83 research outputs found

    Survey on wireless technology trade-offs for the industrial internet of things

    Get PDF
    Aside from vast deployment cost reduction, Industrial Wireless Sensor and Actuator Networks (IWSAN) introduce a new level of industrial connectivity. Wireless connection of sensors and actuators in industrial environments not only enables wireless monitoring and actuation, it also enables coordination of production stages, connecting mobile robots and autonomous transport vehicles, as well as localization and tracking of assets. All these opportunities already inspired the development of many wireless technologies in an effort to fully enable Industry 4.0. However, different technologies significantly differ in performance and capabilities, none being capable of supporting all industrial use cases. When designing a network solution, one must be aware of the capabilities and the trade-offs that prospective technologies have. This paper evaluates the technologies potentially suitable for IWSAN solutions covering an entire industrial site with limited infrastructure cost and discusses their trade-offs in an effort to provide information for choosing the most suitable technology for the use case of interest. The comparative discussion presented in this paper aims to enable engineers to choose the most suitable wireless technology for their specific IWSAN deployment

    A critical analysis of research potential, challenges and future directives in industrial wireless sensor networks

    Get PDF
    In recent years, Industrial Wireless Sensor Networks (IWSNs) have emerged as an important research theme with applications spanning a wide range of industries including automation, monitoring, process control, feedback systems and automotive. Wide scope of IWSNs applications ranging from small production units, large oil and gas industries to nuclear fission control, enables a fast-paced research in this field. Though IWSNs offer advantages of low cost, flexibility, scalability, self-healing, easy deployment and reformation, yet they pose certain limitations on available potential and introduce challenges on multiple fronts due to their susceptibility to highly complex and uncertain industrial environments. In this paper a detailed discussion on design objectives, challenges and solutions, for IWSNs, are presented. A careful evaluation of industrial systems, deadlines and possible hazards in industrial atmosphere are discussed. The paper also presents a thorough review of the existing standards and industrial protocols and gives a critical evaluation of potential of these standards and protocols along with a detailed discussion on available hardware platforms, specific industrial energy harvesting techniques and their capabilities. The paper lists main service providers for IWSNs solutions and gives insight of future trends and research gaps in the field of IWSNs

    Integration of RFID and Industrial WSNs to Create A Smart Industrial Environment

    Get PDF
    A smart environment is a physical space that is seamlessly embedded with sensors, actuators, displays, and computing devices, connected through communication networks for data collection, to enable various pervasive applications. Radio frequency identification (RFID) and Wireless Sensor Networks (WSNs) can be used to create such smart environments, performing sensing, data acquisition, and communication functions, and thus connecting physical devices together to form a smart environment. This thesis first examines the features and requirements a smart industrial environment. It then focuses on the realization of such an environment by integrating RFID and industrial WSNs. ISA100.11a protocol is considered in particular for WSNs, while High Frequency RFID is considered for this thesis. This thesis describes designs and implementation of the hardware and software architecture necessary for proper integration of RFID and WSN systems. The hardware architecture focuses on communication interface and AI/AO interface circuit design; while the driver of the interface is implemented through embedded software. Through Web-based Human Machine Interface (HMI), the industrial users can monitor the process parameters, as well as send any necessary alarm information. In addition, a standard Mongo database is designed, allowing access to historical and current data to gain a more in-depth understanding of the environment being created. The information can therefore be uploaded to an IoT Cloud platform for easy access and storage. Four scenarios for smart industrial environments are mimicked and tested in a laboratory to demonstrate the proposed integrated system. The experimental results have showed that the communication from RFID reader to WSN node and the real-time wireless transmission of the integrated system meet design requirements. In addition, compared to a traditional wired PLC system where measurement error of the integrated system is less than 1%. The experimental results are thus satisfactory, and the design specifications have been achieved

    Avionics Architectures for Exploration: Wireless Technologies and Human Spaceflight

    Get PDF
    The authors describe ongoing efforts by the Avionics Architectures for Exploration (AAE) project chartered by NASA's Advanced Exploration Systems (AES) Program to evaluate new avionics architectures and technologies, provide objective comparisons of them, and mature selected technologies for flight and for use by other AES projects. The AAE project team includes members from most NASA centers and from industry. This paper provides an overview of recent AAE efforts, with particular emphasis on the wireless technologies being evaluated under AES to support human spaceflight

    Extending Monitoring Area of Production Plant Using Synchronized Relay Node Message Scheduling

    Get PDF
    Abstract—Low rate  wireless sensor  network  has been used in industrial plant  for  certain  production monitorings  which  have slow production rate. In the case of adding production line in the different  building within one factory area, relay nodes are needed to increase monitoring coverage and connectivity among all nodes in the plant  area.  This paper  presents  the performance of relay node message scheduling  scheme for extending  monitoring area of production plan  by  using  low rate  wireless  sensor  network. The simulation  results demonstrate that the distance and number of hop  from  certain  relay nodes to the  sink  affect message  end to end delay. Furthermore, increasing  message rate  generated by relay nodes  also  contributes in  leveraging  end  to  end  delay  of each message due to increasing  queueing  delay

    Standards-Based Wireless Sensor Networking Protocols for Spaceflight Applications

    Get PDF
    Wireless sensor networks (WSNs) have the capacity to revolutionize data gathering in both spaceflight and terrestrial applications. WSNs provide a huge advantage over traditional, wired instrumentation since they do not require wiring trunks to connect sensors to a central hub. This allows for easy sensor installation in hard to reach locations, easy expansion of the number of sensors or sensing modalities, and reduction in both system cost and weight. While this technology offers unprecedented flexibility and adaptability, implementing it in practice is not without its difficulties. Recent advances in standards-based WSN protocols for industrial control applications have come a long way to solving many of the challenges facing practical WSN deployments. In this paper, we will overview two of the more promising candidates - WirelessHART from the HART Communication Foundation and ISA100.11a from the International Society of Automation - and present the architecture for a new standards-based sensor node for networking and applications research

    Supervisory Wireless Control for Critical Industrial Applications

    Get PDF

    Extending real-time networks over WiFi: related issues and first developments

    Get PDF
    International audienceThe flexibility of wireless connectivity is appealing in the context of real-time industrial networks. This paper discusses the use of wireless communication protocols to interconnect remotely located fieldbuses. The focus of this paper is to analyze the feasibility and design issues related to this type of hybrid real-time network architecture. Investigations are presented by addressing an interconnection through the well-mastered WiFi technology. On an example architecture, we discuss the impact of the different distributed medium access protocols available (DCF, EDCA) on the real-time flows. We outline the main design issues related to these choices and illustrate them on a first case study where remotely located CAN buses are interconnected through an IEEE802.11g network in DCF mode. Using this very simple and cost-effective architecture, we show as a first result that transmitting soft real-time data over such an architecture is feasible

    NASA-JSC Wireless Sensor Network Activities Update

    Get PDF
    No abstract availabl

    Real-Time Sensor Networks and Systems for the Industrial IoT

    Get PDF
    The Industrial Internet of Things (Industrial IoT—IIoT) has emerged as the core construct behind the various cyber-physical systems constituting a principal dimension of the fourth Industrial Revolution. While initially born as the concept behind specific industrial applications of generic IoT technologies, for the optimization of operational efficiency in automation and control, it quickly enabled the achievement of the total convergence of Operational (OT) and Information Technologies (IT). The IIoT has now surpassed the traditional borders of automation and control functions in the process and manufacturing industry, shifting towards a wider domain of functions and industries, embraced under the dominant global initiatives and architectural frameworks of Industry 4.0 (or Industrie 4.0) in Germany, Industrial Internet in the US, Society 5.0 in Japan, and Made-in-China 2025 in China. As real-time embedded systems are quickly achieving ubiquity in everyday life and in industrial environments, and many processes already depend on real-time cyber-physical systems and embedded sensors, the integration of IoT with cognitive computing and real-time data exchange is essential for real-time analytics and realization of digital twins in smart environments and services under the various frameworks’ provisions. In this context, real-time sensor networks and systems for the Industrial IoT encompass multiple technologies and raise significant design, optimization, integration and exploitation challenges. The ten articles in this Special Issue describe advances in real-time sensor networks and systems that are significant enablers of the Industrial IoT paradigm. In the relevant landscape, the domain of wireless networking technologies is centrally positioned, as expected
    • …
    corecore