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1 Introduction

In recent years, Cohen and Grossberg BAM neural networks have been extensively stud-
ied and applied in many different fields such as associative memory, signal processing, and
some optimization problems. They have been widely studied both in theory and applica-
tions [1, 2]. Many results for the existence of their periodic solutions and the exponential
convergence properties for Cohen-Grossberg neural networks have been reported in the
literature (see, e.g., [3—14] and the references therein).

In this paper, we would like to integrate fuzzy operations into Cohen-Grossberg BAM
neural networks. Speaking of fuzzy operations, Yang and Yang [15] first introduced fuzzy
cellular neural networks (FCNNs) combining those operations with cellular neural net-
works. So far researchers have found that FCNNs and fuzzy Cohen-Grossberg neural net-
works are useful in image processing, and some results have been reported on stability,
periodicity, and antiperiodicity (see, e.g., [15—-23] and the references therein).

In fact, both continuous and discrete systems are very important in implementing and
applications. But it is troublesome to study the existence and stability of periodic solutions
for continuous and discrete systems, respectively. Therefore, it is meaningful to study that
on time scales, which can unify the continuous and discrete situations. In this paper, we
consider the following fuzzy Cohen-Grossberg BAM neural networks with impulses on
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time scales:

22 (1) = —ai(xi () [eilxi(t) = N2y )it - )
-V BiOf it — ) + E®)], teT*t#t,
Ai(xi(t) = I (xi(8), keN,i=1,2,...,n
¥ (8) = =By ()1 (3(0) = N\izy pis(Dgi(xi(t - o))
- Vi ai(Ogxi(t—0y) + F(1)], teTht#4,
A8 = Tu(t), keN,j=1,2,...,m.

@

where x;(£), y;(¢) are the activations of the ith neuron in X-layer and the jth neuron in
Y-layer, the functions a;, b; represent the abstract amplification functions, whereas the
functions c;, d; represent the self-excitation rate functions; time delays 7j; and o;; are pos-
itive constants, which correspond to the finite speed of the axonal signal transmission;
a;ji(t), Bi(t), pi(t), q;;(t) are elements of fuzzy feedback MIN template and fuzzy feedback
MAX template in X-layer and Y -layer, respectively; /\ and \/ denote the fuzzy AND and
fuzzy OR operations, respectively; E;(¢) and F;(¢) denote the ith and jth components of an
external input source introduced from outside the network to the cell i in X-layer and the
cell j in Y-layer, respectively; T is an w-periodic time scale, which has the subspace topol-
ogy inherited from the standard topology on R. We denote It = I N'T, Ax;(&) = x:(£]) -
xi(80), Ayi(te) = yi(85) — y;(&), where x;(£]), xi(t;), y; €0, y(8) (i=1,2,...,m,j =1,2,...,m)
represent the right and left limits of x;(x) and y;(t) in the sense of time scales; {t} is a
sequence of real numbers such that #; < £ < - - - and limg_, ;o £k = +00. There exists a posi-
tive integer g such that . = & + @, lixrg = Lits Jix+q = Jik, k € N. Without loss of generality,
we also assume that [0, w)T N {tx, k € N} = {t1,83,...,¢,}. Let R* = (0, +00) and T* = R*N'T.
The initial conditions associated with system (1) are of the form
{xi(t) =¢i(t), te[-7,0]T, T =maxi<ij<.{T;i}, 2
yi(t) = ¥(t), te[-0,0]r,0 =maxi<;j<.{oj},

where ¢;(t) € C([-7,0]T,R), ¥;(t) € C([-0, 0], R). For convenience, we introduce the no-
tation

f= é /0 f0nL Ifl= ( /0 wlf<t>|2At>m,
L ([ s

where f is an w-periodic function.

f: max Lf(t)

te[0,0]T

Throughout this paper, we make the following assumptions:

(Al) E;, Fj, a5, Bjipijq;5 € C(T, R) are w-periodic functions, tj;,05 e R*,i=1,2,...,n,
j=12,...,m.

(A2) a;,b; € C(R,R*) are bounded functions, namely, there exist positive constants a;,

a;, b/" E, such that g; < a;() <a;, b/’ <b() =< E,, i=1,2,...,m,j=12,...,m.

(A3) ¢;,d; € C(R,IR*) are delta differentiable, and 0 < ¢; < ¢/* <§;, 0 < Q; < d}-A < 8;,
¢(0)=0,0(0)=0,i=1,2,...,n,j=1,2,...,m.

(A4) fi,gi € C(R,R), and there exist M;, Nj, kj, v; (i =1,2,...,n,j =1,2,...,m) such that
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i) —fi)| <kjlu—vl,  |gw) - gW)| < vilu—vl.

(A5) Iy, Jik € C(R,R), and there exist positive constants pi, pj, such that [Ix] < pi,
Ul < pjpo k€N, i=12,...,m,j=12,...,m.

The organization of the paper is as follows. In Section 2, we introduce some defini-
tions and lemmas. In Section 3, by using coincidence degree we establish sufficient condi-
tions for the existence of the periodic solutions of system (1). In Section 4, by constructing
Lyapunov functional we derive sufficient conditions for the global exponential stability of
periodic solutions of system (1). An example is given to demonstrate the effectiveness of
our results in Section 5. Conclusions are drawn in Section 6.

2 Preliminaries
In this section, we shall first recall some basic definitions and lemmas, which are used in
what follows.

Let T be a nonempty closed subset (time scale) of R. The forward and backward jump

operators o, p : T — T and the graininess i : T — R* are defined, respectively, by
o(t)=inf{seT:s>t}, p(t) =sup{seT:s<t}, u()=o(t)-t.

A point t € T is called left-dense if £ > inf T and p(¢) = ¢, left-scattered if p(¢) < ¢, right-
dense if t < sup T and o () = ¢, and right-scattered if o () > t. If T has a left-scattered maxi-
mum 1, then TX = T'\ {m}; otherwise, T* = T. If T has a right-scattered minimum 1, then
Ty =T\ {m}; otherwise, Ty = T.

Let w € R*; then T is an w-periodic time scale if T is a nonempty closed subset of R such
that ¢ + w € T and u(t + w) = u(t) for all £ € T.

A function f : T — R is right-dense continuous if it is continuous at right-dense points
in T and its left-side limits exist at left-dense points in T. If f is continuous at each right-
dense point and each left-dense point, then f is said to be a continuous function on T.

For y: T — R and ¢ € T¥, we define the delta derivative y*(t) of y(¢) as the number (if
exists) with the property that for given ¢ > 0, there exists a neighborhood U of ¢ such that
Ily(o (£)) = y(s)] = y2(O)[o (£) — ¥(5)]| < elo(¢) —s] for all s € U. If y is continuous, then y is
right-dense continuous, and y is delta differentiable at ¢, then y is continuous at ¢. Let y
be right-dense continuous. If Y2(£) = y(¢), then we define the delta integral by f; y(s)As =
Y() - Y(a).

Definition 2.1 [24] Ifa € T, supT = R, and f is rd-continuous on [0, c0), then we define
the improper integral by

oo b
f f@ae=lim | fB)At,

provided that this limit exists, and in this case, we say that the improper integral converges.

If this limit does not exist, then we say that the improper integral diverges.

Definition 2.2 [25] For each t € T, let N be a neighborhood of ¢. Then, for V € C.4[T x
R”,R*), we define D* V2 (t,%(t)) so that, for every & > 0, there exists a right neighborhood
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N, C N of t such that

V(o (t),x(0 (1)) - V(s,x(0 (1)) — u(t, s)f (¢, x(t))
u(t,s)

<D'VA(t,x(t)) + ¢

for each s € N;, s > t, where u(t,s) = o (t) —s. If t is rd and V'(¢,x(¢)) is continuous at ¢, this
reduces to

V(o (t),x(0(£)) = V(t,x(0 (2)))
o(t)—t ’

D'VA(t,x(t)) =

Definition 2.3 [25] Let T # R be a periodic time scale with periodic p. We say that a
function f : T — R is w periodic if there exists a natural number # such that o = np, f(¢ +
) =f(t) forall t € T, and w is the least number such that f(t + w) = f(£). If T = R, then we
say that f is @ > 0 periodic if w is the least positive number such that f (¢ + ) = f(¢) for all
teT.

A function 7 : T — R is called regressive if 1 + u(£)r(t) # 0 for all £ € T*.
If r is a regressive function, then the generalized exponential function e, is defined by

(£, 5) exp{/ &) Ar}, s,t €T,

with the cylinder transformation

log(1+hz) I 7!0
Ene) = h
z, h=0.

For two regressive functions p,q: T — R, we define

p
L+up

pOq=p+q+upg PO q:=p®(©9); Op:=-

Lemma 2.1 [26] Let p, q be regressive functions on T. Then
(i) eo(t,s)=1and e,(t,t) =1;
(i) ep(a(£),5) = (1 + u(Op(t))ep(t, s);
(iil) ep(t,8)epn(s,r) = ey(t,1);
(iv) e, (-,5) = pey(-,).

Lemma 2.2 [27] Assume that f,g: T — R are delta differentiable at t € T¥. Then
(1)" () =2 (0)g(&) + £ (0 (9)g (&) = f()g™ @)+ (D)g (0 (1))

Lemma 2.3 [28] Let t1,t; € [0,w]r. Ifx: T — R is w periodic, then
x(8) <x(t)) + /0 w|xA(s)|AS and  x(t) > x(t;) - /0 w|xA(s)|As.

Lemma 2.4 [29] Let a,b € T. For rd-continuous functions f,g : [a, bt — R, we have

b b ) 1/2 b ) 1/2
/[f(t)||g(t)|At§(/ 7o) At) (/ 1600 At) .
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Lemma 2.5 [29] Let T be an w-periodic time scale. Then o (t + w) = o (t) + w forall t € T.

Lemma 2.6 [29] Letf be a continuous function on [a, bl that is A differentiable on [a, b)r.
Then there exist €, 1 € [a, b)T such that

[REOB-a) <f(b)-fl@) <f*(@)(b-a).

Lemma 2.7 [15] Let x and y be two states of system (1). Then we have

<) _lei0)]|g® - g )]

j-1

/\ ei(B)gi@) - \ (g ()
j=1

j1

and

<> |Bi®)|lgi®) - )|

j=1

\/ BiOgix) - \/ Bi(t)g )

Jj=1 Jj=1

Definition 2.4 The periodic solution u*(£) = (x}(¢),...,x:(£),71(2),...,ym()T of system
(1) with initial value (¢* (), Y* ()T = (¢ (£), ..., @5 ), Y5 @), ..., ¥k (£))T is said to be glob-
ally exponentially stable if there exists a constant M > 1 and ¢ > 0 such that, for every
net,

|u®) - u*(t)| < Meo:(t,n) (Z|‘Pi(7]) AV O AG) )
i=1 j=1

where 1 € [-max{t,o},0]T.

3 Existence of periodic solution
In this section, based on Mawhin’s continuation theorem, we study the existence of at least
one periodic solution of (1). To do so, we shall make some preparations.

Let X, Y be two Banach space, L : DomL C X — Y be a linear mapping, and N : X — Y
be a continuous mapping. Then L is called a Fredholm mapping of index zero if dim Ker L =
codimImLZ < +oo and ImL is closed in Y. If L is a Fredholm mapping of index zero and
there exist continuous projectors P: X — Xand Q: Y — Y such that ImP = Ker L, Ker Q =
Im(/ — Q), then the mapping L|pomznkerr : (I — P)X — ImL is invertible. We denote its
inverse by K,,. If 2 is an open bounded subset of X, then the mapping N is called L-compact
on Q if QN(Q) is bounded and K,(I-Q)N: Q — X is compact. Since Im Q is isomorphic
to Ker L, there exists an isomorphism J : Im Q — Ker L.

Lemma 3.1 [30] Let X, Y be two Banach spaces, and let Q C X be open bounded. Suppose
that L :DomL C X — Y is a linear Fredholm operator of index zero with DomL N Q # ¢
and N : Q — Y is L-compact. Furthermore, suppose that:

(a) foreach A €(0,1), x € 92 NDomL, Lx # ANx;

(b) foreach x € 32N KerL, QNx # 0;

(c) deg{JQNx,2NKerL,0} #0.
Then the equation Lx = Nx has at least one solution in Q N Dom L, where S is the closure
of 2, and 02 is the boundary of 2.
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Definition 3.1 A real matrix A = (a;}),x is said to be a nonsingular M-matrix if a; < 0,
i,j=1,2,...,n and all successive principal minors of A are positive.

Theorem 3.1 Under conditions (Al)-(A5), let H be a nonsingular M-matrix of the form

H, H,
H= ,
Hs; H,
where

H, = diag{a, — a,wa61,...,a, — a,0a,s,},

H, = (hij)mxm Hs = (hl,l)

nxm’

1 w _ -
hi‘ =— — + aia) —ﬁi &»i + i Kb(s/,
' (Qi ‘)«/i(' Pieibr®

/ 1 Oz
hj; = —(EL, + ij> Ebj(pij +q;)viaidi,
H, = diag{b, - b,wb:$},...,b,, - b,,0b,3,,}.

Then system (1) has at least one w-periodic solution.

Proof Let C[0,w; Ly, ..., tylT = {u: [0, w]T — R™™ is a piecewise continuous map with first-
class discontinuity points in [0, w]T N {#}, and at each discontinuity point, it is continuous
on the left}. Take

X={ueClo,wt,... . tolrlult + w) = u()}, Y =XxREmxa:D
with the norm Jlullx = 37 [xilo + 2°7", [5jlo, where |xilo = maxeejo,)y [:(6)] and [yjlo =
maxefo,w]; |9j(t)|. Then X is a Banach space.

Set

L:DomLNX —Y, u— (u®, Au(ty),..., Au(t;),0) and N:X—>X,

where
A\ [ ) hyn()\ (0
N (@ | e | |of|
Jn(i (&) e |70
A”*;“(t) Jml(y;,(tl)) qu(y;(tq)) 5

Ai(t) = —ai(x:(2)) |:Ci(xi(t)) - /\aﬁ(t)ﬁ(y;(t -7) - \/ Bii(0)f; (£ — 7)) + Ei(t):|:
j=1

j=1

A,(t) = —b,'(y,'(t)) |:d/(}’j(t)) - /\Pi/(t)gi(xi(t - Gij)) - \/qij(t)gi(xi(t - Gij)) + F/(t):|.

i=1 i=1

Page 6 of 21
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It is easy to see that
KerL = {xeX:x:heR"*m},

w q
ImL = {z:(f,cl,...,cq,d)eY:/ f(s)As+ZCk+d:0}.
0

k=1

Thus, dimKer L = codimImZ = n+m. So,ImL is closed in Y, and L is a Fredholm mapping

of index zero. Define the project operators P and Q as

1 w
Px = —/ u(t)At, xeX
w Jo

w q
Qz=Q(f,Cy,...,Cpd) = (é[/o f(s)As+ZCk+di|,0,...,0,0>.
k=1

Obviously, P and Q are continuous projectors and satisfy
ImP=KerL, ImL =KerQ=1Im( - Q).

Denoting L;l = L|pomznkerp and generalized inverse by K, = L', we have

t w t q
(K,2)(t) = /0 f(s)As+ZCk—é /0 /0 fASAE=D " C
k=1

>ty

Similarly to [31], it is not difficult to show that QN(R) and Kp(I — Q)N () are relatively
compact for any open bounded set  C X. Therefore, N is L-compact on £ for any open
bounded set Q2 C X.

Now, to apply Lemma 3.1, we only need to look for an appropriate open bounded sub-
set Q2. Correspondingly to the operator equation Lx = ANx, A € (0,1), we have

xf (8) = M—a;(x:(2)) [ci(xi(2)) - /\,m:1 ;i ()it — 7))

= Vo Bt - ) + E@},  te Tt # 4,
Ai(xi(tr)) = M (xi(tr), keN,i=1,2,...,n;
J’;A(t) = M=bi(yi(O)d (1)) — N\iLy pi (gt — 0;))

- Vi q50)gixi(t — o) + FO1),  te Tt #t,
A (t) = M), keN,j=1,2,...,m.

3)

Suppose that u = (xy,...,%,,Y1,...,¥m) " is a solution of system (3) for a certain A € (0,1).
Multiplying both sides of the first and third equations in system (3) by x* and yjA, respec-

tively, and integrating over [0, w]T, we get
“ 2
/ |x(6)] At
0

w
Sﬁi/
0

ci(xi(0) = \ el (35t - %)
j=1
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- \/ Bii@)f; (vt — ix)) + Ei(t)

j=1

x (0 At

<a| [ [ei(x®) - (02 @) At
| lea0) - a0
+/0 /

/\ @i (8)fi (y(t — 7)) - /\Ol/i(t)gj(o)
j=1 j=1
. /0 \

\/ Bii@)f; (& - ir)) — \/ Bji(t)g;(0)
j=1 j=1
+E wx-A(t) At .
[ elar

In view of Lemma 2.4, Lemma 2.7, and (A2)-(A4), we have

/”|x,4(t>|2m
0
w m w ) 1/2
a;| 6 i A GII @i+ B (0t = Tji A)
§a|: /0 (0| |22 @) t+j21:(oz]+/3])</o I (vt — 7)) |“ At

w 1/2 w
Arpy |2 T, A
x( /O 12 0)| At) +E /0 ® (t)|Ati|

fﬁi[éillxillzﬂx? L+ Y@ + Bovadd 2], + Bt ||2],

j=1

x2 (DAt

x ()AL

namely,

m
B [&»nx,-nz + Y (@ + B)oM; +E\/c_o} = @dillxill2 + By

1

where B; = Z,»[Z;fl(&ﬁ + Bﬂ)\/EMj + E;/w). Similarly, we obtain that

Iy, < b [8; Iyjllz + Y (@ + Gy VN +F,«/B} = b8 |lyjll2 + B},

i=1

Page 8 of 21

(5)

where B; = Z/[Z;Iﬂ(l_’tj + %)ﬁNi + F; /o). Setting to = t; = 0 and ;41 = w, in view of (3),

(A2)-(A5), Lemma 2.4, and Lemma 2.7, we have

/w|xiA(t)|At
0

g+l

t q
> [ hp@lace Yl ()|
k=1 t/:—l k=1

<a [/ow|cf(xt(t))|“ ' /O‘” .

N\ i@ (5;(8) = /\ i()fi(0)| At
j=1 j=1
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+/ Aaji(t)ﬁ(yj(t_ T;i)) - /\Olji(t)ﬁ(t) At
j=1

0o |y

+ [V B, - \/ st ae

j=1 =1
+ /0 \/ Bii@)f; (& - ir)) — \/ﬂjt(t)ﬁ(t) At + Eiw:| +qli
j=1 j=1

w
<a;

/ |ci(xi(2))| AL + Z(aji +Bﬂ)/(;wlﬁ(9’i(t))’At
=

(=)

+ a}l +ﬁﬂ / [f y;(t — r,, ,»(y,'(t))|At+Eia):| +q7k

m
<a@| ivolxill + Y@+ BioM

j=1

+

s

@t B L, Ew] v di

~.
I
(=

[5 NG ||xl||z+2 @i + Bj)oM,

j=1

+ > @i+ /3,, ”(b 8119112 + B) +Ew} +qlx (6)
j=1

and

[ bpolar
0

n
= Zj |:5;«/5||yj||2 + Z(ﬁly + %)U)N
+Z(pl]+ql})7w3/2(a6 AIEAP +B)+Fa):| +q]k. (7)
i=1

Integrating both sides of (3) from 0 to w, we have

w

a,(x,(t))c,(x,-(t))At’
‘/ a; x, |:/\a,, yj (t- r,,

+ /\ﬂ,xt)f yj(t - 7)) + E; (t)}AH > I (xi(te)

j=1 k=1

) m
<a; /
0o L[

N\ i ®f(5,(8) = /\ 2i()f;(0)
j=1
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+ /\aji(ty;(y/(t - 7)) - /\aji(t)ﬁ(yj(t))
=1

j=1

+ |\ B (35®) - \/ Bit)f5(0)

j=1 j-1

+ \//311 t)f y/ t f/z) \/:3]l(t y;(t))
j=1

j=1

+E;(¢t i|At+Z|Ik x; tk)

k=1

‘|:Z Aji +Eji)/(; lﬁ(yf(t))’At

j=1

n (oz,l +B;) / (i = i) = £ (3;(0)) | At + E; w:| + Z|Ik xi(t)) |
1

Jj= k=1

<3 [Z(aﬂ + Bj)oM; + Z(aﬂ + /3,,)\/—%603/2 (B8;1lyjll2 + B)) + Ei w] + 40k

j=1 j=1

and

’/ bi(y/(t))dj(y/(t))At‘

|:Z(pl] +q;)wN; + Z(pl} + ql])7w3/2 (@dillxill2 + B;) + w:| +qpp-
i=1 i=1

Applying Lemma 2.6 and (A3), we obtain

/w a; (x,-(t))xi(t)At‘
0

a; Kj
<Q—[Z(a,,+ﬂ,, wM+Za,,+ﬂ,l % S’Z(ba||y,||z+B)+Ew}+5qpk 8)

and

‘ fo ’ b; (y,-(t))y;(t)At'

Z i 1 4
<2 |:Z(pu +q)oN; + Z(pu + qu)—a):"/z(a Sillxilla + B;) + F; a):| +=qpp. (9)
G L'm i-1 V2 &

From Lemma 2.3, for any ¢, £}, té,ti el0,wlt,i=1,2,...,n,j=1,2,...,m, we have

f:ﬂi(xi(t))xi(t)AtSfowﬂi(xi(t))xi(tf)At

+ [y ailx(®)(fy 162 ()| At) At
f:ﬂi(xi(t))xi(t)Atffowai(xi(t))xi(té)At

= Jo aix@))(fy 16 () At At

(10)
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and

fo b;(y;())y; (¢ At<fo bj(y;(6)y; (&

+fo bj(y;(2) fo |y; )IADA
Iy b)) At < [ bi(y;()y; () At

= Jo O fy 1y ()AL At.

(11)

Dividing by [’ a:(x;(t)) At and [;” b;(y;(¢)) At both sides of (10) and (11), respectively, we
obtain, fori=1,2,...,n,

x:(th) > T et Iy ailxi(@)xi (&) At — [y | (0| AL, 2)
%i(t)) < Joeraia: Jo EROAL + [ 15 ()AL,

and, forj=1,2,...,m
EY> L (Op )y — [ 1yA(

y(ty) < m Iy by AL+ [ 1y (t)lAt

Let #;,¢;,t ], t; € [0, w]T be such that x;(£;) = max;e[o,w)y %i(£), xi(t;) = Minge(o,m)p %i(£), yj(f;) =
max;e[o,wly ¥i(t), y/(_l.) = miNe[o,0)7 ¥j(¢). From (12) we have, fori=1,2,...,n,

1
xz’(E,’) > -

=i

/wai(xi(t))xi(t)At‘ - /w|xiA(t)|At
0
n ; |:q,0k +a; (Z(aﬂ + ,BN)a)M + Z o + ,Bﬂ

Jj=1 j=1

Ki 3127 o N T
x Ea) (B3]115;ll2 + B)) +E,-a))j|

==

—a; |:5i«/5||xi||2 + Z(E/i + B)oM; + Z(aji +B;)

j-1 j=1

K 3127 o N LT
X Ea) (b]8]||y]||2 +Bj) +E,-w:| — 4Pk

and

1

a,w

xi(t;) < fwﬂi(xi(t))xi(t)At‘ - /w|xiA(f)‘At
i 0 0

1 _ m B _ m . o
0w |:q,0k +a; (Z(a;’i + Bi)oM; + Z(Oé/i +Bji)

j=1 j=1

IA

Ki 327 o N, T
X Ea) (b](S]”y]”z +Bj) +Eia)>i|
+a; |:5ix/5||xi||2 + Z(aji + B wM; + Z(aji +B;)
j=1 =1

Ki 3127 o / =
X ﬁw (B8 11y;ll2 + B)) +E,«a)i| +qpx.
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Similarly, from (13) we obtain, forj=1,2,...,m

y(t) = - b—’f i (75(8)); t)At‘ /|y, )| At

1
b Q |:q:01< (Z@U + ‘_Iij)w]\[i + Z(ﬁij + ‘_Iij)
]

i=1 i=1

IV

Vi — =
x ﬁwm (@8illxill> + B;) + Fja)>:|
|:5 \/—”)’1”2 + Z(pt/ + ql])a)N + Z(pl] + ql]
i=1

v _
x 7’5w3/2(ai5illxillz +B;) + F/w} ~qpi

/ (y,(t))y,(t)At’ / ly ()| At
0
|:qpk +b; (Z(pu +q)wN; + Z(pu +q;)

b,Q}

Vi — —=
\/—%0)3/2 (ai8i||xi||2 + Bl) + F/a)>j|

X

n n
+b; {wany,-nz +Y @y +qoNi+ Y _(B; +qy)
i=1 i=1
V; _ —
X T’Ew’"z (@:8illxill2 + B;) + F,w:| +q0;-
Therefore, we obtain that, for i =1,2,...,n,

1 m _ m _
" [qpk +a (Z(aﬁ +Bp)oM;+ Y @+ B;)

4,Qi j=1 j=1

max |xl t)|
te[0,0]T

K a2 o T
X 5 (b8 1;ll2 + B)) +Eia)>:|

+a; |:5 ol + Z(&ji + B)oM; + Z(ajz’ +B;)

j-1 j-1

X 7’5 @*” (B8] lIy;ll2 + B) +Ew} + qPx (14)

and, forj=1,2,...,m

max [y;(¢ |_bQ1

|:q,ok +b; (Z(pl] +q)wN; + Z(pl] +4;)

i=1

Vi —
x E > (@8i]1x:ll> + By) +F/a)>j|
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+ E/ |:5;\/5||yj||2 + Z@ij + qij)wNi + Z@ij + qij)

i=1 i=1

Vi

W32
X —w”"(a;8;||%; |2 + B; +Fa) + (15)
\/E ( ’ ) :| qpk

In addition, we have that

llill = (/ !xi(S)!2A8> <Vo max |x()|, i=12,...,n
0 te[0,w]T
@ 2 )
llyll2 = (/ |y(s)] As) <Vo max Iy, , j=L12,...,m.
0 te[0,w

By (14) we obtain, fori =1,2,...,n,

a; \/—”xtHZ = Q_ |:q10/< +a; <Z(a]l + ﬂ/;)wM + Z(a]l + :311

j=1 j=1

K 31207 A=
x Ea) (b8 1yjll2 + B)) +E,-a)):|
m m
+a,04; |:5ix/5||xi||2 + Y @i+ BpoM;+ Y @i+ B)
j=1 =1

Ki 327 o N, T
X Ew (b8 1yjll2 + B)) +Eiw} + 4,04k

that is,
_ _(_ N~ = K -, 1
(@~ a,028) |l - @ @+ ]Z:lj(aﬁ+ i) 5 ebll < =T (16)

where, fori=1,2,...,n,

1 m B m B ) B
;= (ng + —) |:619k +d; (Z(aji +BoMj+ Y (@ + ﬂ/i)%w?’/zB} + E,-w) j|
Qi -
j=1

i -1

Similarly, we have

(by - byob;3)) Iyl (bw+ )Z(p,,w,, wa6||x,||2<f /) (17)

where, forj=1,2,...,m

Vi —
T/ (b w + —) |:qgk +b; (Z(pl] + ql] YoN; + Z(pu + ql] \/in/zBi +Fja)):|.

Denote [|u]l2 = (%1 ]2, - 1% ll2, 191112, -, |19 ll2)" and

T=—(Y.0s T Y, T’)

S
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Then (16) and (17) can be written in the matrix form
Hllull =7.

From the conditions of Theorem 3.1 we have that H is a nonsingular M-matrix, so that
lully <H'Y := (Dy,...,D,,D,..., D), (18)

thatis, [|x;llo <Dy, i=1,2,...,n,and |y;ll2 §D]’.,j= 1,2,...,m
From (14) and (15) we have, for i =1,2,...,n,

t;ﬁ)ﬁﬁxl t)| a0 |:qpk +4; (Z(aﬂ + ,le)a}M + Z(aﬂ + ,B”

= j=1 j=1

Ki 327 oy N LT
X ¢ (b;8,D; + B)) +Eia)):|

+ﬂl|:8 \/_D +Z(0[]z+ﬂﬂ Cl)M +Z(a11+ﬁ]z

j=1
K/ 3/2(7, &' 1Y / T ey
X Ea) (bj8;D; + B)) +Eiw:| +qpi = G;

and, forj=1,2,...,m

1 R .
X 0] < bow [qpk * bf(Z(Pz’/ +qoNi + ) (7 +7;)

== i=1 i=1

V; _ —
X \/—%wsm(ai&Di + B,) + FIC())]

n n
+ Ei |:8;J5D; + Z(ﬁlj +q;)wN; + Z(ﬁlj +q;)

i=1 i=1

Vi _ —
X \/—%ws/z(a,-&-Di +B) +F,»a)i| +qpp = G}f.

Let G=)", Gi+ 3, G; + Gy, where Gy is a positive constant. Clearly, F is independent
of A. Take 2 = {u € X|||u||x < G}. Obviously, 2 satisfies condition (a) of Lemma 3.1.

When u(t) € 9QNKerL = dQ NR™"™, i is a constant vector with ||#|| = G. Furthermore,
take J: ImQ — KerL. Then

JQON (x;) = —a;(x;) |:Cl(xt) /\%J(Y;) \/ﬂ]zf(y]) +E:| +— lek(xz

j=1 j=1
fori=1,2,...,n,and
n n . 1 q
JON(y)) = —b;(y)) |:d;‘()’j) - /\f?ijgi(xi) - \/ qiigi(x:) + F;i| t Z[jk(yj)
i=1 i=1 k=1

forj=1,2,...,m
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We can take G large enough such that

uT JQNu < Z{—xl (x; [Cl(xl - N\ &) - \/ Bifiy) + EAl}
j=1

i=1 j=1

1 q

+ = Elz’k(xi)}

> { -2ib () |:d;‘(y1') - N\ bigitx:) - \/ qigi(exi) + ﬁ;j|
j=1 i=1

i=1
14
Y Z//k(yi)}
k=1
< 0.
Hence, for any x € 92 N Ker L, QNu # 0, namely, condition (b) in Lemma 3.1 is satisfied.

Furthermore, let W(y;u) = —yu + (1 - y)QNu. Then, forany u € 9QNKer L, u? W (y;u) <
0, and we get

deg{JON, 2N KerL,0} =deg{—u, 2N KerL,0} #0.

This shows that condition (c) in Lemma 3.1 is satisfied. Thus, by Lemma 3.1 we conclude
that Lu = Nu has at least one solution in X, that is, system (1) has at least one w-periodic

solution. This completes the proof. d

4 Global exponential stability of periodic solutions
Suppose that u*(£) = (x}(2),,..., x5 (&), 71(2),...,ym()T is an w-periodic solution of system
(1). We will construct some suitable Lyapunov functions to prove the global exponential

stability of this periodic solution.
Theorem 4.1 Assume that all conditions of Theorem 3.1 are satisfied. Suppose further

that:
(A6) The impulsive operators Iy (x;(tx)), Jix(yj(tx)) satisfy

(i) = —vaxi(t), O<yu<2,i=1,2,...,nkeN,
Tk (&) = =V j(ta),  0<¥yp<2,j=12,...,mkeN.

(A7)

a;0i -3 (@ + ﬁij)v,@j >0, i=1,2,...,n,
QQ]—ZZ’:I(Ejﬁﬁﬁ)K/EpO, j=1,2,...,W[

Then the w-periodic solution of (1) is globally exponentially stable.

Proof According to Theorem 3.1, we know that system (1) has an w-periodic solution
W' (t) = (5 (0), . 2,0, 1 (@), 5, (DT
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Let u(t) = (x1(£), ..., %, (), y1(£), ..., y»(t))T be an arbitrary solution of system (1). In view
of (A6), from (1) we have

(i) — x5 ()™ = —[a; (i (8))ci(x:(8)) — as o} (£))ci(oxf (£))]
+ [ai (i) N2y i (Of (¢ = i)
—a;(x} (1)) /\,”Zl Olji(t)ﬁ@;(t - T;))]
+[aixi(0) V12 B0t = 7))
—ai(x; (0)) V2, B0 (¢ = 7)),
t50,t 4t k=1,2,...,
Axi((te) — x5 (80) = —vacli(te) — %7 (&), i=12,...,m;
() =y ()™ = =[B; (D) ((0)) = by (v ()l (v} ()]
+ [b;(;(0) NIy pii(0)gi(xi(t — 07))
= by} () \iL pi(0)gi(xf (& = 0y))]
+ [bj(9;(1) V1, qii(8)gi(xi(t — o))
= by (1) V iz 4508 (8 - 0))]
t>0,t#tr,k=12,...,
Ayi((t) = 7 @) = v 0i(t) =7 &), j=1,2,...,m.

In view of this system, for ¢ > 0, ¢ # &, k € N, we have

D* |x,(t) = 2 ()| < —a,0ilx:(t) — %7 ()] + @ Y77 (@i + B)
X kjly;(t = 7ji) = 7 (€ = 7o),

— (19)
D*1y;(t) = y; (D1 = =byojly;(t) = 57 (O] + b; 3oL, (B + Gy)
X vilxi(t = o) = 7 (¢ = 0y)
fori=1,2,...,n,j=1,2,...,m. From (A6) we have that
i () — 27 (0] = 11 = yirel loei () — x5 (8) ] < oea(t) — xF (), (20)
i (&0) = v7 @O = 11 =Vl L) = 7 (@] < |y;(&) = y7 (&)

fori=1,2,...,n,j=1,2,...,m keN.
Let F; and G; be defined by

Fi(6) =a,0i—0; - 2;21(171; + qu)vizjeei(a(t): t—oy),
Gj(§) = bjo; = & — > @i + Bj)kjaies (T (2), t — 1),

where 6;,¢; € [0,00),i=1,2,...,m,j=1,2,...,m. It is clear that

m

Fi(0) = a,0i— Y (B +@y)viby > 0,

Jj=1

Gj(0) = byoj = D (@i + By > O

i=1

fori=1,2,...,n,j=1,2,...,m.
Since F;, G; are continuous on [0, 00) and F;(6;) — —o0, G;(§;) — —o0 as §; — +00, § —
+00, there exist Qi*,éj* > 0 such that F;(6/) = 0, Gj(éj*) =0 and F;(6;) > 0, G;(§) > O for
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Fi(e) = a;,0i — € — ijzl(l_’lj + ('_Iij)vizjes(a(t): t— Uz’j) >0,
Gj(e) = bjoj — ¢ - Yo (@i + Bi)iaiec ((t),t - 7ji) = 0

fori=1,2,...,n,j=1,2,...,m.
Now let us define

wi(t) = e.(t,8)|x:(t) —xf (1), tel-t,00),i=12,...,n,
wj(t) = es(t» 5)|}’/(t) _y;‘k(t)|’ te [_0» OO)»] =1,2,...,m,

where § € [-max{t,0},0],fort>0,t #t, keN,i=1,2,...,n,j=1,2,...

It follows from (19) and (21) that
D* u(b) < see(t,8)|xi(t) — x5 (2)]

+ e (o (8),8) <_259i|xi(t) - x5 (8)]

+a; Z(aji + Eji)Kjb’j(t - Tj) —J’;'k(t - Tjj) ’)
-1
< —(a,0i — &)pi(t)

m

+a; Z(aji + Bji)Kjee (o).t — i)yt — T),

j=1

D'op () < ~(b,e) - £)y(0)

+5 > By + Gy)vies (o(6), £ — o) it — o).

i=1

Also, we have

:u‘l(t]‘:) = |1 - Vl’kl/“"i(tk) < /"Li(tk)’ i= 1,2,...,1’1,/( [S Ny
wi(tH) =11 —V/kla)j(tk) <wite), j=1,2,...,mkeN.

Consider the Lyapunov functional

V(t) = Z(Mi(t) +a; Y (loi(®)] + [ Bi®)])

i=1 j=1

x kjee (o (£),t - Tj}) /t a)j(s)As)

t—T/l‘

+ Z(w/(t) +5; ) (|py®)] + |25®)])

j=1 i=1

t

x vie (o (£),t - o) /

t—0jj

Mi(S)AS>~

Page 17 of 21

(22)

(23)

(24)
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Calculating the A-derivatives of V along (22) and (23), we get

D'VA(p) < Z |:_(21'Qi —&)ui(t) + a; Z(aji +B;)

i=1 j=1

x Kjee (o (2), £~ Tii)wi(t):|

+Z|: le—s a),(t)+b Z(pl}+qll

j=1 i=1

x viee (o (8), ¢~ Uij)l/«i(t):|

=- Z (Zl’Qz’ —&- sz(ﬁij + ('_I,‘/')Vz’es (U(t)r - Gij)) wi(t)

i=1 j=1

- Z (Qj,g; -e-— Zﬁi(aji + Bicjes (o (6),t — Tji))wi(t)

j=1 i=1

<= FEw® - Gle)wyt)

i=1 j=1

<0, t>0,t#t,keN.

Also,

Vi) - i(m )+ > (an(er) + 1860))

i=1 j=1

t+
x Kjeq (o (¢7), £ — r,»,-)/k a),»(s)As)

ty+ —Tji

+Zm:< (1) +b; Z (lps(&)| + |ai(z5)])

j=1 i=1

.
Ik

x vies (o (8, & U’/)/t

=0

Mi(S)AS)

IA

Z(Mi(tk) +a; Z(|fxﬂ(fk){ +|Bii(t)|)

i=1 j=1

73
X Kjes (a(tk), t — rj,») / w,»(s)As)
Tji

te—Tj;

+ Z(a};(tk) + b Z(|Pij(tk)| +|q5(8)])

j=1 i=1

173
x vieg (o (&), t —Uij)/

tk—o'l‘l'

Mi(S)AS>

= V(tk)¢ keN.



Cai and Zhang Advances in Difference Equations (2016) 2016:64 Page 19 of 21

On other hand, we note that V(¢) > 0 for ¢ > 0 and V(0) is positive and finite. Therefore,
it follows that V' (¢) < V(0) for ¢ > 0. From this and from (24 we obtain

0

Z Vz t) + Z “’1 Z (M,(O) + ﬁi Z(Eﬁ + B]’i)’(jes (U (0); —Tji) /
i=1

i=1 j=1 -

wj(s)As>

‘L']','

m n 0
+ Z (a)j(O) +b; Z(ﬁz’j +qj)sviee (0(0),~0y) / pci(s)As)

j=1 i=1 I

for t > 0. In view of (21) and the last inequality, we have, for ¢ > 0,

P CEEAGIES N OESAG]
i=1 j=1
= e@s(t» 6) |:Z (1 + Z Zj(ﬁi;’ + %)Vies (G(O)r _th)azj)

i=1 j=1

X dpa, | - 0)

+ Z (1 + Zﬁi(aji + Bkjee (0(0), _Tji)rﬁ)
j=1 i=1

x max |y;(8) yf(c‘?)‘:|

se[-7,0]T

sel-1

§Me@g(t,8)|:2 max ’gal —x(8) +Z max |1ﬁ, y}“((S):|,

i=1

where

m
M= max {1 + ng@i/ +qj)vies (0(0),~0)0ys

=i=nlygj= i1

n
1+ Zﬁi(ﬁﬁ + Eﬂ)/c/eg (0’ (O), _Tji) Tii (= 1.
i=1

By Definition 2.4 the periodic solution of system (1) is globally exponentially stable. This
completes the proof. O

5 Anexample
Example 5.1 Consider the following fuzzy Cohen-Grossberg BAM neural networks with

impulses:

X (8) = —a;(xi(0) [ci(xi(2)) + /\, 12 @)t = 7))

+ Vi B0t — 1) - E)], teT,t>0,
Axi(tk) = —O.lxi(tk), t=t=2ki=12;
y;A(t) = by (E)[d(;()) + NPy pi(Ogi(xilt — )

+ Vi 45(Ogixi(t - 0y) - F(®)], teT,t>0,
ij(tk) = —0.2yj(tk), t=tr=2kj=1,2,

(25)
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where T is a 271—periodic time scale, a; (1) = (2 + cosu), as(u) = %(2 —cosu), bi(u) =
- (2 + sinw), by(u) = = (2 — sinu), c1(w) = Ju, c2(u) = 3u, di(u) = 3u, dz(u) = 1u,
Jilu) = gi(”) = 2(lu+ 1] = |u = 1)), an(®) = 55 COSt aip(t) = an(t) = 0, () = 55sint,

Bu(t) = 55sint, Po(t) = 521( ) =0, Bua(t) = 55 sint, pu(t) = —smt pa(t) = le( ) =0,
pn(t) = smt qu(t) = 18 cost, qua(t) = gu(t) = 0, gx(t) = {3 siny, T;z(t) = sm t%(t)
—cost Kj = vi =1(i,j = 1,2). By calculating we have a; = a, = %»“1 =d,=5- b1 by =L
b =b,= 1277’ an = 210’ Qg = %’ Q=0 =0, Bn = %’ 322 20’ ,312 ,321 0,pn = Pzz =
E’Pu =Pn=0,91 =95 = %r‘_hz =qy =0.

It is easy to compute

7 7
8im 0 9027 0
5 29
E- 0 3t 0 " 54027
-1 _ 0 1 0
97221 487
2 1
0 24327 0 133
and
2 |
@01~ ) By + Tyibr = 1087~
j=1
a,o Z(p + ) ab > >0
82— 2j 2, 202 = ’
=) 1087

2

— 11
b0, — oy + Bi)kia = — >0,
910, izzl(au Bk 1207

2
, I
b,0} - Z;(azi +Boilkaliy = 10— >0
=

Hence, we have that E = (e;)44 is a nonsingular M-matrix. From Theorem 3.1 and The-
orem 4.1 we know that system (25) has at least one 277 -periodic solution, which is globally
exponentially stable.

6 Conclusions

In this paper, we have studied the existence and globally exponential stability of the pe-
riodic solution for fuzzy Cohen-Grossberg BAM neural networks with impulses on time
scales. Some sufficient conditions set up here are easily verified, and these conditions are
correlated with parameters of system (1). The obtained criteria can be applied to design

globally exponential stability of periodic continuous and discrete fuzzy Cohen-Grossberg
BAM neural networks.
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