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Abstract
This paper is concerned with the problem of stochastic stability for a class of fuzzy
Cohen-Grossberg neural networks, in which the interconnections and delays are
time-varying. Based on a Lyapunov function and the Ito differential formula, a set of
novel sufficient conditions on the pth moment exponential stability of the
equilibrium of the system is derived. Moreover, an illustrative example is given to
demonstrate the effectiveness of the results obtained.
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1 Introduction
Recently Cohen and Grossberg neural networks [] have been extensively studied and ap-
plied in many different fields such as associative memory, signal processing, and some
optimization problems. In such applications, it is of prime importance to ensure that the
designed neural networks are stable []. In practice, due to the finite speeds of the switch-
ing and transmission of signals, time delays do exist in a working network and thus should
be incorporated into the model equation [–]. In addition to the delay effects, studies
have been intensively focused on stochastic models [–]. It has been realized that the
synaptic transmission is a noisy process brought about by random fluctuations from the
release of neurotransmitters and other probabilistic causes, and it is of great significance
to consider stochastic effects on the stability of neural networks described by stochastic
functional differential equations.

Stochastic effects constitute another source of disturbances or uncertainties in real sys-
tems. A lot of dynamical systems have variable structures subject to stochastic abrupt
changes, which may result from abrupt phenomena such as stochastic failures and repairs
of the components, changes in the interconnections of subsystems or sudden environment
switching. Therefore, stochastic perturbations should be taken into account when model-
ing neural networks. In recent years, the dynamic analysis of stochastic systems (including
neural networks) with delays has been an attractive topic for many researchers, and a large
number of stability criteria of these systems have been reported; see e.g. [–] and the
references therein.
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In this paper, I would like to integrate fuzzy operations into Cohen-Grossberg neural
networks. Speaking of fuzzy operations, Yang and Yang [] first introduced fuzzy cellular
neural networks (FCNNs) combining those operations with cellular neural networks. So
far researchers have found that FCNNs are useful in image processing, and some results
have been reported on the stability and periodicity of FCNNs [–].

However, to the best of my knowledge, few authors have considered the problem of
the pth moment exponential stability and almost sure exponential stability of stochastic
nonautonomous fuzzy Cohen-Grossberg neural networks. In fact, in the process of the
electronic circuits’ applications, assuring a constant connection matrix and delays is un-
realistic. Therefore, in this sense, time-varying connection matrix and delays will be better
candidates for modeling neural information processing.

Motivated by the above discussions, this paper is concerned with the following stochas-
tic fuzzy Cohen-Grossberg neural networks with time-varying delays:
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)
dωj(t). ()

For i = , , . . . , n, where n corresponds to the number of units in the neural networks, xi(t)
corresponds to the state of the ith neuron. fj(·), gj(·) are signal transmission functions.
τj(t) corresponds to the time delay required in processing and satisfies  ≤ τj(t) ≤ τ (τ is a
constant). ai(xi(t)) represents an amplification function at time t. bi(xi(t)) is an appropri-
ately behaved function at time t such that the solutions of model () remain bounded;
cij(t) represents the elements of the feedback template. Ii(t) = Ĩi(t) +

∧n
j= Tij(t)uj(t) +

∨n
j= Hij(t)uj(t). αij(t), βij(t), Tij(t), and Hij(t) are elements of the fuzzy feedback MIN tem-

plate and the fuzzy feedback MAX template, fuzzy feed-forward MIN template, and fuzzy
feed-forward MAX template, respectively;

∧
and

∨
denote the fuzzy AND and fuzzy

OR operation, respectively; uj(t) denotes the external input of the ith neurons. Ĩi(t) is
the external bias of the ith unit. σij(·) is the diffusion coefficient, σi = (σi,σi, . . . ,σin):
ω(t) = (ω(t),ω(t), . . . ,ωn(t))T is an n-dimensional Brownian motion defined on a com-
plete probability space (�, F , {Ft}t≥, P) with a filtration {Ft}t≥ satisfying the usual condi-
tions (i.e., it is right continuous and F contains all P-null sets).

Obviously, model () is quite general, and it includes several well-known neural networks
models as its special cases such as Hopfield neural networks, cellular neural networks, and
bidirectional association memory neural networks [, ]. There are at least three differ-
ent types of stochastic stability to describe the limiting behaviors of stochastic differen-
tial equations: stability in probability, moment stability, and almost sure stability (see [,
]). When designing an associative memory neural network, we should make the conver-
gence speed as high as possible to ensure the quick convergence of the network operation.
Therefore, pth moment (p ≥ ) exponential stability and almost sure exponential stability
are most useful concepts as they imply that the solutions will tend to the trivial solution
exponentially fast. This motivates us to study the pth moment exponential stability for
system ().

The rest of this paper is organized as follows. In Section , the basic assumptions and
preliminaries are introduced. In Section , the criterion for the pth moment (p ≥ ) ex-
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ponential stability for system () is derived by using the Lyapunov function method and
Ito differential inequality. An illustrative example is given in Section . Conclusions are
drawn in Section .

2 Preliminaries and some assumptions
For convenience, we introduce several notations. Let C = C((–∞, ], Rn) be the Ba-
nach space of continuous function which map into Rn with the topology of uniform
convergence. For any x(t) = (x(t), x(t), . . . , cn(t))T ∈ Rn, we define ‖x(t)‖ = ‖x(t)‖p =
(
∑n

i= |xi(t)|p)

p ( < p < ∞).

The initial conditions for system () are x(s) = ϕ(s), –τ ≤ s ≤ , ϕ ∈ LP
F

((–τ , ], Rn),
where LP

F
((–τ , ], Rn) is Rn-valued stochastic process ϕ(s), –τ ≤ s ≤ , ϕ(s) is F mea-

surable,
∫ 

–τ
E[|ϕ(s)|p] ds < ∞.

Throughout the paper, we make the following assumptions.
(A) There exist positive constants ai, ai such that

 < ai ≤ ai(x) < ai, ∀x ∈ R, i = , , . . . , n. ()

(A) The signal transmission functions fj(·), gj(·) (j = , , . . . , n) are Lipschitz
continuous on R with Lipschitz constants μj and νj, namely, for any u, v ∈ R,

∣∣fj(u) – fj(v)
∣∣≤ μj|u – v|, ∣∣gi(u) – gi(v)

∣∣≤ νi|u – v|, fj() = gj() = .

(A) bi(·) ∈ C(R, R) and there exist positive constants hi such that

bi(u) – bi(v)
u – v

≥ hi, ∀u �= v, i = , , . . . , n.

(A) σ (x(t)) = (σij(xj(t)))n×n (i, j = , , . . . , n), there exist nonnegative numbers si,
i = , , . . . , n, such that

trace
[
σ T (x)σ (x)

]≤
n∑

i=

six
i . ()

Remark . The activation functions are generally assumed to be continuous, differen-
tiable, and monotonically increasing, such as the functions of sigmoid type. These restric-
tive conditions are no longer needed in this paper. Instead, only the Lipschitz condition is
imposed in assumption (A). Note that the type of activation functions in (A) has already
been used in numerous papers.

If V (t, x) ∈ C,([–τ ,∞) × Rn; R+), according to the Ito formula, we define an operator
LV associated with () as
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where

Vt(t, x) =
∂V (t, x)

∂t
, Vxi (t, x) =

∂V (t, x)
∂xi

, Vxx(t, x) =
(

∂V (t, x)
∂xi ∂xj

)

n×n
.

Definition . The equilibrium x∗ of system () is said to be global pth moment exponen-
tially stable, if there exist positive constants M ≥ , λ >  such that

E
(∥∥x(t) – x∗∥∥p)≤ M

∥
∥ϕ – x∗∥∥p

Lp e–λ(t–t), t > t,∀x ∈ Rn, ()

where x(t) = (x(t), x(t), . . . , xn(t))T is any solution of model (), p ≥  is a constant; when
p = , it is usually said to be exponential stability in mean square.

Lemma . [] Suppose x and y are two states of system (), then we have
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∣∣
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n∑
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∣∣.

Lemma . If ai >  (i = , , . . . , m), denote p nonnegative real numbers, then

aa · · ·am ≤ ap
 + ap

 + · · · + ap
m

p
, ()

where p ≥  denotes an integer. A particular form of () is

ap–
 a ≤ (p – )ap


p

+
ap


p

.

3 Main results
In this section, we will consider the existence and the global pth moment exponential
stability of system ().

Theorem . Under condition (A)-(A), if there exist a positive diagonal matrix D =
diag(d, d, . . . , dn) and two constants  < N,  < u < , such that

 < N ≤ N(t) ≤ uN(t), t ≥ t,

where
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then x∗ = (x∗
 , x∗

, . . . , x∗
n)T is a unique equilibrium which is globally pth moment exponen-

tially stable, where p ≥  denotes a positive constant. When p = , the equilibrium x∗ of
system () has exponential stability in mean square.

Proof The proof of the existence and uniqueness of the equilibrium for system is similar
to that of []. So we omit it.

Suppose that x∗ = (x∗
 , x∗

, . . . , x∗
n)T is the unique equilibrium of system (). Set yi(t) =

xi(t) – x∗
i , σ̃ij(yj(t)) = σij(yj(t) + x∗

j ) – σij(x∗
j ), then system () can be transformed into the

following equation:
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Consider the following Lyapunov function:
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Calculating the operator LV (t, y(t)), and using Lemma ., associated with system (), it
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Applying the Ito formula, for t ≥ t, we obtain

V
(
t + δ, y(t + δ)

)
– V

(
t, y(t)

)

=
∫ t+δ

t
LV
(
s, y(s)

)
ds +

∫ t+δ

t
Vy
(
s, y(s)

)
σ
(
s, y(s)

)
dω(s). ()

Since E[Vx(s, y(s))σ (s, y(s)) dω(s)] = , taking expectations on both sides of the equality ()
and applying the inequality () yields

E
(
V
(
t + δ, y(t + δ)

))
– E
(
V
(
t, y(t)

))

≤
∫ t+δ

t

[
–N(t)E

(
V
(
s, y(s)

))
+ N(t)E

(
sup

s–τ≤θ≤s
V
(
θ , y(θ )

))]
ds. ()

The Dini derivative D+ is

D+E
(
V
(
t, y(t)

))
= lim

δ→+
sup

E(V (t + δ, y(t + δ))) – E(V (t, y(t)))
δ

. ()

Denote z(t) = E(V (t, y(t))), and () leads directly to

D+z(t) ≤ –N(t)z(t) + N(t)‖zt‖p. ()

Hence, from Lemma . of [], we have

z(t) ≤ ∥∥z(t)
∥∥pe–λ(t–t).

Namely,

E
[∥∥x(t) – x∗∥∥p]≤ M

∥∥ϕ – x∗∥∥pe–λ(t–t), t ≥ t,

where M = max≤i≤n{di}
min≤i≤n{di} > . λ is the unique positive solution of the following equation:

λ = N(t) – N(t)eλτ .

Therefore the equilibrium x∗ of system () is pth moment exponentially stable. The proof
is completed. �

Specially, suppose that cij(t) = cij, αij(t) = αij, βij(t) = βij (i, j = , , . . . , n); system () be-
comes the stochastic fuzzy Cohen-Grossberg neural networks with time-varying delays,

dxi(t) = –ai
(
xi(t)

)
[

bi
(
xi(t)

)
–

n∑

j=

cijfj
(
xj(t)

)
–

n∧

j=

αijgj
(
xj
(
t – τj(t)

))

–
n∨

j=

βjigj
(
xj
(
t – τj(t)

))
+ Ii(t)

]

dt +
n∑

j=

σij
(
xj(t)

)
dωj(t). ()

For (), we have the following corollary by Theorem ..
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Corollary . If assumptions (A)-(A) hold, and there are constants Ni >  (i = , ),  <
u <  such that

 < N < uN,

where

N = min
≤i≤n

{

paihi –
n∑

j=

ai(p – )|cij|μj –
n∑

j=

aj|cji|μj

–
n∑

j=

ai(p – )
(|αij| + |βij|

)
νj –

n∑

j=

(p – )(p – )


sj –
n∑

j=

dj

di
(p – )si

}

,

N = max
≤i≤n

n∑

j=

dj

di
ai
(|αij| + |βij|

)
νj,

then the unique equilibrium x∗ = (x∗
 , x∗

, . . . , x∗
n)T of system () is globally pth moment ex-

ponentially stable.

Remark . The delay functions τj(t) considered in this paper only need to be bounded
and can be nondifferential. This generalized some published results in []. It should be
noted that the stability of system () is dependent on the magnitude of noise, therefore,
stochastic noise fluctuation is one of the very important aspects in designing a stable net-
work and should be considered adequately.

Remark . Compared with [, ], the method in this paper does not resort to the
semimartingale convergence theorem. Since system () does not require the delays to be
constants, furthermore, the model is nonautonomous and includes fuzzy operation, it is
clear that the results obtained in [, , –] cannot be applicable to system (). This
implies that the results of this paper are essentially new and complement some corre-
sponding ones already known.

4 An example
Example . Consider the following impulsive stochastic fuzzy neural networks with
time-varying delays and distributed delays:

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

dx(t) = –( + cos x(t))[x(t) – c(t)f(x(t)) – c(t)f(x(t))
–
∧

j= αj(t)gj(xj(t – τj(t)) + I(t) +
∧

j= Tj(t)uj(t)
–
∨

j= βj(t)gj(xj(t – τj(t)))) +
∨

j= Hj(t)uj(t)] dt
+ σ(x(t)) dω + σ(x(t)) dω,

dx(t) = –( + sin x(t))[x(t) – c(t)f(x(t)) – c(t)f(x(t))
–
∧

j= αj(t)gj(xj(t – τj(t))) + I(t) +
∧

j= Tj(t)uj(t)
–
∨

j= βj(t)gj(xj(t – τj(t))) +
∨

j= Hj(t)uj(t)] dt
+ σ(x(t)) dω + σ(x(t)) dω,

()

where
(

c(t) c(t)
c(t) c(t)

)

=

(
. .
. .

)

,

(
α(t) α(t)
α(t) α(t)

)

=

(












)

,
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(
β(t) β(t)
β(t) β(t)

)

=

(












)

,

fi(r) = gi(r) =


(|r + | – |r – |), τj(t) = .| sin t| + ., i, j = , ,

σ(x) = .x, σ(x) = .x, σ(x) = .x, σ(x) = .x,

Tij(t) = Hij(t) = uj(t) = . + t, Ii(t) =  + t (i, j = , ).

Obviously, system () satisfies assumptions (A)-(A) with

a = , a = , a = , a = ,

h = , h = , μi = νi =  (i = , ).

It can easily be checked that the assumption (A) is satisfied with s = ., s = .. Let
p = . It is easy to compute N = ., N = . There exists a positive number  < u = . <
 such that  < N =  < uN = . × . = .. Clearly, all conditions of Corollary .
are satisfied. Thus system () has a unique equilibrium point x∗ which is globally mean
square exponential stable.

5 Conclusions
In this paper, we have studied the existence, uniqueness, and pth moment exponential
stability of the equilibrium point for stochastic fuzzy Cohen-Grossberg neural networks
with time-varying delays. Some sufficient conditions set up here are easily verified and
these conditions are correlated with parameters and the magnitude of noise the system
(). The obtained criteria can be applied to design globally mean square exponentially
stable fuzzy Cohen-Grossberg neural networks.
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