24 research outputs found

    Morphable Face Models - An Open Framework

    Full text link
    In this paper, we present a novel open-source pipeline for face registration based on Gaussian processes as well as an application to face image analysis. Non-rigid registration of faces is significant for many applications in computer vision, such as the construction of 3D Morphable face models (3DMMs). Gaussian Process Morphable Models (GPMMs) unify a variety of non-rigid deformation models with B-splines and PCA models as examples. GPMM separate problem specific requirements from the registration algorithm by incorporating domain-specific adaptions as a prior model. The novelties of this paper are the following: (i) We present a strategy and modeling technique for face registration that considers symmetry, multi-scale and spatially-varying details. The registration is applied to neutral faces and facial expressions. (ii) We release an open-source software framework for registration and model-building, demonstrated on the publicly available BU3D-FE database. The released pipeline also contains an implementation of an Analysis-by-Synthesis model adaption of 2D face images, tested on the Multi-PIE and LFW database. This enables the community to reproduce, evaluate and compare the individual steps of registration to model-building and 3D/2D model fitting. (iii) Along with the framework release, we publish a new version of the Basel Face Model (BFM-2017) with an improved age distribution and an additional facial expression model

    Fully Automatic Expression-Invariant Face Correspondence

    Full text link
    We consider the problem of computing accurate point-to-point correspondences among a set of human face scans with varying expressions. Our fully automatic approach does not require any manually placed markers on the scan. Instead, the approach learns the locations of a set of landmarks present in a database and uses this knowledge to automatically predict the locations of these landmarks on a newly available scan. The predicted landmarks are then used to compute point-to-point correspondences between a template model and the newly available scan. To accurately fit the expression of the template to the expression of the scan, we use as template a blendshape model. Our algorithm was tested on a database of human faces of different ethnic groups with strongly varying expressions. Experimental results show that the obtained point-to-point correspondence is both highly accurate and consistent for most of the tested 3D face models

    A New Multimodal Biometric for Personal Identification

    Get PDF

    3D Face Recognition

    Get PDF

    Online learning and fusion of orientation appearance models for robust rigid object tracking

    Get PDF
    We introduce a robust framework for learning and fusing of orientation appearance models based on both texture and depth information for rigid object tracking. Our framework fuses data obtained from a standard visual camera and dense depth maps obtained by low-cost consumer depth cameras such as the Kinect. To combine these two completely different modalities, we propose to use features that do not depend on the data representation: angles. More specifically, our framework combines image gradient orientations as extracted from intensity images with the directions of surface normals computed from dense depth fields. We propose to capture the correlations between the obtained orientation appearance models using a fusion approach motivated by the original Active Appearance Models (AAMs). To incorporate these features in a learning framework, we use a robust kernel based on the Euler representation of angles which does not require off-line training, and can be efficiently implemented online. The robustness of learning from orientation appearance models is presented both theoretically and experimentally in this work. This kernel enables us to cope with gross measurement errors, missing data as well as other typical problems such as illumination changes and occlusions. By combining the proposed models with a particle filter, the proposed framework was used for performing 2D plus 3D rigid object tracking, achieving robust performance in very difficult tracking scenarios including extreme pose variations. © 2014 Elsevier B.V. All rights reserved

    3D Face Recognition under Expressions, Occlusions, and Pose Variations

    Full text link
    corecore