definition 8.7. An RTED-based strategy for ctrl is a mapping σctrl : PS∗ →
∆∗ctrl from partial schedules to RTEDs. An RTED-based strategy for env is a pair
of mappings σenv = (µ∆env

, µIR), where µ∆env
: PS∗ → ∆∗ctrl is a mapping from

partial schedules to RTEDs, and µIR : PS∗ → IR∗ is a mapping from partial
schedules to instantaneous reactions.

Definition 8.8. The one-step outcome of the game modeling the execution of the
network by ctrl and env is defined as

O1(OccTP , σctrl, σenv) = O(OccTP , σctrl(OccTP), µ∆env
(OccTP), µIR(OccTPp))

where OccTPp = Op(OccTP , σctrl(OccTP), µ∆env
(OccTP)).

The terminal outcome O∗(σctrl, σenv) is the complete schedule that results from
the recursive definition: OccTP0 = ∅, OccTP i+1 = O1(OccTP i, σctrl, σenv).

Definition 8.9. An ACTN is DC if there exists an RTED-based strategy σctrl
such that for all RTED-based strategies σenv, the variable assignments (u,X, k) in
the complete schedule O∗(σctrl, σenv) satisfy all constraints in C.

8.4 Encoding ACTNs into TGAs

In this section, I extend the encoding given in Section 2.2.2, I use UPPAAL-TIGA
as an off-the-shelf model checker and discuss a few optimizations.

Assume that G in Figure 8.3 is the TGA equivalent to the ACTN in Figure 8.2.
The core of the TGA remains the same of that discussed in Section 2.2.2.
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8.4.1 Internal state

I represent relations, users and their availability by extending the internal states
of the TGA with a new piece of information. I assign a unique incremental integer
starting from 0 to each time point, and proceed similarly for each user and propo-
sition as I did for workflow resiliency in Section 7.2. Once again, when intended as
indexes, I abuse notation and write u, X, and p meaning their assigned integers.

I model availability of users as a Boolean vector4 Avail indexed on users. Hence,
Avail [u] = > means that u is available and busy otherwise. The initial state of
Avail consists of all elements set to > meaning that all users are available.

I keep track of who did what by means of a system trace vector SysTrace whose
index ranges over time points. If SysTrace[X] = u, then time point X has been
executed by user u. The initial state of SysTrace consists of all elements set to −1,
meaning that all time points have not been executed yet.

For instance, if john has executed A1, then SysTrace[A1] = john. I do not
need to keep track of when a time point X has been executed since its value is
given by the difference between global time and its clock.

I reorganize clocks associated to time points by means of a vector clk indexed
on time points, i.e., clk [X] is the clock associated to the time point X. The vector
clk does not contain clocks ĉ (representing global time) and cδ (used in the guards
and updates of the transitions modeling the interplay between ctrl and env).
Likewise, I reorganize Boolean variables associated to time points by means of a
vector xtd indexed on time points whose elements are initialized to ⊥. Finally,
I reorganize propositions by means of an integer vector prop whose elements are
initialized to 0.

8.4.2 Predecessors and transition range limitations

I adapt the enforcement of predecessor (already discussed for CSTNUD in Chap-
ter 5) for it to support disjunctive constraints. I proceed as follows.

Definition 8.10. Let Y be a non-contingent time point. For any X ∈ T different
from Y , X is a predecessor of Y (in symbols X ∈ Π(Y )) if all authorization
constraints between X and Y have a positive lower bound (x ≥ 0) and label `
identical to that of Y . Formally:

Π(Y ) = {X | (x ≤ Y −X ≤ y, ` : α) ∈ CXY ∧ x ≥ 0 ∧ ` = L(Y )}

If X ∈ Π(Y ) it follows that Y −X ∈ [xmin , ymax ], where

• xmin = min{x | (x ≤ Y −X ≤ y, ` : α) ∈ CXY }, and
• ymax = max{y | (x ≤ Y −X ≤ y, ` : α) ∈ CXY }

That is, if all authorization constraints between X and Y have a positive lower
bound and label equal to L(Y ) (i.e., at least one of them must be satisfied when
considering Y ), then Y definitely executes after X. Moreover, once we have exe-
cuted X, we can execute Y after at least the minimum among the lower bounds

4 UPPAAL-TIGA does not provide data structures for sets.
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(xmin) and within the maximum of the upper bounds (ymax ) of the authorization
constraints in CXY , to consider all the possible disjunctions.

As an example, consider Figure 8.2. Π(A3) = {C2} since CC2A3 = {(1 ≤
A3 − C2 ≤ 3, u : 6=), (3 + ε ≤ A3 − C2 ≤ 6, u : ~)} and L(A3) = u. Moreover,
once env executes C2, ctrl can execute A3 such that A3 − C2 ∈ [1, 6] (xmin = 1
and ymax = 6). Likewise, Π(A5) = {C4}, A5 − C4 ∈ [1, 5]. Π(U?) = {C1} and
U? − C1 ∈ [1, 3]. Π(A6) = {E,A1}, A6 − E ∈ [1, 3] and A6 − A1 ∈ [0,∞].
Π(A2) = {U?} and A2 − U? ∈ [1, 5]. Π(A4) = {U?, A1} and A4 − U? ∈ [1, 5],
A4 −A1 ∈ [0, 30].

Instead, I cannot do much for E, since each constraint having E as a target
has a label that is not entailed by � (i.e., L(E)). That is, for (1 ≤ E − C3 ≤
6, u : ~) ∈ CC3E and (1 ≤ E − C5 ≤ 6,¬u : ~) ∈ CC5E , we have that neither
L(E) 6⇒ u nor L(E) 6⇒ ¬u. I recall that E always executes since its label, �,
is entailed by any scenario. But, if scenario u (respectively, ¬u) holds, the guard
of the transition enforcing the partial order (i.e., that considering Π(E)) would
become conditional depending on the current partial scenario. For E, I would
generate three transitions: one for � with Π(E) = ∅, one for u with Π(E) = {C3}
and C3 − E ∈ [1, 6], and another for ¬u with Π(E) = {C5} and C5 − E ∈ [1, 6].

Although such an approach risks making the encoding exponential, I should
also prove that the generated transitions do not prevent any scenario from being
explored by the model-checking phase. For this reason, each Π(Y ) contains a
predecessor only when I am sure that X ∈ Π(Y ) always comes before Y (similarly,
I do not consider the case “C5 is before A6”).

Note that activation time points are trivially before their related contingent and
already handled with a similar approach in the guards of the transitions executing
them at env.

8.4.3 Time Point Transitions

For each user authorized for X (where X 6∈ CT ), there exists an uncontrollable
self-loop transition having the form:

(ctrl;Guard(u,X); uExX;Update(u,X, setBusy); ctrl)

where:

• Guard(u,X) = ¬xtd [X]
∧
p∈L(X)(prop[p] = 1)

∧
¬q∈L(X)(prop[q] = −1) ∧

Avail [u]
∧
Y ∈Π(X)(xtd [Y ] ∧ clk [Y ] ≥ xmin ∧ clk [Y ] ≤ ymax ). This function

formalizes the mandatory part in the guard: X has not been executed yet,
L(X) is true, the authorized user u is available, all Y ∈ Π(X) have been
executed and clk [Y ] ∈ [xmin , ymax ] (as discussed before).

• Update(u,X, setBusy) = xtd [X] := >, clk [X] := 0, SysTrace[X] := u,
Avail [u] := ¬setBusy . This function formalizes the mandatory part in the
update: X has been executed by u at time ĉ − clk [X], and u is now busy
(setBusy) if X is an activation time point.

For concreteness, consider the self loop τkate,A5 = (ctrl;Guard(kate, A5);
kateExA5;Update(kate, A5,>); ctrl〉 in Figure 8.3. It says that if the patient is
not urgent, kate can start ThAst (i.e., kate executes A5) after 1 and within 5
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minutes, after FibTh has been completed (i.e., xtd [C4]∧clk [C4] ≥ 1∧clk [C4] ≤ 5).
τkate,A5

along with other 18 similar self loops τu,X model the authorized executions
of all non contingent time points.

For each contingent time point, I only extend the update part of the transition
given in Section 2.2.2 by adding the two statements SysTrace[C] := SysTrace[A],
and Avail [SysTrace[C]] := >. That is, first, I save that the user executing C is
the same of that who executed A, and second, I release such a user. Note that
the guard does not contain conditions on availability on purpose. Adding such
conditions would result in env shrinking the range of C.

8.4.4 Game Interplay, Failing Transitions, and Winning path
considering disjunctive constraints

Failing transitions and transitions regulating the game interplay and assigning the
truth values to propositions remain the same as those discussed in Section 5.3
(adapted to the new array-reorganization).

The winning path is extended by adding intermediate locations to guarantee
that whenever disjunctive authorization constraints exist, I always take into con-
sideration one of them. I proceed by first introducing the set of core constraints
(i.e., those I must always consider for the traditional winning path).

Definition 8.11. Let ` ∈ P∗ be a label. The set of core constraints labeled by ` is
given by:

Core(`) =
⋃
CXY∈C

{(x ≤ Y −X ≤ y, ` : α) | |CXY | = 1∧

(x ≤ Y −X ≤ y, ` : α) ∈ CXY ∧ ` = L(X) ∧ L(Y )}

For the example I am discussing,

Core(u) = {(1 ≤ A2 − U? ≤ 5, u : ~), (1 ≤ E − C3 ≤ 6, u : ~)}

Note that I do not take into consideration

CC2A3
= {(1 ≤ C3 − C2 ≤ 3, u :6=), (3 + ε ≤ C3 − C2 ≤ 6, u : ~)}

as |CC2A3
| = 2.

Gu in Figure 8.3 verifies both that all time points labeled by u have been
executed and that the core constraints and their related authorization policies
they express are satisfied. skipu1 and skipu2 are the same as those discussed for
classic CSTNUDs in Section 5.3.

After generating the location and the set of transitions for the core constraints
I now deal with the disjunctive authorization constraints. I first compute the set of
non-core constraints (dual to the set core), i.e., the set containing all the disjunc-
tions with respect to a given label `. Then, I generate the locations and transitions
to verify that the run satisfies at least one authorization constraint for each dis-
junction avoiding the combinatorial explosion.



8.5 Correctness and complexity of the encoding 191

Definition 8.12. Let ` ∈ P∗ be a label. The set of non-core constraints labeled by
` for each CXY is given by:

NonCore(CXY , `) = {(x ≤ Y −X ≤ y, ` : α) | |CXY | > 1∧
(x ≤ Y −X ≤ y, ` : α) ∈ CXY ∧ ` = L(X) ∧ L(Y )}

For this example,

NonCore(CA3C2
, u) = {(1 ≤ A3 − C2 ≤ 3, u :6=), (3 + ε ≤ A3 − C2 ≤ 6, u : ~)}

That is, either A3 is executed such that A3−C2 ∈ [1, 3] and TSoD (6=) must hold,
or A3 is executed such that A3 − C2 ∈ [3 + ε, 6] and any user can do so (~).

To handle the disjunctions with respect to the label ` for each NonCore(CXY , `),
I create an intermediate location LCXY ,` to avoid generating an exponential num-
ber of transitions. For each LCXY ,`, there is a set of transitions containing the same
skip transitions as those for L` and there is a sat transition for each disjunct in
NonCore(CXY , `). Concretely, for NonCore(CA3C2

, u), I generate LCC2A3
,u (short-

ened as L′u in Figure 8.3), sat1C2A3,u (verifying the first disjunction) and sat2C2A3,u
(verifying the second one).

Likewise, I generate LCC4A5
,¬u (i.e., goal), sat1C4A5,¬u and sat2C4A5,¬u for

NonCore(CC4A5
,¬u).

The ACTN in Figure 8.2 is dynamically controllable. One of the possible exe-
cutions is the following. ctrl starts the workflow in Figure 8.1 by assigning PatEv
to john. As soon as john finishes (i.e., env executes C1), ctrl commits the work-
flow management system wf to execute the conditional split connector (modeled
by U?). If the patient is urgent (i.e., if u is assigned >), then SurInt is assigned to
tom and exactly 1 minute after tom is done, ICUStayM is assigned to bob (since a
TSoD must hold). If the patient is not urgent, FibTh and ThAst are both carried
out by lara because the start of ThAst occurs one minute after FibTh and thus
a TBoD must hold. Regardless of which branch has been taken, ctrl commits wf
to execute the join connector 1 minute after the last task of the chosen branch
terminated. Finally, ctrl commits rick, who is different from and not related to
lara or john, to executing LTTh 1 minute after the join connector ended. This
execution strategy satisfies all authorization constraints.

8.5 Correctness and complexity of the encoding

In this section I discuss the correctness and complexity of the encoding.

Theorem 8.1. Encoding ACTNs into TGAs has polynomial-time complexity.

Proof. The main components having a role in the complexity analysis of the en-
coding of an ACTN are: (i) time points, (ii) authorized users for each control time
point, (iii) authorization constraints, and (iv) different labels in the ACTN.

For each control time point, there is a self-loop transition for any authorized
user. These transitions contain in their guard the scenario in which the time point
has to be executed and may contain additional conditions on the predecessors.
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The complexity of finding the predecessors for a time point X is linear in the
number of all constraints (Section 5.3). Thus, the generation of these transitions
is a polynomial-time task.

Transitions modeling the execution of the contingent time points and assigning
truth values are the same as those given for CSTNUs (I just extend the update
part), and they are not even replicated for the authorized users. Fail transitions
and transitions regulating the game interplay remain exactly the same as well.
Thus, the time complexity of the generation of this set of transitions remains
polynomial.

I am left to prove that the generation of the winning path is a polynomial-time
task too. The main problem is that such a path consists of intermediate locations
that must allow one to consider all possible combinations of the disjunctions ex-
pressed as authorization constraints. The generation of the winning path is the
same of that for CSTNUs (augmented with the checks for the authorization poli-
cies) when considering the set of core constraints (polynomial). When considering
the non core authorization constraints I create as many intermediate locations as
the number of disjunctions. However, I remark that my encoding does not generate
any combination of the sat transitions nor a combination of the locations. The
model-checking phase will take care of exploring them all. Thus, the generation of
the winning path has linear complexity in the number of the different labels with
respect to the number of the possible disjunctions.

Since all operations have polynomial complexity, the overall complexity is poly-
nomial as well.

Theorem 8.2. Encoding ACTNs into TGAs correctly captures the execution se-
mantics given in Section 8.3.

Proof. I show that any sequence of partial schedules that can be generated for
any ACTN according to the execution semantics given in Section 8.3 corresponds
to a run for the equivalent TGA that can be generated by following its transi-
tions according to the classic TGA semantics. I extend the proof of correctness
given in [26] to accommodate users and authorization constraints. The proof is by
induction.

Each respectful partial schedule that can be generated for the ACTN corre-
sponds to a state of the TGA in which: the location is env, cδ = 0, last = ĉ,
and for each executed time point X, time(X) = ĉ − clk [X], xtd [X] = >,
user(X) = SysTrace[X], whereas time(X) = ĉ, xtd [X] = ⊥ and user(X) if X
has not been executed yet. If P? is an observation time point, then KnownProp
contains (p, b) for b ∈ {>,⊥} if P? has been executed, and does not contain it
otherwise. Also, if some activation point has been executed by the user u and
the related contingent has not, then Avail [u] = ⊥, else Avail [u] = >. Note that
Avail [u] = > and Avail [u] = ⊥ (in the TGA) mean u ∈ Avail and u 6∈ Avail in
the execution semantics given in Section 8.3 (where Avail is a set).

Base case. The initial PS corresponds to the initial state of the TGA in which
the location is env, ĉ = 0 all clocks clk [X] = 0, all xtd [X] = ⊥, all SysTrace[X] =
−1, all prop[p] = 0, and Avail [u] = >. This partial schedule is trivially consistent.

Inductive step. Suppose that PS is a (locally) consistent partial schedule
that can be generated according to the execution semantics for ACTNs, and that
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PS satisfies the invariant that I required of each locally consistent partial schedule
at the beginning of this proof.

Let θ be the corresponding state of the TGA. Since cδ = 0, the only transitions
that are immediately enabled are those handling contingent time point executions
and truth value assignments. These transitions, if taken, correspond to env’s in-
stantaneous reactions, in which a set of one or more contingent time-points can
be executed simultaneously or some proposition can be assigned a value. Suppose
that env does not take any transition when cδ = 0. As soon as cδ > 0, both
ctrl and env have transitions that they could take at any time with respect to
the enforced condition over the predecessors. For example, env might decide to
execute one or more contingent time-points C1, . . . , Cn when cδ = 3. That would
correspond to ∆env = (k, {C1, . . . , Cn}), where k = last + 3.

Since each time env takes a transition cδ is reset to 0, ctrl is unable to
interrupt env while env is executing contingent time points and assigning truth
values to propositions. Thus, at those time instants ∆ctrl = wait and the resulting
outcomes are exactly the cases 1-2 of Definition 8.5. The guard of env’s transition,
enforcing the duration bounds for a contingent link (A, x, y, C), ensures that the
resulting partial schedule is respectful as C can only be executed such that C−A ∈
[x, y] (analogous to predecessors). Likewise, for a truth value assignment the fail
transition that ctrl can take (if δ > 0) ensures that env can assign a truth value
to a proposition instantaneously after the execution of the observation time point
(otherwise, ctrl could trivially move to goal).

Also, when env’s sequence of “simultaneous” transitions completes, ĉ equals
the time of the most recent execution (e.g., last + 3). In addition, for each newly
executed time-point C, the clock clk [C] is reset (ensuring that ĉ − clk [C] equals
the execution time of C), xtd [C] is set to >, SysTrace[C] is set to SysTrace[A]
(ensuring that the user executing A is the same of that executing C), and
Avail [SysTrace[C]] = > (ensuring that user u is free when C executes). Since
clk [C] is reset only once, ĉ− clk [C] remains fixed forever.

Instead, suppose that ctrl has decided to commit a set of users to execute
a set of control time points before env executes his, say at time last + 2. This
situation results in ctrl taking the gain transition to take back control and then,
once in its location, instantaneously commit the users to execute the time points at
that time, blocking all users executing an activation time point, and immediately
returning to the env location by means of the pass transition. Since the location
of ctrl is urgent, ĉ = last + 2 when the pass transition is taken. This sequence
of transitions corresponds to the partial outcome in Definition 8.5 (cases 3-4)
where ∆ctrl = (t, {(u1, X1), . . . , (un, Xn)}), t = last + 2, and for each (u,X) ∈
ControlTP (of ∆ctrl), u ∈ A(X). Moreover, if env chooses to instantaneously
execute some contingent time point at the same time last+2, that will correspond
to an instantaneous reaction.

Finally, if at time last , ctrl and env both decide to execute some time points at
time last+1, then the ACTN semantics (inheriting the CSTNU semantics) ensures
that ctrl’s time points are executed first, and that env is able to instantaneously
react if he decides to do so (equivalent to ctrl’s transitions having priority over
env’s). As soon as the execution returns to the location of env, ĉ will still be
last + 1 (because, again, time has not elapsed at ctrl). Since, in all cases, the
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resulting state of the TGA satisfies the desired invariant property, the result is
proven.

Theorem 8.3. Let 〈T ,OT ,P, O, L,L, C〉 be any ACTN, G be the encoding of
〈T ,OT ,P, O, L,L, C〉, and σG be a winning TGA counter-strategy for ctrl. Then
there is an equivalent RTED-based strategy σctrl for ctrl that will ensure the
satisfaction of all authorization constraints in 〈T ,OT ,P, O, L,L, C〉 whatever the
contingent durations and truth value assignments.

Proof. If 〈T ,OT ,P, O, L,L, C〉, G, σG are as assumed, then σG : Loc × V → Act
∪ wait, with Act the set of ctrl’s actions (equivalently the set of uncontrollable
transitions) and V abstracts the internal state of the TGA.

Suppose the TGA has just got into the state (env, V ). As I have already said,
for any time pointX, associated clock clk [X] and Boolean variable xtd [X], we have:
xtd [X] = ⊥, clk [X] = ĉ, and SysTrace[X] = −1 before X executes, and xtd [X] =
>, clk [X] < ĉ, and SysTrace[X] = u after X executed. For each observation
time point P?, the associated proposition modeled by prop[p] is 0 (i.e., unknown)
before P? executes, and either 1 (i.e., >) or −1 (i.e., ⊥) after P? executed. Thus,
V specifies a partial schedule.

Now, suppose that last < ĉ (i.e., that some positive time has elapsed since
the last execution event in PS). If nothing has happened, it means that there
has been a sequence of gain and pass transitions going back and forth between
env’s and ctrl’s locations. In such a loop, ctrl has not executed any control
point, and env has just waited. Let (env, V ′) be the state immediately preceding
such loop. Then, for some positive ε > 0, all the clocks in V equal those in V ′

plus ε, and by construction, last refers to the clocks in V ′. I abuse notation and
write V + k meaning that all values of the clocks in V are augmented by k.
Next, let d = min{d | σG(env, V ′ + d) 6= wait ∧ σG(env, V ′ + d) 6= pass} be
the minimum time that can elapse from V before the strategy σG recommends a
transition different from gain and pass, and let V0 = V0+d. The unique sequence
of execution transitions at ctrl is τ1 = σG(ctrl, V0), . . . , τn = σG(ctrl, Vn), where
each Vi+1 = Vi, except for the clk [X] with X the time point executed by τi. The
termination of this sequence of transitions is guaranteed since time points are
finite and can only be executed once. If τn is the last execution transition, then
pass = σG(ctrl, Vn). That transition leads back to the state (env, Vn), where
Vn is the same as V0, except that the clocks for the time points executed by the
transitions, τ1, . . . , τn, are all 0 in Vn.

Next, let t be the time at which σG recommends ctrl a non-trivial transition,
and ControlTP be the set of time-points corresponding to the execution transi-
tions, τ1, . . . , τn. Then (t,ControlTP) is a∆ctrl corresponding to what the strategy
recommends at (env, V0). Note that env may decide to instantaneously react by
executing some contingent points at time t too, an outcome that is prevented by
the execution semantics for ACTNs (Definition 8.5, cases 3-4). Finally, env may
decide to intervene before time t arrives, by executing one or more contingent
time-points and effectively generating a new partial schedule PS ′. In that case,
the same procedure could be applied to PS ′ to generate an appropriate ∆ctrl.
Since the guard on the transition from env to ctrl requires a positive time de-
lay, that ∆ctrl is properly prohibited from any kind of instantaneous reaction (by
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ctrl). This procedure gives a mapping from any (env, V ) state that is reachable
following σG . The sequences of partial schedules generated by following the RT-
EDs correspond to runs that can be produced by σG . Thus, the complete schedules
generated by the RTEDs satisfy all authorization constraints assuming that env
respects the bounds on all contingent links and assigns instantaneously all truth
values to the propositions.

8.6 Conclusions

I defined access controlled temporal networks (ACTNs) as an extension of CSTNUs
in order to take into consideration users and (temporal conditional) authorization
constraints simultaneously. I provided an encoding from ACTNs into TGAs as
an extension of that given for CSTNUs to accommodate users and authorization
constraints and I also discussed a few optimizations to speed up the model-checking
phase. I discussed the correctness and complexity of the encoding. I used ACTNs
to analyze the official STEMI guidelines.

ACTNs differ from all temporal networks discussed in Part I as those for-
malisms do not employ resources. ACTNs differ from CNCUs as ACTNs do not
employ temporal constraints and they also differ from the contributions in Chap-
ter 7 as they do not deal with the uncertain availability of resources.
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CSTNUs with Resources

In this chapter I provide CSTNUs with Resources (CSTNURs). The temporal plans
I am interested in modeling augment again the plans I discussed in Part I and
Part II by injecting resources, in charge of executing the time points, and runtime
resource constraints (RCCs) saying when and which resources are committable to
execute a task according to when and which other resources have been committed
for some other tasks in the past. In other words, in a CSTNUR, each time point
is executed by committing a resource that can be chosen from a set associated to
the time point. Each resource is associated to a temporal expression representing
its temporal availability during the execution. A resource can be committed to
execute a time point at a certain time instant t if and only if the valuation of its
associated temporal expression is true with respect to t. Moreover, the availability
of a resource can be constrained by means of special kind of constraints, runtime
resource constraints, in order to refine its availability in real time with respect to
the execution time of previous time points or previous resource commitments.

9.1 Motivating Example

As a motivating example, I consider (a simplification of) a temporal plan modeling
a round-trip flight from Anchorage, Alaska to Frankfurt, Germany (direct flights).
I show its graphical workflow-representation in Figure 9.1. I focus on the part
involving pilots and engineers. Once boarding is complete, the take off could be
delayed for extreme weather conditions and related safety procedures such as, for
example, deicing. Deicing is the process of removing snow and ice from the plane
surfaces (especially wings) by “power washing” the aircraft with chemicals which
also remain on the surfaces in order to prevent the reformation of the ice. This
(uncontrollable) condition is modeled by a conditional split connector (diamond
labeled by deicing?). If deicing? = > (i.e., deicing? is true) then the Deicing
process starts after minimum 5 and within 10 minutes (Yes branch). This task lasts
from 1 to 3 hours1. After Deicing has finished, the plane takes off after minimum
5 and within 10 minutes. alice and bob are two specialized workers who can be
1 Actually, deicing an aircraft does not take 3 hours, but since all leaving aircrafts have
to do so following the departure scheduling, each plane queues for its turn.
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×
deicing?

Deicing
〈〈60, 180〉〉

{alice, bob}

OutFlight
〈〈570, 630〉〉

{lila, mike}

SysCheck
〈〈60, 120〉〉

{evie, tim}

SecCheck
〈〈60, 90〉〉

{evie, tim}

RetFlight
〈〈570, 630〉〉

{lila, mike}

Yes

[5, 10]

No
[20, 30]

[5, 10] [60, 180]

[60, 180]

[90,∞]

[90,∞]

[360, 960]

[1440, 2160]

Fig. 9.1: Example of a temporal workflow for a round-trip flight. All ranges are
in minutes. Pilots must rest at least 14 hours before piloting again. No engineer
carries out SysCheck and SecCheck simultaneously.

commited for this task. Instead, if deicing? = ⊥ (i.e., deicing? is false), the
plane just takes off after 20 and within 30 minutes modeling the time needed to
provide passengers with the safety instructions and reach the runway (No branch).
Note that in case of deicing, there is plenty of time for the safety instructions. Once
the aircraft has taken off, the outbound flight (OutFlight) lasts from 9 hours and
30 minutes to 10 hours and 30 minutes. lila and mike are pilots who can be
committed for this task. Once the aircraft has landed, a system check (SysCheck)
and a security check (SecCheck) start after minimum 1 and within 3 hours. evie
and tim are two engineers who can be committed for these two tasks. SysCheck
lasts 1 to 2 hours, whereas SecCheck lasts 1 to 1 hour and a half. Once both these
two tasks are done, the plane can take off again after minimum 6 and maximum
16 hours since its landing (RetFlight) with the same pilots available for this task.
The whole process lasts minimum 24 and maximum 36 hours.

This process employs users as resources and enforces two safety properties.
First, the process enforces the FAA regulations for flight time limitations and rest
requirements2 saying that after a 10-12 hour (multi-time zone) flight, a pilot must
rest from 14 to 18 hours before piloting again. Second, the process also requires
that if SysCheck and SecCheck are executed in parallel, they are not executed by
the same engineer (who can however execute both sequentially). For the sake of
simplification, in this chapter I assume that one resource only is committed for
executing each task (equivalently, each task is executed by a single user).

2 https://www.ecfr.gov/cgi-bin/text-idx?view=text&node=14:2.0.1.3.10#se14.
2.91_11059

https://www.ecfr.gov/cgi-bin/text-idx?view=text&node=14:2.0.1.3.10#se14.2.91_11059
https://www.ecfr.gov/cgi-bin/text-idx?view=text&node=14:2.0.1.3.10#se14.2.91_11059
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9.2 Syntax

In what follows, I introduce some preliminary concepts and definitions before giv-
ing the formal definition of CSTNUR.

A temporal expression represents an assertion with respect to an instant—in
this thesis, it is always the execution time—and a possible time point; a tempo-
ral expression is useful to characterize the temporal availability of resources in a
CSTNUR in a compact way.

Definition 9.1 (Temporal Expression). A temporal expression (TE) τ is a
(temporal) assertion defined according to the grammar:

τ ::= � | �k | �X + k | τ1 ∧ τ2

where � ∈ {>,<,≥,≤,=}, X is a time point, k ∈ N3, � is the empty expression,
and τ1, τ2 are two TEs. There are 4 types of TEs:

• Type 0 when τ = �
• Type 1 when τ = �k
• Type 2 when τ = �X + k
• Type 3 when τ = τ1 ∧ τ2

The set of all possible TEs is denoted by T E.

Every TE of Type 2, τ = �X + k, is equivalent to a Type 1 once X has been
executed. When X is unexecuted I assume that X = ∞. The interpretation of a
TE τ , with respect to a particular instant t, is as follow.

Definition 9.2 (TE interpretation). The interpretation of a TE τ with respect
to a temporal instant t ∈ R≥0 is defined as follows:

1. t |= �
2. t |= �k iff t�k, where k ∈ N and � ∈ {>,<,≥,≤,=}.
3. t |= X + k if t |= (tX + k), where tX = ∞ if X is unexecuted and tX 6= ∞ is

the time at which X was executed otherwise.
4. t |= τ1 ∧ τ2 iff t |= τ1 and t |= τ2.

By using temporal expressions, I can represent the concept of availability of
resources at run time in a compact way.

Definition 9.3 (Temporal availability). Given a set of resources R, a set of
time points T and the set of all possible temporal expressions T E, I model the
temporal availability of resources as a pair (RA,RE ), where:

• RA ⊆ R × T models the resource-time point association relation (i.e., which
resources can be committed for which time points). I abuse notation and write
R(X) = {r | (r,X) ∈ RA} to represent the resources committable for X and
I impose that for each contingent link (A, x, y, C) ∈ L, R(A) = R(C) and for
each X ∈ T , R(X) 6= ∅.

3 Since I am going to translate temporal expressions into clock constraints I avoid using
reals here.
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X
{r1〈> 2〉, r2〈�〉}

[�]
Y

{r1〈�〉, r2〈< X + 15〉}

[�][5, 20],�

〈> X + 10,=〉

Fig. 9.2: An augmented CSTNU. Each time point has an associated set consisting
of elements having the form r〈τ〉 meaning (r,X) ∈ RA ∧ RE (r,X) = τ .

• RE : RA → T E represents the temporal expression associated to each pair
(r,X), where r ∈ R(X).

A resource r ∈ R(X) is committable at time t if t |= RE (u,X), not committable
otherwise.

Figure 9.2 shows an augmented CSTNU consisting of two time points X and
Y connected by two edges: a classic one representing the temporal constraint with
range 5 ≤ Y − X ≤ 20 (solid), and a new one representing a runtime resource
constraint (dashed). Time points are also labeled by the set of committable re-
sources, where, by abusing notation, if r〈τ〉 appears in X’s label it means that
(r,X) ∈ RA∧RE (u,X) = τ . In other words, r1 and r2 are two resources commit-
table for executing both X and Y but with different temporal expressions. For r1,
the temporal expression associated to X (i.e., RE (u1, X)) is > 2 meaning that r1
can be committed to execute X when its execution time is greater than 2. For r2,
the temporal expression with respect to Y is < X + 15 meaning that r2 can be
committed to execute Y until global time is smaller than tX +15, where tX is the
execution time of X (again ∞ if X is unexecuted).

Runtime resource constraints (RRCs) refine in real time the temporal expres-
sions of resources by appending other temporal expressions as conjuncts. Each
RRC is defined between two time points, firing time point and target time point.
When the firing time point is executed, the effect of RRC is to append new TEs
to the existing ones associated to the resources of the target time point (if such a
time point is still unexecuted) considering the relation defined in the RRC. In this
way, it is possible to adjust, for example, the committable resources of the target
time point considering which resource was committed for the firing time point.

Definition 9.4 (Runtime Resource Constraint). A Runtime Resource Con-
straint (RRC) is a 4-tuple 〈X, τ, Y, ρ〉, where:

• X,Y ∈ T are the firing and target time points, respectively, such that X 6= Y ,
Y is non contingent, and L(X) is consistent with L(Y ) (and L(Z) if τ is a
Type 2 TE).
• τ ∈ T E is a temporal expression.
• ρ ⊆ R ×R is a binary relation over resources. As usual, = shortens {(r, r) |
r ∈ R}, 6= shortens {(r1, r2) | r1, r2 ∈ R ∧ r1 6= r2}, and ∗ shortens {(r1, r2) |
r1, r2 ∈ R} (the universal relation).

I interpret each RRC 〈X, τ, Y, ρ〉 as follows: when a resource rX is committed
to execute X, then τ is instantaneously appended to all temporal expressions of
those resources rY committable for Y such that (rX , rY ) ∈ ρ. In symbols,



9.2 Syntax 201

∀rY ∈ R(Y ). (rX , rY ) ∈ ρ =⇒ RE (rY , Y ) = RE (rY , Y ) ∧ τ

where rX ∈ R(X) is the resource committed for X.
An RRC does not imply an execution order among time points. An RRC

〈X, τ, Y, ρ〉 has effect on Y , only when, once we executeX, Y has not been executed
yet (refining the availability of already committed resources does not make sense).
That is, when a resource is committed for a time point, its temporal expression
(with respect to that time point) no longer changes. Therefore, if there is an RRC
between X and Y and the two time points have to be executed at the same time,
it is necessary to fix an execution order between them to decide whether the RRC
applies. Moreover, if there is an RRC between a contingent time point C and a
non-contingent time point X and the two time points occur at the same time t
(because env decided to execute C after ctrl had decided to execute X at time
t), then the RRC is ignored because C is assumed to be executed after X even if
the two time points are executed at the same instant.

In Figure 9.2, the RRC 〈X,> X+10, Y,=〉— drawn as a dashed edge X → Y
labeled by 〈> X+10,=〉— represents the fact that the resource committed for X
can also be committed for Y if the execution time of Y is greater than 10 time units
since X was executed. Note that the temporal constraint between X and Y allows
for the execution of Y just 5 time units afterX. Suppose that r2 is committed forX
at time 1. R(Y ) is instantaneously updated considering 〈X,> X+10, Y,=〉. Since
the RRC has now become 〈X,> 11, Y,=〉 (as we know the value of X), its TE part
> 11 is appended to all TEs associated to the same resource r2 committable for Y
(because ρ is ’=’). Here, there is only one TE for r2. Therefore, the application of
the RRC results in evolving the “state” of the temporal expressions of the resources
in R(Y ) as follows:

R(Y ) for t<1︷ ︸︸ ︷
{r1〈�〉, r2〈< X + 15〉}  

R(Y ) for t≥1︷ ︸︸ ︷
{r1〈�〉, r2〈> 11 ∧ < 16〉}

The allowed delay for executing Y after X is [5, 20]. If ctrl decides to fix the
execution of Y at 5 ≤ t′ ≤ 11 or 16 ≤ t′ ≤ 20, then the only committable resource
is r1, and also r2 otherwise. For example, if we fix t′ = 13, it is simple to verify
that r2 is committable for Y as

t′ |= (> 11∧ < 16) = t′ |= (> 11) and t′ |= (< 16) = > ∧> = >

Now, I can give the formal definition of a CSTNUR putting together everything
I have discussed so far.

Definition 9.5 (CSTNUR). A Conditional Simple Temporal Network with Un-
certainty and Resources (CSTNUR) is a tuple 〈T ,P, L,OT , O, C,LR,RA,RE ,RRC〉,
where:

1. 〈T ,P, L,OT , O, C,L〉 is a CSTNU.
2. R = {r0, r1, . . . } is a finite set of resources.
3. The pair (RA,RE ) specifies temporal availability according to Definition 9.3.
4. RRC is a set of runtime resource constraints according to Definition 9.4.
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Figure 9.3 shows the CSTNUR modeling the temporal plan in Figure 9.1 con-
sidering access control. There are seven users, alice, bob, lila, mike, evie, tim
and wf, where wf represents the WfMS. 〈C2,≥ C2 + 840, A5,=〉 (RRC1) (dashed
edge C2 → A5) models a temporal separation of duties (TSoD) meaning that the
same pilot (=) who executes C2 (i.e., piloted the aircraft in the OutFlight) will
return available to pilot again after 14 hours (FAA regulations). 〈A3, > C3, A4,=〉
(RRC2) and 〈A4, > C4, A3,=〉 (RRC3) (dashed edges A3 → A4 and A4 → A3, re-
spectively) model a “no multi-tasking” policy for SysCheck and SecCheck requiring
that either different resources are committed for those tasks when executed in par-
allel, or the same resource can be committed for both provided that these tasks
are executed sequentially.

Indeed, RRC2 specifies that the user who executes A3 will return available for
executing A4 as soon as C3 has executed. Likewise, RRC3 specifies that the user
who starts A4 will return available for executing A3 as soon as C4 has executed.

9.3 Semantics

In a CSTNUR, resources are committed to execute the time points. Resources
committed for contingent time points are the same that were committed for the
corresponding activation time points. However, env is still free to schedule these
time points when he wants.

Since CSTNURs extend CSTNUs, we still have that the truth values of propo-
sitions and the duration of contingent links are incrementally revealed over time as
the corresponding observation/contingent time points are executed, respectively.
Again, a dynamic execution strategy reacts to observations and contingent time
points in real time also saying which resources are committed for which time points.
A viable and dynamic execution strategy for a CSTNUR is a strategy executing
all non-contingent time points such that all relevant constraints about temporal
distances and resource commitments will be satisfied no matter which truth values
for propositions and durations for contingent links are incrementally revealed over
time. A CSTNUR with such a strategy is called dynamically controllable.

A more formal description of the execution semantics of CSTNURs can be given
in terms of extended RTEDs. In what follows, like I did for ACTNs in Chapter 8,
I extend the RTEDs given for CSTNUs [26] to also consider resources and RRCs.

For a CSTNUR, ctrl seeks a strategy for scheduling all relevant non-contingent
time points such that all relevant temporal constraints involving resources and time
points are eventually satisfied no matter what env does.

A partial schedule for a CSTNUR is still a pair PS = (Executed ,Assigned),
where Executed renames OccTP in Section 8.3 and here it is a set of triples (r,X, t),
where r is the resource committed for X at time t. Instead, Assigned just renames
KnownProp in Section 8.3.

ExecutedT shortens the set of time points in Executed (without any other
information). For each X ∈ ExecutedT , time(X) still queries Executed to get
information about when X was executed, whereas res(X) does the same but with
respect to the committed resource. PS is locally consistent if Executed satisfies all
temporal constraints of the underlying CSTNU and for each (r,X, t) ∈ ExecutedT ,
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r ∈ R(X) and t |= RE (r,X), where RE (r,X) is the temporal expression associated
to the pair (r,X).4 The set of all possible partial schedules remains represented
by PS∗.

In the following, I fully formalize the execution semantics of CSTNURs in terms
of extended RTEDs for env and ctrl. Moreover, NonContingent is now a set of
pairs (r,X), where r is the resource that ctrl wants to commit for X.

Definition 9.6 (RTED for ctrl). An RTED for the controller ctrl, ∆ctrl,
specifies which action has to be performed by ctrl during an execution (represented
by PS). It has two forms: wait or (t,NonContingent).

• ∆ctrl = wait is the same as that given in Definition 8.3.
• ∆ctrl = (t,NonContingent) represents the conditional constraint: “if env does
nothing before time t, then for each pair (r,X) ∈ NonContingent , commit
the resource r to execute time point X at time t.” Such a decision is appli-
cable if and only if t > last , NonContingent is a (non empty) ordered set of
pairs (ri, Xi) i = 1, . . . , k, where ri is a resource and Xi is a non-contingent
unexecuted time point such that `cps ⇒ L(X).

Definition 9.7 (RTED for env). An RTED for the environment env, ∆env,
specifies which action has to be performed by env during an execution. It has two
forms: wait or (t,Contingent).

• ∆env = wait is the same as that given in Definition 8.3.
• ∆env = (t,Contingent) is the same as that given in Definition 8.3 committing
res(A) to execute C. In other words, such a decision is applicable if and only
if t > last , Contingent is a non-empty subset of pairs (r, C), where C is the
contingent time point such that (A, x, y, C) ∈ L and A ∈ ExecutedT , r =
res(A) is the resource that was committed for A and t ∈ [time(A)+x, time(A)+
y]}.

∆∗ctrl and ∆∗env still denote the sets of all RTEDs for ctrl and env. Furthermore,
since the association of resources to contingent time points is implicit and the
assignment of truth values to propositions does not involve resources, the instanta-
neous reactions definition is the same as the one given for CSTNUs in Section 8.3.

I am now ready to extend the concept of the partial and full outcome between
∆ctrl and ∆env.

Definition 9.8 (Partial Outcome). Let PS be a locally consistent partial sched-
ule. Let ∆ctrl be an RTED for ctrl and ∆env and RTED for env. I model the
partial outcome of ∆ctrl and ∆env as a mapping PO(Executed , ∆ctrl, ∆env) ne-
glecting any instantaneous reaction IR. There are four possible cases:

(1) PO(Executed , wait, (t,Contingent)) = Executed∪{(res(A), C, t) | C ∈ Contingent}.
Also, for any 〈C, τ, Y, ρ〉 ∈ RRC such that Y 6∈ ExecutedT we have that
∀rY ∈ R(Y ), (res(A), rY ) ∈ ρ =⇒ RE (rY , Y ) = RE (rY , Y ) ∧ τ .

4 Once r has been committed for X at time t, no RRC will ever be able to restrict r’s
associated temporal expression for X as RRCs only apply to unexecuted target time
points. Therefore, the valuation of t |= RE(u,X) will remain fixed forever.



9.4 Encoding CSTNURs into TGAs 205

(2) PO(Executed , (t1,NonContingent), (t2,Contingent)) = Executed∪{(res(A), C, t2) |
C ∈ Contingent} if t2 < t1. Also, for any 〈C, τ, Y, ρ〉 ∈ RRC such that
Y 6∈ ExecutedT we have that ∀rY ∈ R(Y ), (res(A), rY ) ∈ ρ =⇒ RE (rY , Y ) =
RE (rY , Y ) ∧ τ .

(3) PO(Executed , (t,NonContingent), wait) = Executed ∪ {(ri, Xi, t) | (ri, Xi) ∈
NonContingent for i = 1, . . . , k}. Also, every time we add (ri, Xi, t) to
Executed we fire the related RRCs (if any). That is, for any 〈Xi, τ, Y, ρ〉 ∈ RRC
such that Y 6∈ ExecutedT we have that ∀rY ∈ R(Y ), (ri, rY ) ∈ ρ =⇒
RE (rY , Y ) = RE (rY , Y ) ∧ τ .

(4) PO(Executed , (t1,NonContingent), (t2,Contingent)) = Executed ∪{(ri, Xi, t) |
(ri, Xi) ∈ NonContingent for i = 1, . . . , k} if t1 ≤ t2. Again, every time we
add (ri, Xi, t) to Executed we fire the related RRCs (if any). That is, for any
〈Xi, τ, Y, ρ〉 ∈ RRC such that Y 6∈ ExecutedT we have that ∀rY ∈ R(Y ), (ri, rY ) ∈
ρ =⇒ RE (rY , Y ) = RE (rY , Y ) ∧ τ .

The explanations are similar to those given for ACTNs in Section 8.3. The
definitions of full outcome and RTED-based strategies for ctrl and env are the
same as those given for ACTNs. The definition of dynamic controllability thus
refines to:

Definition 9.9 (Dynamic Controllability of a CSTNUR). A CSTNUR is
dynamically controllable (DC) if there exists an RTED-based strategy σctrl such
that for all RTED-based strategies σenv, the variable assignments (r,X, k) in
the complete schedule FO∗(σctrl, σenv) satisfy all temporal constraints of the un-
derlying CSTNU, and each assignment (r,X, k) satisfies both r ∈ R(X) and
k |= RE (r,X).

9.4 Encoding CSTNURs into TGAs

In this section, I extend the encoding into TGAs given in Section 5.3 for CST-
NUDs in order to represent the DC checking of CSTNURs as a two-player game
between ctrl and env according to the semantics I gave in Section 9.3. Despite
CSTNURs do not employ decision time points, I rely on the recent encoding for
CSTNUDs which enforces time point label honesty and predecessors in the tran-
sition guards modeling the execution of non-contingent time points (Section 5.3).
Then, I proceed by encoding committable resources into dedicated clocks and
resource commitments for time point executions consideing RRCs into circular
paths.

9.4.1 Encoding Committable Resources into Dedicated Clocks

As I have already pointed out, in a CSTNUR resources are committed for time
points according to the RA relation. Therefore, to model which resource has been
committed for which time point, I start by associating a dedicated clock rX to each
element (r,X) ∈ RA and interpreting the value of such clocks as follows.

1. If rX > cX, where cX is the clock associated to time point X, it means r was
committed for X at time ĉ− cX.
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2. If rX = cX = ĉ, it means thatX has not been executed yet and r is committable
for X.

3. If rX = cX < ĉ, it means that X has been executed and r is not the resource
committed for X.

4. If rX < cX, it means that X has not been executed yet and r cannot be
committed for X because r is not available. In details, rX becomes less than
cX by a reset action. The reset of rX occurs when it is necessary to prevent r
from being committed for X since ĉ 6|= RE (r,X).

Differently from what I have done for clocks associated to time points, here rX
clocks may be reset more than once. If r is committable for X and rX has never
been reset, then r can be committed to execute X. To determine which resource
was committed for a time point X, I only need to find the unique clock rX such
that rX > cX. It is guaranteed that all other clocks rjX where rj ∈ R(X) and
rj 6= r are equal to cX.

Getting back to the example, the resource association relation RA specified for
the CSTNUR in Figure 9.3 implies the following clocks.

• wD models R(D?) = {wf}
• aA1, bA1 model R(A1) = {alice, bob}
• aC1, bC1 model R(C1) = {alice, bob}
• lA2, mA2 model R(A2) = {lila, mike}
• lC2, mC2 model R(C2) = {lila, mike}
• eA3, tA3 model R(A3) = {evie, tim}
• eC3, tC3 model R(C3) = {evie, tim}
• eA4, tA4 model R(A4) = {evie, tim}
• eC4, tC4 model R(C4) = {evie, tim}
• lA5, mA5 model R(A5) = {lila, mike}
• lC5, mC5 model R(C5) = {lila, mike}

9.4.2 Encoding Resource Commitments into Circular Paths

In the encoding for CSTNUDs given in Section 5.3 the executions of time points
are modeled as self-loop transitions at L1. In CSTNURs, I must extend this part
in order to model that resources are committed to execute time points. A resource
r is committable to execute a time point Y at time t if r ∈ R(Y ) and t satisfies
its associated TE. The latter condition entails validating all fired RRCs (if any)
targeting the time point I am trying to execute. I achieve all this as follows.

Instead of having a (possibly) exponential number of self-loop transitions mod-
eling all possible executions with respect to all possible combinations of RRCs, I
model the commitment of a resource r for a time point X by means of a circular
path of urgent locations starting and ending at L1 (see Figure 9.4a). All transitions
involving these locations are uncontrollable. The first location has the same name
of the time point to execute (i.e., Y ). A run of the TGA enters Y if and only if
the corresponding time point has not been executed yet (the guard is exactly the
same of that given for the self-loop transitions for CSTNUDs). Then, the run goes
through a set of n locations Y1, . . . , Yn, where n is the number of RRCs targeting
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Y . Moving from Yi−1 to Yi means validating the ith RRC targeting Y . In Fig-
ure 9.4a, each thick edge connecting Yi−1 to Yi abstracts a DAG with Yi−1 as a
source and Yi as a sink. Such a DAG has two possible forms according to the type
of TE contained in an RRC (see below). Validating RRCs may result in blocking
some resources—those for which the current time does not satisfy their associated
TEs (refined by the RRC itself)—by resetting their associated clocks. The valida-
tion of several different RRCs could block the same resource r more than once by
keeping on resetting rY.

Finally, a set of m transitions connect Yn to Yr, where m is the number of
resources associated for Y . Taking one of these transitions means to commit one
and only one committable resource among those associated to Y . Recall that, at
any time, r ∈ R(Y ) is committable if and only if rY = ĉ. Therefore, none, a few
or all of these transitions could be disabled as their guards might be false.

If r is not committable, it means that r’s current associated TE is violated.
Since in the previous locations Y1, . . . , Yn all RRCs having Y as a target have been
validated, at least one of these transitions must have blocked r by resetting rY.
If the run can enter Yr, it means that at least one resource for Y is committable
(i.e., survived the blocking process). Again, none, a few or all resources can survive
this process. Each one of these transitions verifies that ri is committable (having
riY = ĉ as the unique clock constraint in its guard) and resets all clocks rjY
associated to all other resources rj 6= ri committable for the same time point.
The last (single) transition connecting Yr to L1 fixes the execution time of Y by
resetting cY. Eventually, if r is committed for Y at time ĉ−cY, the following three
conditions hold:

1. r ∈ R(Y )
2. ĉ− cY |= RE (r, Y )
3. rY > cY and riY = cY for all ri ∈ R(Y ) such that r 6= ri.

I now discuss more in detail how I encode RRCs and block resources. The
simplest case is when no RRC targets a time point Y (Figure 9.4b). In such a case
the circular path reduces to three locations only: L1, Y and Yr. Again, a run enters
Y if the corresponding time point has not been executed yet, and then moves (for
sure) to Yr since no resource has been blocked. Finally, it fixes the execution time
of Y . Instead, when a time point X appears as target in some RRC, I must make
sure that, if this RRC has fired and the related TEs of the resources committable
for X have been updated, the global time ĉ must satisfy at least one of the TEs
associated to different resources. This way, at least one resource can be committed
to execute the time point.

In the rest of the paper I will only consider RRCs whose embedded TEs are
either conjunctions of Type 1 TEs (i.e., a subset of all possible Type 3) or Type
2 only. I do not consider Type 0 TEs as current time (no matter its value) always
satisfies them. I normalize Type 3 TEs containing conjuncts of Type 2 by removing
such conjuncts and generate new RRCs containing single Type 2 TEs. This can
be done in linear time with respect to the number of conjuncts. For example, the
RRC

〈X,> 3∧ ≤ 7︸ ︷︷ ︸
1

∧> C︸︷︷︸
2

∧≤ Z + 5︸ ︷︷ ︸
3

, Y, ρ〉
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L1

Y Y1

Y...

Yr Yn

〈cY = ĉ, GoY, ∅〉

Validate RRC1

Validate . . .

Validate RRCn

〈r1Y = ĉ, r1ExY, R1〉

〈>, ExY, {cY}〉

(a) Circular path modeling the execution of Y . A
run enters this circular path only if Y is unexecuted
(L1 → Y ). Then, it verifies all the RRCs targeting
Y (if any) (Y → · · · → Yn). After that, it com-
mits one and only one committable resource among
those associated to Y (if any) (Yn → Yr). Finally,
it fixes the execution time of Y going back to L1

(Yr → L1). Thick edges labeled by “Validate ri” are
a compact representation of the DAGs depicted in
Figure 9.4(c)-(d).

L1

Y

Yr

〈cY = ĉ, GoY, ∅〉

〈r1Y = ĉ, r1ExY, R1〉

〈>, ExY, {cY}〉

(b) Circular path modeling
the general execution of Y
when no RRC targets Y . A
run just commits one and
only one committable re-
source among those associ-
ated to X and fixes the time
of such an execution.

Yi

F V

Yj
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(c) Encoding RRCs specifying a sin-
gle TE of Type 1 〈X,�k, Y, ρ〉. A run
enters F if only if the RRC has fired
(Yi → F ), otherwise it skips the ver-
ification (Yi → Yj). At F , either �k
is satisfied, and then no resource is
blocked (F → Yj), or �k is violated
(F → V ), and a few resources may
eventually be blocked (V → Yj).
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(d) Encoding RRCs specifying
conjunctions of TEs of Type 1
〈X,

∧
i�iki, Y, ρ〉. skip, fired and

blocki transitions remain the same
of those given in Figure 9.4c. sat
extends by checking that the entire
conjunction is true. Finally, there
are as many violi transitions as
the number of disjuncts arising from
¬(

∧
i ĉ�iki).

Fig. 9.4: Modeling resource commitments: (a) shows the general circular path, (b)
shows the case in which a time point does not appear as a target in any RRC, (c)
and (d) give the encodings for (conjunctions of) TEs of Type 1.
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is normalized to

{〈X,> 3∧ ≤ 10, Y, ρ〉, 〈X,> C, Y, ρ〉, 〈X,≤ Z + 5, Y, ρ〉}

I now proceed by discussing how I encode RRCs in the circular path. As I
discussed at the beginning of this section, I validate the jth RRC rj by going
from Yi to Yj . There are two possible cases: (1) the considered RRC contains a
conjunction of TEs of Type 1, or (2) the considered RRC contains a TE of Type
2.

Encoding RRCs containing (a conjunction of) TEs of Type 1

I encode an RRC having the form 〈X,�k, Y, ρ〉 by means of four locations Yi,
Yj , F , and V (see Figure 9.4c) and I connect such locations as discussed below.
Entering F means that the RRC has fired (i.e., thatX has been executed), whereas
entering V means that both the RRC has fired and the TE of Type 1 specified in
it is violated. Therefore, starting from Yi, there are two possible transitions: one
going to F (fired) and one going to Yj (skip).

The fired transition represents the fact that X has been executed and, there-
fore, the associated RRC whose firing time point is X has to be considered (i.e.,
the RRC has fired). The skip transition represents the fact that X has not been
executed yet and, therefore, the associated RRC has to be ignored.

At F I have two transitions: either t |= �k or not. In the first case, no resource
will be blocked since current time sarisfies the TE. In such a case, the run moves to
Yj (sat transition) and goes ahead. The guard of sat contains the clock constraint
ĉ�k modeling t�k. From Definition 9.2, it holds that t |= �k iff t�k whatever �
is. Since in a CSTNUR TEs are evaluated with respect to global time (modeled
by ĉ), I just need to substitute ĉ for t getting ĉ�k.

In the second case, t 6|= τ and thus I must block all resources having τ asso-
ciated. To achieve this aim, the run first enters V . Either one or two transitions
connect F to V according to which � τ specifies.

If τ is = k (i.e., the corresponding clock constraint is ĉ = k), then there are
two transitions, one having guard ĉ < k and the other having guard ĉ > k. Since
¬τ is true, then one of these two transitions must be true.

If τ is = �k, where � ∈ {<,>,≤,≥}, then I just need to specify a unique tran-
sition going from F to V whose guard is ¬(ĉ�k). In Figure 9.4c, such transitions
have labels viol1 and viol2, where viol2 (drawn in gray) exists if and only if �
is = in τ . ./1 and ./2 model the new � operators arising from the negation of τ .
Finally, a set of transitions connects V to Yi. There exists one transition for each
resource rX ∈ R(X) saying that if rX was committed for X, then all resources
rY associated to Y such that the pair (rX , rY ) belongs to the relation ρ expressed
in the considered RRC must be blocked by resetting their associated clocks. That
is, the guard of each transition blocki is riX > cX (i.e., ri was committed for X),
whereas each update specifies the set Ri of clocks to reset computed as follows:

Ri = {rjY | rj ∈ R(Y ) ∧ (ri, rj) ∈ ρ}

I do not leave “anything behind” as all of these transitions are mutually-exclusive.
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Now that I have discussed how to encode an RRC containing a single TE
of Type 1 I consider RRCs containing TEs of Type 3 where each conjunct is
of Type 1. That is, RRCs having the form 〈X,

∧
i�iki, Y, ρ〉. Figure 9.4d shows

the encoding of such an RRC, where rather than normalizing 〈X,
∧
i�iki, Y, ρ〉

and obtaining 〈X,�1k1, Y, ρ〉, . . . , 〈X,�nkn, Y, ρ〉 and then encoding each RRC
according to Figure 9.4c resulting in a circular path Y1 → · · · → Yn → Yr of n
DAGs, I generate a refined shorter path Y1 → Yu, consisting of one DAG only, able
to deal with the entire conjunction of TEs. This encoding substantially extends the
sat and violi transitions in Figure 9.4c. All other transitions remain the same. I
refine sat so that it verifies the clock constraint ĉ�1k1 ∧ · · · ∧ ĉ�nkn. To generate
violi transitions, I proceed exactly as I did in Figure 9.4c. That is, I compute
¬(ĉ�1k1 ∧ · · · ∧ ĉ�nkn) resulting in

∨
j ¬(ĉ�ikj), where, again, if � is = in some

conjunct of the initial TE, I generate two disjuncts.
As an example, consider 〈X,≤ 7∧ = 6∧ > 5, Y, ρ〉. It follows that, ≤ 7∧ =

6∧ > 5) becomes the clock constraint ĉ ≤ 7 ∧ ĉ = 6 ∧ ĉ > 5 (sat), and ¬(ĉ ≤
7 ∧ ĉ = 6 ∧ ĉ > 5) becomes (ĉ > 7) ∨ (ĉ < 6) ∨ (ĉ > 6) ∨ (ĉ ≤ 5) from which I
generate viol1, viol2, viol3, viol4 connecting F to V . In this way, the circular
path is made of one DAG only having the same number of locations and in general
more transitions.

Encoding an RRC containing a TE of Type 2

I encode an RRC having the form 〈X,�Z + k, Y, ρ〉 by building a DAG consisting
of the locations Yi, Yj , F , V , Ze and Zu (see Figure 9.6a) and connecting such
locations as discussed below. The meaning of F and V as well as that of the
transitions from Yi to F and to Yj are the same of those given for RRCs expressing
TEs of Type 1 (Figure 9.4c). At F , the RRC has fired and the TEs associated to
some resources associated to Y have been updated (possibly differently depending
on whether or not Z has been executed). Indeed, if Z has been executed, then �Z+
k is equivalent to �(tZ +k), where tZ is the time at which Z executed. Otherwise,
t�Z + k is either > or ⊥ depending on �. Therefore, instead of connecting F to
both V and Yj as I have done before, I connect F to Ze and Zu, modeling the fact
that Z has, or has not, been executed, respectively. A run moves to Ze if and only
if Z has been executed (cZ < ĉ), whereas it moves to Zu if and only if Z has not
(cZ = ĉ).

At Zu we might block some resource(s) according to �. If � ∈ {=, >,≥}, then
t 6|= �Z + k. Therefore, from Zu to Yn, there are as many blocking transitions as
the number of resources in R(X). Each one specifies the set Ri as I have done
for RRCs having TEs of Type 1. If � ∈ {<,≤}, then the run moves to Yn not
blocking any resource (as t |= �Z + k implying Ri = ∅).

At Ze, we must valuate �Z + k, therefore this TE becomes the clock constrait
ĉ�(ĉ− cZ) + k which simplifies to cZ�k as �Z + k is actually �(tZ + k) since Z
was executed at tZ = ĉ−cZ. If cZ�k is true, no resource will be blocked and a sat
transition allows the run to move to Yn. If cZ�k does not hold, then ¬(cZ�k) =
cZ ./ k and, therefore, there are one or two violi transitions allowing the run to
move to V . At V the run moves to Yj by (possibly) blocking some resources for
Y and generating again a blocking transition for each resource associated to the
firing time point X as I did for RRCs having TEs of Type 1.
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〈cA3 = ĉ, GoA3, ∅〉

Validate RRC2

〈e
A 3

=
ĉ
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Fig. 9.5: Circular paths modeling the authorized execution of the non-contingent
time points of the CSTNUR in Figure 9.3.

Now that I have discussed the general encoding for RRCs whose TEs are of
Type 2, I consider those RRCs where the firing time point and the time point
belonging to the embedded TE are the same. That is, those having the form
〈X,�Z + k, ρ, Y 〉) where Z = X. For this case, I can remove redundancy of the
original encoding given in Figure 9.6a (locations Ze and Zu). Figure 9.6b shows
such an encoding. Differently from what I discussed for the first case above, this
encoding does not result in reducing the number of DAGs, but it avoids generating
Ze and Zu for each DAG going from Yi−1 to Yi (as done in Figure 9.6a). Indeed,
when X = Z, keeping Ze and Zu would correspond to checking twice if X has
been executed or not. Therefore, this encoding first removes Ze and Zu along with
the transitions to enter these locations and, then, it connects F directly to Yi and
to V , maintaining the same sat and violi transitions.

Figure 9.5 shows the circular paths modeling the authorized executions of the
non-contingent time points D?, A1, A2, A3, A4 and A5 of the CSTNUR in Fig-
ure 9.3, whereas Figure 9.6c and Figure 9.6d detail the validation of the related
RRCs (thick edges in Figure 9.5) for the circular paths modeling the authorized
execution of A3, A5, respectively. I do not discuss the encoding for A4 as it is
similar to that for A3.
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ĉ, Zu , ∅〉

〈cZ�
k, sat, ∅〉

〈cZ ./ k, viol1, ∅〉

〈cZ ./2 k, viol2, ∅〉

〈riX > cX, blocki , R
i〉

〈r
i X
>

c
X
, block

i ,
R
i 〉

(a) Encoding normalized RRCs whose TEs
are of Type 2 〈X,�Z+k, Y, ρ〉. A run enters
F if only if the RRC has fired (Yi → F ),
otherwise it skips the verification (Yi → Yj).
At F , either Z has been executed (F → Ze)
or not (F → Zu). At Zu a few resources
might eventually be blocked (Zu → Yj). At
Ze either �Z + k is satisfied and thus no
resource is blocked (Ze → Yj), or �Z + k
is violated (Ze → V ) and a few resources
might eventually be blocked (V → Yj).
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(b) Optimizing the encoding of nor-
malized RRCs whose TEs of Type 2
have the form 〈X,�X+k, Y, ρ〉. skip,
fired, sat, violi and blocki transi-
tions remain the same of those given
in Figure 9.6a (they just connect dif-
ferent locations). In fact, at F , the run
already knows that X (i.e., Z in Fig-
ure 9.6a) has already been executed.
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(c) Validation of 〈C2,≥ C2 +
840, A5,=〉 through the path A3 →
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Fig. 9.6: Encoding RRCs specifying TEs of Type 2 〈X,�Z + k, Y, ρ〉, (a) shows
the general encoding, (b) refines it for the case X = Z (c) shows the encoding of
the RRC going from C2 to A5 in Figure 9.3, whereas (d) that of the RRC going
from A4 to A3. All locations are urgent and all transitions are uncontrollable.
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9.4.3 Encoding Contingent Time Points into Contingent Circular
Paths

In the encoding for CSTNUs, transitions modeling the execution of the contingent
time points are controllable self-loop transitions at L0. In the semantics I gave
for CSTNURs in Section 9.3, the two time points of a contingent link (A, x, y, C)
must be executed by committing the same resource. Moreover, contingent time
points cannot appear as targets in any RRC. Therefore, for each contingent time
point the encoding generates a contingent circular path similar to that depicted in
Figure 9.4b neglecting the validation of RRCs.

The path starts and ends at L0 and contains two internal urgent locations C
and Cr (see Figure 9.7a). A unique transition GoC goes from L0 to C, whereas a
set of |R(A)| transitions connects C to Cr. A run can enter C as soon as the clock
constraint for contingent time points (i.e., cA < ĉ ∧ cC = ĉ ∧ cA ≥ x ∧ cA ≤ y)
becomes true. GoC is unique and does not reset any clock. After that, the resource
that was committed for A is committed for C as well by means of a transition
riExC going from C to Cr. The only enabled transition riExC is the one whose
guard contains the clock constraint riC > cA, i.e., the transition associated to the
resource ri committed for A.

Indeed, for all other rj ∈ R(A) where rj 6= ri, it holds that rjC = cA. Finally,
the run moves back to L0 by resetting cC, i.e., fixing the execution time for C.

Figure 9.7 sums up the general pattern for modeling the execution of contingent
time points (Figure 9.7a) and the application of such pattern to the contingent
time points of the CSTNUR in Figure 9.3 (Figure 9.7b).

9.5 Correctness and Complexity of the Encoding

In this section, I discuss the complexity of encoding a CSTNUR

S = 〈T ,P, L,OT , O, C,LR,RA,RE ,RRC〉

into a TGA. In Section 9.4 I already proved that rewriting RRCs in the suitable
form I need to encode them in the corresponding DAGs has linear complexity
with respect to the number of conjuncts. The worst case is that in which all RRCs
contain TEs τ consisting of the same number of conjuncts where each conjunct
is a Type 2 TE. Given any TE τ , I shorten the number of its conjuncts as |τ |.
Therefore, the normalization process has complexity

Normalization(RRC) = O(|RRC| × |τ |)

Theorem 9.1. Any CSTNUR can be encoded into a corresponding TGA in poly-
nomial time.

Proof. In order to give an estimation of time complexity, I need to estimate the
number of generated TGA locations and transitions.

For each non-contingent time point Y , the encoding generates a circular path
Y → Y1 → · · · → Yn → Yr (cf. Figure 9.4a), where each Yi−1 → Yi is a DAG
handling the validation of the ith RRC containing a conjunction of TEs of Type
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(b) The encoding of C1, C2, C3, C5 and C5 of Figure 9.3.

Fig. 9.7: Modeling the executions of contingent time points: (a) shows the pattern
for modeling the execution of a contingent time point C, whereas (b) shows the
encoding of C1, C2, C3 and C4 of Figure 9.3.
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1 or a TE of Type 2. In the former case, the DAG consists of 4 locations (cf.
Figure 9.4d), whereas in the latter it consists of 6 (cf. Figure 9.6a).

In the worst case, all time points different from Y specify RRCs having Y as
a target and containing a Type 2 TE. Recall that a lot of RRCs having the same
firing and target time points can be specified (e.g., as a result of the normalization
process). Therefore, let

R(X,Y ) = |{〈X, τ, Y, ρ〉 | 〈X, τ, Y, ρ〉 ∈ RRC}|

be the number of RRCs having X as a firing time point and Y as a target time
point, and let, by abusing notation,

R(Y ) =
∑

X∈T \{Y }

R(X,Y )

be the total number of RRCs targeting Y . Further, let

M(Y ) = max{R(X,Y ) | X ∈ T \ {Y }}

be the size of the biggest R(X,Y ). It holds that R(Y ) ≤ (|T | − 1)M(Y ) ≤ |T | ×
|RRC|, where T is the set of time points. ow, given a time point Y , the number
of generated TGA locations is

nLoc(Y ) = 2 + 5R(Y ) ≤ 2 + 5((|T | − 1)M(Y )) = O(|T | × |RRC|)

where the initial 2 takes into account Y and Yr, whereas each RRC is validated
by adding a DAG of 5 (instead of 6) since the source of each DAG coincides with
the sink of the previous one (the source of the first DAG is Y ).

The number of transitions in each circular path depends (mainly) on the sum
of the transitions of each DAG in the path. Since I have already discussed how to
compute the set of RRCs involving a time point Y , I continue by discussing how
many transitions a DAG validating an RRC expresses. Again, the worst case is
when there is an RRC having the form 〈X,= Z + k, Y, ρ〉, where X 6= Z. Such a
DAG (cf. Figure 9.6a) consists of 1 fired transition, 1 skip, 2 transitions to go
from F to Ze and Zu, 2 viol transitions and |R(X)| block transitions connecting
V to Yj and other |R(X)| block transitions connecting Zu to Yn. Therefore, the
total number of transitions is

T (〈X,= Z + k, Y, ρ〉) = 7 + 2|R(X)| ≤ 7 + 2|R| = O(|R|)

Now, if all resources are committable for all time points (i.e., |R(X)| = |R| for
all X ∈ T ), it follows that the above inequality holds for all RRCs belonging to
R(Y ).

From R(Y ) ≤ (|T | − 1)M(Y ), it follows that a circular path has the following
number of transitions

nTr(Y ) = 2 + |R(Y )|+
∑

〈X,τ,Y,ρ〉∈R(Y )

T (〈X, τ, Y, ρ〉) ≤ 2 + |R|+ |R(Y )|(7 + 2|R|)

≤ 2 + |R|+ 7|R(Y )|+ 2|R| × |R(Y )| = O(|R| × |T | × |RRC|)
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The constant 2 is related to GoY and ExY, whereas |R(Y )| is the number of all
the transitions Yn → Yr for committing a resource (cf. Figure 9.4a).

The above analysis focuses on the number of locations and transitions con-
sidered the worst case; that is, a CSTNUR not containing any contingent links
and having all time points labeled by �. It is possible to show that if a CSTNUR
contains some observation time points or contingent ones, the number of locations
and transitions generated by the encoding is smaller. This is because contingent
time points cannot appear as targets in any RRCs and RRCs cannot be expressed
for a firing time point X and a target time point Y such that L(X) and L(Y )
are inconsistent. It follows naturally that restricting the number of possible RRCs
results in generating fewer locations and consequently transitions.

The final number of TGA locations is given by the sum of all locations belonging
to all circular paths, plus the number of locations Wloc encoding the winning path
(already proved to be linear in the number of distinct labels present in the input
network [26]). Therefore, for any CSTNUR S, the total number of locations is:

Locations(S) = 2 +Wloc +
∑
X∈T

nLoc(X) = O(Wloc + |T |2 × |RRC|)

where 2 is given by the presence of L1 and L0. The final number of TGA transitions
is given by the total number of transitions for encoding circular paths plus the
transitions for encoding the winning path:

Transitions(S) = 2 +Wtr +
∑
X∈T

nTr(X)

≤ 2 +Wtr + 2 + |R|+ 7|R(Y )|+ 2|R| × |R(Y )|
= O(Wtr + |T | × |R| × |RRC|)

Since the number of locations and transitions is polynomial with respect the
length of the input network, and the generation of each location and transition
takes constant time, the overall time complexity of the encoding is polynomial.

I prove the correctness of the encoding given in Section 9.4 by means of the
following two theorems. Such theorems extend those given in [26] proving the
correctness of the CSTNU-to-TGA encoding. My extension takes into account
resources and RRCs. I first prove prove the equivalence between the execution
semantics of the resulting TGA and the semantics of RTEDs (Theorem 9.2), and
then that any counter-strategy for ctrl synthesized by reachability analysis of the
resulting TGA corresponds to an RTED-based strategy (Theorem 9.3).

Theorem 9.2. Let S = 〈T ,P, L,OT , O, C,LR,RA,RE ,RRC〉 be a CSTNUR
and let G be the encoding of S into a TGA, as described in Section 9.4. Then
G correctly captures the execution semantics for S in the sense that any sequence
of partial schedules that can be generated for S according to the execution seman-
tics for CSTNURs corresponds to a run for G that can be generated by following
its transitions according to the TGA semantics.

Proof. I show that any sequence of partial schedules that can be generated for any
CSTNUR according to the execution semantics given in Section 9.3 corresponds
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to a run for the equivalent TGA that can be generated by following its transitions
according to the classic TGA semantics.

Before introducing the invariant, it is useful to fix the notation about the clocks
and state of G. Let ~c = (ĉ, cδ, cX, . . . , cY, bP, . . . , r0X, . . . , r0Y, . . . ) be the vector
containing all clocks of G. I write ~c = k and ~c + k meaning that all clocks in ~c
are equal to k and are advanced of k, respectively. A state of the TGA G is a pair
(L,~c), where L is a location and ~c represents the values of all clocks. The proof
shows by induction that the following invariant holds.

Invariant

Each locally consistent partial schedule that can be generated for S corresponds
to a state (L,~c) of the TGA G in which:

• L = L0, cδ = 0, last = ĉ.
• For each executed time point X, time(X) = ĉ − cX and res(X) = rX, where
rX is the only riX clock not reset.

• For each unexecuted time point X, time(X) = ĉ and res(X) is not defined
(i.e., all riX = ĉ).

• For each executed observation time point P?, if p = > then bP = ĉ, and if
p = ⊥ then bP < ĉ. If the time point is not executed, the value of bP means
nothing.

Base case.

The initial PS corresponds to the initial state (L0,~c) where ~c = 0. This partial
schedule is trivially locally consistent.

Inductive step.

Suppose that PS is a locally consistent partial schedule that has been generated
according to the execution semantics for CSTNURs, and that PS satisfies the
above invariant. Let (Li,~ci) be the corresponding state of the TGA. Since cδ = 0,
the only transitions that are immediately enabled are those entering the contingent
circular paths and those that set truth values to propositions. In case a run enters a
contingent circular path corresponding to the executing of a contingent time point
C, it enters the location C and then it must move to location Cr, representing
the event that a resource has been committed, picking the transition having the
same resource that was committed for the related activation time point A. Finally,
it must move back to L0. Since the homonymous location C and the location Cr
are urgent, time does not elapse. All transitions executed during a walk through
contingent circular paths and the transitions modeling the truth value assignments
represent the instantaneous reactions of env, in which a set of one or more contin-
gent time points and/or proposition assignments can be executed simultaneously.
Suppose that env does not take any transition when cδ = 0. As soon as cδ > 0,
both ctrl and env may execute enabled transitions (i.e., those with true guards).
For example, env might decide to execute one or more contingent time-points
C1, . . . , Cn when cδ = 3. That would correspond to ∆env = (k, {C1, . . . , Cn}),
where k = last + 3.
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Each time env takes a transition pFalse to reset the clock associated to transi-
tion p (i.e., setting p to ⊥) or a transition ExC to execute a contingent time point,
cδ is reset to 0, making ctrl unable to interrupt env during the execution of the
initiated transition.

Thus, at these time instants, it holds that ∆ctrl = wait and the resulting
outcomes are exactly the ones described in cases 1-2 of Definition 9.8. The guard of
the env transition, enforcing the duration bounds for a contingent link (A, x, y, C),
ensures that the resulting partial schedule is respectful as C can only be executed
in an instant such that C −A ∈ [x, y]. Likewise, for a truth value assignment, the
fail transition that ctrl can take (if δ > 0) ensures that env assigns a truth value
to a proposition instantaneously after the execution of the observation time point.

Also, when env’s sequence of “simultaneous” transitions completes, ĉ equals
the time of the most recent execution (e.g., last + 3). In addition, for each newly
executed time-point C, the clock cC is reset and for each ri ∈ R(C), if riC = ĉ

then riA = ĉ and if riC < ĉ then riA < ĉ ensuring that ĉ−cC equals the execution
time of C. Analogously, for each pFalse taken, it holds that bP < ĉ. Since cC is
reset only once and each proposition is assigned only once, the values of ĉ − cC

and bP remain fixed forever.
Instead, suppose that ctrl has decided to commit a set of resources to execute

a set of non-contingent time points before env executes some contingent time
points at time last + 2. This situation results in ctrl taking the gain transition
to take back control and then, once in its location, instantaneously go through the
circular paths (for non-contingent time points) to commit the resources to execute
those time points at that time, and immediately returning to the env location by
means of the pass transition. Since all the locations but L0 are urgent, ĉ still has
value last + 2 when the pass transition is taken. The sequence of transitions to
go through the circular paths corresponds to the partial outcome in Definition 9.8
(cases 3-4) where ∆ctrl = (t, {(r1, X1), . . . , (rn, Xn)}), t = last + 2, and for each
(r,X) ∈ NonContingent (of ∆ctrl), r ∈ R(X).

Finally, if at time last , ctrl and env both decide to execute some time points
at time last + 1, then the CSTNUR semantics (inheriting the CSTNU semantics)
ensures that ctrl time points are executed first, and that env is able to instanta-
neously react if it decides to do so (equivalent to ctrl transitions having priority
over env). As soon as the execution returns to the location of env, ĉ has still the
same value last + 1 because, again, time has not elapsed. Since, in all cases, the
resulting state of the TGA satisfies the desired invariant property, the result is
proven.

Theorem 9.3. Let S be a CSTNUR, G be the encoding of S, and σG be a winning
TGA counter-strategy for ctrl. Then, there is an equivalent RTED-based strategy
σctrl for ctrl that will ensure the satisfaction of all temporal constraints in S and
all RRCs, if fired, whatever the contingent durations and truth value assignments.

Proof. If S, G, σG are as assumed, then σG : S → Act ∪ wait, where S is the state
of the TGA and Act the set of ctrl actions (equivalently the set of uncontrollable
transitions).

Suppose the TGA has just got into the state (L0,~c). As I have already re-
marked, for any time point X associated to clock cX, it holds that:
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• cX = ĉ,
• all riX have value ĉ before X executes, and
• all riX but one have value cX < ĉ after X executes. The clock riX remain-

ing equal to ĉ represents that the corresponding user has been committed to
execute X.

For each observation time point P?, the associated proposition modeled by bP

is cP = ĉ (i.e., unknown before P? executes), and either cP = ĉ (i.e., >) or cP < ĉ

(i.e., ⊥) after P? has been executed. Thus, (L0,~c) specifies a partial schedule.
Now, suppose that ĉ > last , i.e., that some positive time has elapsed since the

last execution event in PS. If nothing has happened, it means that there has been a
sequence of gain and pass transitions going back and forth between env and ctrl

locations. In such a loop, ctrl has not executed any non-contingent time point,
and env has just waited. Let (L0,~c′) be a state preceding such loop. Then, for some
ε > 0, all the clocks in ~c equal those in ~c′+ε, and by construction, last refers to the
clocks in ~c′. Next, let d = min{d | σG(L0,~c′ + d) 6= wait ∧ σG(L0,~c′ + d) 6= pass}
be the minimum time that can elapse from ~c′ before the strategy σG recommends
a transition different from gain and pass, and let ~c0 = ~c′+d. The unique sequence
of execution transitions at ctrl is σG(L1,~c0), . . . , σG(L1,~cn), where each ~ci+1 = ~ci,
except for cX with X the time point executed by σG(L1,~ci). The termination of
this sequence of transitions is guaranteed since time points are finite and can
only be executed once. If σG(L1,~cn) is the last execution transition, then pass =
σG(L1,~cn). That transition leads back to the state (L0,~cn), where ~cn is the same
as ~c0, except that the clocks for the time points executed by the transitions plus
those for resources for those time points, σG(L1,~c0), . . . , σG(L1,~cn), are all 0 in ~cn.

Next, let t be the time at which σG recommends ctrl a non-trivial transition,
and NonContingent be the set of pairs (resource, time point) corresponding to
the execution transitions, σG(L1,~c0), . . . , σG(L1,~cn). Then (t,NonContingent) is a
∆ctrl corresponding to what the strategy recommends at (env,~c0). Note that env
may decide to instantaneously react by executing some contingent point at time t
too, an outcome that is prevented by the execution semantics for CSTNURs (Def-
inition 9.8, cases 3-4). Finally, env may decide to intervene before time t arrives,
by executing one or more contingent time-points and effectively generating a new
partial schedule PS ′. In that case, the same procedure could be applied to PS ′ to
generate an appropriate ∆ctrl. Since the guard of gain requires a positive time
delay, that ∆ctrl is properly prohibited from any kind of instantaneous reaction
(by ctrl). This procedure gives a mapping from any (L0,~c) state that is reachable
following σG .

9.6 Encoding CSTNURs into CDTNUs

Since resources can basically be seen as controllable (discrete) choices, one could
fairly wonder if a CSTNUR can be encoded into a Conditional Disjunctive Tem-
poral Networks with Uncertainty (CDTNU, [26]), a formalism able to deal with
uncontrollable choices, disjunctive uncontrollable durations and disjunctive con-
straints. The answer is yes and I prove it in the following.
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Fig. 9.8: Fragment of CSTNUR.

In what follows I will consider streamlined models of the temporal networks
under analysis obtained in a similar way of those for CSTNs (I just consider a
bigger horizon to address upper bounds of contingent links).

Definition 9.10. A Conditional Disjunctive Temporal Network with Uncertainty
(CDTNU) is a tuple 〈T , C, L,OT ,O,P,L〉, where

• T , L,OT ,O,P are the same as those given for a CSTNU (Definition 2.15)
• C is a set of constraints (φ, `) where φ is an arbitrary Boolean combination of
atoms of the form Y −X ≤ k for X,Y ∈ T and k ∈ R and ` ∈ P∗
• L is a set of contingent links (A,B, C), where A,C ∈ T and B is a finite set
of (disjoint) ranges [x, y] such that 0 < x < y <∞

When each contingent link specifies exactly one range and all constraints (φ, `)
are such that φ does not contain any disjunction, then the CDTNU boils down to
a classic CSTNU.

For example, if C contains φ = ((Y −X ≤ −3) ∨ (Y −X ≥ 4), p¬q) it means
that whenever p is true and q is false, then the controller must schedule Y and
X in a way that must satisfy either (Y − X ≤ −3) or (Y − X ≥ 4). Instead, a
contingent link (A, {[2, 3] ∨ [5, 7]}, C) means that once the controller executes A,
the environment first chooses to assign either [2, 3] or [5, 7] to the contingent link
and then it schedules C such that C −A belongs to the chosen range.

I compact the notation for constraints and write Y = X as a short for Y −X =
0, Y − X = k as a short for Y − X ≤ k and X − Y ≤ −k, and X = k, X ≤ k,
. . . as shorts for X − Z = k, X − Z ≤ k, . . . , where Z is the zero time point. I
might also use Y −X > k, Y −X < k, Y −X ≥ k or Y ≥ X + k and negations of
all these atoms.

Consider the fragment of CSTNUR in Figure 9.8, where h = 4 and h∗ = 5.
The first problem we come across is that of encoding resources and their com-

mitment for time point executions. All unlabeled time points (observation ones
included), contingent links and labeled constraints in the streamlined CSTNUR
belong to the CDTNU too (note that contingent links do not turn disjunctive
in the CDTNU). I assume to have an extra time point Z in the CSTNUR such
that R(Z) = {r∗} and that no RRC will have Z neither as firing nor target time
point. To model time points’ associated resources, for each time point X (in the
CSTNUR) such that R(X) = {r1, . . . , rn}, I add |R(X)| time points
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Xr1 , . . . , Xrn

to the CDTNU such that L(Xr1) = · · · = L(Xrn) = �. Each of these Xri can
only be assigned two values: the same value that X gets during execution or h∗. If
Xri = X, then it means that ri is committed to execute X, whereas if Xri = h∗,
then it means that ri is not committed. Since I do not have a way to exclude
some time point Xri from the execution, I follow the ideas of streamlined models
and distinguish between executed or not executed time points by reasoning on the
horizon. If a time point Xri is executed within the horizon, then ri was committed
for X, whereas if Xri is executed after the horizon, then ri was not committed.

Now, I must enforce that for each non-contingent time pointX in the CSTNUR
one and only one associated resource is committed for its execution. I model this
condition in the CDTNU with the constraint

(

r1 is committed for X︷ ︸︸ ︷
Xr1 = X ∧ · · · ∧Xrj = h∗) ∨ · · · ∨

rn is committed for X︷ ︸︸ ︷
(Xr1 = h∗ ∧ · · · ∧Xrj = X),�)

In Figure 9.8 I have that R(A) = R(Y ) = {R, Q}, thus I add to the CDTNU the
time points Z,AR, AQ, CR, CQ, YR, YQ (recall that, L(Z) = L(AR) = L(AQ) =
L(CQ) = L(CQ) = L(YR) = L(YQ) = �) and the constraints

• (Zr∗ = Z ∨ Zr∗ = h∗︸ ︷︷ ︸
φ1

,�) (but this constraint really doesn’t matter)

• (

R is committed for A︷ ︸︸ ︷
(AR = A ∧AQ = h∗)∨

Q is committed for A︷ ︸︸ ︷
(AR = h∗ ∧AQ = A)︸ ︷︷ ︸

φ2

,�)

• (

R is committed for Y︷ ︸︸ ︷
(YR = Y ∧ YQ = h∗)∨

Q is committed for Y︷ ︸︸ ︷
(YR = h∗ ∧ YQ = Y )︸ ︷︷ ︸

φ3

,�)

to model the resource commitment for Z,A and Y
For contingent time points I must commit the same resource that was com-

mitted for the related activation. I do so as follows. For each (A, x, y, C) ∈ L such
that R(A) = R(C) = {r1, . . . , rn} I add the following constraint.

(

Commit the same resource for C︷ ︸︸ ︷
(A = Ar1 ∧ C = Cr1) ∨ · · · ∨ (A = Arn ∧ C = Crn),�)

In Figure 9.8, I have the contingent link (A, 1, 2, C), therefore I add

((A = AR ∧ C = CR) ∨ (A = AQ ∧ C = CQ)︸ ︷︷ ︸
φ4

,�)

I am left to model RRCs in the CDTNU. I shorten the discussion focusing on
the RRCs of Figure 9.8. Since an RRC between two time points X,Y either fires
or do not fire depending on the order of execution of X and Y , I must hard code a
condition to understand which time point executes first. Note that this is necessary
to handle limit cases where a temporal constraint [0, 0] is specified between X and
Y . Therefore, for every RRC 〈X, τ, ρ, Y 〉 I add a time point XY (L(XY ) = �) and
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add the disjunctive constraint (XY = X ∨ XY = h∗,�). If XY = X, then X is
executed before Y (even when Y −X = 0). If I have another RRC 〈Y, τ, ρ,X〉, I
will add a YX and (YX = X∨YX = h∗,�) and also ((XY = X∧YX = h∗)∨(XY =
h∗ ∧ YX = Y ),�) (either X is before Y or the contrary). If X executes before Y ,
then the temporal constraint X−Y ≤ 0 must hold. Therefore for each 〈X, τ, ρ, Y 〉
I add the pair of constraints

• (XY = X ⇒ X − Y ≤ 0,�) • (XY = h∗ ⇒ X − Y ≥ 0,�)

Consider the RRC A → Y labeled by 〈≤ 3, 6=〉 in Figure 9.8. The condition I
need to model is: If A is executed before Y and the resources committed for A and
Y are different, then Y must occur within global time 3. That is, I add AY and
the constraints

• (AY = A ∨AY = h∗︸ ︷︷ ︸
φ5

,�)

• (AY = A⇒ A− Y ≤ 0︸ ︷︷ ︸
φ6

,�)

• (AY = h∗ ⇒ A− Y ≥ 0︸ ︷︷ ︸
φ7

,�)

• (AY = A ∧
Resources committed for A and Y are different︷ ︸︸ ︷

((AR = A ∧ YQ = Y ) ∨ (AQ = A ∧ YR = Y ))⇒ Y ≤ 3︸ ︷︷ ︸
φ8

,�)

Consider the RRC A→ Y labeled by 〈≥ A+2,=〉 in Figure 9.8. The condition
I need to model is: If A is executed before Y and the resources committed for A
and Y are equal, then Y must be executed after minimum 2 since A. That is, I
add the constraint

(AY = A ∧
Resources committed for A and Y are equal︷ ︸︸ ︷

((AR = A ∧ YR = Y ) ∨ (AQ = A ∧ YQ = Y ))⇒ Y ≥ A+ 2︸ ︷︷ ︸
φ9

,�)

Finally, consider the RRC A → Y labeled by 〈> C + 3,=〉 in Figure 9.8.
The condition I need to model is: If A is executed before Y and the resources
committed for A and Y are equal, then ((if C has already been executed, then
Y must be executed after 3 since C), whereas (if C has not been executed, then
no solution exists). Since once fired, RRCs involve the execution of Y , I encode
“C has already been executed” as “C is executed before Y ”, and “C has not been
executed yet” as “C is executed after Y ” (“whereas” here means “and”). Moreover,
the “no solution exists” is because if C is still unexecuted by the time Y executes,
then equal resources have associated temporal expressions which are not satisfied
by the current time. Therefore, I add CY and the constraints

• (CY = C ∨ CY = h∗︸ ︷︷ ︸
φ10

,�)

• (CY = C ⇒ C − Y ≤ 0︸ ︷︷ ︸
φ11

,�)
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• (CY = h∗ ⇒ C − Y ≥ 0︸ ︷︷ ︸
φ12

,�)

• (φ13, `) is ((AY = A ∧
Resources committed for A and C are equal︷ ︸︸ ︷

((AR = A ∧ YR = Y ) ∨ (AQ = A ∧ YQ = Y )))⇒
((CY = C ⇒ Y − C ≤ 3)︸ ︷︷ ︸

First case

∧ (CY = h∗ ⇒ Y − Y ≤ −1︸ ︷︷ ︸
No sol. exists︸ ︷︷ ︸

Second case

)),�)

Note that “no solution exists” is modeled as negative self loops. In this example
I used −1 as weight for Y → Y , but any negative real value or any unsatisfiable
constraint fulfills this purpose: “break the execution by using this”.

Similar encodings apply for the other cases of RRCs with respect to the specific
�.

Finally, C consists of the native temporal constraints of the initial CSTNUR
plus (φ1,�)∧ · · · ∧ (φ13,�) that can be compacted as (CNF((φ1)∧ · · · ∧ (φ13)),�).

After that, dynamic controllability of the CDTNU can be checked by using
the methods in [26]. I point out that since resource commitments are Boolean
conditions (any resource for any time point is either committed or not), when
computing the conjunctive normal forms, I can safely impose that ¬(Xri = X) is
equivalent to Xri = h∗ (like I did for clocks modeling Boolean propositions in the
TGA encodings where ¬(bP < ĉ) becomes bP = ĉ).

Such an encoding keeps a polynomial number of time points and constraints
with respect to the size of the initial CSTNUR.

9.7 A possible implementation with UPPAAL-TIGA

As a proof of concept, I wrote the specification of the TGA encoding the CSTNUR
depicted in Figure 9.3 and ran UPPAAL-TIGA to answer to the decision problem
of dynamic controllability. The example is available at http://regis.di.univr.
it/FlightExample.tar.bz2. I took advantage of Boolean variables to represent
propositions and the RA relation5

I used a FreeBSD virtual machine running on top of a VMWare ESXi hypervisor
using a physical machine equipped with an Intel i7 2.80GHz and 20GB of RAM for
the experimental evaluation. The VM was assigned 16GB of RAM and full CPU
power.

I verified that the CSTNUR in Figure 9.3 is dynamically controllable. The
model checking phase took 207 minutes and 28 seconds to synthesize a 1.6MB
memoryless execution strategy as a certificate of YES for this decision problem.
Such a strategy consists of statements like state → action, where state abstracts
conditions over clock constraints (and Boolean variables), whereas action says
either to take a specific transition or to wait. Figure 9.9 shows what the TGA
encoding the CSTNUR in Figure 9.3 looks like in UPPAAL-TIGA.
5 For each proposition p, p = > (resp., p = ⊥) means bP = ĉ (resp., bP < ĉ). For each
(u,X) ∈ RA, uX = > means uX > ĉ if cX < ĉ (u executed X), uX = ĉ if cX = ĉ (u is
available), whereas uX = ⊥ means uX = cX if cX < ĉ (u did not execute X) or uX < cX

if cX = ĉ (u has been blocked).

http://regis.di.univr.it/FlightExample.tar.bz2
http://regis.di.univr.it/FlightExample.tar.bz2
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9.8 TRBAC on top of CSTNURs (and ACTNs)

In Chapter 8 and Chapter 9, I provided two different formalisms of temporal net-
works to deal with temporal and resource controllability simultaneously. ACTNs
and CSTNURs mainly differ from each other for the type of employed constraints.
ACTNs define disjunctive temporal authorization constraints between pairs of non
contingent time points, whereas CSTNURs associate temporal expressions to re-
sources and provide runtime resource constraints to operate on these temporal
expressions. However, in a workflow context, users (belonging to roles) might also
be subject to further temporal constraints on their “daily or weekly availability”.
For example, some users could only work during a night shift, whereas some others
during the day. To model this further condition, we need to understand whether
a workflow can be executed with respect to a given fragment of TRBAC. Once
again, in such a model, the set of permissions consists of the workflow tasks, and
the interpretation of the role-permission assignment relation (R, T ) ∈ PA is “all
users belonging to the role R are authorized to execute the task T ”.

9.8.1 From granules to real time instants

Section 2.4 showed how to convert a symbolic periodic expression in a temporal
constraint consisting of a periodic constraint that models the periodicity of the
expression plus a gap-order constraint which limits its applicability.

However, each element of this temporal constraint (an integer) represents a
granule in the minimal granularity (e.g., “an hour”). The problem is that time
points in temporal networks model instants and not intervals. Therefore, it would
not make any sense to talk about an event arrived in the first hour, since this way
of reasoning would model that the handling of such an event took one entire hour.

To give another example, assume that a user has to execute a task T in a
workflow. Normally, from a temporal point of view the execution of a task can be
viewed as the execution of a start point plus the execution of an end point. What
if that task lasted exactly 1 hour? We could not simply execute its starting point
at the nth hour and its finishing point at the (n + 1)th hour, because it would
mean that the task took 2 hours, but worse still (to be more detailed) that the
start took 1 hour (whatever it means) and the end another one. Of course, it does
not make sense to execute both the start and the end at the same hour either,
since we would not be able to understand which event has come first, thus leading
to consider situations such as “a task ends before starting” or “a task starts after
ending”.

We need to see a granule as an indivisible interval which has a start and an
end point. For example, we can interpret that the first hour of the first day of 2015
starts at real time t = 0 and lasts up to t = 1, the second from t = 1 (coinciding
with the end of the first) to t = 2, and so forth. Likewise, the start of the second
week of 2015 is t = 240 as that week starts in the 241th hour.

To give a few examples I show a translation of the periodic expressions given
in Table 9.1 limited to the first complete five days of 2015 (i.e., limited to
[01/01/15,05/01/15]).

Assuming Hours as the minimum granularity, the corresponding granules of
the the gap order constraint are gb = 1 corresponding to the first hour of the
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Table 9.1: Examples of periodic expressions.

Name Periodic Expression

NightTime All ·Days + {20} ·Hours . {12} ·Hours
DayTime All ·Days + {8} ·Hours . {12} ·Hours
EveryTwoHours All ·Days + {1, 5, 9, 13, 17, 21} ·Hours . {2} ·Hours
Mondays All ·Weeks + {1} ·Days . {1} ·Days

Table 9.2: Displacement, Periodicity and Granularity of the periodic expressions
given in Table 9.1.

PE Displacement(PE) Periodicity(PE) Granularity(PE)

NightTime 20 24 12
DayTime 8 24 12
EveryTwoHours {1, 5, 9, 13, 17, 21} 24 2
Mondays 97 168 24

first day of 2015 and ge = 120 corresponding to the last hour of the fifth day.
The corresponding instants are gb − 1 (start) and ge itself (end). Therefore, the
gap-order constraint is given by the real time interval [gb − 1, ge].

The characteristics of the periodicity constraints PC s for the periodic expres-
sions are given in Table 9.2 where, for example NightTime has a displacement of 8
as the night starts at the 20th hour of the day (i.e. at time t = 19), a periodicity of
24 hours and a granularity of 12 granules (hours). I give a graphical representation
of the periodic expressions of Table 9.1 in Figure 9.10. I recall that, Periodicity(P )
is the number of time units in which P repeats, Granularity(P ) the duration of
each spanned interval and Displacement(P ) the set of integers representing the
starting points of the spanned intervals.

9.8.2 From Periodic Expressions to STNs

In the previous section I discussed the need to work with instants and real time
intervals instead of granules (sets of integers). I proceed to show how a periodic
expression P can be unfolded and translated as an STN, where time points corre-
spond to the start and end of the granules of P .

Once I have translated P in a periodicity constraint plus a gap order con-
straint, I can get real time instants delimiting the intervals spanned by P itself
and finally generate an equivalent STN representing them. Note that for an STN
to be generated it is important that the upper bound of the interval limiting the
applicability of the expression P is 6=∞.

Consider DayTime in Figure 9.10 and assume that the instant 0 refers to the
starting instant of the first hour in 2015. Then, the corresponding real time inter-
vals are:

DayTime = [7, 19] ∪ [31, 43] ∪ [55, 67] ∪ [79, 91] ∪ [103, 115]
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Fig. 9.10: Graphical representations of the periodic expressions in Table 9.1 within
the first five days of 2015. Black bars represent calendars, bullets starting instants
of granules.
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(a) DayTime in [05/01/15,05/01/15].
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A(Z)

[�]

PS1
A(PSi )

[�]

PE1
A(PEi )

[�]

A
A(A)

[`]
C
A(C)

[`]

[7, 7],�

[12, 12],�

[0,∞], ` [0,∞], `

[2, 8]

(b) Connection mapping.

Fig. 9.11: Modeling role temporalities of a TRBAC by means of an STN (a), and
enforcing tasks to be executed when the authorized roles are enabled (b).

and the resulting STN is represented in Figure 9.11a where time point Z is executed
at time 0, each PSi is the starting instant of a DayTime interval and each PEi the
ending instant. For example, the first real interval [7, 19] starts at PS1 = 7 and
ends at PE1 = PS1 + 12 = 19.

Theorem 9.4. Given any periodic expression P whose applicability is limited by
a real interval whose upper bound is 6=∞, the equivalent STN is (i) consistent and
(ii) admits exactly one solution.

Proof. It follows from the fact that the periodic events I consider are non-
conflicting and complementary, so translating a periodic expression P generates
an STN which does not contain any negative loop.

Suppose now that a role R is enabled during DayTime and it is authorized to
execute a task T represented as a contingent link (A, x, y, C). To enforce that such
a task is executed when R is enabled, I connect the STN describing the temporal
constraints of TRBAC to the network describing the temporal plan.

All I have to do is to impose that the start of T has to occur after PSi , whereas
the end before PEi for some interval [PSi , PEi ] in which R is enabled. In other
words, role R cannot start T before getting enabled, and cannot end it after
getting disabled. Figure 9.11b shows an example in which the contingent link
(A, 2, 8, C) (modeling some task T lasting from 2 to 8 hours) is constrained to
be executed in the first interval spanned by DayTime (i.e., on January 1, 2015
from 7AM to 7PM). Since the contingent link lasts minimum 2 and maximum
8 hours, it is pretty clear that for the augmented network in Figure 9.11b to be
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OutwardJourney
(TrainDriver)

[4, 5]

ReturnJourney
(TrainDriver)

[4, 5]
+

SystemCheck
(SystemEngineer)

[1, 2]

SecurityCheck
(SecurityEngineer)

[1, 3]

+
[1, 6] [1, 2]

[0, 1]

[0, 1]

[1, 4]

[1, 4]

Fig. 9.12: Access-controlled workflow.

controllable, we must start T (i.e., execute A1) within global time t = 11. If we
don’t, C could occur at time t > 19 if it takes its maximal duration. Note that
since I am about to enforce a TRBAC on CSTNURs (and ACTNs), when I connect
the STN representing the temporal constraints of the access control model to the
CSTNUR or ACTN representing the workflow, I add a fresh user (wf) to execute
the time points of this STN, and labels if the CSTNURs or ACTNs representing
the workflow specifies conditional constraints. In this way, I turn the STN into a
CSTNUR or into an ACTN. Either way, I do not specify RRCs (CSTNURs) nor
disjunctive authorization constraints (ACTNs) between the time points of the part
of the network modeling the TRBAC.

9.8.3 Case study

I consider a workflow modeling a round-trip from London to Edinburgh. It starts
with the task OutwardJourney in which a train travels from London to Edinburgh.
The journey takes from 4 to 5 hours to be completed. After the train has arrived
to Edinburgh train station, the ReturnJourney to London starts within 5 hours
since 1 hour after the arrival. Once the train has returned, before the next round
trip starts, a SecurityCheck and a SystemCheck are done in parallel. The first
check takes 1 to 2 hours, the second 1 to 3 hours. Figure 9.12 shows the workflow
consisting of 4 tasks, 3 roles and 5 users. The instantiation of the TRBAC (for the
workflow) is as follows:

• Users = {Alice, Bob, Charlie, Eve, Kate}
• Roles = {TrainDriver, SystemEngineer, SecurityEngineer}
• Tasks = {OutwardJourney, ReturnJourney, SystemCheck, SecurityCheck}
• UA = {(Alice, TrainDriver), (Bob, TrainDriver), (Charlie, SystemEngineer),

(Charlie, SecurityEngineer), (Eve, SecurityEngineer), (Kate, SystemEngineer)}
• TA = {(TrainDriver, OutwardJourney), (TrainDriver, ReturnJourney),
(SystemEngineer, SystemCheck), (SecurityEngineer, SecurityCheck)}

Figure 9.13 shows the role enabling base. I recall that each line represents a
periodic event as described in Section 2.56. The periodic events in Figure 9.13 say
that:

6 I also assume that R contains the complementary expressions to disable the roles.
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PE1 : ([01/01/15,∞], all ·Days + {9} ·Hours . {12} ·Hours, enable TrainDriver)

PE2 : ([01/01/15,∞], all ·Days + {16} ·Hours . {9} ·Hours, enable SystemEngineer)

PE3 : ([01/01/15,∞], all ·Days + {16} ·Hours . {12} ·Hours, enable SecurityEngineer)

R

Fig. 9.13: The Role Enabling Base of the case study.

PE1 TrainDriver is enabled every day from 8AM to 8PM
PE2 SystemEngineer is enabled every day from 3PM to 12AM (midnight)
PE3 SecurityEngineer is enabled every day from 3PM until 3AM of the day after

Let me consider the time window [01/01/15:01,02/01/15:03] so that TrainDriver
is enabled during [8, 20], SystemEngineer during [15, 24] and SecurityEngineer
during [15, 27]. Furthermore, this example enforces the following two security poli-
cies.

SP1 A user is allowed to execute no more than one task at a time
SP2 If the train driver from Edinburgh to London is the same as the one who

drove the train from London to Edinburgh, he must rest at least 2 hours
before driving again.

The corresponding CSTNUR modeling this case study is given in Figure 9.14,
whereas the ACTN in Figure 9.15. In both networks, Z and E are the starting and
ending time points of the workflow. Authorized users are derived the same way I
did in Section 6.6 (i.e., as the union of all users belonging to the roles authorized
for the tasks). RRCs for the CSTNUR and disjunctive authorization constraints
for the ACTN are detailed in the corresponding captions. Since both the CSTNUR
and the ACTN embed the STN modeling the TRBAC part of the example, and
adding a TRBAC part does not require to extend CSTNURs nor ACTNs7, I can
exploit the previous algorithms discussed in Chapter 8 and Chapter 9 to check
dynamic controllability of these networks.

9.9 Conclusions

I defined conditional simple temporal networks with uncertainty and resources
(CSTNURs) by extending CSTNUs with resources, temporal expressions and run-
time resource constraints (RRCs). RRCs are a new class of constraints able to
refine in real time the temporal expressions associated to the resources depending
on the specific execution. Resources are associated to time points and must be
committed for their execution, whereas RRCs enforce (temporal) security policies
such as temporal separation and binding of duties. I extended the encoding in [26]
(with the optimizations in Section 5.3) from CSTNUs into TGAs in order to do the
DC-checking. I also discussed a few optimizations and proved that any CSTNUR
7 Because the STN becomes a CSTNUR or ACTN depending on the specific case, all
labels are � and the fresh user for the time points is, for example, wf.
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Fig. 9.16: Deciding dynamic controllability of CSTNURs via TGAs: direct encod-
ing (path above), reduction to CDTNUs (path below).

can be encoded into a TGA in polynomial time. I used UPPAAL-TIGA for the
concretization phase and also discussed further software optimizations provided
by the tool. I showed how to translate the temporal constraints of a time window
of TRBAC into an equivalent STN to be connected to the temporal network de-
scribing a workflow. I provided a connection mapping to connect such an STN to
both ACTNs and CSTNURs.

Like ACTNs, CSTNURs differ from classic temporal networks discussed in
Part I because those formalisms do not employ resources. CSTNURs also dif-
fer from CNCUs in Part I because CNCUs do not employ temporal constraints.
CSTNURs do not deal with the uncertain availability of resources, therefore they
cannot do much for workflow resiliency. CSTNURs differ from ACTNs for the type
of constraints they specify. CSTNURs associate temporal expressions to resources
associated to time points and employ RRCs to operate on these temporal expres-
sions. RRCs might not be fired depending on the execution order of the time points.
ACTNs employ static constraints that must always be satisfied. CSTNURs may
also not block resources when they are executing contingent links. Instead, ACTNs
just block them. CSTNURs differ from [41] as CSTNURs are based on CSTNUs
and not on STNUs and because [41] does not provide a dynamic controllability
algorithm for the proposed extension of the network.

CSTNURs are not more expressive than CDTNUs. However, they provide a
compact language to model temporal plans with resources and a direct encoding
into TGAs which skips two intermediate steps before getting to the TGA (Fig-
ure 9.16).





10

Conclusions and Future Work

In this thesis I have addressed temporal and resource controllability of workflows
under uncertainty first in isolation and then simultaneously.

In Part I, I dealt with temporal (consistency and) controllability by addressing
temporal plans subject to both temporal and conditional uncertainty. I provided
the following contributions.

• I defined simple temporal networks with decisions (STNDs) and provided two
hybrid consistency checking algorithms (HSCC) for seeking a single or all con-
sistent scenarios. These novel algorithms rely on a SAT solver and well-known
shortest paths algorithms for directed weighted graphs, thus they are sound
and complete by default. STND-HSCC1 tests STN-projections for negative cy-
cles by iterating on complete models returned by the SAT solver, whereas
STND-HSCC2 exploits partial truth value assignments to hunt down negative
cycles in STN-projections as early as possible. If the projected STN is incon-
sistent, I add a clause to the SAT solver to exclude the relevant part of that
scenario, else I let the solver go. The more inconsistent STN-projections an
STND admits, the better STND-HSCC2 performs. I provided Kappa, a tool for
STNDs. I also discussed how to generate random temporal networks and car-
ried out an experimental evaluation. In general STND-HSCC2 beats STND-HSCC1.
I proved that STNDs and DTPs are equivalent.

• I defined conditional simple temporal networks with uncertainty and decisions
(CSTNUDs) as a unified formalism. CSTNUDs implicitly embed all minor
temporal network formalisms based on STNs (see Figure 5.4 for a hierarchy
of simple temporal networks). I modeled the DC-checking of a CSTNUD as
a two-player game where Player1 models the controller and Player2 models
the environment and gave the execution semantics in move-based strategies.
At any time t, Player1 and Player2 make their moves in their turns T1(t)
and T2(t). Player1 always plays first. Each player can make many moves in
its turn at the same time instant provided that these moves respect an order.
A player waits in a turn when it does not make any move. Both the players
can wait at the same time. I provided an encoding from CSTNUDs into timed
game automata (TGAs) as an optimized extension of that given for CSTNUs
in [25,26,28] and discussed the correctness and complexity of such an encoding
which results in a sound and complete approach for the dynamic controllability
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checking. I provided Esse, a tool for CSTNUDs. If a CSTNUD is DC, Esse
saves to file a memoryless execution strategy to later carry out an arbitrary
number of execution simulations. I also discussed how to generate random
temporal networks and carried out two experimental evaluations. The first,
comparing with the initial one done in [126] discovering that Esse performs
better that the first prototype. The second, with respect to CSTNUDs in which
all components but one were fixed, where the free component ranged from a
minimum to a maximum value.

• I showed how temporal networks can be employed for the modeling, validation
and execution of temporal workflows under conditional and temporal uncer-
tainty. I provided a high level language to specify TWFs under temporal and
conditional uncertainty, defined weak, strong and dynamic controllability of
such workflows and provided an encoding from TWFs (expressed in a frag-
ment of BPMN) into CSTNUDs. It is pretty clear that depending on the
modeled workflow, different kinds of temporal networks may arise. For exam-
ple, if I model a process not having any conditions or decisions but specifying
uncontrollable task durations, an STNU is enough (in that case validation and
execution are in PTIME). If I model a process not having any decisions or
uncontrollable durations but employing uncontrollable conditions a CSTN is
enough. In that case I can exploit algorithms targeted for the specific kind of
network. However, using algorithms for higher classes of temporal networks
(e.g., those for CSTNs applied to STNs) is not optimal but not wrong either
(provided these algorithms are sound and complete). I modeled, validated and
executed a case study for a goods delivery process in which customers must
receive the goods they ordered within one day or after one but within three
days.

In Part II, I dealt with resource controllability by addressing plans subject to
conditional uncertainty and subject to the uncertain availability of resources. I
provided the following contributions.

• I defined constraint networks under conditional uncertainty (CNCUs) to ad-
dress a kind of CSP under conditional uncertainty. CNCUs implicitly embed
classic CNs (if OV = ∅ and ≺= ∅). I defined weak, strong and dynamic con-
trollability of a CNCU and provided algorithms to check each type of control-
lability. Currently, I only deal with CNCUs that are controllable with respect
to a total ordering for the variables. I discussed the correctness and complexity
of the algorithms I proposed and I provided Zeta, a tool for CNCUs that acts
as a solver for the three kinds of controllability as well as an execution sim-
ulator. I provided an experimental evaluation against a set of benchmarks of
CNCUs and I also discussed an algorithm to generate random CNCUs. Strong
controllability is the easiest type of controllability to check, followed by weak
and dynamic, which is currently the hardest one. CNCUs not admitting any
total ordering on the variables are uncontrollable for all three kinds of control-
lability. Dynamic controllability is a matter of order as the same CNCU could
be controllable or uncontrollable depending on which total order of the vari-
ables is chosen. Strong and dynamic controllability provide usable strategies
for executing workflows under conditional uncertainty.
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• I showed how CNCUs can be employed for the modeling, validation and exe-
cution of access controlled workflows under conditional uncertainty. I provided
a high level language to specify ACWFs under conditional uncertainty, de-
fined weak, strong and dynamic controllability and provided an encoding from
ACWFs (expressed in a restriction of BPMN) into CNCUs. It is pretty clear
that depending on the modeled workflow, different kinds of constraint net-
work may arise. For example, if I model a process not having any condition, a
CN (plus a partial order) arises. In that case, classic algorithms for CNs can
be used. However, using WC-checking, SC-checking and DC-checking
could be not optimal but not wrong either. I modeled, validated and executed
a case study for a loan origination process.
• I addressed the uncertain availability of resources by addressing workflow re-

siliency. I started from the definitions of the corresponding games provided
by Wang and Li in [122, 123] for static, decremental and dynamic workflow
resiliency. I provided three encodings into extended timed game automata to
model these games, and I proved that my encodings are correct and run in
polynomial time. ACWFs that are resilient are (dynamically) satisfiable, the
vice versa does not hold in general. I employed UPPAAL-TIGA as an off the
shelf model checker for TGA reachability properties. With this approach, I
only need to query the TGA (which the ACWF has been encoded into) by
asking for a control strategy for Player1 allowing him to win the game if
and only if he always eventually enters a location of interest. If the ACWF
is resilient, i.e., if a winning strategy for Player1 exists, UPPAAL-TIGA re-
turns in output such a strategy. If the ACWF is breakable, UPPAAL-TIGA
returns a counter-strategy for Player2 allowing him to always break the ex-
ecution (i.e., prevent Player1 from entering Win). I developed Erre, a tool
for workflow resiliency. Erre allows for an automated model generation by
encoding a specification of an ACWF taken as input into a TGA. Erre in-
ternally relies on UPPAAL-TIGA to prove that the workflow is either resilient
or breakable. If the ACWF is resilient, Erre compresses (online) the strategy
returned in output by UPPAAL-TIGA and saves it to file. Erre also allows
one to carry out random execution simulations. I carried out an experimental
evaluation against a set of benchmarks and also discussed an algorithm to gen-
erate random ACWFs. On the one hand, UPPAAL-TIGA guarantees that the
algorithms employed to answer the decision problem of workflow resiliency are
sound and complete, on the other hand Erre guarantees that the approach is
fully automated from analysis to simulation. In this way, I provided a usable
approach even for designers and/or security officers with little or no knowledge
on TGAs. As I expected, the experimental evaluation confirmed that checking
static resiliency is easier than checking decremental resiliency which, in turn,
is easier than checking dynamic resiliency (when the ACWF is resilient for all
the three kinds of resiliency).

In Part III, I dealt with temporal and resource controllability simultaneously
by addressing plans subject to temporal and conditional uncertainty. I provided
the following contributions.
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• I defined access controlled temporal networks (ACTNs) as an extension of CST-
NUs in order to take into consideration users and (temporal conditional) autho-
rization constraints simultaneously. Users are in charge of executing contingent
links, whereas requirement links express (temporal) authorization constraints.
In general, a user uY can execute a time point Y if for each requirement link
X → Y labeled by [x, y], ` : α such that x ≥ 0, ` is entailed by the current
partial scenario, and the pair (uX , uY ) satisfies α, where uX is the user who
executed X. I gave the execution semantics for dynamic controllability in real
time execution decisions (RTEDs) by extending that for CSTNUs to take into
account users and authorization constraints. The main difference is in ∆ctrl,
which, in addition to waiting, can now commit users to execute time points at
certain time instants. I provided an encoding from ACTNs into TGAs as an
extension of that given for CSTNUs to accommodate users and authorization
constraints and I also discussed a few optimizations to speed up the model-
checking phase. I discussed the correctness of the encoding and proved that
the encoding runs in polynomial time. As a result, since I use the reachability
algorithms of TGAs (TCTL model checking), I provided a sound and complete
approach for checking the dynamic controllability of an ACTN. I used ACTNs
to analyze the official STEMI guidelines as a concrete example.

• I defined conditional simple temporal networks with uncertainty and resources
(CSTNURs) by extending CSTNUs with resources, temporal expressions and
runtime resource constraints (RRCs). RRCs are a new class of constraints able
to refine in real time the TEs associated to the resources depending on the spe-
cific execution. Resources are committed for time point executions, whereas
RRCs enforce (temporal) security policies such as temporal separation and
binding of duties. RRCs are fired whenever their precondition, a time point
called firing time point, is executed. The firing of an RRC results in append-
ing the TE it contains to all resources associated to the target time point,
provided that these resources along with that who executed the firing point
satisfy the specified relation. An RRC is not fired if the target time point has
already been executed when the firing time point is executed. A contingent
time point cannot appear as a target in an RRC, otherwise it could interfere
with the uncontrollable actions of the environment (i.e., it could, for example,
modify its uncontrollable duration). Furthermore, for each contingent time
point, I assumed that the resource committed for the activation time point, is
committed for the contingent too. I gave the execution semantics in real time
execution decisions (RTEDs). I extended the encoding proposed in [26] (with
the optimizations in Section 5.3) from CSTNUs into TGAs in order to do
the DC-checking. I translated TEs into equivalent clock constraints in order to
employ them in some specific TGA guards, I encoded the RA relation into ded-
icated clocks, I encoded resource commitments for non-contingent time points
in circular paths validating all RRCs targeting those time points and I blocked
resources (if not available because of some RRC) by resetting their associated
clocks. All clocks surviving this validation phase say which resources are com-
mittable for the time point. Likewise, I encoded the execution of a contingent
time point into a contingent circular path, which commits for C the same re-
source that was committed for A. I proved that encoding any CSTNUR into
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a TGA runs in polynomial time. I used UPPAAL-TIGA for the concretization
phase and also discussed further software optimizations provided by the tool.
• I showed how to translate the temporal constraints of a time window of TR-

BAC into an equivalent STN to be connected to the temporal network de-
scribing a workflow. I refined the concept of periodic set of integers in periodic
real intervals by considering the starting and ending instants of a granule. I
translated periodic expressions into real time intervals and generated a corre-
sponding consistent STN. I provided a connection mapping to connect such an
STN to both ACTNs and CSTNURs. I modeled an example for a train round
trip with both ACTNs and CSTNURs augmented with a TRBAC part. This
approach allows a designer to understand if the temporal constraints of an
access control model and the temporal constraints of a workflow are coherent.
That is, if an access controlled workflow can be executed with respect to a
given instance of a TRBAC.

As future work, this thesis has paved the way for plenty of directions worth
following. Here are a few of them.

Temporal controllability

• A metric suggesting when it is better to use STND-HSCC1 or STND-HSCC2 de-
pending on the form of the STND in input is currently missing. Recall that
for STNDs that have all consistent scenarios STND-HSCC1 must perform better
than STND-HSCC2. What about those with a fairly high number of consistent
scenarios? What is this limit? Also, since STNDs are equivalent to DTPs a
comparison with DTP solvers and SMT solvers is missing too.
• Weak and strong controllability of CSTNUDs (along with their related com-

plexities) remain unexplored. A possible (albeit not optimal) approach is to
extend the methods in [29, 30] to exploit SMT solvers and work with quanti-
fiers.
• Constraint-propagation algorithms must perform better than TGAs as they

mainly do not suffer from ordering problems during the checking phase (recall
that the controller synthesis for TGAs encoding temporal networks sped up
as soon as I restricted the partial order between the transitions modeling the
execution of time points).
• HSCC algorithms can be extended to hybrid SAT-based controllability check-

ing algorithms to deal with STNUDs, CSTNDs and CSTNUDs whenever de-
cisions must be made offline. In these cases instead of using Bellman-Ford on
the arising projections we should use the dedicated algorithm for the specific
class of networks.

Resource controllability

• Working on the all topological sort phase of DC-checking for CNCUs in order
to contain the explosion of this step and also investigating if CNCUs classified
as non-DC with respect to all possible total orderings might turn DC for some
ordering that refines dynamically during execution.
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• The complexity of the decision problem of weak and dynamic controllability for
CNCUs remains unexplored. Strong controllability is no different from classic
consistency for CNs.

• The encodings for workflow resiliency may be adapted to support Type 2-
3 entailment constraints as well as counting constraints. Also, it remains to
understand if decremental resiliency is a matter of order.

• Addressing multiple workflows (or many instances of the same workflow) that
run in parallel to deal with the sharing of resources, the specification of con-
straints between different workflows and, given a set of workflows, the compu-
tation of the maximum number of workflows or (instances of the same) that
can run in parallel without running out of resources.

Temporal and resource controllability together

• Weak and strong controllability for both ACTNs and CSTNURs are yet to be
addressed. Once again this part could be investigated via SMT. The complexity
of dynamic controllability of ACTNs and CSTNURs is currently unknown and
software tools (like Esse, Erre, Kappa or Zeta) are currently missing for
both.

• A language to encode (temporal) ACWFs into ACTNs or CSTNURs is missing.
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