642 research outputs found

    How Many and What Types of SPARQL Queries can be Answered through Zero-Knowledge Link Traversal?

    Full text link
    The current de-facto way to query the Web of Data is through the SPARQL protocol, where a client sends queries to a server through a SPARQL endpoint. Contrary to an HTTP server, providing and maintaining a robust and reliable endpoint requires a significant effort that not all publishers are willing or able to make. An alternative query evaluation method is through link traversal, where a query is answered by dereferencing online web resources (URIs) at real time. While several approaches for such a lookup-based query evaluation method have been proposed, there exists no analysis of the types (patterns) of queries that can be directly answered on the live Web, without accessing local or remote endpoints and without a-priori knowledge of available data sources. In this paper, we first provide a method for checking if a SPARQL query (to be evaluated on a SPARQL endpoint) can be answered through zero-knowledge link traversal (without accessing the endpoint), and analyse a large corpus of real SPARQL query logs for finding the frequency and distribution of answerable and non-answerable query patterns. Subsequently, we provide an algorithm for transforming answerable queries to SPARQL-LD queries that bypass the endpoints. We report experimental results about the efficiency of the transformed queries and discuss the benefits and the limitations of this query evaluation method.Comment: Preprint of paper accepted for publication in the 34th ACM/SIGAPP Symposium On Applied Computing (SAC 2019

    Partout: A Distributed Engine for Efficient RDF Processing

    Full text link
    The increasing interest in Semantic Web technologies has led not only to a rapid growth of semantic data on the Web but also to an increasing number of backend applications with already more than a trillion triples in some cases. Confronted with such huge amounts of data and the future growth, existing state-of-the-art systems for storing RDF and processing SPARQL queries are no longer sufficient. In this paper, we introduce Partout, a distributed engine for efficient RDF processing in a cluster of machines. We propose an effective approach for fragmenting RDF data sets based on a query log, allocating the fragments to nodes in a cluster, and finding the optimal configuration. Partout can efficiently handle updates and its query optimizer produces efficient query execution plans for ad-hoc SPARQL queries. Our experiments show the superiority of our approach to state-of-the-art approaches for partitioning and distributed SPARQL query processing

    Heuristics-based query optimisation for SPARQL

    Get PDF
    Query optimization in RDF Stores is a challenging problem as SPARQL queries typically contain many more joins than equivalent relational plans, and hence lead to a large join order search space. In such cases, cost-based query optimization often is not possible. One practical reason for this is that statistics typically are missing in web scale setting such as the Linked Open Datasets (LOD). The more profound reason is that due to the absence of schematic structure in RDF, join-hit ratio estimation requires complicated forms of correlated join statistics; and currently there are no methods to identify the relevant correlations beforehand. For this reason, the use of good heuristics is essential in SPARQL query optimization, even in the case that are partially used with cost-based statistics (i.e., hybrid query optimization). In this paper we describe a set of useful heuristics for SPARQL query optimizers. We present these in the context of a new Heuristic SPARQL Planner (HSP) that is capable of exploiting the syntactic and the structural variations of the triple patterns in a SPARQL query in order to choose an execution plan without the need of any cost model. For this, we define the variable graph and we show a reduction of the SPARQL query optimization problem to the maximum weight independent set problem. We implemented our planner on top of the MonetDB open source column-store and evaluated its effectiveness against the state-ofthe-art RDF-3X engine as well as comparing the plan quality with a relational (SQL) equivalent of the benchmarks

    SMART-KG: Hybrid Shipping for SPARQL Querying on the Web

    Get PDF
    While Linked Data (LD) provides standards for publishing (RDF) and (SPARQL) querying Knowledge Graphs (KGs) on the Web, serving, accessing and processing such open, decentralized KGs is often practically impossible, as query timeouts on publicly available SPARQL endpoints show. Alternative solutions such as Triple Pattern Fragments (TPF) attempt to tackle the problem of availability by pushing query processing workload to the client side, but suffer from unnecessary transfer of irrelevant data on complex queries with large intermediate results. In this paper we present smart-KG, a novel approach to share the load between servers and clients, while significantly reducing data transfer volume, by combining TPF with shipping compressed KG partitions. Our evaluations show that outperforms state-of-the-art client-side solutions and increases server-side availability towards more cost-effective and balanced hosting of open and decentralized KGs.Series: Working Papers on Information Systems, Information Business and Operation

    The Odyssey Approach for Optimizing Federated SPARQL Queries

    Full text link
    Answering queries over a federation of SPARQL endpoints requires combining data from more than one data source. Optimizing queries in such scenarios is particularly challenging not only because of (i) the large variety of possible query execution plans that correctly answer the query but also because (ii) there is only limited access to statistics about schema and instance data of remote sources. To overcome these challenges, most federated query engines rely on heuristics to reduce the space of possible query execution plans or on dynamic programming strategies to produce optimal plans. Nevertheless, these plans may still exhibit a high number of intermediate results or high execution times because of heuristics and inaccurate cost estimations. In this paper, we present Odyssey, an approach that uses statistics that allow for a more accurate cost estimation for federated queries and therefore enables Odyssey to produce better query execution plans. Our experimental results show that Odyssey produces query execution plans that are better in terms of data transfer and execution time than state-of-the-art optimizers. Our experiments using the FedBench benchmark show execution time gains of at least 25 times on average.Comment: 16 pages, 10 figure

    Hypermedia-based discovery for source selection using low-cost linked data interfaces

    Get PDF
    Evaluating federated Linked Data queries requires consulting multiple sources on the Web. Before a client can execute queries, it must discover data sources, and determine which ones are relevant. Federated query execution research focuses on the actual execution, while data source discovery is often marginally discussed-even though it has a strong impact on selecting sources that contribute to the query results. Therefore, the authors introduce a discovery approach for Linked Data interfaces based on hypermedia links and controls, and apply it to federated query execution with Triple Pattern Fragments. In addition, the authors identify quantitative metrics to evaluate this discovery approach. This article describes generic evaluation measures and results for their concrete approach. With low-cost data summaries as seed, interfaces to eight large real-world datasets can discover each other within 7 minutes. Hypermedia-based client-side querying shows a promising gain of up to 50% in execution time, but demands algorithms that visit a higher number of interfaces to improve result completeness

    Robust query processing for linked data fragments

    Get PDF
    Linked Data Fragments (LDFs) refer to interfaces that allow for publishing and querying Knowledge Graphs on the Web. These interfaces primarily differ in their expressivity and allow for exploring different trade-offs when balancing the workload between clients and servers in decentralized SPARQL query processing. To devise efficient query plans, clients typically rely on heuristics that leverage the metadata provided by the LDF interface, since obtaining fine-grained statistics from remote sources is a challenging task. However, these heuristics are prone to potential estimation errors based on the metadata which can lead to inefficient query executions with a high number of requests, large amounts of data transferred, and, consequently, excessive execution times. In this work, we investigate robust query processing techniques for Linked Data Fragment clients to address these challenges. We first focus on robust plan selection by proposing CROP, a query plan optimizer that explores the cost and robustness of alternative query plans. Then, we address robust query execution by proposing a new class of adaptive operators: Polymorphic Join Operators. These operators adapt their join strategy in response to possible cardinality estimation errors. The results of our first experimental study show that CROP outperforms state-of-the-art clients by exploring alternative plans based on their cost and robustness. In our second experimental study, we investigate how different planning approaches can benefit from polymorphic join operators and find that they enable more efficient query execution in the majority of cases
    corecore