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We investigate a class of fuzzy neural networks with Hebbian-type unsupervised learning on time scales. By using Lyapunov
functional method, some new sufficient conditions are derived to ensure learning dynamics and exponential stability of fuzzy
networks on time scales. Our results are general and can include continuous-time learning-based fuzzy networks and corresponding
discrete-time analogues.Moreover, our results reveal some new learning behavior of fuzzy synapses on time scales which are seldom
discussed in the literature.

1. Introduction

It is well known that many applications of neural networks
exist in diverse areas such as optimization, signal and image
processing, pattern recognition, and control system. These
applications are based on stability of equilibrium points of
the network models. Hence, stability criteria of equilibrium
points of networks have been greatly investigated in the
literature [1–4]. Meanwhile, more recently, there have been
several publications on the theme of neural networks where
fuzzy logic is used. Yang and Yang [2, 5] and Yang et al. [6]
have proposed a fuzzy cellular neural network to include and
analyze the ambiguity or vagueness inherent in the inputs and
outputs of neural networks. Further analysis of this type of
networks can be found in the works of Yuan et al. [4], Liu and
Tang [7], Huang and Zhang [8], Huang [9, 10], Chen and Liao
[11], and the references therein.

It is welknown that the theory of time scales has a
tremendous potential for applications in some mathematical
models of real processes and phenomena studied in physics,
population dynamics, biotechnology, economics, and so on.
Meanwhile, it is unsuitable to study the stability for con-
tinuous and discrete system, respectively. Therefore, it is
meaningful to study that on time scales which can unify the
continuous and discrete situations.Many authors incorporate

time scales into stability analysis of neural network models;
we can refer to [12–15].

Stimulated by [16], we consider a class of networks of
somatically crisp neurons with fuzzy learnable synapses on
time scales T described by
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where 𝑖 ∈ N = {1, 2, . . . , 𝑛}, 𝑢
𝑖
(𝑡) denotes the state of

neuron 𝑖 at time 𝑡, 𝑎
𝑖
denotes the passive negative stabilizing

feedback of neuron 𝑖, 𝑎
𝑖𝑗
, 𝑏
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weights of the various fuzzy and nonfuzzy synapses of neuron
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, 𝛽
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are disposable constants, and 𝑚
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a learnable synaptic weight of neuron when it is presented
with a constant input signal vector 𝑝 = (𝑝

1
, 𝑝
2
, . . . , 𝑝

𝑛
);

the external bias to the network is denoted by the constant
vector 𝐽 = (𝐽

1
, 𝐽
2
, . . . , 𝐽

𝑛
). The operators ⋁ and ⋀ denote,

respectively, the “max” and “min” operators used in fuzzy
logic. The learning equation is based on the Hebbian-type
[16, 17] unsupervised algorithmmodified by the introduction
of a forgetting term as proposed by Amari [18]. By using
auxiliary variables V
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where 𝑐 = ∑𝑛
𝑗=1
𝑝
2

𝑗
, 𝑖 ∈ N = {1, 2, . . . , 𝑛}, 𝑡 ∈ T+. Equation

(2) is quite general and it includes several well known neural
networks [16] and its difference analogue is
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Correspondingly, synaptic dynamic equation is as follows:
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where ∑𝑛
𝑗=1
𝑝
2

𝑗
= 1. In this paper, we will study learning-

based fuzzy networks (4) on time scales.Without the learning
component and T = R, (4) will include fuzzy networks
discussed by several authors recently (see [2, 4, 7, 9–11]). In
the absence of fuzzy synapses, our model reduces to the most
commonly studied Hopfield-type neural network. Moreover,
by using the calculus theory on time scale to unify and gener-
alize discrete-time and continuous-time learning-based fuzzy
networks, we can establish new sufficient conditions to ensure
existence and global exponential stability of equilibrium of
(4).

The paper is organized as follows. In Section 2, we present
some basic definitions concerning the calculus on time scales.
In Section 3, we develop Lyapunov functions technique
on time scale to give some sufficient conditions of global
exponential stability for (4). In Section 4, an example is given
to illustrate the effectiveness of our main results. Conclusions
remarks are given in Section 5.

2. Preliminaries on Time Scales

The basic calculus theory on time scales was initiated by
Hilger [19, 20], and Agarwal et al. summarize and organize
much of relative results inmonograph [21–23]. In this section,
we will introduce some basic definitions and lemmas.
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Definition 1. A time scale T is arbitrary nonempty closed
subset of the real set R with the topology and ordering
inherited from R.

Definition 2. On any time scale T , one defines the forward
and backward jump operators by 𝜎(𝑡) := inf{𝑠 ∈ T : 𝑠 > 𝑡}

and 𝜌(𝑡) := sup{𝑠 ∈ T : 𝑠 < 𝑡}; one puts inf 0 := sup T and
sup 0 := inf T , where 0 denotes the empty set. A point 𝑡 is
said to be left-dense if 𝑡 > inf T and 𝜌(𝑡) = 𝑡, right-dense if
𝑡 < sup T and 𝜎(𝑡) = 𝑡, left-scattered if 𝜌(𝑡) < 𝑡, and right-
scattered if 𝜎(𝑡) > 𝑡. The graininess function 𝜇 for a time
scale T is defined by 𝜇(𝑡) := 𝜎(𝑡) − 𝑡. If T has a left-scattered
maximum 𝑚, then one defined T𝑘 to be T − 𝑚. Otherwise,
T𝑘 = T .

Definition 3. For a function 𝑓 : T → R (the range R

of 𝑓 may be actually replaced by Banach space), the (delta)
derivative is defined by

𝑓
Δ
=
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𝜎 (𝑡) − 𝑡

, (6)

if 𝑓 is continuous at 𝑡 and 𝑡 is right-scattered. If 𝑡 is not right-
scattered then the derivative is defined by
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𝑠→ 𝑡

𝑓 (𝑡) − 𝑓 (𝑠)
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provided this limit exists.

Definition 4. A function 𝐹 : T𝑘 → R is called a delta-
antiderivative of 𝑓 : T → R provided 𝐹Δ = 𝑓 holds for
all 𝑡 ∈ T𝑘. In this case, one defines the integral of 𝑓 by

∫
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Definition 5. A function 𝑓 : T → R is called right-dense
continuous provided it is continuous at right-dense points of
T and the left sided limit exists (finite) at left-dense point of T .
The set of all right-dense continuous functions on T is defined
by 𝐶rd = 𝐶rd(T) = 𝐶rd(T ,R).

Definition 6. One says that a function 𝑝 : T → R is
regressive provided 1 + 𝜇(𝑡)𝑝(𝑡) ̸= 0 for all 𝑡 ∈ T . The
set of all regressive functions on a time scale T forms an
Abelian group under the addition ⊕ defined by 𝑝 ⊕ 𝑞 :=
𝑝 + 𝑞 + 𝜇𝑝𝑞. The additive inverse in this group is denoted by
⊖𝑝 := −𝑝/(1 + 𝜇𝑝). One then defines subtraction ⊖ on the set
of regressive functions by 𝑝 ⊖ 𝑞 := 𝑝 ⊕ (⊖𝑞). It can be shown
that 𝑝⊕ (⊖𝑞) = −(𝑝−𝑞)/(1+𝜇𝑞). The set of all regressive and
right-dense continuous functions will be denoted byR.

Definition 7. One defines the set R+ of all positively regres-
sive elements ofR byR+ = {𝑓 ∈R : 1 + 𝜇(𝑡)𝑓(𝑡) > 0 for all
𝑡 ∈ T}.

Next, we give the definition of the exponential function
and list some of its properties.
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Lemma 11 (see [3]). If 𝑝 ∈R and 𝑎, 𝑏, 𝑐 ∈ T , then

∫

𝑏

𝑎

𝑝 (𝑡) 𝑒𝑝 (
𝑐, 𝜎 (𝑡)) Δ𝑡 = 𝑒𝑝 (

𝑐, 𝑎) − 𝑒𝑝 (
𝑐, 𝑏) . (11)

If −𝑝 ∈R+, then

𝑒
−𝑝 (
𝑡, 𝑠) ≤ exp{−∫

𝑡

𝑠

𝑝 (𝑢) 𝑑𝑢} , 𝑡 ≥ 𝑠. (12)

Lemma 12 (see [22]). Let 𝑦, 𝑓 ∈ 𝐶
𝑟𝑑

and 𝑝 ∈ R+. Then,
𝑦
Δ
(𝑡) ≤ 𝑝(𝑡)𝑦(𝑡) + 𝑓(𝑡), 𝑡 ∈ T , implies

𝑦 (𝑡) ≤ 𝑦 (𝑡0
) 𝑒
𝑝
(𝑡, 𝑡
0
) + ∫

𝑡

𝑡0

𝑒
𝑝 (
𝑡, 𝜎 (𝜏)) 𝑓 (𝜏) Δ𝜏, 𝑡 ∈ T .

(13)

Lemma 13 (see [2, 5]). Suppose 𝑥 = (𝑥
1
, 𝑥
2
, . . . , 𝑥

𝑛
), 𝑦 =

(𝑦
1
, 𝑦
2
, . . . , 𝑦

𝑛
) are any two vectors in R𝑛:













𝑛

⋀

𝑗=1

𝛼
𝑖𝑗
𝑓
𝑗
(𝑥
𝑗
) −

𝑛

⋀

𝑗=1

𝛼
𝑖𝑗
𝑓
𝑗
(𝑦
𝑗
)













≤

𝑛

∑

𝑗=1






𝛼
𝑖𝑗












𝑓
𝑗
(𝑥
𝑗
) − 𝑓
𝑗
(𝑦
𝑗
)






,













𝑛

⋁

𝑗=1

𝛽
𝑖𝑗
𝑓
𝑗
(𝑥
𝑗
) −

𝑛

⋁

𝑗=1

𝛽
𝑖𝑗
𝑓
𝑗
(𝑦
𝑗
)













≤

𝑛

∑

𝑗=1






𝛽
𝑖𝑗












𝑓
𝑗
(𝑥
𝑗
) − 𝑓
𝑗
(𝑦
𝑗
)






,

∀𝑖 ∈ N.

(14)



4 Abstract and Applied Analysis

Throughout this paper, we make the following basic
assumptions:

(A
1
) The functions 𝑔

𝑖
, 𝑓
𝑗
(𝑖, 𝑗 ∈ N) are Lipschitz contin-

uous on R with the Lipschitz constants 𝐿
𝑖
and 𝐿

𝑗
,

respectively; that is, |𝑓
𝑗
(𝑦) − 𝑓

𝑗
(𝑥)| ≤ 𝐿

𝑗
|𝑦 − 𝑥|,

|𝑔
𝑖
(𝑦) − 𝑔

𝑖
(𝑥)| ≤ 𝐿

𝑖
|𝑦 − 𝑥|.

3. Main Results

In this section, we study the global exponential stability of the
unique equilibrium for (4) on time scale by using Lyapunov
method.

Theorem 14. Suppose that (4) satisfies (A
1
); if there exist

positive constants 𝜆
𝑖
, 𝜉
𝑖
, and 𝑝 such that

(A
2
)

𝜆
𝑖
𝑝 + (1 + 𝜇 (𝑡) 𝑝)

×
[

[

−2𝜆
𝑖
𝑎
𝑖
+ 𝜆
𝑖
(

𝑛

∑

𝑗=1

(






𝑎
𝑖𝑗






+ 𝛼
𝑖𝑗
) 𝐿
𝑗
+




𝐵
𝑖





)

+ 𝜉
𝑖





𝛽
𝑖





𝐿
𝑖
+

𝑛

∑

𝑗=1

𝜆
𝑗






𝑎
𝑗𝑖






𝐿
𝑖

+ 𝜇 (𝑡)
[

[

𝜆
𝑖
𝑎
2

𝑖
+ 𝜆
𝑖
𝑎
𝑖
(

𝑛

∑

𝑗=1

(






𝑎
𝑖𝑗






+ 𝛼
𝑖𝑗
) 𝐿
𝑗
+




𝐵
𝑖





)

+ 𝜉
𝑖





𝛽
𝑖





𝐿
𝑖
(




𝛽
𝑖





𝐿
𝑖
+ 𝛼
𝑖
+

𝑛

∑

𝑗=1

𝛽
𝑖𝑗
𝐿
𝑗
)

+

𝑛

∑

𝑗=1

𝜆
𝑗






𝑎
𝑗𝑖






𝐿
𝑖

× (𝑛






𝑎
𝑗𝑖






𝐿
𝑖
+ 𝑎
𝑗
+ 𝛼
𝑗𝑖
𝐿
𝑖
+














𝐵
𝑗














)
]

]

]

]

+

𝑛

∑

𝑗=1

𝜆
𝑗
(1 + 𝜇 (𝑡 + 𝜏

𝑖
) 𝑝) 𝑒
𝑝
(𝑡 + 𝜏
𝑖
, 𝑡)

× 𝛼
𝑗𝑖
𝐿
𝑖
[1 + 𝜇 (𝑡 + 𝜏

𝑖
) (𝑛𝛼
𝑗𝑖
𝐿
𝑖
+ 𝑎
𝑗
+






𝑎
𝑗𝑖






𝐿
𝑖
+






𝐵
𝑗






)]

+

𝑛

∑

𝑗=1

𝜉
𝑗
(1 + 𝜇 (𝑡 + 𝜎

𝑖
) 𝑝) 𝑒
𝑝
(𝑡 + 𝜎

𝑖
, 𝑡) 𝛽
𝑗𝑖
𝐿
𝑖

× [1 + 𝜇 (𝑡 + 𝜎
𝑖
) (𝑛𝛽
𝑗𝑖
𝐿
𝑖
+ 𝛼
𝑗
+






𝛽
𝑗






𝐿
𝑗
)] < 0,

𝜉
𝑖
𝑝 + (1 + 𝜇 (𝑡) 𝑝)

×
[

[

𝜆
𝑖





𝐵
𝑖





− 2𝜉
𝑖
𝛼
𝑖
+ 𝜉
𝑖





𝛽
𝑖





𝐿
𝑖
+ 𝜉
𝑖

𝑛

∑

𝑗=1

𝛽
𝑖𝑗
𝐿
𝑗

+ 𝜇 (𝑡)
[

[

𝜆
𝑖





𝐵
𝑖





(




𝐵
𝑖





+ 𝑎
𝑖
+

𝑛

∑

𝑗=1

(






𝑎
𝑖𝑗






+ 𝛼
𝑖𝑗
) 𝐿
𝑗
)

+𝛼
𝑖
𝜉
𝑖
(𝛼
𝑖
+




𝛽
𝑖





𝐿
𝑖
+

𝑛

∑

𝑗=1

𝛽
𝑖𝑗
𝐿
𝑗
)
]

]

]

]

< 0,

(15)

where |𝑏ℓ
𝑖𝑗
| + |𝑐
ℓ

𝑖𝑗
| = 𝛼
𝑖𝑗
and |𝛾ℓ

𝑖𝑗
| + |𝛿
ℓ

𝑖𝑗
| = 𝛽
𝑖𝑗
, 𝑖, 𝑗 ∈ N, then there

exists a unique equilibrium (𝑢∗, V∗) = (𝑢∗
1
, . . . , 𝑢

∗

𝑛
, V∗
1
, . . . , V∗

𝑛
)

of (4) which is globally exponentially stable; that is, every
solution (𝑢, V) = (𝑢

1
, . . . , 𝑢

𝑛
, V
1
, . . . , V

𝑛
) of (4) satisfies

𝑛

∑

𝑖=1

(𝑢
𝑖 (
𝑡) − 𝑢

∗

𝑖
)
2
+

𝑛

∑

𝑖=1

(V
𝑖 (
𝑡) − V∗
𝑖
)
2
≤ 𝑀𝑒
⊖𝑝 (
𝑡, 0)Φ𝜃

→ 0 as 𝑡 → +∞,

(16)

where𝑀 > 0, 𝜃 = max
𝑗∈N(𝜏𝑗, 𝜎𝑗), and

Φ
𝜃
:= [

𝑛

∑

𝑖=1

sup
−𝜃≤𝑠≤0

(𝑢
𝑖 (
𝑠) − 𝑢

∗

𝑖
)
2
+

𝑛

∑

𝑖=1

sup
−𝜃≤𝑙≤0

(V
𝑖 (
𝑙) − V∗
𝑖
)
2
] .

(17)

Proof. Similar to the proof of [16], we can prove (4) possesses
a unique equilibrium (𝑢

∗
, V∗) = (𝑢∗

1
, . . . , 𝑢

∗

𝑛
, V∗
1
, . . . , V∗

𝑛
). Let

𝑤
𝑖
(𝑡) = 𝑢

𝑖
(𝑡) − 𝑢

∗

𝑖
and let 𝜌

𝑖
(𝑡) = V

𝑖
(𝑡) − V∗

𝑖
; then, we can

rewrite (4) into

𝑤
Δ

𝑖
(𝑡) ≤ − 𝑎𝑖

𝑤
𝑖 (
𝑡) +

𝑛

∑

𝑗=1






𝑎
𝑖𝑗






𝐿
𝑗






𝑤
𝑗 (
𝑡)







+

𝑛

∑

𝑗=1






𝑏
ℓ

𝑖𝑗






𝐿
𝑗






𝑤
𝑗
(𝑡 − 𝜏
𝑗
)







+

𝑛

∑

𝑗=1






𝑐
ℓ

𝑖𝑗






𝐿
𝑗






𝑤
𝑗
(𝑡 − 𝜏
𝑗
)






+




𝐵
𝑖










𝜌
𝑖 (
𝑡)





= − 𝑎
𝑖
𝑤
𝑖 (
𝑡) +

𝑛

∑

𝑗=1






𝑎
𝑖𝑗






𝐿
𝑗






𝑤
𝑗 (
𝑡)







+

𝑛

∑

𝑗=1

(






𝑏
ℓ

𝑖𝑗






+






𝑐
ℓ

𝑖𝑗






) 𝐿
𝑗






𝑤
𝑗
(𝑡 − 𝜏
𝑗
)






+




𝐵
𝑖










𝜌
𝑖 (
𝑡)





= − 𝑎
𝑖
𝑤i (𝑡) +

𝑛

∑

𝑗=1






𝑎
𝑖𝑗






𝐿
𝑗






𝑤
𝑗 (
𝑡)







+

𝑛

∑

𝑗=1

𝛼
𝑖𝑗
𝐿
𝑗






𝑤
𝑗
(𝑡 − 𝜏
𝑗
)






+




𝐵
𝑖










𝜌
𝑖 (
𝑡)




,
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𝜌
Δ

𝑖
(𝑡) ≤ − 𝛼𝑖

𝜌
𝑖 (
𝑡) +





𝛽
𝑖





𝐿
𝑖





𝑤
𝑖 (
𝑡)




+

𝑛

∑

𝑗=1






𝛾
ℓ

𝑖𝑗






𝐿
𝑗






𝑤
𝑗
(𝑡 − 𝜎

𝑗
)







+

𝑛

∑

𝑗=1






𝛿
ℓ

𝑖𝑗






𝐿
𝑗






𝑤
𝑗
(𝑡 − 𝜎

𝑗
)







=




𝛽
𝑖





𝐿
𝑖





𝑤
𝑖 (
𝑡)




+

𝑛

∑

𝑗=1

(






𝛾
ℓ

𝑖𝑗






+






𝛿
ℓ

𝑖𝑗






) 𝐿
𝑗






𝑤
𝑗
(𝑡 − 𝜎

𝑗
)







− 𝛼
𝑖
𝜌
𝑖 (
𝑡)

=




𝛽
𝑖





𝐿
𝑖





𝑤
𝑖 (
𝑡)




+

𝑛

∑

𝑗=1

𝛽
𝑖𝑗
𝐿
𝑗






𝑤
𝑗
(𝑡 − 𝜎

𝑗
)






− 𝛼
𝑖
𝜌
𝑖 (
𝑡) .

(18)

Now, we construct the Lyapunov function 𝐹(𝑡) = 𝐹
1
(𝑡) +

𝐹
2
(𝑡) + 𝐹

3
(𝑡) + 𝐹

4
(𝑡), where

𝐹
1 (
𝑡) =

𝑛

∑

𝑖=1

𝜆
𝑖
𝑤
2

𝑖
(𝑡) 𝑒𝑝 (

𝑡, 0) ,

𝐹
2 (
𝑡) =

𝑛

∑

𝑖=1

𝜉
𝑖
𝜌
2

𝑖
(𝑡) 𝑒𝑝 (

𝑡, 0)

𝐹
3 (
𝑡) =

𝑛

∑

𝑖=1

𝑛

∑

𝑗=1

𝜆
𝑖
∫

𝑡

𝑡−𝜏𝑗

{𝛼
𝑖𝑗
𝐿
𝑗

× [1 + 𝜇 (𝑠 + 𝜏
𝑗
)

× (𝑛𝛼
𝑖𝑗
𝐿
𝑗
+ 𝑎
𝑖
+






𝑎
𝑖𝑗






𝐿
𝑗
+




𝐵
𝑖





)]}

× (1 + 𝜇 (𝑠 + 𝜏
𝑗
) 𝑝) 𝑒
𝑝
(𝑠 + 𝜏

𝑗
, 0) 𝑤
2

𝑗
(𝑠) Δ𝑠

𝐹
4 (
𝑡) =

𝑛

∑

𝑖=1

𝑛

∑

𝑗=1

𝜉
𝑖
∫

𝑡

𝑡−𝜎𝑗

{𝛽
𝑖𝑗
𝐿
𝑗
[1 + 𝜇 (𝑠 + 𝜎

𝑗
)

× (𝑛𝛽
𝑖𝑗
𝐿
𝑗
+ 𝛼
𝑖
+




𝛽
𝑖





𝐿
𝑖
)]}

× (1 + 𝜇 (𝑠 + 𝜎
𝑗
) 𝑝) 𝑒
𝑝
(𝑠 + 𝜎

𝑗
, 0) 𝑤
2

𝑗
(𝑠) Δ𝑠

𝐹
Δ

1
(𝑡) =

𝑛

∑

𝑖=1

𝜆
𝑖
[(𝑤
2

𝑖
(𝑡))

Δ

𝑒
𝑝 (
𝜎 (𝑡) , 0) + 𝑤

2

𝑖
(𝑡) 𝑒
Δ

𝑝
(𝑡, 0)]

=

𝑛

∑

𝑖=1

𝜆
𝑖
{[𝑤
𝑖 (
𝑡) + 𝑤𝑖 (

𝜎 (𝑡))] 𝑤
Δ

𝑖
(𝑡) 𝑒𝑝 (

𝜎 (𝑡) , 0)

+𝑤
2

𝑖
(𝑡) 𝑝𝑒𝑝 (

𝑡, 0)}

=

𝑛

∑

𝑖=1

𝜆
𝑖
{[2𝑤
𝑖 (
𝑡) 𝑤
Δ

𝑖
(𝑡) + 𝜇 (𝑡) (𝑤

Δ

𝑖
(𝑡))

2

]

×𝑒
𝑝 (
𝜎 (𝑡) , 0) + 𝑤

2

𝑖
(𝑡) 𝑝𝑒𝑝 (

𝑡, 0) }

≤

𝑛

∑

𝑖=1

𝜆
𝑖

{

{

{

2𝑤
𝑖 (
𝑡)
[

[

−𝑎
𝑖
𝑤
𝑖 (
𝑡) +

𝑛

∑

𝑗=1






𝑎
𝑖𝑗






𝐿
𝑗






𝑤
𝑗 (
𝑡)







+

𝑛

∑

𝑗=1

𝛼
𝑖𝑗
𝐿
𝑗






𝑤
𝑗
(𝑡 − 𝜏
𝑗
)






+




𝐵
𝑖










𝜌
𝑖 (
𝑡)




]

]

× 𝑒
𝑝 (
𝜎 (𝑡) , 0)

+ 𝜇 (𝑡)
[

[

−𝑎
𝑖
𝑤
𝑖 (
𝑡) +

𝑛

∑

𝑗=1






𝑎
𝑖𝑗






𝐿
𝑗






𝑤
𝑗 (
𝑡)







+

𝑛

∑

𝑗=1

𝛼
𝑖𝑗
𝐿
𝑗
×






𝑤
𝑗
(𝑡 − 𝜏
𝑗
)







+




𝐵
𝑖










𝜌
𝑖 (
𝑡)




]

]

2

𝑒
𝑝 (
𝜎 (𝑡) , 0)

+ 𝑤
2

𝑖
(𝑡) 𝑝𝑒𝑝 (

𝑡, 0)

}

}

}

≤

𝑛

∑

𝑖=1

𝜆
𝑖
𝑒
𝑝 (
𝜎 (𝑡) , 0)

×

{

{

{

[

[

−2𝑎
𝑖
𝑤
2

𝑖
(𝑡) +

𝑛

∑

𝑗=1






𝑎
𝑖𝑗






𝐿
𝑗
(𝑤
2

𝑖
(𝑡) + 𝑤

2

𝑗
(𝑡))

+

𝑛

∑

𝑗=1

𝛼
𝑖𝑗
𝐿
𝑗
× (𝑤
2

𝑖
(𝑡) + 𝑤

2

𝑗
(𝑡 − 𝜏
𝑗
))

+




𝐵
𝑖





(𝑤
2

𝑖
(𝑡) + 𝜌

2

𝑖
(𝑡))
]

]

+ 𝜇 (𝑡)
[

[

𝑎
2

𝑖
𝑤
2

𝑖
(𝑡) + 𝑛

𝑛

∑

𝑗=1

𝑎
2

𝑖𝑗
𝐿
2

𝑗
𝑤
2

𝑗
(𝑡)

+ 𝑛

𝑛

∑

𝑗=1

𝛼
2

𝑖𝑗
𝐿
2

𝑗
𝑤
2

𝑗
(𝑡 − 𝜏
𝑗
) + 𝐵
2

𝑖
𝜌
2

𝑖
(𝑡)

+ 𝑎
𝑖

𝑛

∑

𝑗=1






𝑎
𝑖𝑗






𝐿
𝑗
(𝑤
2

𝑖
(𝑡) + 𝑤

2

𝑗
(𝑡))

+ 𝑎
𝑖

𝑛

∑

𝑗=1

𝛼
𝑖𝑗
𝐿
𝑗
(𝑤
2

𝑖
(𝑡) + 𝑤

2

𝑗
(𝑡 − 𝜏
𝑗
))

+ 𝑎
𝑖





𝐵
𝑖





(𝑤
2

𝑖
(𝑡) + 𝜌

2

𝑖
(𝑡))
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+

𝑛

∑

𝑗=1






𝑎
𝑖𝑗






𝛼
𝑖𝑗
𝐿
2

𝑗

× (𝑤
2

𝑗
(𝑡) + 𝑤

2

𝑗
(𝑡 − 𝜏
𝑗
))

+

𝑛

∑

𝑗=1






𝑎
𝑖𝑗






𝐿
𝑗





𝐵
𝑖





(𝑤
2

𝑗
(𝑡) + 𝜌

2

𝑖
(𝑡))

+




𝐵
𝑖






×

𝑛

∑

𝑗=1

𝛼
𝑖𝑗
𝐿
𝑗
(𝑤
2

𝑗
(𝑡 − 𝜏
𝑗
) + 𝜌
2

𝑖
(𝑡))
]

]

}

}

}

+

𝑛

∑

𝑖=1

𝜆
𝑖
𝑝𝑒
𝑝 (
𝑡, 0) 𝑤

2

𝑖
(𝑡)

=

𝑛

∑

𝑖=1

𝜆
𝑖
𝑒
𝑝 (
𝑡, 0)

×

{

{

{

𝑝 + (1 + 𝜇 (𝑡) 𝑝)

×
[

[

− 2𝑎
𝑖
+ 𝜇 (𝑡) 𝑎

2

𝑖

+ (

𝑛

∑

𝑗=1

(






𝑎
𝑖𝑗






+ 𝛼
𝑖𝑗
) 𝐿
𝑗
+




𝐵
𝑖





)

× (1 + 𝜇 (𝑡) 𝑎𝑖
)
]

]

}

}

}

𝑤
2

𝑖
(𝑡)

+

𝑛

∑

𝑖=1

𝜆
𝑖
𝑒
𝑝 (
𝑡, 0) (1 + 𝜇 (𝑡) 𝑝)

×

{

{

{

𝑛

∑

𝑗=1






𝑎
𝑖𝑗






𝐿
𝑗

× [1 + 𝜇 (𝑡)

× (𝑛






𝑎
𝑖𝑗






𝐿
𝑗
+ 𝑎
𝑖
+ 𝛼
𝑖𝑗
𝐿
𝑗
+




𝐵
𝑖





)]

× 𝑤
2

𝑗
(𝑡)

+

𝑛

∑

𝑗=1

𝛼
𝑖𝑗
𝐿
𝑗

× [1 + 𝜇 (𝑡)

× (𝑛𝛼
𝑖𝑗
𝐿
𝑗
+ 𝑎
𝑖
+






𝑎
𝑖𝑗






𝐿
𝑗
+




𝐵
𝑖





)]

× 𝑤
2

𝑗
(𝑡 − 𝜏
𝑗
)

+




𝐵
𝑖





[

[

1 + 𝜇 (𝑡)

× (




𝐵
𝑖





+ 𝑎
𝑖

+

𝑛

∑

𝑗=1

(






𝑎
𝑖𝑗






+ 𝛼
𝑖𝑗
) 𝐿
𝑗
)
]

]

×𝜌
2

𝑖
(𝑡)

}

}

}

𝐹
Δ

2
(𝑡) =

𝑛

∑

𝑖=1

𝜉
𝑖
[(𝜌
2

𝑖
(𝑡))

Δ

𝑒
𝑝 (
𝜎 (𝑡) , 0) + 𝜌

2

𝑖
(𝑡) 𝑒
Δ

𝑝
(𝑡, 0)]

=

𝑛

∑

𝑖=1

𝜉
𝑖
{[2𝜌
𝑖 (
𝑡) 𝜌
Δ

𝑖
(𝑡) + 𝜇 (𝑡) (𝜌

Δ

𝑖
(𝑡))

2

]

× 𝑒
𝑝 (
𝜎 (𝑡) , 0) + 𝜌

2

𝑖
(𝑡) 𝑝𝑒𝑝 (

𝑡, 0)}

≤

𝑛

∑

𝑖=1

𝜉
𝑖

{

{

{

2𝜌
𝑖 (
𝑡)
[

[

− 𝛼
𝑖
𝜌
𝑖 (
𝑡) +





𝛽
𝑖





𝐿
𝑖





𝑤
𝑖 (
𝑡)





+

𝑛

∑

𝑗=1

𝛽
𝑖𝑗
𝐿
𝑗






𝑤
𝑗
(𝑡 − 𝜎

𝑗
)







]

]

× 𝑒
𝑝 (
𝜎 (𝑡) , 0)

+ 𝜇 (𝑡)
[

[

− 𝛼
𝑖
𝜌
𝑖 (
𝑡) +





𝛽
𝑖





𝐿
𝑖





𝑤
𝑖 (
𝑡)





+

𝑛

∑

𝑗=1

𝛽
𝑖𝑗
𝐿
𝑗






𝑤
𝑗
(𝑡 − 𝜎

𝑗
)







]

]

2

× 𝑒
𝑝 (
𝜎 (𝑡) , 0) + 𝜌

2

𝑖
(𝑡) 𝑝𝑒𝑝 (

𝑡, 0)

}

}

}

≤

𝑛

∑

𝑖=1

𝜉
𝑖
𝑒
𝑝 (
𝜎 (𝑡) , 0)

×

{

{

{

[

[

− 2𝛼
𝑖
𝜌
2

𝑖
(𝑡) +





𝛽
𝑖





𝐿
𝑖
(𝜌
2

𝑖
(𝑡) + 𝑤

2

𝑖
(𝑡))

+

𝑛

∑

𝑗=1

𝛽
𝑖𝑗
𝐿
𝑗
(𝜌
2

𝑖
(𝑡) + 𝑤

2

𝑗
(𝑡 − 𝜎

𝑗
))
]

]
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+ 𝜇 (𝑡)
[

[

𝛼
2

𝑖
𝜌
2

𝑖
(𝑡) + 𝛽

2

𝑖
𝐿
2

𝑖
𝑤
2

𝑖
(𝑡)

+ 𝑛

𝑛

∑

𝑗=1

𝛽
2

𝑖𝑗
𝐿
2

𝑗
𝑤
2

𝑗
(𝑡 − 𝜎

𝑗
)

+ 𝛼
𝑖





𝛽
𝑖





𝐿
𝑖
(𝜌
2

𝑖
(𝑡) + 𝑤

2

𝑖
(𝑡))

+ 𝛼
𝑖
𝐿
𝑗

𝑛

∑

𝑗=1

𝛽
𝑖𝑗
(𝜌
2

𝑖
(𝑡) + 𝑤

2

𝑗
(𝑡 − 𝜎

𝑗
))

+




𝛽
𝑖





𝐿
𝑖

×

𝑛

∑

𝑗=1

𝛽
𝑖𝑗
𝐿
𝑗
(𝑤
2

𝑖
(𝑡) + 𝑤

2

𝑗
(𝑡 − 𝜎

𝑗
))
]

]

}

}

}

+

𝑛

∑

𝑖=1

𝜉
𝑖
𝑝𝑒
𝑝 (
𝑡, 0) 𝜌

2

𝑖
(𝑡)

=

𝑛

∑

𝑖=1

𝜉
𝑖
𝑒
𝑝 (
𝑡, 0)

×

{

{

{

𝑝 + (1 + 𝜇 (𝑡) 𝑝)

×
[

[

−2𝛼
𝑖
+ 𝜇 (𝑡) 𝛼

2

𝑖
+ (





𝛽
𝑖





𝐿
𝑖
+

𝑛

∑

𝑗=1

𝛽
𝑖𝑗
𝐿
𝑗
)

× (1 + 𝜇 (𝑡) 𝛼𝑖
)
]

]

}

}

}

𝜌
2

𝑖
(𝑡)

+

𝑛

∑

𝑖=1

𝜉
𝑖
𝑒
𝑝 (
𝑡, 0) (1 + 𝜇 (𝑡) 𝑝)

×

{

{

{





𝛽
𝑖





𝐿
𝑖

×
[

[

1 + 𝜇 (𝑡)(




𝛽
𝑖





𝐿
𝑖
+ 𝛼
𝑖
+

𝑛

∑

𝑗=1

𝐿
𝑗
𝛽
𝑖𝑗
)
]

]

× 𝑤
2

𝑖
(𝑡)

+

𝑛

∑

𝑗=1

𝛽
𝑖𝑗
𝐿
𝑗

× [1 + 𝜇 (𝑡) (𝑛𝛽𝑖𝑗
𝐿
𝑗
+ 𝛼
𝑖
+




𝛽
𝑖





𝐿
𝑖
)]

×𝑤
2

𝑗
(𝑡 − 𝜎

𝑗
)

}

}

}

𝐹
Δ

3
(𝑡) =

𝑛

∑

𝑖=1

𝑛

∑

𝑗=1

𝜆
𝑖
𝑒
𝑝
(𝑡 + 𝜏
𝑗
, 0) (1 + 𝜇 (𝑡 + 𝜏

𝑗
) 𝑝)

× {𝛼
𝑖𝑗
𝐿
𝑗

× [1 + 𝜇 (𝑡 + 𝜏
𝑗
)

× (𝑛𝛼
𝑖𝑗
𝐿
𝑗
+ 𝑎
𝑖
+






𝑎
𝑖𝑗






𝐿
𝑗
+




𝐵
𝑖





)]}

× 𝑤
2

𝑗
(𝑡)

−

𝑛

∑

𝑖=1

𝑛

∑

𝑗=1

𝜆
𝑖
(1 + 𝜇 (𝑡) 𝑝) 𝑒𝑝 (

𝑡, 0)

× {𝛼
𝑖𝑗
𝐿
𝑗

× [1 + 𝜇 (𝑡)

× (𝑛𝛼
𝑖𝑗
𝐿
𝑗
+ 𝑎
𝑖
+






𝑎
𝑖𝑗






𝐿
𝑗
+




𝐵
𝑖





)]}

× 𝑤
2

𝑗
(𝑡 − 𝜏
𝑗
)

𝐹
Δ

4
(𝑡) =

𝑛

∑

𝑖=1

𝑛

∑

𝑗=1

𝜉
𝑖
𝑒
𝑝
(𝑡 + 𝜎

𝑗
, 0) (1 + 𝜇 (𝑡 + 𝜎

𝑗
) 𝑝)

× {𝛽
𝑖𝑗
𝐿
𝑗
[1 + 𝜇 (𝑡 + 𝜎

𝑗
)

× (𝑛𝛽
𝑖𝑗
𝐿
𝑗
+ 𝛼
𝑖
+




𝛽
𝑖





𝐿
𝑖
)]}𝑤
2

𝑗
(𝑡)

−

𝑛

∑

𝑖=1

𝑛

∑

𝑗=1

𝜉
𝑖
𝑒
𝑝 (
𝑡, 0) (1 + 𝜇 (𝑡) 𝑝)

× {𝛽
𝑖𝑗
𝐿
𝑗
[1 + 𝜇 (𝑡)

× (𝑛𝛽
𝑖𝑗
𝐿
𝑗
+ 𝛼
𝑖
+




𝛽
𝑖





𝐿
𝑖
)]}

× 𝑤
2

𝑗
(𝑡 − 𝜎

𝑗
)

𝐹
Δ
(𝑡) = 𝐹

Δ

1
(𝑡) + 𝐹

Δ

2
(𝑡) + 𝐹

Δ

3
(𝑡) + 𝐹

Δ

4
(𝑡)

≤

𝑛

∑

𝑖=1

𝜆
𝑖
𝑒
𝑝 (
𝑡, 0)

×

{

{

{

𝑝 + (1 + 𝜇 (𝑡) 𝑝)

×
[

[

− 2𝑎
𝑖
+ 𝜇 (𝑡) 𝑎

2

𝑖

+ (

𝑛

∑

𝑗=1

(






𝑎
𝑖𝑗






+ 𝛼
𝑖𝑗
) 𝐿
𝑗
+




𝐵
𝑖





)

× (1 + 𝜇 (𝑡) 𝑎𝑖
)
]

]

}

}

}

𝑤
2

𝑖
(𝑡)
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+

𝑛

∑

𝑖=1

𝜆
𝑖
𝑒
𝑝 (
𝑡, 0) (1 + 𝜇 (𝑡) 𝑝)

×

{

{

{

𝑛

∑

𝑗=1






𝑎
𝑖𝑗






𝐿
𝑗

× [1 + 𝜇 (𝑡)

× (𝑛






𝑎
𝑖𝑗






𝐿
𝑗
+ 𝑎
𝑖
+ 𝛼
𝑖𝑗
𝐿
𝑗
+




𝐵
𝑖





)]

× 𝑤
2

𝑗
(𝑡)

+




𝐵
𝑖





[

[

1 + 𝜇 (𝑡)

× (




𝐵
𝑖





+ 𝑎
𝑖

+

𝑛

∑

𝑗=1

(






𝑎
𝑖𝑗






+ 𝛼
𝑖𝑗
) 𝐿
𝑗
)
]

]

× 𝜌
2

𝑖
(𝑡)

}

}

}

+

𝑛

∑

𝑖=1

𝜉
𝑖
𝑒
𝑝 (
𝑡, 0)

×

{

{

{

𝑝 + (1 + 𝜇 (𝑡) 𝑝)

×
[

[

−2𝛼
𝑖
+ 𝜇 (𝑡) 𝛼

2

𝑖
+ (





𝛽
𝑖





𝐿
𝑖
+

𝑛

∑

𝑗=1

𝛽
𝑖𝑗
𝐿
𝑗
)

× (1 + 𝜇 (𝑡) 𝛼𝑖
)
]

]

}

}

}

𝜌
2

𝑖
(𝑡)

+

𝑛

∑

𝑖=1

𝜉
𝑖
𝑒
𝑝 (
𝑡, 0) (1 + 𝜇 (𝑡) 𝑝)

×

{

{

{





𝛽
𝑖





𝐿
𝑖
[

[

1 + 𝜇 (𝑡)

× (




𝛽
𝑖





𝐿
𝑖
+ 𝛼
𝑖
+

𝑛

∑

𝑗=1

𝛽
𝑖𝑗
𝐿
𝑗
)
]

]

× 𝑤
2

𝑖
(𝑡)

+

𝑛

∑

𝑖=1

𝑛

∑

𝑗=1

𝜆
𝑖
𝑒
𝑝
(𝑡 + 𝜏
𝑗
, 0) (1 + 𝜇 (𝑡 + 𝜏

𝑗
) 𝑝)

×

{

{

{

𝛼
𝑖𝑗
𝐿
𝑗
[1 + 𝜇 (𝑡 + 𝜏

𝑗
)

× (𝑛𝛼
𝑖𝑗
𝐿
𝑗
+ 𝑎
𝑖
+






𝑎
𝑖𝑗






𝐿
𝑗
+




𝐵
𝑖





)]

}

}

}

× 𝑤
2

𝑗
(𝑡)

+

𝑛

∑

𝑖=1

𝑛

∑

𝑗=1

𝜉
𝑖
𝑒
𝑝
(𝑡 + 𝜎

𝑗
, 0) (1 + 𝜇 (𝑡 + 𝜎

𝑗
) 𝑝)

× {𝛽
𝑖𝑗
𝐿
𝑗

× [1 + 𝜇 (𝑡 + 𝜎
𝑗
) (𝑛𝛽
𝑖𝑗
𝐿
𝑗
+ 𝛼
𝑖
+




𝛽
𝑖





𝐿
𝑖
)]}

× 𝑤
2

𝑗
(𝑡)

=

𝑛

∑

𝑖=1

𝑒
𝑝 (
𝑡, 0)

×

{

{

{

𝜆
𝑖
[

[

𝑝 + (1 + 𝜇 (𝑡) 𝑝)

× ( − 2𝑎
𝑖
+ 𝜇 (𝑡) 𝑎

2

𝑖

+ (

𝑛

∑

𝑗=1

(






𝑎
𝑖𝑗






+ 𝛼
𝑖𝑗
) 𝐿
𝑗
+




𝐵
𝑖





)

× (1 + 𝜇 (𝑡) 𝑎𝑖
))
]

]

+ 𝜉
𝑖
(1 + 𝜇 (𝑡) 𝑝)





𝛽
𝑖





𝐿
𝑖

×
[

[

1 + 𝜇 (𝑡)(




𝛽
𝑖





𝐿
𝑖
+ 𝛼
𝑖
+

𝑛

∑

𝑗=1

𝛽
𝑖𝑗
𝐿
𝑗
)
]

]

}

}

}

× 𝑤
2

𝑖
(𝑡)

+

𝑛

∑

𝑖=1

𝑛

∑

𝑗=1

𝑒
𝑝 (
𝑡, 0)

× {𝜆
𝑖
(1 + 𝜇 (𝑡) 𝑝)






𝑎
𝑖𝑗






𝐿
𝑗

× [1 + 𝜇 (𝑡)

× (𝑛






𝑎
𝑖𝑗






𝐿
𝑗
+ 𝑎
𝑖
+ 𝛼
𝑖𝑗
𝐿
𝑗
+




𝐵
𝑖





)]

+ 𝜆
𝑖
(1 + 𝜇 (𝑡 + 𝜏

𝑗
) 𝑝) 𝑒
𝑝
(𝑡 + 𝜏
𝑗
, 𝑡) 𝛼
𝑖𝑗
𝐿 𝑗
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× [1 + 𝜇 (𝑡 + 𝜏
𝑗
)

× (𝑛𝛼
𝑖𝑗
𝐿
𝑗
+ 𝑎
𝑖
+






𝑎
𝑖𝑗






𝐿
𝑗
+




𝐵
𝑖





)]

+ 𝜉
𝑖
(1 + 𝜇 (𝑡 + 𝜎

𝑗
) 𝑝)

× 𝑒
𝑝
(𝑡 + 𝜎

𝑗
, 𝑡) 𝛽
𝑖𝑗
𝐿
𝑗

× [1 + 𝜇 (𝑡 + 𝜎
𝑗
)

× (𝑛𝛽
𝑖𝑗
𝐿
𝑗
+ 𝛼
𝑖
+




𝛽
𝑖





𝐿
𝑖
)]}

× 𝑤
2

𝑗
(𝑡)

+

𝑛

∑

𝑖=1

𝑒
𝑝 (
𝑡, 0)

×

{

{

{

𝜆
𝑖
(1 + 𝜇 (𝑡) 𝑝)





𝐵
𝑖






×
[

[

1 + 𝜇 (𝑡)

× (




𝐵
𝑖





+ 𝑎
𝑖
+

𝑛

∑

𝑗=1

(






𝑎
𝑖𝑗






+ 𝛼
𝑖𝑗
) 𝐿
𝑗
)
]

]

+ 𝜉
𝑖
[

[

𝑝 + (1 + 𝜇 (𝑡) 𝑝)

× ( − 2𝛼
𝑖
+ 𝜇 (𝑡) 𝛼

2

𝑖

+ (




𝛽
𝑖





𝐿
𝑖
+

𝑛

∑

𝑗=1

𝛽
𝑖𝑗
𝐿
𝑗
)

× (1 + 𝜇 (𝑡) 𝛼𝑖
))
]

]

}

}

}

𝜌
2

𝑖
(𝑡)

=

𝑛

∑

𝑖=1

𝑒
𝑝 (
𝑡, 0)

×

{

{

{

𝜆
𝑖
[

[

𝑝 + (1 + 𝜇 (𝑡) 𝑝)

× (− 2𝑎
𝑖
+ 𝜇 (𝑡) 𝑎

2

𝑖

+ (

𝑛

∑

𝑗=1

(






𝑎
𝑖𝑗






+ 𝛼
𝑖𝑗
) 𝐿
𝑗
+




𝐵
𝑖





)

× (1 + 𝜇 (𝑡) 𝑎𝑖
))
]

]

+ 𝜉
𝑖
(1 + 𝜇 (𝑡) 𝑝)





𝛽
𝑖





𝐿
𝑖

×
[

[

1 + 𝜇 (𝑡)(




𝛽
𝑖





𝐿
𝑖
+ 𝛼
𝑖
+

𝑛

∑

𝑗=1

𝛽
𝑖𝑗
𝐿
𝑗
)
]

]

+

𝑛

∑

𝑗=1

𝜆
𝑗
(1 + 𝜇 (𝑡) 𝑝)






𝑎
𝑗𝑖






𝐿
𝑖

× [1 + 𝜇 (𝑡)

× (𝑛






𝑎
𝑗𝑖






𝐿
𝑖
+ 𝑎
𝑗
+ 𝛼
𝑗𝑖
𝐿
𝑖
+






𝐵
𝑗






)]

+

𝑛

∑

𝑗=1

𝜆
𝑗
× (1 + 𝜇 (𝑡 + 𝜏

𝑖
) 𝑝)

× 𝑒
𝑝
(𝑡 + 𝜏
𝑖
, 𝑡) 𝛼
𝑗𝑖
𝐿
𝑖

× [1 + 𝜇 (𝑡 + 𝜏
𝑖
)

× (𝑛𝛼
𝑗𝑖
𝐿
𝑖
+ 𝑎
𝑗
+






𝑎
𝑗𝑖






𝐿
𝑖
+






𝐵
𝑗






)]

+

𝑛

∑

𝑗=1

𝜉
𝑗
(1 + 𝜇 (𝑡 + 𝜎

𝑖
) 𝑝) 𝑒
𝑝
(𝑡 + 𝜎

𝑖
, 𝑡) 𝛽
𝑗𝑖
𝐿
𝑖

× [1 + 𝜇 (𝑡 + 𝜎
𝑖
)

× (𝑛𝛽
𝑗𝑖
𝐿
𝑖
+ 𝛼
𝑗
+






𝛽
𝑗






𝐿
𝑗
)]

}

}

}

𝑤
2

𝑖
(𝑡)

+

𝑛

∑

𝑖=1

𝑒
𝑝 (
𝑡, 0)

×

{

{

{

𝜆
𝑖
(1 + 𝜇 (𝑡) 𝑝)





𝐵
𝑖






×
[

[

1 + 𝜇 (𝑡)

× (




𝐵
𝑖





+ 𝑎
𝑖
+

𝑛

∑

𝑗=1






𝑎
𝑖𝑗






𝐿
𝑗
+

𝑛

∑

𝑗=1

𝛼
𝑖𝑗
𝐿
𝑗
)
]

]

+ 𝜉
𝑖
[

[

𝑝 + (1 + 𝜇 (𝑡) 𝑝)

× (−2𝛼
𝑖
+ 𝜇 (𝑡) 𝛼

2

𝑖

+ (




𝛽
𝑖





𝐿
𝑖
+

𝑛

∑

𝑗=1

𝛽
𝑖𝑗
𝐿
𝑗
)

× (1 + 𝜇 (𝑡) 𝛼𝑖
))
]

]

}

}

}

𝜌
2

𝑖
(𝑡)
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=

𝑛

∑

𝑖=1

𝑒
𝑝 (
𝑡, 0)

×

{

{

{

𝜆
𝑖
𝑝 + (1 + 𝜇 (𝑡) 𝑝)

×
[

[

− 2𝜆
𝑖
𝑎
𝑖

+ 𝜆
𝑖
(

𝑛

∑

𝑗=1

(






𝑎
𝑖𝑗






+ 𝛼
𝑖𝑗
) 𝐿
𝑗
+




𝐵
𝑖





)

+ 𝜉
𝑖





𝛽
𝑖





𝐿
𝑖
+

𝑛

∑

𝑗=1

𝜆
𝑗






𝑎
𝑗𝑖






𝐿
𝑖

+ 𝜇 (𝑡)
[

[

𝜆
𝑖
𝑎
2

𝑖

+ 𝜆
𝑖
𝑎
𝑖

× (

𝑛

∑

𝑗=1

(






𝑎
𝑖𝑗






+ 𝛼
𝑖𝑗
) 𝐿
𝑗
+




𝐵
𝑖





)

+ 𝜉
𝑖





𝛽
𝑖





𝐿
𝑖

× (




𝛽
𝑖





𝐿
𝑖
+ 𝛼
𝑖
+

𝑛

∑

𝑗=1

𝛽
𝑖𝑗
𝐿
𝑗
)

+

𝑛

∑

𝑗=1

𝜆
𝑗






𝑎
𝑗𝑖






𝐿
𝑖

× (𝑛






𝑎
𝑗𝑖






𝐿
𝑖
+ 𝑎
𝑗
+ 𝛼
𝑗𝑖
𝐿
𝑖

+






𝐵
𝑗






)
]

]

]

]

+

𝑛

∑

𝑗=1

𝜆
𝑗
(1 + 𝜇 (𝑡 + 𝜏

𝑖
) 𝑝)

× 𝑒
𝑝
(𝑡 + 𝜏
𝑖
, 𝑡) 𝛼
𝑗𝑖
𝐿
𝑖

× [1 + 𝜇 (𝑡 + 𝜏
𝑖
)

× (𝑛𝛼
𝑗𝑖
𝐿
𝑖
+ 𝑎
𝑗
+






𝑎
𝑗𝑖






𝐿
𝑖
+






𝐵
𝑗






)]

+

𝑛

∑

𝑗=1

𝜉
𝑗
(1 + 𝜇 (𝑡 + 𝜎

𝑖
) 𝑝)

× 𝑒
𝑝
(𝑡 + 𝜎

𝑖
, 𝑡) 𝛽
𝑗𝑖
𝐿
𝑖

× [1 + 𝜇 (𝑡 + 𝜎
𝑖
)

× 𝑧 (𝑛𝛽
𝑗𝑖
𝐿
𝑖
+ 𝛼
𝑗
+






𝛽
𝑗






𝐿
𝑗
)]

}

}

}

𝑤
2

𝑖
(𝑡)

+

𝑛

∑

𝑖=1

𝑒
𝑝 (
𝑡, 0)

×

{

{

{

𝜉
𝑖
𝑝 + (1 + 𝜇 (𝑡) 𝑝)

×
[

[

𝜆
𝑖





𝐵
𝑖





− 2𝜉
𝑖
𝛼
𝑖
+ 𝜉
𝑖





𝛽
𝑖





𝐿
𝑖

+ 𝜉
𝑖

𝑛

∑

𝑗=1

𝛽
𝑖𝑗
𝐿
𝑗
+ 𝜇 (𝑡)

×
[

[

𝜆
𝑖





𝐵
𝑖





(




𝐵
𝑖





+ 𝑎
𝑖

+

𝑛

∑

𝑗=1

(






𝑎
𝑖𝑗






+ 𝛼
𝑖𝑗
) 𝐿
𝑗
)

+ 𝛼
𝑖
𝜉
𝑖
(𝛼
𝑖
+




𝛽
𝑖





𝐿
𝑖

+

𝑛

∑

𝑗=1

𝛽
𝑖𝑗
𝐿
𝑗
)
]

]

]

]

}

}

}

𝜌
2

𝑖
(𝑡) .

(19)

By using (A
2
), we can conclude that 𝐹Δ(𝑡) ≤ 0 which implies

that 𝐹(𝑡) ≤ 𝐹(0) for 𝑡 ∈ T+
0
.

Consider

𝐹 (0) = 𝐹1 (
0) + 𝐹2 (

0) + 𝐹3 (
0) + 𝐹4 (

0)

≤

𝑛

∑

𝑖=1

{𝜆
𝑖

+

𝑛

∑

𝑗=1

𝜆
𝑗
𝛼
𝑗𝑖
𝐿
𝑖

× [1 + 𝜇 (𝑛𝛼
𝑗𝑖
𝐿
𝑖
+ 𝑎
𝑗
+






𝑎
𝑗𝑖






𝐿
𝑖
+






𝐵
𝑗






)]

× (1 + 𝑝𝜇
∗
) ∫

0

−𝜏𝑖

𝑒
𝑝
(𝑠 + 𝜏
𝑖
, 0) Δ𝑠

+

𝑛

∑

𝑗=1

𝜉
𝑗
𝛽
𝑗𝑖
𝐿
𝑖

× [1 + 𝜇 (𝑛𝛽
𝑗𝑖
𝐿
𝑖
+ 𝛼
𝑗
+






𝛽
𝑗






𝐿
𝑗
)]

× (1 + 𝑝𝜇
∗
) ∫

0

−𝜎𝑖

𝑒
𝑝
(𝑠 + 𝜎

𝑖
, 0) Δ𝑠}
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× sup
−𝜃≤𝑠≤0

𝑤
2

𝑖
(𝑠) +

𝑛

∑

𝑖=1

𝜉
𝑖
sup
−𝜃≤𝑙≤0

𝜌
2

𝑖
(𝑙)

≤ max
1≤𝑖≤𝑛

{

{

{

𝜆
𝑖

+

𝑛

∑

𝑗=1

𝜆
𝑗
𝛼
𝑗𝑖
𝐿
𝑖

× [1 + 𝜇 (𝑛𝛼
𝑗𝑖
𝐿
𝑖
+ 𝑎
𝑗
+






𝑎
𝑗𝑖






𝐿
𝑖






𝐵
𝑗






)]

× (1 + 𝑝𝜇) 𝜏𝑒
𝑝 (
𝜏, 0)

+

𝑛

∑

𝑗=1

𝜉
𝑗
𝛽
𝑗𝑖
𝐿
𝑖
[1 + 𝜇 (𝑛𝛽

𝑗𝑖
𝐿
𝑖
+ 𝛼
𝑗






𝛽
𝑗






𝐿
𝑗
)]

× (1 + 𝑝𝜇) 𝜎𝑒
𝑝 (
𝜎, 0)

}

}

}

𝑛

∑

𝑖=1

sup
−𝜃≤𝑠≤0

𝑤
2

𝑖
(𝑠)

+max
1≤𝑖≤𝑛

𝜉
𝑖

𝑛

∑

𝑖=1

sup
−𝜃≤𝑙≤0

𝜌
2

𝑖
(𝑙) ≤ 𝑀1

Φ
𝜃
,

(20)

where |𝜇(𝑡)| ≤ 𝜇∗, 𝜏 = max
1≤𝑗≤𝑛

(𝜏
𝑗
), 𝜎 = max

1≤𝑗≤𝑛
(𝜎
𝑗
), 𝜃 =

max
1≤𝑗≤𝑛

(𝜏
𝑗
, 𝜎
𝑗
), and

𝑀
1
= max
1≤𝑖≤𝑛

{

{

{

max
1≤𝑖≤𝑛

{

{

{

𝜆
𝑖

+

𝑛

∑

𝑗=1

𝜆
𝑗
𝛼
𝑗𝑖
𝐿
𝑖

× [1 + 𝜇 (𝑛𝛼
𝑗𝑖
𝐿
𝑖
+ 𝑎
𝑗
+






𝑎
𝑗𝑖






𝐿
𝑖






𝐵
𝑗






)]

× (1 + 𝑝𝜇) 𝜏𝑒
𝑝 (
𝜏, 0)

+

𝑛

∑

𝑗=1

𝜉
𝑗
𝛽
𝑗𝑖
𝐿
𝑖

× [1 + 𝜇 (𝑛𝛽
𝑗𝑖
𝐿
𝑖
+ 𝛼
𝑗






𝛽
𝑗






𝐿
𝑗
)]

× (1 + 𝑝𝜇) 𝜎𝑒
𝑝 (
𝜎, 0)

}

}

}

,max
1≤𝑖≤𝑛

𝜉
𝑖

}

}

}

.

(21)

Observe that

𝐹 (𝑡) ≥ min
1≤𝑖≤𝑛

𝜆
𝑖

𝑛

∑

𝑖=1

𝑤
2

𝑖
(𝑡) 𝑒𝑝 (

𝑡, 0) + min
1≤𝑖≤𝑛

𝜉
𝑖

𝑛

∑

𝑖=1

𝜌
2

𝑖
(𝑡) 𝑒𝑝 (

𝑡, 0)

≥ 𝑀
2
(

𝑛

∑

𝑖=1

𝑤
2

𝑖
(𝑡) +

𝑛

∑

𝑖=1

𝜌
2

𝑖
(𝑡)) 𝑒𝑝 (

𝑡, 0) ,

(22)

where 𝑀
2
= min

1≤𝑗≤𝑛
{min
1≤𝑖≤𝑛

𝜆
𝑖
,min
1≤𝑖≤𝑛

𝜉
𝑖
}. Due to

Lemma 11, we get

𝑛

∑

𝑖=1

𝑤
2

𝑖
(𝑡) +

𝑛

∑

𝑖=1

𝜌
2

𝑖
(𝑡) ≤ 𝑀 ⋅ 𝑒

⊖𝑝 (
𝑡, 0) Φ𝜃

→ 0

as 𝑡 → +∞,

(23)

where 𝑀 = 𝑀
1
/𝑀
2
> 0 is a constant. This completes the

proof.

Remark 15. It is well known that fewworks have been done to
report learning dynamics of fuzzy networks in the literature.
If the time scale T = R, then 𝜇(𝑡) = 0 and (4) reduces to
common fuzzy networks with learning behavior reported by
[16]. Removing learning variables, (4) is a generation form of
[2, 4, 7]. From Theorem 14, we can immediately obtain the
following corollary which contains relative results in [16].

Corollary 16. Suppose that (4) satisfies (A
1
), T = R, and if

there exist constants 𝜆
𝑖
> 0, 𝜉
𝑖
> 0 such that

𝜆
𝑖
[

[

−2𝑎
𝑖
+

𝑛

∑

𝑗=1

(






𝑎
𝑖𝑗






+ 𝛼
𝑖𝑗
) 𝐿
𝑗
+




𝐵
𝑖





]

]

+ 𝜉
𝑖





𝛽
𝑖





𝐿
𝑖

+

𝑛

∑

𝑗=1

𝜆
𝑗






𝑎
𝑗𝑖






𝐿
𝑖
+

𝑛

∑

𝑗=1

𝜆
𝑗
𝛼
𝑗𝑖
𝐿
𝑖
+

𝑛

∑

𝑗=1

𝜉
𝑗
𝛽
𝑗𝑖
𝐿
𝑖
< 0,

𝜆
𝑖





𝐵
𝑖





+ 𝜉
𝑖
[

[

−2𝛼
𝑖
+




𝛽
𝑖





𝐿
𝑖
+

𝑛

∑

𝑗=1

𝛽
𝑖𝑗
𝐿
𝑗
]

]

< 0,

(24)

where 𝑖 ∈ N, then there exists a unique equilibrium (𝑢∗, V∗) of
(4) which is globally exponentially stable.

If the time scale T = Z, then 𝜇(𝑡) = 1 and (4) reduces to

𝑢
𝑖 (
𝑛 + 1) = (1 − 𝑎𝑖

) 𝑢
𝑖 (
𝑛) +

𝑛

∑

𝑗=1

𝑎
𝑖𝑗
𝑓
𝑗
(𝑢
𝑗 (
𝑛))

+

𝑛

⋁

𝑗=1

𝑏
ℓ

𝑖𝑗
𝑓
𝑗
(𝑢
𝑗
(𝑛 − 𝜏

𝑗
))

+

𝑛

⋀

𝑗=1

𝑐
ℓ

𝑖𝑗
𝑓
𝑗
(𝑢
𝑗
(𝑛 − 𝜏

𝑗
)) + 𝐵

𝑖
V
𝑖 (
𝑛) + 𝐽𝑖

,

V
𝑖 (
𝑛 + 1) = (1 − 𝛼𝑖

) V
𝑖 (
𝑛) + 𝛽𝑖

𝑓
𝑖
(𝑢
𝑖 (
𝑡))

+

𝑛

⋀

𝑗=1

𝛾
ℓ

𝑖𝑗
𝑓
𝑗
(𝑢
𝑗
(𝑛 − 𝜎

𝑗
))

+

𝑛

⋁

𝑗=1

𝛿
ℓ

𝑖𝑗
𝑓
𝑗
(𝑢
𝑗
(𝑛 − 𝜎

𝑗
)) ,

(25)

which includes discrete-time analogues of competitive networks
[24] as its special case when there is no fuzzy terms. From
Theorem 14, we have the following corollary.
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Corollary 17. Suppose that (25) satisfies (A
1
) and if there exist

constants 𝜆
𝑖
> 0, 𝜉
𝑖
> 0 such that

𝜆
𝑖
[

[

−2𝑎
𝑖
+ 𝑎
2

𝑖
+ (

𝑛

∑

𝑗=1

(






𝑎
𝑖𝑗






+ 𝛼
𝑖𝑗
) 𝐿
𝑗
+




𝐵
𝑖





) (1 + 𝑎

𝑖
)
]

]

+ 𝜉
𝑖





𝛽
𝑖





𝐿
𝑖
[

[

1 +




𝛽
𝑖





𝐿
𝑖
+ 𝛼
𝑖
+

𝑛

∑

𝑗=1

𝛽
𝑖𝑗
𝐿
𝑗
]

]

+

𝑛

∑

𝑗=1

𝜆
𝑗






𝑎
𝑗𝑖






𝐿
𝑖
[1 + 𝑛






𝑎
𝑗𝑖






𝐿
𝑖
+ 𝑎
𝑗
+ 𝛼
𝑗𝑖
𝐿
𝑖
+






𝐵
𝑗






]

+

𝑛

∑

𝑗=1

𝜆
𝑗
𝛼
𝑗𝑖
𝐿
𝑖

× [1 + 𝑛𝛼
𝑗𝑖
𝐿
𝑖
+ 𝑎
𝑗
+






𝑎
𝑗𝑖






𝐿
𝑖
+






𝐵
𝑗






]

+

𝑛

∑

𝑗=1

𝜉
𝑗
𝛽
𝑗𝑖
𝐿
𝑖
[1 + 𝑛𝛽

𝑗𝑖
𝐿
𝑖
+ 𝛼
𝑗
+






𝛽
𝑗






𝐿
𝑗
] < 0,

𝜆
𝑖





𝐵
𝑖





[

[

1 +




𝐵
𝑖





+ 𝑎
𝑖
+

𝑛

∑

𝑗=1






𝑎
𝑖𝑗






𝐿
𝑗
+

𝑛

∑

𝑗=1

𝛼
𝑖𝑗
𝐿
𝑗
]

]

+ 𝜉
𝑖
[

[

−2𝛼
𝑖
+ 𝛼
2

𝑖
+ (





𝛽
𝑖





𝐿
𝑖
+

𝑛

∑

𝑗=1

𝛽
𝑖𝑗
𝐿
𝑗
)(1 + 𝛼

𝑖
)
]

]

< 0,

(26)

where 𝑖 ∈ N, then there exists a unique equilibrium (𝑢∗, V∗) of
(25) which is globally exponentially stable.

Remark 18. The result of Theorem 14 unifies the previous
literature on fuzzy networks of discrete-time and continuous-
time and reveals the discrepancies of results of continuous-
time (𝜇(𝑡) = 0) and discrete-time (𝜇(𝑡) = 1) fuzzy networks
[1–4, 16].

Finally, we should briefly investigate learning conver-
gence of fuzzy networks. Consider learning dynamics gov-
erned by (5):

𝑚
Δ

𝑖𝑗
(𝑡) = − 𝛼𝑖

𝑚
𝑖𝑗 (
𝑡)

+ [𝛽
𝑖
𝑓
𝑖
(𝑢
𝑖 (
𝑡)) +

𝑛

⋀

𝑘=1

𝛾
ℓ

𝑖𝑘
𝑓
𝑘
(𝑢
𝑘
(𝑡 − 𝜎

𝑘
))

+

𝑛

⋁

𝑘=1

𝛿
ℓ

𝑖𝑘
𝑓
𝑘
(𝑢
𝑘
(𝑡 − 𝜎

𝑘
))] 𝑝
𝑗
,

(27)

where 𝑖, 𝑗 ∈ N and 𝑡 ∈ T+
0
. It follows fromTheorem 14 that (4)

has a unique equilibrium (𝑢∗, V∗) = (𝑢∗
1
, . . . , 𝑢

∗

𝑛
, V∗
1
, . . . , V∗

𝑛
).

Hence, (5) has a unique equilibrium satisfying

𝑚
∗

𝑖𝑗
=

𝑝
𝑗

𝛼
𝑖

[𝛽
𝑖
𝑓
𝑖
(𝑢
∗

𝑖
) +

𝑛

⋀

𝑘=1

𝛾
ℓ

𝑖𝑘
𝑓
𝑘
(𝑢
∗

𝑘
) +

𝑛

⋁

𝑘=1

𝛿
ℓ

𝑖𝑘
𝑓
𝑘
(𝑢
∗

𝑘
)] ,

𝑖, 𝑗 ∈ N.

(28)

By (23), there exists a �̃� > 0 such that





𝑢
𝑖 (
𝑡) − 𝑢

∗

𝑖





≤ �̃�√𝑒⊖𝑝 (

𝑡, 0), 𝑖 ∈ N. (29)

It follows from (5), (28), and (29) that we get

(𝑚
𝑖𝑗 (
𝑡) − 𝑚

∗

𝑖𝑗
)

Δ

≤ − 𝛼
𝑖
(𝑚
𝑖𝑗 (
𝑡) − 𝑚

∗

𝑖𝑗
)

+






𝑝
𝑗











𝛽
𝑖





𝐿
𝑖





𝑢
𝑖 (
𝑡) − 𝑢

∗

𝑖






+






𝑝
𝑗







𝑛

∑

𝑘=1

𝛽
𝑖𝑘
𝐿
𝑘





𝑢
𝑘
(𝑡 − 𝜎

𝑘
) − 𝑢
∗

𝑘






≤ − 𝛼
𝑖
(𝑚
𝑖𝑗 (
𝑡) − 𝑚

∗

𝑖𝑗
)

+ �̃�[






𝑝
𝑗











𝛽
𝑖





𝐿
𝑖
√𝑒
⊖𝑝
(𝑡, 𝑡 − 𝜎

𝑘
)

+

𝑛

∑

𝑘=1






𝑝
𝑗






𝛽
𝑖𝑘
𝐿
𝑘
]

× √𝑒
⊖𝑝
(𝑡 − 𝜎

𝑘
, 0).

(30)

Let 𝜇𝑀 := sup
𝑠∈T𝜇(𝑠). Since 𝐹(𝜇) = − log(1 + 𝑝𝜇)/𝜇 is

an increasing function defined on R+, we know 𝜉
𝜇(𝜏)
(⊖𝑝) ≤

max{⊖𝑝, − log(1 + 𝑝𝜇𝑀)/𝜇𝑀} :≜ �̃� and

√𝑒
⊖𝑝
(𝑡, 𝑡 − 𝜎

𝑘
) ≤ √exp (�̃�𝜎

𝑘
),

√𝑒⊖𝑝 (
𝑡, 0) ≤ √exp (�̃�𝑡).

(31)

Hence, for any given 𝜖 > 0, there exists a 𝑡
0
∈ T such that

√𝑒⊖𝑝
(𝑡, 0) ≤ 𝜖 as 𝑡 ≥ 𝑡

0
. From (30) and Lemma 13, one gets

𝑚
𝑖𝑗 (
𝑡) − 𝑚

∗

𝑖𝑗

≤ (𝑚
𝑖𝑗
(𝑡
0
) − 𝑚
∗

𝑖𝑗
) 𝑒
−𝛼𝑖
(𝑡, 𝑡
0
)

+ �̃�𝜖 [






𝑝
𝑗











𝛽
𝑖





𝐿
𝑖
√exp (�̃�𝜎

𝑘
) +

𝑛

∑

𝑘=1






𝑝
𝑗






𝛽
𝑖𝑘
𝐿
𝑘
]

× ∫

𝑡

𝑡0

𝑒
−𝛼𝑖
(𝑡, 𝜎 (𝑠)) Δ𝑠.

(32)
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It follows from Lemma 11 that we have

𝑚
𝑖𝑗 (
𝑡) − 𝑚

∗

𝑖𝑗

≤ (𝑚
𝑖𝑗
(𝑡
0
) − 𝑚
∗

𝑖𝑗
) 𝑒
−𝛼𝑖
(𝑡, 𝑡
0
)

−

�̃�𝜖

𝛼
𝑖

[






𝑝
𝑗











𝛽
𝑖





𝐿
𝑖
√exp (�̃�𝜎

𝑘
) +

𝑛

∑

𝑘=1






𝑝
𝑗






𝛽
𝑖𝑘
𝐿
𝑘
]

× (𝑒
−𝛼𝑖
(𝑡, 𝑡
0
) − 1)

≤ (𝑚
𝑖𝑗
(𝑡
0
) − 𝑚
∗

𝑖𝑗
) 𝑒
−𝛼𝑖(𝑡−𝑡0)

−

�̃�𝜖

𝛼
𝑖

[






𝑝
𝑗











𝛽
𝑖





𝐿
𝑖
√exp (�̃�𝜎

𝑘
) +

𝑛

∑

𝑘=1






𝑝
𝑗






𝛽
𝑖𝑘
𝐿
𝑘
]

× (𝑒
−𝛼𝑖(𝑡−𝑡0)

− 1)

(33)

which leads to 𝑚
𝑖𝑗
(𝑡) − 𝑚

∗

𝑖𝑗
→ 0 as 𝑡 → +∞. That is, time-

varying and learnable synapticweights converge exponential-
ly to stationary weights 𝑚∗

𝑖𝑗
encoding the signal vector 𝑝 =

(𝑝
1
, 𝑝
2
, . . . , 𝑝

𝑛
) in the sense of (28).

4. An Example

In this section, an example is shown to verify the effectiveness
of the result obtained in the previous section. Consider the
following fuzzy networks with delays on time scale T :

𝑢
Δ

𝑖
(𝑡) = − 𝑎𝑖

𝑢
𝑖 (
𝑡) +

2

∑

𝑗=1

𝑎
𝑖𝑗
𝑓
𝑗
(𝑢
𝑗 (
𝑡)) +

2

⋁

𝑗=1

𝑏
ℓ

𝑖𝑗
𝑓
𝑗
(𝑢
𝑗
(𝑡 − 𝜏
𝑗
))

+

2

⋀

𝑗=1

𝑐
ℓ

𝑖𝑗
𝑓
𝑗
(𝑢
𝑗
(𝑡 − 𝜏
𝑗
)) + 𝐵

𝑖
V
𝑖 (
𝑡) + 𝐽𝑖

,

VΔ
𝑖
(𝑡) = − 𝛼𝑖

V
𝑖 (
𝑡) + 𝛽𝑖

𝑓
𝑖
(𝑢
𝑖 (
𝑡)) +

2

⋀

𝑗=1

𝛾
ℓ

𝑖𝑗
𝑓
𝑗
(𝑢
𝑗
(𝑡 − 𝜎

𝑗
))

+

2

⋁

𝑗=1

𝛿
ℓ

𝑖𝑗
𝑓
𝑗
(𝑢
𝑗
(𝑡 − 𝜎

𝑗
))

(34)

for 𝑖 = 1, 2 and 𝑡 ∈ T+
0
, where (𝑎

1
, 𝑎
2
)
𝑇
= (0.3, 0.3)

𝑇,
(𝛼
1
, 𝛼
2
)
𝑇
= (0.2, 0.2)

𝑇, (𝐵
1
, 𝐵
2
)
𝑇
= (0.1, 0.1)

𝑇, (𝛽
1
, 𝛽
2
)
𝑇
=

(0.01, 0.02)
𝑇, 𝑓
𝑖
(𝑥) = (1/2)(|𝑥 + 1| + |𝑥 − 1|), and

(

𝑎
11
𝑎
12

𝑎
21
𝑎
22

) = (

0.01 0.01

0.01 0.01
) ,

(

𝑏
ℓ

11
𝑏
ℓ

12

𝑏
ℓ

21
𝑏
ℓ

22

) = (

0.01 0.02

0.02 0.01
) ,

(

𝑐
ℓ

11
𝑐
ℓ

12

𝑐
ℓ

21
𝑐
ℓ

22

) = (

0.02 0.01

0.01 0.02
) ,

(

𝛾
ℓ

11
𝛾
ℓ

12

𝛾
ℓ

21
𝛾
ℓ

22

) = (

0.02 0.02

0.02 0.02
) ,

(

𝛿
ℓ

11
𝛿
ℓ

12

𝛿
ℓ

21
𝛿
ℓ

22

) = (

0.01 0.01

0.02 0.02
) ,

𝜏
𝑖
= 𝜎
𝑖
=

1

2

, 𝐿
𝑖
= 𝐽
𝑖
= 𝑐 = 1.

(35)

Choosing 𝜆
1
𝜉
𝑖
= 1 (𝑖 = 1, 2), we can easily verify that

the assumptions of Corollaries 16 and 17 are all satisfied,
respectively. When T = R, that is, 𝜇(𝑡) = 0,

𝜆
1
[

[

−2𝑎
1
+

2

∑

𝑗=1






𝑎
1𝑗






𝐿
𝑗
+

2

∑

𝑗=1

(






𝑏
ℓ

1𝑗






+






𝑐
ℓ

1𝑗






) 𝐿
𝑗
+




𝐵
1





]

]

+ 𝜉
1





𝛽
1





𝐿
1
+

2

∑

𝑗=1

𝜆
𝑗






𝑎
𝑗1






𝐿
1
+

2

∑

𝑗=1

𝜆
𝑗
(






𝑏
ℓ

𝑗1






+






𝑐
ℓ

𝑗1






) 𝐿
1

+

2

∑

𝑗=1

𝜉
𝑗
(






𝛾
ℓ

𝑗1






+






𝛿
ℓ

𝑗1






) 𝐿
1
= −0.26 < 0,

𝜆
2
[

[

−2𝑎
2
+

2

∑

𝑗=1






𝑎
2𝑗






𝐿
𝑗
+

2

∑

𝑗=1

(






𝑏
ℓ

2𝑗






+






𝑐
ℓ

2𝑗






) 𝐿
𝑗
+




𝐵
2





]

]

+ 𝜉
2





𝛽
2





𝐿
2
+

2

∑

𝑗=1

𝜆
𝑗






𝑎
𝑗2






𝐿
2
+

2

∑

𝑗=1

𝜆
𝑗
(






𝑏
ℓ

𝑗2






+






𝑐
ℓ

𝑗2






) 𝐿
2

+

2

∑

𝑗=1

𝜉
𝑗
(






𝛾
ℓ

𝑗2






+






𝛿
ℓ

𝑗2






) 𝐿
2
= −0.25 < 0,

𝜆
1





𝐵
1





+ 𝜉
1
[

[

−2𝛼
1
+




𝛽
1





𝐿
1
+

2

∑

𝑗=1

(






𝛾
ℓ

1𝑗






+






𝛿
ℓ

1𝑗






) 𝐿
𝑗
]

]

= −0.23 < 0,

𝜆
2





𝐵
2





+ 𝜉
2
[

[

−2𝛼
2
+




𝛽
2





𝐿
2
+

2

∑

𝑗=1

(






𝛾
ℓ

2𝑗






+






𝛿
ℓ

2𝑗






) 𝐿
𝑗
]

]

= −0.2 < 0.

(36)

When T = Z, that is, 𝜇(𝑡) = 1,

𝜆
1
[

[

− 2𝑎
1
+ 𝑎
2

1

+ (

2

∑

𝑗=1






𝑎
1𝑗






𝐿
𝑗
+

2

∑

𝑗=1

(






𝑏
ℓ

1𝑗






+






𝑐
ℓ

1𝑗






) 𝐿
𝑗
+




𝐵
1





)

× (1 + 𝑎
1
)
]

]

+ 𝜉
1





𝛽
1





𝐿
1
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×
[

[

1 +




𝛽
1





𝐿
1
+ 𝛼
1
+

2

∑

𝑗=1

(






𝛾
ℓ

1𝑗






+






𝛿
ℓ

1𝑗






) 𝐿
𝑗
]

]

+

2

∑

𝑗=1

𝜆
𝑗






𝑎
𝑗1






𝐿
1

× [1 + 2






𝑎
𝑗1






𝐿
1
+ 𝑎
𝑗
+ (






𝑏
ℓ

𝑗1






+






𝑐
ℓ

𝑗1






) 𝐿
1
+






𝐵
𝑗






]

+

2

∑

𝑗=1

𝜆
𝑗
(






𝑏
ℓ

𝑗1






+






𝑐
ℓ

𝑗1






) 𝐿
1

× [1 + 2 (






𝑏
ℓ

𝑗1






+






𝑐
ℓ

𝑗1






) 𝐿
1
+ 𝑎
𝑗
+






𝑎
𝑗1






𝐿
1
+






𝐵
𝑗






]

+

2

∑

𝑗=1

𝜉
𝑗
(






𝛾
ℓ

𝑗1






+






𝛿
ℓ

𝑗1






)

× 𝐿
1
[1 + 2 (






𝛾
ℓ

𝑗1






+






𝛿
ℓ

𝑗1






) 𝐿
1
+ 𝛼
𝑗
+






𝛽
𝑗






𝐿
𝑗
]

= −0.056 < 0,

𝜆
2
[

[

− 2𝑎
2
+ 𝑎
2

2

+ (

2

∑

𝑗=1






𝑎
2𝑗






𝐿
𝑗
+

2

∑

𝑗=1

(






𝑏
ℓ

2𝑗






+






𝑐
ℓ

2𝑗






) 𝐿
𝑗
+




𝐵
2





)

× (1 + 𝑎
2
)
]

]

+ 𝜉
2





𝛽
2





𝐿
2
[

[

1 +




𝛽
2





𝐿
2
+ 𝛼
2
+

2

∑

𝑗=1

(






𝛾
ℓ

2𝑗






+






𝛿
ℓ

2𝑗






) 𝐿
𝑗
]

]

+

2

∑

𝑗=1

𝜆
𝑗






𝑎
𝑗2






𝐿
2

× [1 + 2






𝑎
𝑗2






𝐿
2
+ 𝑎
𝑗
+ (






𝑏
ℓ

𝑗2






+






𝑐
ℓ

𝑗2






) 𝐿
2
+






𝐵
𝑗






]

+

2

∑

𝑗=1

𝜆
𝑗
(






𝑏
ℓ

𝑗2






+






𝑐
ℓ

𝑗2






) 𝐿
2

× [1 + 2 (






𝑏
ℓ

𝑗2






+






𝑐
ℓ

𝑗2






) 𝐿
2
+ 𝑎
𝑗
+






𝑎
𝑗2






𝐿
2
+






𝐵
𝑗






]

+

2

∑

𝑗=1

𝜉
𝑗
(






𝛾
ℓ

𝑗2






+






𝛿
ℓ

𝑗2






)

× 𝐿
2
[1 + 2 (






𝛾
ℓ

𝑗2






+






𝛿
ℓ

𝑗2






) 𝐿
2
+ 𝛼
𝑗
+






𝛽
𝑗






𝐿
𝑗
]

= −0.0427 < 0,

𝜆
1





𝐵
1





[

[

1 +




𝐵
1





+ 𝑎
1
+

2

∑

𝑗=1






𝑎
1𝑗






𝐿
𝑗
+

2

∑

𝑗=1

(






𝑏
ℓ

1𝑗






+






𝑐
ℓ

1𝑗






) 𝐿
𝑗
]

]

+ 𝜉
1
[

[

−2𝛼
1
+ 𝛼
2

1

+(




𝛽
1





𝐿
1
+

2

∑

𝑗=1

(






𝛾
ℓ

1𝑗






+






𝛿
ℓ

1𝑗






) 𝐿
𝑗
)(1 + 𝛼

1
)
]

]

= −0.128 < 0,

𝜆
2





𝐵
2





[

[

1 +




𝐵
2





+ 𝑎
2
+

2

∑

𝑗=1






𝑎
2𝑗






𝐿
𝑗
+

2

∑

𝑗=1

(






𝑏
ℓ

2𝑗






+






𝑐
ℓ

2𝑗






) 𝐿
𝑗
]

]

+ 𝜉
2
[

[

−2𝛼
2
+ 𝛼
2

2

+(




𝛽
2





𝐿
2
+

2

∑

𝑗=1

(






𝛾
ℓ

2𝑗






+






𝛿
ℓ

2𝑗






) 𝐿
𝑗
)(1 + 𝛼

2
)
]

]

= −0.092 < 0.

(37)

It follows from Corollaries 16 and 17 that (34) has a unique
equilibrium point which is globally exponentially stable.

5. Conclusion

By using the time scale calculus theory and the Lyapunov
functional method, we derive some sufficient conditions
to ensure the global exponential stability of learning-based
fuzzy networks on time scales. The conditions possess highly
important significance and can be easily checked in practice
by simple algebraic method; the exponential convergence of
the learning dynamics is also considered.
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