1,059 research outputs found

    Exponential algorithmic speedup by quantum walk

    Full text link
    We construct an oracular (i.e., black box) problem that can be solved exponentially faster on a quantum computer than on a classical computer. The quantum algorithm is based on a continuous time quantum walk, and thus employs a different technique from previous quantum algorithms based on quantum Fourier transforms. We show how to implement the quantum walk efficiently in our oracular setting. We then show how this quantum walk can be used to solve our problem by rapidly traversing a graph. Finally, we prove that no classical algorithm can solve this problem with high probability in subexponential time.Comment: 24 pages, 7 figures; minor corrections and clarification

    Limits of quantum speedup in photosynthetic light harvesting

    Full text link
    It has been suggested that excitation transport in photosynthetic light harvesting complexes features speedups analogous to those found in quantum algorithms. Here we compare the dynamics in these light harvesting systems to the dynamics of quantum walks, in order to elucidate the limits of such quantum speedups. For the Fenna-Matthews-Olson (FMO) complex of green sulfur bacteria, we show that while there is indeed speedup at short times, this is short lived (70 fs) despite longer lived (ps) quantum coherence. Remarkably, this time scale is independent of the details of the decoherence model. More generally, we show that the distinguishing features of light-harvesting complexes not only limit the extent of quantum speedup but also reduce rates of diffusive transport. These results suggest that quantum coherent effects in biological systems are optimized for efficiency or robustness rather than the more elusive goal of quantum speedup.Comment: 9 pages, 6 figures. To appear in New Journal Physics, special issue on "Quantum Effects and Noise in Biomolecules." Updated to accepted versio

    New Developments in Quantum Algorithms

    Full text link
    In this survey, we describe two recent developments in quantum algorithms. The first new development is a quantum algorithm for evaluating a Boolean formula consisting of AND and OR gates of size N in time O(\sqrt{N}). This provides quantum speedups for any problem that can be expressed via Boolean formulas. This result can be also extended to span problems, a generalization of Boolean formulas. This provides an optimal quantum algorithm for any Boolean function in the black-box query model. The second new development is a quantum algorithm for solving systems of linear equations. In contrast with traditional algorithms that run in time O(N^{2.37...}) where N is the size of the system, the quantum algorithm runs in time O(\log^c N). It outputs a quantum state describing the solution of the system.Comment: 11 pages, 1 figure, to appear as an invited survey talk at MFCS'201

    Quantum speedup of classical mixing processes

    Get PDF
    Most approximation algorithms for #P-complete problems (e.g., evaluating the permanent of a matrix or the volume of a polytope) work by reduction to the problem of approximate sampling from a distribution π\pi over a large set §\S. This problem is solved using the {\em Markov chain Monte Carlo} method: a sparse, reversible Markov chain PP on §\S with stationary distribution π\pi is run to near equilibrium. The running time of this random walk algorithm, the so-called {\em mixing time} of PP, is O(δ1log1/π)O(\delta^{-1} \log 1/\pi_*) as shown by Aldous, where δ\delta is the spectral gap of PP and π\pi_* is the minimum value of π\pi. A natural question is whether a speedup of this classical method to O(δ1log1/π)O(\sqrt{\delta^{-1}} \log 1/\pi_*), the diameter of the graph underlying PP, is possible using {\em quantum walks}. We provide evidence for this possibility using quantum walks that {\em decohere} under repeated randomized measurements. We show: (a) decoherent quantum walks always mix, just like their classical counterparts, (b) the mixing time is a robust quantity, essentially invariant under any smooth form of decoherence, and (c) the mixing time of the decoherent quantum walk on a periodic lattice Znd\Z_n^d is O(ndlogd)O(n d \log d), which is indeed O(δ1log1/π)O(\sqrt{\delta^{-1}} \log 1/\pi_*) and is asymptotically no worse than the diameter of Znd\Z_n^d (the obvious lower bound) up to at most a logarithmic factor.Comment: 13 pages; v2 revised several part

    On the relationship between continuous- and discrete-time quantum walk

    Full text link
    Quantum walk is one of the main tools for quantum algorithms. Defined by analogy to classical random walk, a quantum walk is a time-homogeneous quantum process on a graph. Both random and quantum walks can be defined either in continuous or discrete time. But whereas a continuous-time random walk can be obtained as the limit of a sequence of discrete-time random walks, the two types of quantum walk appear fundamentally different, owing to the need for extra degrees of freedom in the discrete-time case. In this article, I describe a precise correspondence between continuous- and discrete-time quantum walks on arbitrary graphs. Using this correspondence, I show that continuous-time quantum walk can be obtained as an appropriate limit of discrete-time quantum walks. The correspondence also leads to a new technique for simulating Hamiltonian dynamics, giving efficient simulations even in cases where the Hamiltonian is not sparse. The complexity of the simulation is linear in the total evolution time, an improvement over simulations based on high-order approximations of the Lie product formula. As applications, I describe a continuous-time quantum walk algorithm for element distinctness and show how to optimally simulate continuous-time query algorithms of a certain form in the conventional quantum query model. Finally, I discuss limitations of the method for simulating Hamiltonians with negative matrix elements, and present two problems that motivate attempting to circumvent these limitations.Comment: 22 pages. v2: improved presentation, new section on Hamiltonian oracles; v3: published version, with improved analysis of phase estimatio
    corecore