11 research outputs found

    H∞ fuzzy control for systems with repeated scalar nonlinearities and random packet losses

    Get PDF
    Copyright [2009] IEEE. This material is posted here with permission of the IEEE. Such permission of the IEEE does not in any way imply IEEE endorsement of any of Brunel University's products or services. Internal or personal use of this material is permitted. However, permission to reprint/republish this material for advertising or promotional purposes or for creating new collective works for resale or redistribution must be obtained from the IEEE by writing to [email protected]. By choosing to view this document, you agree to all provisions of the copyright laws protecting it.This paper is concerned with the H∞ fuzzy control problem for a class of systems with repeated scalar nonlinearities and random packet losses. A modified Takagi-Sugeno (T-S) fuzzy model is proposed in which the consequent parts are composed of a set of discrete-time state equations containing a repeated scalar nonlinearity. Such a model can describe some well-known nonlinear systems such as recurrent neural networks. The measurement transmission between the plant and controller is assumed to be imperfect and a stochastic variable satisfying the Bernoulli random binary distribution is utilized to represent the phenomenon of random packet losses. Attention is focused on the analysis and design of H∞ fuzzy controllers with the same repeated scalar nonlinearities such that the closed-loop T-S fuzzy control system is stochastically stable and preserves a guaranteed H∞ performance. Sufficient conditions are obtained for the existence of admissible controllers, and the cone complementarity linearization procedure is employed to cast the controller design problem into a sequential minimization one subject to linear matrix inequalities, which can be readily solved by using standard numerical software. Two examples are given to illustrate the effectiveness of the proposed design method

    Anti-periodic solution for fuzzy Cohen–Grossberg neural networks with time-varying and distributed delays

    Get PDF
    In this paper, by using a continuation theorem of coincidence degree theory and a differential inequality, we establish some sufficient conditions ensuring the existence and global exponential stability of anti-periodic solutions for a class of fuzzy Cohen–Grossberg neural networks with time-varying and distributed delays. In addition, we present an illustrative example to show the feasibility of obtained results

    State Estimation for Discrete-Time Fuzzy Cellular Neural Networks with Mixed Time Delays

    Get PDF
    This paper is concerned with the exponential state estimation problem for a class of discrete-time fuzzy cellular neural networks with mixed time delays. The main purpose is to estimate the neuron states through available output measurements such that the dynamics of the estimation error is globally exponentially stable. By constructing a novel Lyapunov-Krasovskii functional which contains a triple summation term, some sufficient conditions are derived to guarantee the existence of the state estimator. The linear matrix inequality approach is employed for the first time to deal with the fuzzy cellular neural networks in the discrete-time case. Compared with the present conditions in the form of M-matrix, the results obtained in this paper are less conservative and can be checked readily by the MATLAB toolbox. Finally, some numerical examples are given to demonstrate the effectiveness of the proposed results

    Stability analysis for periodic solutions of fuzzy shunting inhibitory CNNs with delays

    Get PDF
    https://advancesindifferenceequations.springeropen.com/articles/10.1186/s13662-019-2321-z#rightslinkWe consider fuzzy shunting inhibitory cellular neural networks (FSICNNs) with time-varying coefficients and constant delays. By virtue of continuation theorem of coincidence degree theory and Cauchy–Schwartz inequality, we prove the existence of periodic solutions for FSICNNs. Furthermore, by employing a suitable Lyapunov functional we establish sufficient criteria which ensure global exponential stability of the periodic solutions. Numerical simulations that support the theoretical discussions are depicted

    Global Exponential Stability of Learning-Based Fuzzy Networks on Time Scales

    Get PDF
    We investigate a class of fuzzy neural networks with Hebbian-type unsupervised learning on time scales. By using Lyapunov functional method, some new sufficient conditions are derived to ensure learning dynamics and exponential stability of fuzzy networks on time scales. Our results are general and can include continuous-time learning-based fuzzy networks and corresponding discrete-time analogues. Moreover, our results reveal some new learning behavior of fuzzy synapses on time scales which are seldom discussed in the literature
    corecore