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This paper is concerned with the exponential state estimation problem for a class of discrete-time fuzzy cellular neural networks
with mixed time delays. The main purpose is to estimate the neuron states through available output measurements such that the
dynamics of the estimation error is globally exponentially stable. By constructing a novel Lyapunov-Krasovskii functional which
contains a triple summation term, some sufficient conditions are derived to guarantee the existence of the state estimator.The linear
matrix inequality approach is employed for the first time to deal with the fuzzy cellular neural networks in the discrete-time case.
Compared with the present conditions in the form of𝑀-matrix, the results obtained in this paper are less conservative and can
be checked readily by the MATLAB toolbox. Finally, some numerical examples are given to demonstrate the effectiveness of the
proposed results.

1. Introduction

Cellular neural networks (CNNs), initially proposed by Chua
andYang in 1988 [1], have been extensively investigated owing
to their important applications in many areas such as image
processing, pattern recognition, and combinatorial optimiza-
tion. However, when mathematically modeling real neural
networks, uncertainty or vagueness is often encountered. In
order to take this vagueness into consideration, the fuzzy
cellular neural networks (FCNNs) were proposed by Yang et
al. in [2, 3], which integrate fuzzy logic into the structure of
traditional CNNs and maintain local connectedness among
cells. Recently, the dynamics analysis problem of FCNNs has
received an increasing research attention and some relevant
results have been reported in the literature [4–9].

It should be noted that all of the aforementioned results
are in the continuous-time settings. In reality, however,
discrete-time neural networks (DNNs) become more impor-
tant than their continuous-time counterparts when imple-
menting the neural networks in a digital way. Therefore,
it is necessary to study the dynamics of DNNs and many

results have been obtained during the past years [10–17]. By
using the average dwell time approach and the discontinuous
piecewise Lyapunov function technique, Zhang and Yu [16]
studied passivity analysis problem for a class of discrete-
time switched neural networks with various activation func-
tions and mixed time delays. More recently, Wu et al. [17]
discussed the problem of dissipativity analysis for discrete-
time stochastic neural networks with time-varying discrete
and finite-distributed delays with the aid of Jensen inequality
and lower bounds lemma. Unfortunately, little attention has
been paid to the discrete-time fuzzy cellular neural networks.
In this context, only two works can be found [18, 19]. The
following discrete-time fuzzy cellular neural networks with
variable delays and impulses were studied in [18]:

𝑢
𝑖 (𝑚 + 1) = 𝑐𝑖𝑢𝑖 (𝑚) +

𝑛

∑

𝑗=1

𝑎
𝑖𝑗
𝑓
𝑗
(𝑢
𝑗 (𝑚))

+

𝑛

∑

𝑗=1

𝑏
𝑖𝑗
𝜗
𝑗
+ 𝐼
𝑖
+

𝑛

⋀

𝑗=1

𝛼
𝑖𝑗
𝑓
𝑗
(𝑢
𝑗
(𝑚 − 𝜏

𝑖𝑗 (𝑚)))

Hindawi Publishing Corporation
Mathematical Problems in Engineering
Volume 2014, Article ID 906439, 13 pages
http://dx.doi.org/10.1155/2014/906439



2 Mathematical Problems in Engineering

+

𝑛

⋁

𝑗=1

𝛽
𝑖𝑗
𝑓
𝑗
(𝑢
𝑗
(𝑚 − 𝜏

𝑖𝑗 (𝑚)))

+

𝑛

⋀

𝑗=1

𝑇
𝑖𝑗
𝜗
𝑗
+

𝑛

⋁

𝑗=1

𝐻
𝑖𝑗
𝜗
𝑗
, 𝑚 ̸=𝑚

𝑘
,

(1)

𝑢
𝑖 (𝑚) = 𝑝𝑖𝑘 (𝑢1 (𝑚

−
) , . . . , 𝑢

𝑛
(𝑚
−
))

+ 𝑞
𝑖𝑘
(𝑢
1
((𝑚 − 𝜏

𝑖1 (𝑚))
−
) , . . . ,

𝑢
𝑛
((𝑚 − 𝜏

𝑖𝑛 (𝑚))
−
)) + 𝐽

𝑖𝑘
, 𝑚 = 𝑚

𝑘
,

(2)

where 𝑘 = 1, 2, . . ., 𝑖 = 1, 2, . . . , 𝑛, 𝑛 corresponds to the
number of units in the neural networks; 𝑢

𝑖
(𝑚) is the state of

the 𝑖th neuron at time𝑚; 𝑓
𝑗
(⋅) denotes the neuron activation

function; 𝜏
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.

In [18], by using M-matrix theory and analytic methods,
several sufficient conditions guaranteeing the global expo-
nential stability of the equilibrium point and the existence
of periodic solutions were obtained. Recently, Li and Wang
[19] further discussed the existence and global exponential
stability of equilibrium for discrete-time fuzzy BAM neural
networks with variable delays and impulses. However, there
still exist two points waiting for the improvements. First, in
[18, 19], the authors only discussed discrete-time fuzzy neural
networks with discrete delays. We all know the effects of
distributed delays should not be neglected because a neural
network usually has a spatial nature due to the presence of
an amount of parallel pathways of a variety of node sizes and
lengths. Second, the results in [18, 19] are described in the
form of M-matrix. However, the results in the form of M-
matrix do not contain any unknown parameters. Moreover,
the excitatory and inhibitory effects of neuron on neural
networks are also neglected. Thus, the conservativeness of
the results is much greater. We note that the results in the
formof linearmatrix inequalities (LMIs) are less conservative
because they not only include suitable number of unknown
parameters, but also consider the excitatory and inhibitory
effects of neuron on neural networks. Furthermore, the LMIs
can be easily solved by using the MATLAB LMI toolbox.

In many applications, one needs to know the neuron
states to achieve certain objectives. On the other hand, the

neuron states are not often fully available in the network
outputs. Thus, the state estimation problem for neural net-
works has drawn particular research interests [20–24]. The
results reported in [20–24] can only ensure that the dynamics
of the error system is asymptotically stable. In some cases,
the engineers need to know how fast the trajectory of the
error system converges to the equilibrium point. Therefore,
the problemof exponential state estimation is very important.
Reference [25] investigated the problem of exponential state
estimation for Markovian jumping neural networks with
time-varying discrete and distributed delays. By construct-
ing a novel Lyapunov-Krasovskii functional and developing
a new convex combination technique, a new exponential
stability condition was proposed. Reference [26] studied
the estimator design problem for discrete-time switched
neural networks with time-varying delay and addressed the
asynchronous phenomenon between the neuron state-mode
switching and the estimator switching. Delay-dependent
sufficient conditions were provided to ensure the exponential
stability of estimation error dynamics as well as a prescribed
𝑙
2
gain level from the noise signal to the estimation error.

Recently, the authors in [27] discussed the state estimation
problem for continuous-time fuzzy cellular neural networks.
However, to the best of our knowledge, the state estimation
problem for discrete-time fuzzy cellular neural networks has
not been investigated in the existing literatures, which elicits
our research work.

In this paper, the state estimation problem for a class
of discrete-time fuzzy cellular neural networks is considered
for the first time. The neural networks under study involve
fuzzy parameters, discrete delays, and unbounded distributed
delays, which are more general than those discussed in the
previous literatures. By constructing a Lyapunov-Krasovskii
functional including the triple-integral term, some delay-
dependent sufficient conditions are derived, such that, for
all admissible delay bounds, the dynamics of the estimation
error is globally exponentially stable. It is noted that the
effects of neuron excitatory and inhibitory responses on
neural networks are taken into account in the proposed
approach, which will lead to less conservative results. These
conditions obtained are in the form of LMIs whose solution
can be easily calculated by using MATLAB LMI toolbox.

2. Problem Formulation

Considering the following discrete-time fuzzy cellular neural
networks with mixed time delays:
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where 𝑖 = 1, 2, . . . , 𝑛, 𝑛 is the number of neurons in the net-
works; 𝑥

𝑖
(𝑘) is the state of the 𝑖th neuron at time 𝑘; 𝛼
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feedback MAX template, fuzzy feed-forward MIN template,
and fuzzy feed-forward MAX template, respectively; 𝑎
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and
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feed-forward template; ⋀ and ⋁ denote the fuzzy AND and
fuzzy OR operation, respectively; 𝑢
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bias of the 𝑖th neuron, respectively. 𝑓
𝑗
(⋅) denotes the neuron

activation function; 𝜏(𝑘) denotes the time-varying delay and
satisfies 𝜏
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𝑀
, in which 𝜏
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positive integers; 𝑑
𝑖
satisfies 0 < 𝑑

𝑖
< 1 and represents the

rate with which the 𝑖th neuron will reset its potential to the
resting state when disconnected from the network and exter-
nal inputs.

Throughout the paper, the following assumptions are
needed.
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𝑚
≥ 0 (𝑚 = 1, 2, . . .) satisfies the
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(H2) For 𝑖 ∈ {1, 2, . . . , 𝑛}, the neuron activation function
𝑔
𝑖
(⋅) satisfies

𝑙
−

𝑖
≤
𝑔
𝑖
(𝜁
1
) − 𝑔
𝑖
(𝜁
2
)

𝜁
1
− 𝜁
2

≤ 𝑙
+

𝑖
, ∀𝜁

1
, 𝜁
2
∈ 𝑅 (𝜁

1
̸= 𝜁
2
) , (5)

where 𝑙−
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+
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are some constants.

Remark 1. This assumption was first introduced in [28].
The constants 𝑙−

𝑖
, 𝑙+
𝑖
are allowed to be positive, negative,

or zero. Hence, the resulting activation functions could be
nonmonotonic and more general than the usual sigmoid
functions and Lipschitz-type conditions. Such a description is
very precise in quantifying the lower and upper bounds of the
activation functions and therefore very helpful for employing
LMI-based method to reduce the possible conservatism.

As mentioned before, for relatively large scale neural net-
works, it is very difficult to acquire the complete information
of the neuron states.The purpose of this study is to develop an
efficient approach to estimate the states of neural networks via

the available network outputs. Here, we assume the network
outputs to be of the form

𝑦 (𝑘) = 𝐶𝑥 (𝑘) + 𝜑 (𝑘, 𝑥 (𝑘)) , (6)

where 𝑦(𝑘) ∈ R𝑚, 𝐶 is a known constant matrix with appro-
priate dimension, and 𝜑 : R × R𝑛 → R𝑚 is the nonlinear
disturbance satisfying the following Lipschitz condition:
󵄨󵄨󵄨󵄨𝜑 (𝑘, 𝑥) − 𝜑 (𝑘, 𝑦)

󵄨󵄨󵄨󵄨 ≤
󵄨󵄨󵄨󵄨𝐻 (𝑥 − 𝑦)

󵄨󵄨󵄨󵄨 , ∀𝑘 ∈ N, 𝑥, 𝑦 ∈ R
𝑛
,

(7)

where𝐻 ∈ R𝑚×𝑛 is also a known constant matrix.
We construct the state estimator as follows:
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where 𝑥
𝑖
is the estimation of the 𝑖th neuron state and 𝑘
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element of an estimator gain matrix to be designed.
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as 𝑒(𝑠) = 𝜓(𝑠) (𝑠 = 0, −1, −2, . . .). It is obvious that 𝑒(𝑘, 0) ≡ 0
is a trivial solution of the system (9).

Now we introduce the following definition and lemmas
which will be used in the sequel.

Lemma 2 (see [2]). Let 𝑥 and 𝑦 be two states of system (3),
then one has
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Lemma 3 (see [7]). For any constant 𝜖 > 0, 𝑛-dimensional
real vectors 𝑥, 𝑦, and positive definite matrix 𝑁 ∈ R𝑛×𝑛, the
following matrix inequality holds:
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∑

𝑚=1

𝑎
𝑖
𝑥
𝑖
)

𝑇

𝑀(

+∞

∑

𝑚=1

𝑎
𝑖
𝑥
𝑖
) ≤ (

+∞

∑

𝑚=1

𝑎
𝑖
)

+∞

∑

𝑚=1

𝑎
𝑖
𝑥
𝑇

𝑖
𝑀𝑥
𝑖
,

(2)[

[

𝑖=−𝑛−1

∑

𝑖=−𝑚

−1

∑

𝑗=𝑖

𝑥
𝑗
]

]

𝑇

𝑀[

[

𝑖=−𝑛−1

∑

𝑖=−𝑚

−1

∑

𝑗=𝑖

𝑥
𝑗
]

]

≤
𝑚 − 𝑛

2
(𝑚 + 𝑛 + 1)

𝑖=−𝑛−1

∑

𝑖=−𝑚

−1

∑

𝑗=𝑖

𝑥
𝑇

𝑗
𝑀𝑥
𝑗
.

(12)

Definition 5. The error system (9) is said to be globally
exponentially stable, if there exist constants 𝛼 > 0 and 0 <
𝜇 < 1 such that

‖𝑒 (𝑘)‖ ≤ 𝛼𝜇
𝑘 max
−∞<𝑠≤0

‖𝑒 (𝑠)‖ , ∀𝑘 ≥ 0, (13)

where ‖𝑒(𝑘)‖ is the Euclidean norm of 𝑒(𝑘).

3. Main Results

In this section, by constructing a new Lyapunov-Krasovskii
functional, we will develop an LMI approach to derive some
sufficient conditions under which the error system (9) is
globally exponentially stable, and the resulting gain matrix
K will also be given. For presentation convenience, in the
following, we denote

𝐿
1
= diag (𝑙−

1
𝑙
+

1
, 𝑙
−

2
𝑙
+

2
, . . . , 𝑙

−

𝑛
𝑙
+

𝑛
) ,

𝐿
2
= diag(

𝑙
−

1
+ 𝑙
+

1

2
,
𝑙
−

2
+ 𝑙
+

2

2
, . . . ,

𝑙
−

𝑛
+ 𝑙
+

𝑛

2
) ,

𝜏
1
= 𝜏
𝑀
− 𝜏
𝑚
, 𝜏

2
= 𝜏
𝑀
+ 𝜏
𝑚
.

(14)

Theorem 6. Suppose that assumptions (H1)-(H2) and con-
dition (7) hold; the error system (9) is globally exponentially
stable if there exist positive diagonal matrices 𝑃, 𝐷

1
, and 𝐷

2
,

positive symmetric matrices 𝑄
1
, 𝑄
2
, 𝑇, 𝑆, and 𝑅, real matrix

𝑁, and scalars 𝜖 > 0, 𝜗 > 0 such that the following LMI
holds:

Φ = [

[

Ψ 𝜉
𝑇

∗ −𝜖𝑛
−1
𝐼

]

]

< 0, (15)

where

Ψ =

[
[
[
[
[
[
[
[
[
[
[
[
[
[
[
[

[

𝑟
1,1

0 0 0 𝑟
1,5
𝑟
1,6
𝑟
1,7
𝑟
1,8

𝑟
1,9

0 −𝑁

∗ −𝑄
1

0 0 0 0 0 0 0 0 0

∗ ∗ −𝑄
2
0 0 0 0 0 0 0 0

∗ ∗ ∗ 𝑟
4,4

0 0 0 0 𝐿
2
𝐷
2

0 0

∗ ∗ ∗ ∗ 𝑟
5,5

0 0 𝑃𝐴 𝑃𝐵 0 −𝑁

∗ ∗ ∗ ∗ ∗ 𝑟
6,6
𝑟
6,7

0 0 0 0

∗ ∗ ∗ ∗ ∗ ∗ 𝑟
7,7

0 0 0 0

∗ ∗ ∗ ∗ ∗ ∗ ∗ 𝑟
8,8

0 0 0

∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ −𝐷
2

0 0

∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ 𝑟
10,10

0

∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ −𝜗𝐼

]
]
]
]
]
]
]
]
]
]
]
]
]
]
]
]

]

, (16)
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with

𝑟
1,1
= − 2𝑃𝐷 − 𝑁𝐶 − 𝐶

𝑇
𝑁
𝑇
− 𝑃 + 𝑄

1
+ 𝑄
2

+ (𝜏
1
+ 1) 𝑇 −

2𝜏
1

𝜏
2
+ 1
𝑅 − 𝐿

1
𝐷
1
+ 𝜗𝐻
𝑇
𝐻,

𝑟
1,5
= −𝐷
𝑇
𝑃 − 𝐶

𝑇
𝑁
𝑇
− 𝑃, 𝑟

1,6
= 𝑟
1,7
=

2

𝜏
2
+ 1
𝑅,

𝑟
1,8
= 𝑃𝐴 + 𝐿

2
𝐷
1
, 𝑟

1,9
= 𝑃𝐵,

𝑟
4,4
= −𝑇 − 𝐿

1
𝐷
2
, 𝑟

5,5
= −𝑃 +

𝜏
1

2
(𝜏
2
+ 1) 𝑅,

𝑟
6,6
= 𝑟
6,7
= 𝑟
7,7
= −

2

𝜏
1
(𝜏
2
+ 1)

𝑅,

𝑟
8,8
= 𝜇𝑆 − 𝐷

1
, 𝑟

10,10
= 𝑛𝑌
𝑇
𝑃𝑌 + 𝜖𝐼 −

1

𝜇
𝑆,

𝑌 = |𝛼|𝑟 +
󵄨󵄨󵄨󵄨𝛽
󵄨󵄨󵄨󵄨𝑟
,

|𝛼|𝑟 = diag{
𝑛

∑

𝑖=1

󵄨󵄨󵄨󵄨𝛼𝑖1
󵄨󵄨󵄨󵄨 ,

𝑛

∑

𝑖=1

󵄨󵄨󵄨󵄨𝛼𝑖2
󵄨󵄨󵄨󵄨 , . . . ,

𝑛

∑

𝑖=1

󵄨󵄨󵄨󵄨𝛼𝑖𝑛
󵄨󵄨󵄨󵄨} ,

󵄨󵄨󵄨󵄨𝛽
󵄨󵄨󵄨󵄨𝑟
= diag{

𝑛

∑

𝑖=1

󵄨󵄨󵄨󵄨𝛽𝑖1
󵄨󵄨󵄨󵄨 ,

𝑛

∑

𝑖=1

󵄨󵄨󵄨󵄨, 𝛽𝑖2
󵄨󵄨󵄨󵄨 , . . . ,

𝑛

∑

𝑖=1

󵄨󵄨󵄨󵄨𝛽𝑖𝑛
󵄨󵄨󵄨󵄨} .

(17)

Moreover, the estimate gain matrix can be designed as 𝐾 =

𝑃
−1
𝑁.

Proof. Defining 𝜂(𝑘) = 𝑒(𝑘 + 1) − 𝑒(𝑘), we introduce the
following Lyapunov-Krasovskii functional:

𝑉 (𝑘) =

5

∑

𝑖=1

𝑉 (𝑘) , (18)

where

𝑉
1 (𝑘) = 𝑒

𝑇
(𝑘) 𝑃𝑒 (𝑘) ,

𝑉
2 (𝑘) =

𝑘−1

∑

𝑖=𝑘−𝜏
𝑚

𝑒
𝑇
(𝑖) 𝑄1𝑒 (𝑖) +

𝑘−1

∑

𝑖=𝑘−𝜏
𝑀

𝑒
𝑇
(𝑖) 𝑄2𝑒 (𝑖) ,

𝑉
3 (𝑘) =

−𝜏
𝑚
+1

∑

𝑖=−𝜏
𝑀
+1

𝑘−1

∑

𝑗=𝑘−1+𝑖

𝑒 (𝑗)
𝑇
𝑇𝑒 (𝑗) ,

𝑉
4 (𝑘) =

+∞

∑

𝑖=1

𝜇
𝑖

𝑘−1

∑

𝑗=𝑘−𝑖

𝑓
𝑇
(𝑗) 𝑆𝑓 (𝑗) ,

𝑉
5 (𝑘) =

−𝜏
𝑚
−1

∑

𝑖=−𝜏
𝑀

−1

∑

𝑗=𝑖

𝑘−1

∑

𝑙=𝑘+𝑗

𝜂
𝑇
(𝑙) 𝑅𝜂 (𝑙) .

(19)

According to Lemma 2, the following inequalities hold:

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

𝑛

⋀

𝑗=1

𝛼
𝑖𝑗

+∞

∑

𝑚=1

𝜇
𝑚
𝑔
𝑗
(𝑥
𝑗 (𝑘)) −

𝑛

⋀

𝑗=1

𝛼
𝑖𝑗

∞

∑

𝑚=1

𝜇
𝑚
𝑔
𝑗
(𝑥
𝑗 (𝑘))

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

≤

𝑛

∑

𝑗=1

󵄨󵄨󵄨󵄨󵄨
𝛼
𝑖𝑗

󵄨󵄨󵄨󵄨󵄨

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

+∞

∑

𝑚=1

𝜇
𝑚
𝑓
𝑗 (𝑘)

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

,

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

𝑛

⋀

𝑗=1

𝛽
𝑖𝑗

+∞

∑

𝑚=1

𝜇
𝑚
𝑔
𝑗
(𝑥
𝑗 (𝑘)) −

𝑛

⋀

𝑗=1

𝛽
𝑖𝑗

∞

∑

𝑚=1

𝜇
𝑚
𝑔
𝑗
(𝑥
𝑗 (𝑘))

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

≤

𝑛

∑

𝑗=1

󵄨󵄨󵄨󵄨󵄨
𝛽
𝑖𝑗

󵄨󵄨󵄨󵄨󵄨

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

+∞

∑

𝑚=1

𝜇
𝑚
𝑓
𝑗 (𝑘)

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

.

(20)

Calculating the difference of 𝑉(𝑘) along the solution of
system (9), we have

Δ𝑉 (𝑘) =

5

∑

𝑖=1

Δ𝑉 (𝑘) , (21)

where

Δ𝑉
1 (𝑘) = 𝑉1 (𝑘 + 1) − 𝑉1 (𝑘)

= 𝜂
𝑇
(𝑘) 𝑃𝜂 (𝑘) + 2𝑒

𝑇
(𝑘) 𝑃𝜂 (𝑘)

= 𝜂
𝑇
(𝑘) 𝑃𝜂 (𝑘)

+ 2

𝑛

∑

𝑖=1

𝑝
𝑖
𝑒
𝑖 (𝑘)

[

[

− (𝑑
𝑖
+ 1) 𝑒

𝑖 (𝑘)

−

𝑚

∑

𝑙=1

𝑘
𝑖𝑙

𝑛

∑

𝑗=1

𝑐
𝑖𝑙
𝑒
𝑗 (𝑘) +

𝑛

∑

𝑗=1

𝑎
𝑖𝑗
𝑓
𝑗 (𝑘)

+

𝑛

∑

𝑗=1

𝑏
𝑖𝑗
𝑓
𝑗 (𝑘 − 𝜏 (𝑘))

+

𝑛

⋀

𝑗=1

𝛼
𝑖𝑗

+∞

∑

𝑚=1

𝜇
𝑚
𝑔
𝑗
(𝑥
𝑗 (𝑘 − 𝑚))

−

𝑛

⋀

𝑗=1

𝛼
𝑖𝑗

+∞

∑

𝑚=1

𝜇
𝑚
𝑔
𝑗
(𝑥
𝑗 (𝑘 − 𝑚))

+

𝑛

⋁

𝑗=1

𝛽
𝑖𝑗

+∞

∑

𝑚=1

𝜇
𝑚
𝑔
𝑗
(𝑥
𝑗 (𝑘 − 𝑚))

−

𝑛

⋁

𝑗=1

𝛽
𝑖𝑗

+∞

∑

𝑚=1

𝜇
𝑚
𝑔
𝑗
(𝑥
𝑗 (𝑘 − 𝑚))

−

𝑚

∑

𝑙=1

𝑘
𝑖𝑙
ℎ
𝑙 (𝑘)

]

]
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≤ 𝜂
𝑇
(𝑘) 𝑃𝜂 (𝑘) + 2𝑒

𝑇
(𝑘)

× 𝑃 [− (𝐷 + 𝐾𝐶 + 𝐼) 𝑒 (𝑘) + 𝐴𝑓 (𝑘)

+ 𝐵𝑓 (𝑘 − 𝜏 (𝑘)) − 𝐾ℎ (𝑘)]

+ 2|𝑒 (𝑘)|
𝑇
𝑃 (|𝛼| +

󵄨󵄨󵄨󵄨𝛽
󵄨󵄨󵄨󵄨)

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

+∞

∑

𝑚=1

𝜇
𝑚
𝑓 (𝑘 − 𝑚)

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

≤ 𝜂
𝑇
(𝑘) 𝑃𝜂 (𝑘) + 2𝑒

𝑇
(𝑘)

× 𝑃 [− (𝐷 + 𝐾𝐶 + 𝐼) 𝑒 (𝑘) + 𝐴𝑓 (𝑘)

+ 𝐵𝑓 (𝑘 − 𝜏 (𝑘)) − 𝐾ℎ (𝑘)]

+ 2|𝑒 (𝑘)|
𝑇
𝑃 (|𝛼| +

󵄨󵄨󵄨󵄨𝛽
󵄨󵄨󵄨󵄨)

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

+∞

∑

𝑚=1

𝜇
𝑚
𝑓 (𝑘 − 𝑚)

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

+ 2𝜂
𝑇
(𝑘) 𝑃 [−𝜂 (𝑘) + 𝜂 (𝑘)]

≤ − 𝜂
𝑇
(𝑘) 𝑃𝜂 (𝑘) + 2𝑒

𝑇
(𝑘)

× 𝑃 [− (𝐷 + 𝐾𝐶 + 𝐼) 𝑒 (𝑘) + 𝐴𝑓 (𝑘)

+ 𝐵𝑓 (𝑘 − 𝜏 (𝑘)) − 𝐾ℎ (𝑘)]

+ 2|𝑒 (𝑘)|
𝑇
𝑃 (|𝛼| +

󵄨󵄨󵄨󵄨𝛽
󵄨󵄨󵄨󵄨)

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

+∞

∑

𝑚=1

𝜇
𝑚
𝑓 (𝑘 − 𝑚)

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

+ 2𝜂
𝑇
(𝑘) 𝑃 [− (𝐷 + 𝐾𝐶 + 𝐼) 𝑒 (𝑘) + 𝐴𝑓 (𝑘)

+ 𝐵𝑓 (𝑘 − 𝜏 (𝑘)) − 𝐾ℎ (𝑘)]

+ 2𝜂
𝑇
(𝑘) 𝑃 (|𝛼| +

󵄨󵄨󵄨󵄨𝛽
󵄨󵄨󵄨󵄨)

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

+∞

∑

𝑚=1

𝜇
𝑚
𝑓 (𝑘 − 𝑚)

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

≤ − 𝜂
𝑇
(𝑘) 𝑃𝜂 (𝑘) + 2 [𝑒

𝑇
(𝑘) + 𝜂

𝑇
(𝑘)]

× 𝑃 [− (𝐷 + 𝐾𝐶 + 𝐼) 𝑒 (𝑘) + 𝐴𝑓 (𝑘)

+ 𝐵𝑓 (𝑘 − 𝜏 (𝑘)) − 𝐾ℎ (𝑘)] + 𝑒(𝑘)
𝑇
𝑃𝑒 (𝑘)

+ 𝑛

+∞

∑

𝑚=1

𝜇
𝑚
𝑓
𝑇
(𝑘 − 𝑚) (|𝛼|𝑟 +

󵄨󵄨󵄨󵄨𝛽
󵄨󵄨󵄨󵄨𝑟
)
𝑇
𝑃 (|𝛼|𝑟 +

󵄨󵄨󵄨󵄨𝛽
󵄨󵄨󵄨󵄨𝑟
)

×

+∞

∑

𝑚=1

𝜇
𝑚
𝑓 (𝑘 − 𝑚) + 𝜖

−1
𝑛𝜂
𝑇
(𝑘)

× 𝑃 (|𝛼|𝑟 +
󵄨󵄨󵄨󵄨𝛽
󵄨󵄨󵄨󵄨𝑟
) (|𝛼|𝑟 +

󵄨󵄨󵄨󵄨𝛽
󵄨󵄨󵄨󵄨𝑟
)
𝑇
𝑃
𝑇
𝜂 (𝑘)

+ 𝜖(

+∞

∑

𝑚=1

𝜇
𝑚
𝑓
𝑇
(𝑘 − 𝑚))(

+∞

∑

𝑚=1

𝜇
𝑚
𝑓 (𝑘 − 𝑚)) ,

(22)

Δ𝑉
2 (𝑘) = 𝑉2 (𝑘 + 1) − 𝑉2 (𝑘)

= 𝑒
𝑇
(𝑘) (𝑄1 + 𝑄2) 𝑒 (𝑘) − 𝑒

𝑇
(𝑘 − 𝜏

𝑚
) 𝑄
1
𝑒 (𝑘 − 𝜏

𝑚
)

− 𝑒
𝑇
(𝑘 − 𝜏

𝑀
) 𝑄
2
𝑒 (𝑘 − 𝜏

𝑀
) ,

(23)

Δ𝑉
3 (𝑘) = 𝑉3 (𝑘 + 1) − 𝑉3 (𝑘)

=

−𝜏
𝑚
+1

∑

𝑖=−𝜏
𝑀
+1

𝑘

∑

𝑗=𝑘+𝑖

𝑒(𝑗)
𝑇
𝑇𝑒 (𝑗) −

−𝜏
𝑚
+1

∑

𝑖=−𝜏
𝑀
+1

𝑘−1

∑

𝑗=𝑘−1+𝑖

𝑒(𝑗)
𝑇
𝑇𝑒 (𝑗)

=

−𝜏
𝑚
+1

∑

𝑖=−𝜏
𝑀
+1

[𝑒
𝑇
(𝑘) 𝑇𝑒 (𝑘) − 𝑒

𝑇
(𝑘 − 1 + 𝑖) 𝑇𝑒 (𝑘 − 1 + 𝑖)]

= (𝜏
1
+ 1) 𝑒

𝑇
(𝑘) 𝑇𝑒 (𝑘) −

𝑘−𝜏
𝑚

∑

𝑖=𝑘−𝜏
𝑀

𝑒
𝑇
(𝑖) 𝑇𝑒 (𝑖)

≤ (𝜏
1
+ 1) 𝑒

𝑇
(𝑘) 𝑇𝑒 (𝑘)

− 𝑒
𝑇
(𝑘 − 𝜏 (𝑘)) 𝑇𝑒 (𝑘 − 𝜏 (𝑘)) ,

(24)

Δ𝑉
4 (𝑘) = 𝑉4 (𝑘 + 1) − 𝑉4 (𝑘)

=

+∞

∑

𝑖=1

𝜇
𝑖
[𝑓
𝑇
(𝑘) 𝑆𝑓 (𝑘) − 𝑓

𝑇
(𝑘 − 𝑖) 𝑆𝑓 (𝑘 − 𝑖)]

(by Lemma 4)

≤ 𝜇𝑓
𝑇
(𝑘) 𝑆𝑓 (𝑘) −

1

𝜇
(

+∞

∑

𝑖=1

𝜇
𝑖
𝑓 (𝑘 − 𝑖))

𝑇

× 𝑆(

+∞

∑

𝑖=1

𝜇
𝑖
𝑓 (𝑘 − 𝑖)) ,

(25)

Δ𝑉
5 (𝑘) = 𝑉5 (𝑘 + 1) − 𝑉5 (𝑘)

=
𝜏
1

2
(𝜏
2
+ 1) 𝜂

𝑇
(𝑘) 𝑅𝜂 (𝑘)

−

−𝜏
𝑚
−1

∑

𝑖=−𝜏
𝑀

𝑘−1

∑

𝑗=𝑘+𝑖

𝜂
𝑇
(𝑗) 𝑅𝜂 (𝑗) (by Lemma 4)

≤
𝜏
1

2
(𝜏
2
+ 1) 𝜂

𝑇
(𝑘) 𝑅𝜂 (𝑘) −

2

𝜏
1
(𝜏
2
+ 1)

× [

[

−𝜏
𝑚
−1

∑

𝑖=−𝜏
𝑀

𝑘−1

∑

𝑗=𝑘+𝑖

𝜂 (𝑗)]

]

𝑇

𝑅[

[

−𝜏
𝑚
−1

∑

𝑖=−𝜏
𝑀

𝑘−1

∑

𝑗=𝑘+𝑖

𝜂 (𝑗)]

]

≤
𝜏
1

2
(𝜏
2
+ 1) 𝜂

𝑇
(𝑘) 𝑅𝜂 (𝑘) −

2

𝜏
1
(𝜏
2
+ 1)

×[

[

𝜏
1
𝑒 (𝑘) −

𝑘−𝜏
𝑚
−1

∑

𝑖=𝑘−𝜏(𝑘)

𝑒 (𝑖) −

𝑘−𝜏(𝑘)−1

∑

𝑖=𝑘−𝜏
𝑀

𝑒 (𝑖)]

]

𝑇
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× 𝑅[

[

𝜏
1
𝑒 (𝑘) −

𝑘−𝜏
𝑚
−1

∑

𝑖=𝑘−𝜏(𝑘)

𝑒 (𝑖) −

𝑘−𝜏(𝑘)−1

∑

𝑖=𝑘−𝜏
𝑀

𝑒 (𝑖)]

]

=
𝜏
1

2
(𝜏
2
+ 1) 𝜂

𝑇
(𝑘) 𝑅𝜂 (𝑘)

−
2𝜏
1

𝜏
2
+ 1
𝑒
𝑇
(𝑘) 𝑅𝑒 (𝑘)

+
4

𝜏
2
+ 1

[

[

𝑒
𝑇
(𝑘) 𝑅

𝑘−𝜏
𝑚
−1

∑

𝑖=𝑘−𝜏(𝑘)

𝑒 (𝑖)

+𝑒
𝑇
(𝑘) 𝑅

𝑘−𝜏(𝑘)−1

∑

𝑖=𝑘−𝜏
𝑀

𝑒 (𝑖)]

]

−
4

𝜏
1
(𝜏
2
+ 1)

[

[

(

𝑘−𝜏
𝑚
−1

∑

𝑖=𝑘−𝜏(𝑘)

𝑒 (𝑖))

𝑇

× 𝑅(

𝑘−𝜏(𝑘)−1

∑

𝑖=𝑘−𝜏
𝑀

𝑒 (𝑖))]

]

−
2

𝜏
1
(𝜏
2
+ 1)

[

[

(

𝑘−𝜏
𝑚
−1

∑

𝑖=𝑘−𝜏(𝑘)

𝑒 (𝑖))

𝑇

𝑅(

𝑘−𝜏
𝑚
−1

∑

𝑖=𝑘−𝜏(𝑘)

𝑒 (𝑖))

+ (

𝑘−𝜏(𝑘)−1

∑

𝑖=𝑘−𝜏
𝑀

𝑒 (𝑖))

𝑇

.

× 𝑅(

𝑘−𝜏(𝑘)−1

∑

𝑖=𝑘−𝜏
𝑀

𝑒 (𝑖))]

]

.

(26)

Moreover, from (5) and (7) we know that, for any 𝑛-
dimensional diagonal matrices 𝐿

1
> 0, 𝐿

2
> 0 and any scalar

𝜗 > 0, the following inequalities hold:

[
𝑒(𝑘)

𝑓(𝑘)
]

𝑇

[
𝐿
1
𝐷
1
−𝐿
2
𝐷
1

∗ 𝐷
1

] [
𝑒 (𝑘)

𝑓 (𝑘)
] ≤ 0, (27)

[
𝑒(𝑘 − 𝜏(𝑘))

𝑓(𝑘 − 𝜏(𝑘))
]

𝑇

[
𝐿
1
𝐷
2
−𝐿
2
𝐷
2

∗ 𝐷
2

] [
𝑒 (𝑘 − 𝜏 (𝑘))

𝑓 (𝑘 − 𝜏 (𝑘))
] ≤ 0,

(28)

𝜗ℎ
𝑇
(𝑘) ℎ (𝑘) ≤ 𝜗𝑒

𝑇
(𝑘)𝐻
𝑇
𝐻𝑒 (𝑘) . (29)

Substituting (22)–(29) into (21) leads to

Δ𝑉 (𝑘) ≤ 𝛿
𝑇
(𝑘) [Ψ + 𝜉

𝑇
𝜖
−1
𝑛𝜉] 𝛿 (𝑘) , (30)

where

𝛿
𝑇
(𝑘) = [𝑒

𝑇
(𝑘) , 𝑒
𝑇
(𝑘 − 𝜏

𝑚
) , 𝑒
𝑇
(𝑘 − 𝜏

𝑀
) , 𝑒
𝑇
(𝑘 − 𝜏 (𝑘)) ,

𝜂
𝑇
(𝑘) ,

𝑘−𝜏
𝑚
−1

∑

𝑖=𝑘−𝜏(𝑘)

𝑒
𝑇
(𝑖) ,

𝑘−𝜏(𝑘)−1

∑

𝑖=𝑘−𝜏
𝑀

𝑒
𝑇
(𝑖) , 𝑓
𝑇
(𝑘) ,

𝑓
𝑇
(𝑘 − 𝜏 (𝑘)) ,

+∞

∑

𝑖=1

𝜇
𝑖
𝑓
𝑇
(𝑘 − 𝑖) , ℎ

𝑇
(𝑘)] ,

𝜉 = [0, 0, 0, 0, (𝑃𝑌)
𝑇
, 0, 0, 0, 0, 0, 0, 0] .

(31)

By Schur complement, (15) implies that there exists a constant
𝜀 < 0 such that

Δ𝑉 (𝑘) ≤ 𝛿
𝑇
(𝑘)Ω𝛿 (𝑘) ≤ 𝜀‖𝑒(𝑘)‖

2
, (32)

where

Ω = Ψ + 𝜉
𝑇
𝜖
−1
𝑛𝜉. (33)

By the definition of 𝑉(𝑘), it is easy to obtain

𝑉 (𝑘) ≤ 𝜌1‖𝑒(𝑘)‖
2
+ 𝜌
2

𝑘−1

∑

𝑖=𝑘−𝜏
𝑀

‖𝑒(𝑖)‖
2
+ 𝜌
3

𝑘−1

∑

𝑖=𝑘−𝜏
𝑀

‖𝑒(𝑖 + 1)‖
2

+ 𝜌
4

+∞

∑

𝑖=1

𝜇
𝑖

𝑘−1

∑

𝑗=𝑘−𝑖

󵄩󵄩󵄩󵄩𝑒 (𝑗)
󵄩󵄩󵄩󵄩

2
,

(34)

where
𝜌
1
= 𝜆max (𝑃) ,

𝜌
2
= 𝜆max (𝑄1) + 𝜆max (𝑄2) + (𝜏1 + 1) 𝜆max (𝑇)

+ 𝜏
1
(𝜏
2
+ 1) 𝜆max (𝑅) ,

𝜌
3
= 𝜏
1
(𝜏
2
+ 1) 𝜆max (𝑅) ,

𝜌
4
= 𝜆max (𝐿

𝑇
𝑆𝐿) ,

𝐿 = diag {𝑙+
1
, 𝑙
+

2
, . . . , 𝑙

+

𝑛
} .

(35)

For any scalar 𝜃 > 1, it follows from (32) and (34) that

𝜃
𝑘+1
𝑉 (𝑘 + 1) − 𝜃

𝑘
𝑉 (𝑘)

= 𝜃
𝑘+1
Δ𝑉 (𝑘) − 𝜃

𝑘
(𝜃 − 1)𝑉 (𝑘)

≤ [𝜃
𝑘
(𝜃 − 1) 𝜌1 − 𝜃

𝑘+1
𝜀] ‖𝑒 (𝑘)‖

2
+ 𝜃
𝑘
(𝜃 − 1)

× [

[

𝜌
2

𝑘−1

∑

𝑖=𝑘−𝜏
𝑀

‖𝑒 (𝑖)‖
2
+ 𝜌
3

𝑘−1

∑

𝑖=𝑘−𝜏
𝑀

‖𝑒 (𝑖 + 1)‖
2

+𝜌
4

+∞

∑

𝑖=1

𝜇
𝑖

𝑘−1

∑

𝑗=𝑘−𝑖

󵄩󵄩󵄩󵄩𝑒 (𝑗)
󵄩󵄩󵄩󵄩

2]

]

.

(36)
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For any integer 𝑁 ≥ 𝜏
𝑀
+ 1, summing up both sides of (36)

from 0 to𝑁 − 1 with respect to 𝑘, we can obtain

𝜃
𝑁
𝑉 (𝑁) ≤ 𝑉 (0) + [(𝜃 − 1) 𝜌1 − 𝜃𝜀]

𝑁−1

∑

𝑘=0

𝜃
𝑘
‖𝑒 (𝑘)‖

2

+ (𝜃 − 1)[

[

𝜌
2

𝑁−1

∑

𝑘=0

𝑘−1

∑

𝑖=𝑘−𝜏
𝑀

𝜃
𝑘
‖𝑒 (𝑖)‖

2

+ 𝜌
3

𝑁−1

∑

𝑘=0

𝑘−1

∑

𝑖=𝑘−𝜏
𝑀

𝜃
𝑘
‖𝑒(𝑖 + 1)‖

2

+ 𝜌
4

+∞

∑

𝑖=1

𝜇
𝑖

𝑁−1

∑

𝑘=0

𝑘−1

∑

𝑗=𝑘−𝑖

𝜃
𝑘󵄩󵄩󵄩󵄩𝑒(𝑗)

󵄩󵄩󵄩󵄩

2]

]

.

(37)

By the methods employed in [31], we have

𝑁−1

∑

𝑘=0

𝑘−1

∑

𝑖=𝑘−𝜏
𝑀

𝜃
𝑘
‖𝑒 (𝑖)‖

2
≤ 𝜏
𝑀
𝜃
𝜏
𝑀 sup
−𝜏
𝑀
≤𝑠≤0

‖𝑒 (𝑠)‖
2

+ 𝜏
𝑀
𝜃
𝜏
𝑀

𝑁−1

∑

𝑖=0

𝜃
𝑖
‖𝑒 (𝑖)‖

2
,

(38)

𝑁−1

∑

𝑘=0

𝑘−1

∑

𝑖=𝑘−𝜏
𝑀

𝜃
𝑘
‖𝑒 (𝑖 + 1)‖

2
≤ 𝜏
𝑀
𝜃
𝜏
𝑀 sup
−𝜏
𝑀
≤𝑠≤0

‖𝑒 (𝑠)‖
2

+ 𝜏
𝑀
𝜃
𝜏
𝑀

𝑁

∑

𝑖=1

𝜃
𝑖
‖𝑒 (𝑖)‖

2
,

(39)

𝑁−1

∑

𝑘=0

𝑘−1

∑

𝑗=𝑘−𝑖

𝜃
𝑘
‖𝑒 (𝑖)‖

2
≤ 𝑖𝜃
𝑖 sup
−∞≤𝑠≤0

‖𝑒 (𝑠)‖
2

+ 𝑖𝜃
𝑖

𝑁−1

∑

𝑗=0

𝜃
𝑗󵄩󵄩󵄩󵄩𝑒 (𝑗)

󵄩󵄩󵄩󵄩

2
.

(40)

In (34), let 𝑘 = 0 and from (H1) we can obtain

𝑉 (0) ≤ 𝜌1‖𝑒 (0)‖
2
+ 𝜌
2

𝑘−1

∑

𝑖=𝑘−𝜏
𝑀

‖𝑒 (𝑖)‖
2

+ 𝜌
3

𝑘−1

∑

𝑖=𝑘−𝜏
𝑀

‖𝑒 (𝑖 + 1)‖
2
+ 𝜌
4

+∞

∑

𝑖=1

𝜇
𝑖

𝑘−1

∑

𝑗=𝑘−𝑖

󵄩󵄩󵄩󵄩𝑒 (𝑗)
󵄩󵄩󵄩󵄩

2

≤ [𝜌
1
+ 𝜏
𝑀
(𝜌
2
+ 𝜌
3
)] sup
−𝜏
𝑀
≤𝑠≤0

‖𝑒 (𝑠)‖
2

+ 𝜌
4
𝜇 sup
−𝜏
𝑀
≤𝑠≤0

‖𝑒 (𝑠)‖
2
.

(41)

Substituting (38)–(41) into (37), we have

𝜃
𝑁
𝑉 (𝑁) ≤ 𝜙1 (𝜃) sup

−𝜏
𝑀
≤𝑠≤0

‖𝑒 (𝑠)‖
2
+ 𝜙
2 (𝜃)

𝑁

∑

𝑘=0

𝜃
𝑘
‖𝑒 (𝑘)‖

2
,

(42)

where

𝜙
1 (𝜃) = 𝜌1 + 𝜏𝑀 (𝜌2 + 𝜌3) + 𝜌4𝜇 + 𝜏𝑀𝜃

𝜏
𝑀

(𝜃 − 1)

× (𝜌
2
+ 𝜌
3
) + 𝜌
4 (𝜃 − 1)𝑤 (𝜃) ,

𝜙
2 (𝜃) = (𝜃 − 1) 𝜌1 − 𝜃𝜀 + 𝜏𝑀𝜃

𝜏
𝑀

(𝜃 − 1)

× (𝜌
2
+ 𝜌
3
) + 𝜌
4 (𝜃 − 1)𝑤 (𝜃) .

(43)

Because 𝜙
2
(1) < 0, it can be verified that there exists a scalar

𝜃
0
> 1 such that 𝜙

2
(𝜃
0
) < 0. Therefore, we can get that

𝑉 (𝑁) ≤ 𝜙1 (𝜃0) (
1

𝜃
0

)

𝑁

sup
−𝜏
𝑀
≤𝑠≤0

‖𝑒 (𝑠)‖
2
. (44)

Meanwhile, it follows from (18) that𝑉(𝑁) ≥ 𝜆min(𝑃)‖𝑒(𝑁)‖
2.

Then, it can be obtained that

‖𝑒 (𝑁)‖ ≤ (
𝜙
1
(𝜃
0
)

𝜆min (𝑃)
)

1/2

(
1

𝜃
0

)

𝑁/2

sup
−𝜏
𝑀
≤𝑠≤0

‖𝑒 (𝑠)‖ . (45)

According to Definition 5, we conclude that the system (9) is
globally exponentially stable. This completes the proof.

Remark 7. In [30], the triple-integral term was first intro-
duced in the Lyapunov functional since it could reduce the
conservativeness of the stability criterion greatly. The triple-
integral term has been used to deal with the continuous-time
neural networks, yet few present works have extended it to
tackle the discrete-timeneural networks. In this paper, a triple
summation term is introduced in 𝑉

5
(𝑘) which is helpful for

the reduction of conservativeness.

Remark 8. In [18, 19], the authors concerned the discrete-
time fuzzy neural networks only with discrete-time delays.
Meanwhile, the information on the considered time delays
was not involved in the results. The condition given in
Theorem 6 contains the time delay information. Thus the
effect of the delays on the dynamical behavior of neural
networks is considered in our result.

Remark 9. This work is the first attempt, to the best of our
knowledge, to deal with the state estimation problem for
discrete-time fuzzy cellular neural networks by using linear
matrix inequality approach, not to mention the fact that the
unbounded distributed delays are also involved. Compared
with the results in the form of M-matrix in [18, 19], the
result in the form of linear matrix inequalities (LMIs) is less
conservative and can be easily solved by using the MATLAB
LMI toolbox.

If we neglect the effect of the distributed delay term, the
error system (9) reduces to

𝑒 (𝑘 + 1) = − (𝐷 + 𝐾𝐶) (𝑘) + 𝐴𝑓 (𝑘)

+ 𝐵𝑓 (𝑘 − 𝜏 (𝑘)) − 𝐾ℎ (𝑘) .

(46)

For the system (46), we obtain the following result based on
Theorem 6.
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Corollary 10. Suppose that assumption (H2) and condition
(7) hold; the error system (46) is globally exponentially stable if
there exist positive diagonal matrices 𝑃, 𝐷

1
, and 𝐷

2
, positive

symmetric matrices 𝑄
1
, 𝑄
2
, 𝑇, and 𝑅, real matrix 𝑁, and

scalars 𝜗 > 0 such that the following LMI holds:

Φ
1
= [
Ψ
1
𝜉
𝑇

1
𝑃

∗ −Ω
2

] < 0, (47)

where

Ψ
1
=

[
[
[
[
[
[
[
[
[
[
[
[

[

𝑟
1,1

0 0 0 𝑟
1,5
𝑟
1,6

𝑟
1,7

𝑟
1,8

−𝑁

∗ −𝑄
1

0 0 0 0 0 0 0

∗ ∗ −𝑄
2
0 0 0 0 0 0

∗ ∗ ∗ 𝑟
4,4

0 0 0 𝐿
2
𝐷
2
0

∗ ∗ ∗ ∗ 𝑟
5,5
𝑟
5,6

0 0 0

∗ ∗ ∗ ∗ ∗ 𝑟
6,6

0 0 0

∗ ∗ ∗ ∗ ∗ ∗ −𝐷
1

0 0

∗ ∗ ∗ ∗ ∗ ∗ ∗ −𝐷
2

0

∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ −𝜗𝐼

]
]
]
]
]
]
]
]
]
]
]
]

]

,

(48)

with
𝑟
1,1
= − 2𝑃𝐷 − 𝑁𝐶 − 𝐶

𝑇
𝑁
𝑇
− 2𝑃 + 𝑄

1
+ 𝑄
2

+ (𝜏
1
+ 1) 𝑇 −

2𝜏
1

𝜏
2
+ 1
𝑅 − 𝐿

1
𝐷
1
+ 𝜗𝐻
𝑇
𝐻,

𝑟
1,5
= 𝑟
1,6
=

2

𝜏
2
+ 1
𝑅, 𝑟

1,7
= 𝑃𝐴 + 𝐿

2
𝐷
1
,

𝑟
1,8
= 𝑃𝐵, 𝑟

4,4
= −𝑇 − 𝐿

1
𝐷
2
,

𝑟
5,5
= 𝑟
5,6
= 𝑟
6,6
= −

2

𝜏
1
(𝜏
2
+ 1)

𝑅,

Ω
2
=
𝜏
1

2
(𝜏
2
+ 1) 𝑅 − 𝑃,

𝜉
1
= [− (𝐷 + 𝐾𝐶 + 𝐼) , 0, 0, 0, 0, 0, 𝐴, 𝐵, −𝐾] .

(49)

Moreover, the estimate gain matrix can be designed as 𝐾 =

𝑃
−1
𝑁.

Proof. Consider the following Lyapunov-Krasovskii func-
tional:

𝑉 (𝑘) =

4

∑

𝑖=1

𝑉 (𝑘) , (50)

where
𝑉
1 (𝑘) = 𝑒

𝑇
(𝑘) 𝑃𝑒 (𝑘) ,

𝑉
2 (𝑘) =

𝑘−1

∑

𝑖=𝑘−𝜏
𝑚

𝑒
𝑇
(𝑖) 𝑄1𝑒 (𝑖) +

𝑘−1

∑

𝑖=𝑘−𝜏
𝑀

𝑒
𝑇
(𝑖) 𝑄2𝑒 (𝑖) ,

𝑉
3 (𝑘) =

−𝜏
𝑚
+1

∑

𝑖=−𝜏
𝑀
+1

𝑘−1

∑

𝑗=𝑘−1+𝑖

𝑒(𝑗)
𝑇
𝑇𝑒 (𝑗) ,

𝑉
4 (𝑘) =

−𝜏
𝑚
−1

∑

𝑖=−𝜏
𝑀

−1

∑

𝑗=𝑖

𝑘−1

∑

𝑙=𝑘+𝑗

𝜂
𝑇
(𝑙) 𝑅𝜂 (𝑙) .

(51)

Calculating the difference of 𝑉(𝑘) along the solution of
system (46), we have

Δ𝑉
1 (𝑘) = 𝑉1 (𝑘 + 1) − 𝑉1 (𝑘)

= 𝜂
𝑇
(𝑘) 𝑃𝜂 (𝑘) + 2𝑒

𝑇
(𝑘) 𝑃𝜂 (𝑘)

= 𝜂
𝑇
(𝑘) 𝑃𝜂 (𝑘) + 2𝑒

𝑇
(𝑘)

× 𝑃 [− (𝐷 + 𝐾𝐶 + 𝐼) 𝑒 (𝑘) + 𝐴𝑓 (𝑘)

+𝐵𝑓 (𝑘 − 𝜏 (𝑘)) − 𝐾ℎ (𝑘)] .

(52)

Δ𝑉
2
(𝑘), Δ𝑉

3
(𝑘), and Δ𝑉

4
(𝑘) can be calculated using the same

method in Theorem 6; hence the proof is omitted to avoid
duplication. Then, we have

Δ𝑉 (𝑘) ≤ 𝛿
𝑇

1
(𝑘) [Ψ1 + 𝜉

𝑇

1
Ω
1
𝜉
1
] 𝛿
1 (𝑘) , (53)

where

𝛿
𝑇

1
(𝑘) = [𝑒

𝑇
(𝑘) , 𝑒
𝑇
(𝑘 − 𝜏

𝑚
) , 𝑒
𝑇
(𝑘 − 𝜏

𝑀
) , 𝑒
𝑇
(𝑘 − 𝜏 (𝑘)) ,

𝑘−𝜏
𝑚
−1

∑

𝑖=𝑘−𝜏(𝑘)

𝑒
𝑇
(𝑖) ,

𝑘−𝜏(𝑘)−1

∑

𝑖=𝑘−𝜏
𝑀

𝑒
𝑇
(𝑖) , 𝑓
𝑇
(𝑘) ,

𝑓
𝑇
(𝑘 − 𝜏 (𝑘)) , ℎ

𝑇
(𝑘)] ,

Ω
1
=
𝜏
1

2
(𝜏
2
+ 1) 𝑅 + 𝑃.

(54)

From 𝑅 > 0, 𝑃 > 0, and (𝑃 − Ω
1
)Ω
−1

1
(𝑃 − Ω

1
) ≥ 0, we have

−𝑃Ω
−1

1
𝑃 ≤ Ω

1
− 2𝑃 = Ω

2
. (55)

Noting𝐾 = 𝑃−1𝑁, it follows from (47) and (55) that

[
Ψ
1

𝜉
𝑇

1
𝑃

∗ −𝑃Ω
−1

1
𝑃
] < 0. (56)

Pre- and postmultiplying (56), respectively, by diag{𝐼, Ω
1
𝑃
−1
}

we can obtain

[
Ψ
1
𝜉
𝑇

1
Ω
1

∗ −Ω
1

] < 0. (57)

By Schur complement, (57) implies that Ψ
1
+ 𝜉
𝑇

1
Ω
1
𝜉
1
< 0.

Thus there exists a constant 𝜀
1
< 0 such that

Δ𝑉 (𝑘) ≤ 𝛿
𝑇

1
(𝑘) [Ψ1 + 𝜉

𝑇

1
Ω
1
𝜉
1
] 𝛿
1 (𝑘) ≤ 𝜀1‖𝑒(𝑘)‖

2
. (58)

It follows from Lyapunov-Krasovskii stability theorem that
the system (46) is globally asymptotically stable. The proof
of the exponential stability of the system (46) is similar to
Theorem 6 and hence it is omitted.

4. Numerical Examples

In this section, two numerical examples are introduced to
illustrate the effectiveness of the proposed results.
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Example 1. Consider system (3) with the following parame-
ters:

𝐷 = [

[

0.6 0 0

0 0.3 0

0 0 0.8

]

]

, 𝐴 = [

[

−2.1 1.4 1.2

0 1.6 −2.3

0 0.9 1.1

]

]

,

𝐵 = [

[

1.5 3.7 −2.4

1.3 −1.5 1.4

2.1 0 −0.7

]

]

, 𝑉 = [

[

1.2 −0.8 −2.4

−0.5 1.1 1.6

3.1 1.7 −2.1

]

]

,

𝐶 = [
1 0 0

0 1 0
] , 𝑈 = [

[

1

1

1

]

]

, 𝐼 = [

[

0.2

0.3

0.5

]

]

,

𝛼 = 𝛽 = [

[

0.1 0.05 −0.2

0.2 −0.13 −0.1

−0.3 0.15 0.4

]

]

, 𝑋 = 𝑍 = [

[

1 1 1

0 1 1

0 1 0

]

]

.

(59)

The activation function and the nonlinear disturbance are
taken as follows:

𝑓 (𝑥) = (− tanh (0.6𝑥1) , 0.4 tanh (𝑥2) , tanh (0.8𝑥2))
𝑇
,

𝜑 (𝑘, 𝑥) = (0.2 sin (𝑥1) , 0.2 sin (𝑥2) , 0.2 sin (𝑥3))
𝑇
.

(60)

It is easy to verify that

𝐿
1
= 0, 𝐿

2
= diag {−0.3, 0.2, 0.4} ,

𝐻 = [
0.2 0 0

0 0.2 0
] .

(61)

Choosing 𝜏(𝑡) = 3.5 + 1.5 sin(𝑘𝜋/2), 𝜇
𝑚
= (2.4)

−2𝑚. With the
above parameters and by using the MATLAB LMI toolbox to
solve the LMI in Theorem 6, we obtain the feasible solution
as follows:

𝑄
1
= [

[

5.6538 0.3218 −0.2439

0.3218 7.5645 0.0879

−0.2435 0.0879 0.2576

]

]

,

𝑄
2
= [

[

2.3359 0.1966 0.9296

0.1966 4.3578 0.8385

0.9296 0.8385 2.1764

]

]

,

𝑅 = [

[

8.6079 0.0148 0.5234

0.0148 5.6131 −1.6227

0.5234 −1.6227 3.2485

]

]

,

𝑆 = [

[

24.7993 −2.4517 1.7653

−2.4517 45.2584 4.3912

1.7653 4.3912 18.2866

]

]

,

𝑇 = [

[

4.1344 0.9635 1.1195

0.1032 6.3798 −2.3912

1.1195 −2.3912 11.4738

]

]

,

𝑁 = [

[

9.3859 1.3260

−0.9772 5.0316

−0.1236 4.8976

]

]

,

𝑃 = diag {7.6333, 6.5716, 4.4942} ,

𝐷
1
= diag {17.2788, 23.2664, 9.4513} ,

𝐷
2
= diag {8.1396, 16.2168, 7.2743} ,

𝜗 = 18.3817, 𝜀 = 13.6115.

(62)

Thus, the state estimator gain matrix can be designed as

𝐾 = [

[

9.3859 1.3260

−0.9772 5.0316

−0.1236 4.8976

]

]

. (63)

Therefore, it follows from Theorem 6 that the error system
(9) is globally exponentially stable. The simulation results are
shown in Figures 1 and 2. In the simulation, the initial values
(0.3, −0.2, 0.4)

𝑇 and (0.1, 0.2, 0.2) are chosen for systems (3)
and (8), respectively.

Example 2. Consider system (46) with the following param-
eters:

𝐷 = [

[

0.4 0 0

0 0.3 0

0 0 0.3

]

]

, 𝐴 = [

[

0.2 −0.2 0.1

0 −0.3 0.2

−0.2 −0.1 −0.2

]

]

,

𝐵 = [

[

−0.2 0.1 0

−0.2 0.3 0.1

0.1 −0.2 0.3

]

]

.

(64)

The activation function and the nonlinear disturbance are
taken as follows:

𝑓 (𝑥) = 0.25 sin𝑥 + 0.25𝑥,

𝜑 (𝑘, 𝑥) = 0.2 cos𝑥 + 0.2𝑥.
(65)

It is easy to verify that

𝐿
1
= 0, 𝐿

2
= 0.25𝐼, 𝐻 = 0.4𝐼. (66)

Our purpose is to find the maximum allowable upper
bound 𝜏

𝑀
for different 𝜏

𝑚
by solving the LMI (47) via the

MATLAB LMI toolbox such that system (46) is globally
exponentially stable. Now assume 𝜏

𝑚
= 4; then by utilizing

the result in [32] it is found that the maximum allowable
upper bound 𝜏

𝑀
is 9. By using the method proposed in this

paper, we find that the maximum allowable upper bound 𝜏
𝑀

is 12. A more detailed comparison is given in Table 1, from
whichwe see that the stability criterion proposed in this paper
is less conservative than the results proposed in [21, 32].
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Table 1: The maximum allowable upper bound 𝜏
𝑀
for different 𝜏

𝑚
.

Methods 𝜏
𝑚
= 2 𝜏

𝑚
= 3 𝜏

𝑚
= 6 𝜏

𝑚
= 11 𝜏

𝑚
= 15 𝜏

𝑚
= 18

[32, Theorem 1] 7 8 11 16 19 22
Corollary 1 [21] 7 9 12 17 21 23
Theorem 6 10 11 14 19 22 26
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Figure 1: The responses of the true state 𝑥(𝑘) and the estimate state
𝑥(𝑘).

5. Conclusion

In this paper, we have studied the state estimation problem
for a class of discrete-time fuzzy cellular neural networks
with mixed time delays. A state estimator is designed to
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Figure 2: The responses of estimation error 𝑒(𝑘).

estimate the neuron states through available output mea-
surements, such that the dynamics of the error-state system
is exponentially asymptotically stable. By constructing a
novel Lyapunov-Krasovskii functional containing a triple
summation term and utilizing the LMI approach, some less
conservative stability criteria in terms of LMI are derived
to guarantee the existence of the asymptotic state estimator.
It is worth noting that our developed approach can be
effectively employed to investigate the state estimation and
stability analysis problems for other discrete-time fuzzy
delayed neural networks. Recently, a delay partition approach
was proposed and has been verified to be very effective in
reducing the conservatism of stability conditions. The delay
partition approach also can be employed in our work to
further reduce the conservatism. However, this approach
will increase the computational complexity of the theorem
because too many matrices were introduced. How to further
reduce the conservatism by utilizing delay partition approach
and, in the meantime, overcome the rapid increase in the
computational complexity is still a challenging topic and will
be investigated in our future work.
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