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1. Introduction 

Biometric technology using a single human body characteristic such as face, gait or voice has 
gained immerse attention with successful applications in video surveillance. Furthermore, 
facial recognition has been recognized as the least intrusive technology that can be 
implemented in many places without hazardous problems. Though existing biometric 
systems have been reported to be effective under certain conditions, there is a great need to 
improve their recognition performance. Possible alternatives to current approaches include 
the use of different biometric information or the combination of different biometric sources. 
Relevant literature indicates the possibility of using facial behavior as another behavior 
biometric cue. As this biometric cue reflects the internal dynamic changing factors of an 
individual, it also plays an important role just as the face biometric does in video 
surveillance. Moreover, existing research in appearance-based facial recognition always 
addresses the common problem of within-class variations under illumination and poses 
and/or facial expressions which degrades the recognition performance. Most of the 
algorithms (Belhumeur et al., 1997) (Chen et al., 2000) (Lu et al., 2003c) (Lu et al., 2003b) (Lu 
et al., 2003a) (Juwei et al., 2003) (Lu et al., 2005) (Kong et al., 2005) in facial recognition are 
developed to cope with the singularity problem in the presence of these variations. Some 
papers (Martinez, 2000) (Liu et al., 2002) (Liu et al., 2003) (Bronstein et al., 2003) (Bronstein et 
al., 2007) even consider facial expressions as noise that will degrade the system 
performance, and they attempt to build robust systems that are invariant to these variations. 
However, no research has been conducted to see if these intra-personal variations, especially 
under facial expression changes or dynamic changes of intra-personal information could 
help the extra-personal separation. Can within-class variation help between-class 
separation? Or can intra-personal facial expression variations assist extra-personal 
separation? We assume that “intra-personal facial expression variations could assist extra-
personal separation.”  
In the following section, we give an overview of multimodal biometrics and soft biometrics. 
We discuss how multiple biometrics and soft biometric can improve classification 
performance. We then discuss related work that uses other biometrics in combination with 
facial biometric at a distance and our proposed fusion framework. Finally, we give the 
experimental results and conclusion.    
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2. Overview of Multimodal Biometrics 

Biometric systems have their success in single modalities; however, there are still 
opportunities to improve their limitations. Jain et al. (Jain et al., 2004b) stated that these 
limitations include the noise in the sensed data, intra-personal variations, distinctiveness of 
inter-personal variations, non-universality, and spoof attacks. Furthermore, Faundez-Zanuy 
(Faundez-Zanuy, 2005) stated the main drawbacks in a different uni-modal biometric 
system. For example, in fingerprint biometrics, some people might not have their fingerprint 
characteristics because they were old, their fingerprints might be too oily, dry, wet or warm; 
or their fingerprints might be damaged temporally or permanently. These situations make it 
difficult or impossible for scanners to acquire their fingerprints. Facial biometrics’ 
weaknesses are due to variations in makeup, pose or illumination variations. Therefore, it is 
necessary to explore other sources for performance improvement so as to achieve robustness 
under various circumstances. 
An interesting question is “Can multiple biometrics improve performance?” Hong et al. 
(Hong et al., 1999) examined the possible performance improvement of a biometric system if 
this system integrates multiple biometrics. They proved that by integrating with other 
multiple biometric sources, the performance was indeed improved. Multiple biometrics also 
makes spoofing more difficult because of the difficulty of simultaneously spoofing multiple 
biometric characteristics (Jain et al., 2006).  
These possible schemes of combining various biometric cues in multimodal biometrics 
include the fusion of 2D and 3D face images (Chang et al., 2005); the fusion of 2D image, lip 
motion, and voice (Fröba et al., 2000); and the fusion of 2D image, 3D facial shape and 
infrared facial heat pattern image (Chang et al., 2004), speech and face (Brunelli and 
Falavigna, 1995), faces and fingerprints (Lin and Anil, 1998), face and gait (Shakhnarovich et 
al., 2001). It is clear that a biometric system combining several features can achieve better 
recognition accuracy than a single-feature system.   
Hu et al. (Hu et al., 2004) explained the three reasons for using multimodal biometrics. 
Firstly, it can be used in some highly secured places such as military bases or government 
units for visual surveillance purposes. A security system based on this can store human 
biometric cues such as facial appearance, gait or height in the database for access control 
purposes. Secondly, a police station can setup a visual surveillance system that stores 
criminals’ biometric features in railway stations or casinos and monitor the criminal activity 
at a distance. Moreover, combining the various biometric cues such as facial appearance and 
gait can provide a more reliable alarm to the police if the facial appearance quality is low. 
Thirdly, it can provide reliable object recognition of either human or inanimate objects. 

 
3. Soft Biometrics 

Any physiological and behavioral human biometric cues can be used for personal 
identification, and these characteristics are also called ‘hard biometrics’. Other human 
secondary information, such as gender, ethnicity, age, height, and weight and eye color are 
called ‘soft biometrics’. These have  the potential of complimenting the personal 
identification information provided by any hard biometrics (primary sources) and 
improving recognition performance (Jain et al., 2004a); however, the ancillary information 
may not be distinctive and permanent enough to differentiate any two individuals. “Can 
soft biometric traits assist user recognition?” Jain and Dass (Jain et al., 2004a) studied their 

 

usability with an example of using a fingerprint biometric system for this purpose. They 
provided additional personal information (gender, ethnicity, and height) to the fingerprint 
biometric systems and showed that it increased recognition rates about 6%.   
Fig. 1 shows some examples of soft biometrics and Fig. 2 shows the general framework for 
integrating soft biometrics with hard biometrics. 
Soft biometrics cannot be solely used for reliable personal identification because they are not 
distinctive and permanent. They can complement the primary biometric system. They also 
can be extended to multiple biometric systems. For example, Jain et al. (Jain et al., 2004a) 
proposed a hybrid biometric system that uses face and fingerprint as the primary biometrics 
and integrated with secondary biometrics (e.g. gender, ethnicity, and height). They found 
that the complementary secondary biometrics can help improve recognition performance 
significantly. 
 

  
Fig. 1. Some soft biometric examples (Jain et al., 2004a) 

 
Fig. 2. General framework for soft biometric integration with hard biometrics (Jain et al., 

2004a). 
In the following section, we will discuss each level of fusion techniques in more detail. 
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www.intechopen.com



Pattern Recognition, Recent Advances344

 

4. Level of Biometric Fusion 

 
Fig. 3.The three different fusion levels in a bimodal biometric system (Ross and Jain, 2003). 
 
The three levels of fusion techniques are described as follows: 

 
5. Fusion at the feature extraction level 

Individual biometric cues extracted from their own feature extraction module are 
concatenated into a larger feature vector in the fusion module. A further treatment of using 
feature selection or extraction methods on this new combined vector is necessary so as to 
avoid the curse-of-dimensionality problem.  
Fusion at the feature level is more effective than fusion in other levels because more salient 
features are obtained. However, it has its drawbacks which include a highly correlated 
relationship between features which need to be removed, the high dimensional problem of 
the combined vectors, and privacy issues which hinder the availability of collecting 
multimodal biometric data(Jain et al., 2006). 

 
6. Fusion at the matching score level 

Individual matchers provide their similarity scores to indicate the proximity of the input 
with the template in the trained database. The scores are normalized using transformation 
techniques to transform the scores of the individual modalities into a common domain and 
an appropriate fusion strategy to combine the transformed scores (Jain et al., 2006).” This 
level is also called confidence or rank level. These techniques include Min-max, Z-score, or 
Tanh. 
 
 
 

 

7. Fusion at the decision level 

Individual matchers provide their own decisions based on their own feature vectors in the 
feature extraction module. The final decision is then made based on each individual decision 
by using techniques such as majority voting, behavior knowledge space, weighted voting 
based on the Dempster-Shafer theory of evidence, and AND and OR rules. This level is also 
called the abstract level. 

 
7.1 Related Work 
Uni-modal facial biometric is an un-intrusive collection of human facial characteristic that is 
also an important component of multiple biometric systems. This biometric can integrate 
with other (many) biometrics to provide a more robust identification system. A special issue 
in 2007 presents recent advances in biometric systems (Boyer et al., 2007) that addresses the 
advances in uni-modal and multimodal biometrics. It concludes that most human biometric 
cues such as face, fingerprint, voice, signature, and iris are large active areas while other 
biometric cues such as gait, ear, brain signal recordings and infrared imaging of hand vein 
patterns are the newer and smaller areas in uni-modal biometrics. In multiple biometrics, 
face and gait fusion and 2D+3D face fusion are the two active research areas. 
We present literature that uses other biometrics in combination with facial biometrics at a 
distance. Chang et al. (Chang et al., 2003) combined the face and ear for multiple biometrics. 
They used the PCA method applied to these two biometrics (called Eigen-Faces and Eigen-
Ears). Their results showed the potential performance increase in combination with face and 
ear that out-perform either face or ear. However, their limitation is that ear images were 
only in profile view. Chang et al. (Chang et al., 2005) fused 2D and 3D facial images for 
multimodal biometrics. They used the PCA method for salient feature extraction of 
individual modalities and score normalization method for normalizing multiple matcher 
scores. Their results showed that the fused 2D and 3D facial images performed better than 
using either 2D or 3D facial images alone. Shakhnarovich et al. (Shakhnarovich et al., 2001) 
integrated face and gait from multiple views for multimodal biometrics. They used a view-
normalization approach to multiple views. Then, each biometric trait's matching score was 
combined. Their results showed the integrated face and gait biometrics had improved the 
recognition performance over either one alone. Zhou and Bhanu (Zhou and Bhanu, 2007) 
presents the latest trend in face and gait fusion. They tackled the challenging problem of 
using shape and intensity information of side view of the face combined with side gait 
information. Their approach was rather different to the traditional approaches of using a 
frontal view for face and a side view for gait. They used Enhanced Side Face Image (ESFI) 
approach and Gait Energy Image (GEI) approaches for integrating face and gait for non-
cooperating human recognition at a distance. Liu and Sarkar (Liu and Sarkar, 2007) explored 
the possibility of using both face and gait in an outdoor environment at a distance. Toh (Toh 
et al., 2008) et al. proposed a weighted power series model to minimize an approximated 
error rate formulation for visual and infra-red fusion for facial verification. Infrared facial 
imaging is an additional option for multiple biometrics combining with face biometric. 
However, as this biometric cue requires a costly sensor, it is not applicable to a low-cost 
camera technology in vision-based surveillance at a distance. All the research concluded that 
"the performance of recognition is improved when combining multiple biometrics. Multiple 
biometric combination outperformed either single biometric." 
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In the following section, we will propose a fusion framework that integrates facial 
appearance and facial expression features. 

 
8. Proposed Framework 

We introduce a face coding and recognition method, the Fisher’s Linear Discrimnant 
Classifier (FLDC), which employs the FLD Model (FLDM) (Duda et al., 2000a) for integrated 
facial appearance and facial expression features. The facial appearance provides textural 
information of a face, while the facial expression changes are geometrically encoded by 
distance-based facial fiducial points that capture the changes of a face when it displays facial 
expressions or emotions. To reduce the dimensionality of the original facial appearance and 
facial expression spaces, PCA, constrained by the FLDM for enhanced discriminant 
capability, derives low dimensional features, which are then combined using a 
normalization procedure in order to form integrated features accounting for both facial 
appearance and facial expression information. Finally, the integrated features are processed 
by the FLDM for face recognition. 
Fig. 4 shows the proposed framework for PCA-level feature fusion. The gray level intensity 
of facial appearance images and fiducial point distance-based measurement of facial 
expression images are extracted firstly by PCA. Note that we only show the neutral 
expression of facial appearance and facial expression images in Fig. 4.  

 
Fig. 4. The framework for PCA-level feature fusion. 
 
For other expression images, they go through the same procedures as shown in Fig. 4. 
After PCA extraction, the extracted two different biometrics are then combined together to 
form larger fused vectors. These fused vectors are then applied to LDA to get reduced 
dimensionality and the increased discriminant data distribution. Finally, the feature 
obtained by LDA is compared with the matching template before making the decision. 
In the following sections, we discuss the feature extraction techniques used in the proposed 
framework.  

 
8.1 Principal Component Analysis 
Let a facial appearance or expression image iX  be a vector of dimension d . Denote the 

training set of n  facial appearance or expression images by 1, 2, ..., )( n
d nX X X X    , 

 

and we assume that each image belongs to one of c  classes. Define the covariance matrix 
X  as follows : 
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xr nY   can be obtained by projecting X onto the eigen-based feature space   as 
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Hence, this reduced lower dimensional vector Y captures the most expressive features of 
the original data X . 

 
8.2 Fisher Linear Discriminant Analysis 
Let a facial appearance or expression image iX  be a vector of dimension d . Denote the 

training set of n  facial appearance or expression images by 1, 2, ..., )( n d nX X X X   , 
and we assume that each image belongs to one of c classes. Define the between-class scatter 
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the mean image of the i th class, in  is the number of samples in the i th class and c is the 
number of classes. Therefore, if WS is nonsingular, the optimal projection optW is chosen as 
the matrix with orthonormal columns which maximizes the ratio of the determinant of the 
between-class scatter matrix of the projected input samples to the determinant of the within-
class scatter matrix of the projected input samples. The optimal projection optW  is defined 
as follows (Kirby and Sirovich, 1990) (Duda et al., 2000b): 
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the matrix with orthonormal columns which maximizes the ratio of the determinant of the 
between-class scatter matrix of the projected input samples to the determinant of the within-
class scatter matrix of the projected input samples. The optimal projection optW  is defined 
as follows (Kirby and Sirovich, 1990) (Duda et al., 2000b): 
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where  | 1, 2,..., 1iW i c   is the set of generalized fisher-vectors of BS  and WS  

corresponding to the 1c largest generalized fisher-values  | 1,2,..., 1i i c   , i.e.,  
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Thus, for a set of original facial appearance or expression images d nX   , their 
corresponding fisher-based feature xm nQ  can be obtained by projecting X  onto the 
fisher-based feature space optW  as follows: 
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Hence, this reduced lower dimensional vector Q  captures the most discriminant features of 

the original data X . 
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expression features, respectively, to improve the generalization performance of the FLDC 
classifier.  
The reduced lower dimensional subspaces of 1Y  and  2Y  are then integrated by using (8) of 
its normalization procedure to form the encoded information of these two facial appearance 
and expression features (Wechsler, 2007). Note that each reduced subspace is normalized to 

 

have unit norms before they are concatenated to form an augmented combined feature 
vector. Hence, the new fused feature matrix is defined as follows1: 
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This new fused feature matrix U then replaces X in Section 0 to yield the most expressive 
and discriminant lower dimensional subspace Q as in (7). 

 
8.4 Facial Recognition 
The FLDC method employs the FLDM on the integrated facial appearance and expression 
features. When an unknown face image is presented to the FLDC classifier, the original 
facial appearance and expression features are firstly projected to the 1Y  and 2Y subspaces as 

explained in Section 0. Then, the integrated feature testU  of the unknown facial image is 
derived using (8).  Let optW be the final optimal discriminant basis matrix of the FLDA as 
defined by (7). The new feature space P of the unknown face image is derived as follows: 
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Let i
cQ  be the ith training data point of the class c after the FLDM transformation. The 

nearest neighbor classification rule is then specified as follows: 
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The unknown facial image is finally classified to class c  to whom the unknown facial 

feature P is the nearest neighbor. 
 

                                                                 
1 This method assumes the facial appearance and expression features have equal important 

discriminant information. According to the discussion in Chapter 5 that any human body 
part can be used as a biometric trait as long as it satisfies the requirement that any 
individual exhibits distinctive characteristics. Hence, we assume that facial expression 
features have equal important discriminant information as successful facial appearance-
based face recognitions do. 
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9. Experimental Results 

We evaluate the performance of the fusion framework for bi-modal biometrics using facial 
appearance and facial expression features. The classification performance of the framework 
is then compared with the uni-modalities; namely, EigenFaces, FisherFace, and the distance-
based facial expression features using PCA and LDA methods; we called them 
EigenExpression and FisherExpression, respectively. 

 
9.1 Experimental Design 
The original images in the JAFFE database are raw facial images that include not only the 
facial information (neutral, angry, disgust, fear, happy, sad, and surprise), but also 
irrelevant information for facial recognition system. This relevant information includes hair, 
neck, shoulder, clothes, and background, as shown in Fig. 6. 
 

 
Fig. 5. Facial Expression Images from JAFFE database [74]. 
 
We use the JAFFE database for both appearance-based facial features and distance-based 
facial expression features. For the facial appearance features, we follow the recommended 
preprocessing steps (Phillips et al., 2000) so as to avoid incorrect evaluations. These steps are 
1) images are registered so that the centers of the eyes are placed on specific pixels; 2) 
images are cropped and resized (to size 16 x 13) so as to remove the relevant non-face 
portions and to reduce the high dimensionality; 3) histogram equalization is performed in 
the resized and cropped facial pixels; 4) the final preprocessed facial data is further 
normalized to have zero mean and unit variance. Fig. 6 depict examples after the 
preprocessing stage. Finally, each image is represented as a column vector of 208d  . 
 

 

 
Fig. 6. Examples after preprocessing.  
 
We design four different experiments for testing our hypothesis as follows: 
I. Neutral images in the training set and facial expression images in the testing set. 

Training set: Only neutral images (30 images) 
Testing set: All facial expression images (183 images) 

II. Facial expression images in the training set and neutral images in testing set.  
Training set: All expression images (183 images) 

Testing set: Only neutral images (30 images) 
III. Using 10-fold and leave-one out cross validation for single modality. Neutral and 

facial expressions both are in the training and testing set.  
IV. Using 10-fold and leave-one out cross validations for bi-modalities. Neutral and facial 

expressions both are in the training and testing set. 
 
Particularly, in experiment III and IV, following standard performance evaluation practices 
(Duda et al., 2000a), the facial expression database H , contains N images, is randomly 
partitioned into two subsets by using a K -fold cross-validation method: The training set 
Z and the testing set T . That is, the original database H  is divided into K partitions2. In 
every run3, the ith partition is used for training set Z  and the remaining partitions are 
combined together to form the testing set T  (e.g. T H Z   ). Any FR method evaluated 
here is first trained with Z , and the nearest neighbor classifier is then applied to T , so as 
to produce the recognition rate, which is defined as 1 CER (classification error rate). 
Finally, all the recognition rates reported below are averaged over K runs to enhance the 
statistical accuracy of the assessment. Note that the nearest neighbor classifier is used for the 
four experiments. 
 
 
 

                                                                 
2 10K  (10-fold cross-validation); K N (leave-one-out cross-validation). 
3 There are 10 runs in total because of 10 folds. 
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9.2 The Facial Image Analysis 
 

9.2.1 EigenFaces Versus FisherFaces 
Fig. 7 and Fig. 8 shows the first 28 basis vectors of EigenFaces and FisherFaces of the facial 
appearance images, respectively. Each eigen-feature based faces are extracted in order to 
find the optimal either informative or discriminant projection axes, in which data for images 
lie in linear subspace. One can see from these two figures that while EigenFaces aim to 
extract the richest information, FisherFaces aim to extract the most discriminant 
classification. Note that the last five basis vectors of FisherFaces in Fig. 8 look similar and 
look quite different among others. One possible cause could be the training eigen-values 
that encode noise. 
 

 
Fig. 7. First 28 basis vectors of EigenFaces of the facial appearance images. 
 

 
Fig. 8. First 28 basis vectors of FisherFaces of the facial appearance images. 

 
9.2.2 Linear Subspace Analysis for Facial Appearance and Facial Expression Features 
The input facial appearance and facial expression features were normalized to have zero 
mean and unit variance before applying them to the linear subspace analysis methods. Class 
labels in the following figures stand for individuals. The normalized input data were then 
used for extracting the first 30 and 17 dimensions of facial appearance and expression 
features. Note that by convention we only display the first two components of the 
transformed matrix of 10 individuals.  

 

Fig. 9 demonstrates that the resultant data distribution of Eigenfaces was overlapped, yet 
still shows some insight on providing distinctively expressive information in the presence of 
facial expressions. The resultant analysis is also reflected by Eigenfaces as shown in Fig. 7. 
Clearly, the finding indicates that even though the resultant data distribution of the 
Eigenfaces in the presence of facial expression is somewhat overlapped, Fig. 7 and Fig. 9 still 
tend to reveal that the Eigenface method while providing the expressive information does 
preserve some discriminant information of individuals.   
Fig. 10 demonstrates that the resultant data distribution of Fisherfaces was more overlapped 
than that of Eigenfaces (Fig. 9). The finding indicates that this method actually smears the 
classes together so that they are no longer linearly separable in the projected space. Also, 
this resulting projection space is not simplified for classification. 
  

 
Fig. 9. Samples projected by Eigenfaces method. 
 

 
Fig. 10. Samples projected by Fisherfaces method. 

 

Fig. 11 demonstrates the resultant data distribution of EigenExpression was worse than that 
of Eigenfaces (Fig. 9), but slightly worse than that of Fisherfaces (Fig. 10). The finding 
indicates that this method smears the classes together so that they are not linearly separable 
in the projected space. Note that our previous research (Tsai et al., 2005) (Tsai and Jan, 2005) 
also indicates that for an increase in the number of individuals the data distribution 
becomes more complex and intermixed. 
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Fig. 11. Sample projected by EigenExpression method. 
 
Fig. 12 demonstrates the resultant data distribution of FisherExpression method was less 
overlapped than those of Fisherfaces (Fig. 10) and EigenExpression methods (Fig. 11), but 
seems to be comparable to that of Eigenfaces (Fig. 9). This method promises to retain more 
discriminant information than that of Fisherfaces (Fig. 10). As a note of caution, it must be 
remembered that the resultant analyses from the above methods may be very application-
specific. 
The fused facial appearance and facial expression features of ten individuals were reduced 
to thirty features after using our method. The first two features are shown in Fig. 13. It 
shows that the fused features are well clustered after our method; it was far better than 
Eigenfaces, Fisherfaces, EigenExpression, and FisherExpression methods for classification. It 
indicates that the combined biometrics mutually contributed to the between-class 
separation. 

 

 
Fig. 12. Sample projected by FisherExpression method. 
 

 

 
Fig. 13. Samples projected by our method of fused facial appearance and facial expression 
features. 

 
9.3 Recognition Performance Comparison 
 

9.3.1 Single Biometric Sources of Evidence: Face Versus Expressions 
In this section, the assumption for the following experiments is that there is no significant 
difference in performance between using facial appearance or facial expressions as a 
biometric, given 1) use of the same PCA- and LDA-based algorithms for these two 
biometrics, and 2) use the different combinations for training and testing sets for experiment 
I and II. The recognition rates of these two experiments are computed based on the first 17 
principle features. In experiment I, the baseline is the expression variation in the testing set. 
The experiment focuses on the recognition performance under only neutral images in the 
training set and facial expression images in the testing set. That is, all the neutral images 
were used for the training set and all the expression images were used for testing set. 
Fig. 14 displays the recognition performance for experiment I. This performance is 
computed after 17 iterations. In terms of the facial appearance features, there was significant 
difference between EigenFace and FisherFace. The figure showed that the performance of 
EigenFace method was more stably increased than that of the FisherFace method after 17 
iterations. In terms of the facial expression features, there was no significant difference 
between EigenExpression and FiserExpression methods. The recognition performances of 
these two methods were similar. Clearly, the findings indicate that if there exists facial 
expression changes, these changes degrade the recognition performances; as one would 
expect the more the facial expression changes vary from the neutral images, the worse the 
resulting recognition performances. 
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Fig. 14. Experiment I: Performance comparison - Face vs. Expressions (17 Iterations). 
 
In experiment II, the baseline is for the only neutral faces in the testing set. The experiment 
focuses on the recognition performance under the condition that all the facial expression 
images are seen in the training stage and only neutral facial images in the testing set.  
The purpose here is to determine if by knowing all the individuals’ facial expression 
changes, could their neutral facial images be recognized during the testing stage. 
Fig. 15 displays the recognition performance for experiment II. This performance is 
computed after 17 iterations. In terms of the facial appearance features, the EigenFace 
method had better performance than that of the FisherFace, and the EigenFace method still 
showed stability in performance increase compared to that of the FisherFace method.  In 
terms of the facial expression features, the EigenExpression method had better performance 
than that of the FisherExpression method, and the EigenExpression method showed stability 
in performance increase compared with that of the FisherExpression  

 

 
Fig. 15. Experiment II: Performance comparison - Face vs. Expressions (17 Iterations). 
 
method. Clearly, the recognition performances of the four methods indicate the possibility 
that by learning individuals’ facial expression changes, one can test and recognize their 
individual neutral faces in the testing stage. Note that the LDA-based methods here show 
their limitation in performance stability due to the limited training data. 

 

In experiment III, the baseline is all the facial expressions plus neutral faces have equal 
chances to be seen or used either in the training or testing set. The 10-fold cross-validation is 
used here for performance evaluation. In addition, we also use the leave-one-out cross-
validation method so as to make use of the limited size of the database as the result of 
providing more consolidated performance evaluation for validating our hypothesis. 
This performance is computed after 17 iterations. In Fig. 16(a), in terms of the facial 
appearance features, the EigenFace method had better performance than that of the 
FisherFace, and the FisherFace method in this figure showed its dramatic instability in 
recognition performance. In terms of the facial expression features, the performances of 
EigenExpression and FisherExpression methods were quite similar; however, the 
performance of the FisherExpression started to decrease after the 12 features. This figure 
showed the limitation of the LDA-based performance instability. Clearly, the recognition 
performances of the four methods showed that both facial appearance and expression 
features can be used for biometric recognition. Note that :  
(1)  Fig. 15 and Fig. 16(a) look similar, and they indicate the importance of the facial 
expression changes seen in the training stage.  
(2) Fig. 16(b) shows similar performances to that of Fig. 16(a), except the performance of 
FisherFaces was increased stably. The limitation of the LDA-based method has been 
mitigated when the size of the training database is increased to the total number of images – 
1 of the JAFFE database. This indicates the size of the JAFFE database is adequate and 
sufficient for validating our hypothesis in this thesis.  
(3) Overall, the results of these three experiments do not provide any significant evidence 
for rejecting the null hypothesis that facial appearance and facial of the facial appearance-
based methods, one can see that these three experiments do show the importance of both 
facial appearance and facial expressions. 
 

 
(a) 10-fold Cross Validation 
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terms of the facial expression features, the EigenExpression method had better performance 
than that of the FisherExpression method, and the EigenExpression method showed stability 
in performance increase compared with that of the FisherExpression  

 

 
Fig. 15. Experiment II: Performance comparison - Face vs. Expressions (17 Iterations). 
 
method. Clearly, the recognition performances of the four methods indicate the possibility 
that by learning individuals’ facial expression changes, one can test and recognize their 
individual neutral faces in the testing stage. Note that the LDA-based methods here show 
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This performance is computed after 17 iterations. In Fig. 16(a), in terms of the facial 
appearance features, the EigenFace method had better performance than that of the 
FisherFace, and the FisherFace method in this figure showed its dramatic instability in 
recognition performance. In terms of the facial expression features, the performances of 
EigenExpression and FisherExpression methods were quite similar; however, the 
performance of the FisherExpression started to decrease after the 12 features. This figure 
showed the limitation of the LDA-based performance instability. Clearly, the recognition 
performances of the four methods showed that both facial appearance and expression 
features can be used for biometric recognition. Note that :  
(1)  Fig. 15 and Fig. 16(a) look similar, and they indicate the importance of the facial 
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(a) 10-fold Cross Validation 
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(b) Leave-one-out Cross Validation 

Fig. 16. Experiment III: Performance comparison - Face vs. Expressions (17 Iterations). 
  

Especially, in Fig. 15 and Fig. 16, they indicate the importance of individuals’ facial 
expressions seen in the training set.  Of course, there are several reasons that would affect 
the recognition performance results shown here; for example, inappropriate algorithms or 
dissimilar quality control conditions. In the following section, we are going to investigate 
the potential multimodal biometric system using facial appearance and facial expression 
features. 

 
9.3.2 Multiple Biometric Sources of Evidence: Face Plus Expressions 
A combination scheme shown in Fig. 4 is used to investigate the value of a multimodal 
biometric system using the facial appearance and facial expression features.  In experiment 
IV, the baseline is the multiple biometric sources using facial appearance and facial 
expression features. The 10-fold cross validation is used here for performance validation. In 
addition, we also use the leave-one-out cross-validation method so as to make best use of 
the limited size of the database.  
Fig. 17 and Fig. 18 display the recognition performances between the single and multiple 
modalities, respectively. Fig. 17(a) shows the comparison between face-based (single 
modality) and proposed (multiple modality) methods after 17 iterations for experiment IV. 
Our method using facial appearance and facial expression features had better recognition 
performance than that of either EigenFace or FisherFace method. Although the 
performances of the EigenFace and our methods were competitive, it was apparent that our 
method out-performed the EigenFace and FisherFace method when the dimensionality was 
very low (here 9). 

 

 
(a) 10-fold Cross Validation 

 

 
(b) Leave-one-out Cross Validation 

Fig. 17.  Experiment IV: The comparison between face-based and proposed methods (17 
Iterations). 
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Fig. 17.  Experiment IV: The comparison between face-based and proposed methods (17 
Iterations). 
 

 
(a) 10-fold Cross Validation 
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(b) Leave-one out Cross Validation 

Fig. 18. Experiment IV:  The comparison between expression-based and proposed methods 
(17 Iterations). 
 
Fig. 18(a) shows the comparison between expression-based (single modality) and proposed 
(multiple modality) methods after 17 iterations for the experiment IV. Our method using 
facial appearance and facial expression features had better recognition performance than 
that of either EigenExpression or FisherExpression method. Our method again 
outperformed the single modality methods when the dimensionality was very low (here 9). 
These two figures clearly indicate the possibility to combine the facial appearance and facial 
expression features for multiple biometric sources. Fig. 17(b) and Fig. 18(b) showed similar 
performance to those in Fig. 17(a) and Fig. 18(a), except the performance of FisherFaces was 
increased stably. The limitation of the LDA-based method has been mitigated when the size 
of the training database is increased to the total number of images – 1 of the JAFFE database. 
This indicates the size of the JAFFE database is adequate and sufficient for validating our 
hypothesis in this thesis. 

 
9.3.3 Confidence Analysis of Prediction Performance 
According to [75] , the CI metric is used for measuring how confident the estimated 
experimental results from experiment IV (using 10-fold and leave-one-out cross-validations) 
are close to the true prediction performance. In this section, we will conduct the Confidence 
Interval measurement of the Prediction Performance so as to consolidate and to draw our 
validating conclusion to prove our assumption that intra-personal variation of facial 
behavior can assist the separation of extra-personal separation.  
The CI metric is applied to analyze the confidence degree of the two performance 
evaluations on evaluating our hypothesis; namely, the 10-fold cross-validation and leave-
one-out cross-validation methods. We will only focus on analyzing the experimental results 
of comparative methods when the number of features is nine ( 9d  )4.  

                                                                 
4 In the literature, it is recommended the optimal number of principle components is the 

number of classes minus one. 

 

Fig. 19 and Fig. 20 show the confidence interval analyses for the experimental results 
obtained from the 10-fold cross-validation and leave-one-out cross-validation.  
In Fig. 19, there are wide ranges of confidence intervals for different comparative methods 
on different confidence values. For example, if we increase our confidence values from 20% 
to 99.8% for EigenFaces, we can see that its confidence boundaries are becoming wider and 
wider. Also, we can see that other methods have similar outcomes. The CI intervals tells us 
that the estimated experimental results obtained from 10-fold cross-validation have wide 
variations from the actual true experimental results. However, even though 10-fold cross-
validations gave us conservative experimental results, we can still see that our method has a 
narrower range than any of the other methods (Please SEE Table 1). Clearly, it indicates to 
us that we can trust the estimated experimental results in Experiment IV. It also shows us 
that our method has the advantage over other comparative methods. Our result in this 
figure is an indication of the potential of using facial behavior combined with the facial 
appearance for personal identification. For further substantiation, we also use the CI metric 
for analyzing the leave-one-out cross-validation.  
In Fig. 20, there are small ranges of confidence intervals for different comparative methods 
on different confidence values.  We can see that after using the leave-one-out cross-
validation, the ranges of confidence intervals are narrower than those in Fig. 19. Even 
though the confidence values are increased from 20% to 99.8%, the ranges of CI for different 
comparative methods are still small. This figure tells us that by using the leave-one-out 
cross-validation, our limited database has been maximized. In particular, we can see from 
the figure that our method has the smallest ranges of CI for different confidence values 
among other comparative methods (Please see Table 1. Estimated success rates of 
comparative methods and their corresponding confidence interval boundaries 
( 99.8%c  ) using 10-fold cross-validation.  
 
).  
 
To sum up, the CI analyses for both 10-fold cross-validation and leave-one-out cross-
validation conclude that our method validate our hypothesis that the intra-personal 
variations of facial behavior may assist the extra-personal separations. 
 

 
Fig. 19. Confidence Interval for the experiment IV results using 10-fold cross-validation 
( 10N  ; 9d  ). 
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(b) Leave-one out Cross Validation 

Fig. 18. Experiment IV:  The comparison between expression-based and proposed methods 
(17 Iterations). 
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Fig. 20. Confidence Interval for the experiment IV results using leave-one-out cross-
validation ( 213N  ; 9d  ). 
 

Methods f  p  p  
EigenFaces 0.96 0.472185 0.998449 
FisherFaces 0.629 0.222549 0.909433 

EigenExpression 0.742 0.29596 0.951634 
FisherExpression 0.824 0.356099 0.975391 

Our Method 1 0.511559 1 
Table 1. Estimated success rates of comparative methods and their corresponding 
confidence interval boundaries ( 99.8%c  ) using 10-fold cross-validation.  
 

Methods f  p  p  
EigenFaces 0.976526 0.918645 0.993517 
FisherFaces 0.929577 0.855038 0.967257 

EigenExpression 0.751174 0.650202 0.830593 
FisherExpression 0.830986 0.737872 0.895699 

Our Method 1 0.957096 1 
Table 2. Estimated success rates of comparative methods and their corresponding 
confidence interval boundaries ( 99.8%c  ) using  leave-one-out cross-validation. 

 
9.4 Discussion 
Yan (Yang, 2002) states that the PCA method aims to extract the most expressive bases in 
which the most optimal eigen-vectors are extracted in order to reduce the reconstruction 
error to the minimum. However, some unwanted variations due to illumination, poses, 
and/or facial expressions may be caught in the sense of this correlation-dependency method 
during the extraction stage. That is, these variations may increase the reconstruction error. 
Therefore, this method may be optimal for obtaining a good PCA projection in a correlation 
sense, whereas, it may be less optimal in the sense of the classification viewpoint.  

 

Nonetheless, it is interesting to note that our experimental results shown in Fig. 17 seem to 
contradict the good empirical results in (Belhumeur et al., 1997). They state that “although 
PCA achieves larger total scatter, FLD achieves greater between-class scatter, and, 
consequently, classification is simplified (p.714)”. In fact, the Eigenfaces method under 
various facial expression changes in our experiments shows its high recognition rates. It is 
likely that the variation of facial expressions caught in this extraction stage also provides 
distinctive characteristics about individuals, and PCA achieves larger total scatter; hence, 
yields more spaces and less overlap in data distribution. Other possible reason that causes 
this discrepancy from theirs is possibly because they use leave-one-out strategy to evaluate 
their system based on the small database 5 , and it contains different variations in 
illumination, occlusion, and facial expressions6. These variations may lead to degeneration 
to the classification performance when applying this second-order correlated statistical 
method.    
It has been suggested in (Adini et al., 1997) that the intra-personal variations due to 
illumination and viewing direction are almost always larger that the extra-personal 
differences. Other papers (Belhumeur et al., 1997) also address the variation due to facial 
expressions observes a similar effect in face identity. Therefore, it is debatable that the 
variation due to the internal facial changing factors could be considered as noise that affect 
the facial recognition or be considered as another biometric cue that could be used solely or 
assist in facial recognition. Note that we consider the variations due to such things as 
illumination, poses, or occlusions as external factors of a face and the variations due to facial 
expressions as internal factors of a face. 
It is surprising to see from Fig. 13, that after the fusion of the facial appearance and 
expression features, the data distribution has become more compact and non-overlapped 
among individuals, in comparison with other methods as shown in Fig. 9 through Fig. 12. It 
seems to indicate that the internal changing factors may lead us to another interesting 
research area.  
Moreover, the findings from Fig. 9 and Fig. 11 also demonstrate that each dimension from 
the single biometric may contribute some mutually discriminate information in fusion, even 
though the data distributions of these single methods are overlapped. 
To sum up, our framework has improved recognition performance of each of facial 
appearance-based and facial expression-based modality. The findings also indicate the 
potential of using facial expression behavior for either single or multiple biometrics 
recognition. In particular, our method achieves almost 100% recognition rate using only 9 
features.  

 
10. Conclusion and Future Work 

This chapter assessed the possibility of using facial behaviour as another individual trait for 
personal identification and identification improvement. Facial expression variations were 
previously thought of as noise that would degrade the classification performance, so 

                                                                 
5 They use sixteen subjects, and each has 10 images. 
6  The facial expressions include happy, sad, winking, sleepy, and surprised. Here, those 

variations are considered noise that degrades classification performance. 
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researchers tried to build a robust facial recognition system insensitive to facial expression 
changes. We took the opposite view and assumed that the dynamic information of intra-
personal facial behaviour was useful not only as another behavioural biometric but could 
also assist the extra-personal separation for improvement of recognition performance. This 
innovative approach is motivated by psychophysiology regarding the way humans 
recognize one another from either their facial appearance or facial behaviour or both. Our 
findings support this hypothesis. Experiment results demonstrated that our approach 
outperformed other conventional methods, with highest f-value and p-values.  To sum up, 
the research presented in this chapter opens up a new research direction that can apply to 
either single biometrics or multiple biometrics. More work needs to be done in this new 
research direction, such as implementing a larger ground truth database with spatio-
temporal information of dynamic facial motion of expression for 3D modeling. 
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researchers tried to build a robust facial recognition system insensitive to facial expression 
changes. We took the opposite view and assumed that the dynamic information of intra-
personal facial behaviour was useful not only as another behavioural biometric but could 
also assist the extra-personal separation for improvement of recognition performance. This 
innovative approach is motivated by psychophysiology regarding the way humans 
recognize one another from either their facial appearance or facial behaviour or both. Our 
findings support this hypothesis. Experiment results demonstrated that our approach 
outperformed other conventional methods, with highest f-value and p-values.  To sum up, 
the research presented in this chapter opens up a new research direction that can apply to 
either single biometrics or multiple biometrics. More work needs to be done in this new 
research direction, such as implementing a larger ground truth database with spatio-
temporal information of dynamic facial motion of expression for 3D modeling. 
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