1,402 research outputs found

    An axisymmetric time-domain spectral-element method for full-wave simulations: Application to ocean acoustics

    Full text link
    The numerical simulation of acoustic waves in complex 3D media is a key topic in many branches of science, from exploration geophysics to non-destructive testing and medical imaging. With the drastic increase in computing capabilities this field has dramatically grown in the last twenty years. However many 3D computations, especially at high frequency and/or long range, are still far beyond current reach and force researchers to resort to approximations, for example by working in 2D (plane strain) or by using a paraxial approximation. This article presents and validates a numerical technique based on an axisymmetric formulation of a spectral finite-element method in the time domain for heterogeneous fluid-solid media. Taking advantage of axisymmetry enables the study of relevant 3D configurations at a very moderate computational cost. The axisymmetric spectral-element formulation is first introduced, and validation tests are then performed. A typical application of interest in ocean acoustics showing upslope propagation above a dipping viscoelastic ocean bottom is then presented. The method correctly models backscattered waves and explains the transmission losses discrepancies pointed out in Jensen et al. (2007). Finally, a realistic application to a double seamount problem is considered.Comment: Added a reference, and fixed a typo (cylindrical versus spherical

    Analysis of Soil-Structure Interaction Effects of NPP Structures on Nonhomogeneous Subsoil

    Get PDF
    This paper describes the soil-structure interaction (SSI) effects to the Nuclear Power Plant (NPP) structure with reactor VVER-1200. The simplified 1D and numerical 3D FE models of the nonhomogeneous subsoil are investigated. The methodology of the calculation of the frequency dependent complex functions of the soil stiffness and damping is presented

    Theoretical and numerical comparison of hyperelastic and hypoelastic formulations for Eulerian non-linear elastoplasticity

    Full text link
    The aim of this paper is to compare a hyperelastic with a hypoelastic model describing the Eulerian dynamics of solids in the context of non-linear elastoplastic deformations. Specifically, we consider the well-known hypoelastic Wilkins model, which is compared against a hyperelastic model based on the work of Godunov and Romenski. First, we discuss some general conceptual differences between the two approaches. Second, a detailed study of both models is proposed, where differences are made evident at the aid of deriving a hypoelastic-type model corresponding to the hyperelastic model and a particular equation of state used in this paper. Third, using the same high order ADER Finite Volume and Discontinuous Galerkin methods on fixed and moving unstructured meshes for both models, a wide range of numerical benchmark test problems has been solved. The numerical solutions obtained for the two different models are directly compared with each other. For small elastic deformations, the two models produce very similar solutions that are close to each other. However, if large elastic or elastoplastic deformations occur, the solutions present larger differences.Comment: 14 figure

    Multiscale Modelling of Blast-Induced TBI Mechanobiology - From Body to Neuron to Molecule

    Get PDF
    Blast induced Traumatic Brain Injury (bTBI) has become a signature wound of the recent military operations and is becoming a significant factor of recent civilian blast explosion events. In spite of significant clinical and preclinical research on TBI, current understanding of injury mechanisms is limited and little is known about the short and long-term outcomes. Mathematical models of bTBI may provide capabilities to study brain injury mechanisms, perhaps accelerating the development of neuroprotective strategies and aiding in the development of improved personal protective equipment. The paper presents a novel multiscale simulation framework that couples the body/brain scale biomechanics with micro-scale mechanobiology to study the effects of “primary” micro-damage to neuro-axonal structures with the “secondary” injury and repair mechanisms. Our results show that oligodendrocyte myelinating processes distribute strains among neighbor axons and cause their off-axis deformations. Similar effects have been observed at the finer scale for the Tau-Microtubule interaction. The paper also discusses the need for coupled modeling of primary injury biomechanics, secondary injury mechanobiology and model based assessment of injury severity scores. A new integrated computational and experimental approach is described coupling micro-scale injury criteria for the primary micro-mechanical damage to brain tissue/cells as well as to investigate various secondary injury mechanisms.

    Percolating magmas in three dimensions

    Get PDF
    The classical models of volcanic eruptions assume that they originate as a consequence of critical stresses or critical strain rates being exceeded in the magma followed by catastrophic fragmentation. In a recent paper (Gaonac'h et al., 2003) we proposed an additional mechanism based on the properties of complex networks of overlapping bubbles; that extreme multibubble coalescence could lead to catastrophic changes in the magma rheology at a critical vesicularity. This is possible because at a critical vesicularity <i>P<sub>c</sub></i> (the percolation threshold), even in the absence of external stresses the magma fragments. By considering 2-D percolation with the (observed) extreme power law bubble distributions, we showed numerically that <i>P<sub>2c</sub></i> had the apparently realistic value ≈0.7. <br><br> The properties of percolating systems are, however, significantly different in 2-D and 3-D. In this paper, we discuss various new features relevant to 3-D percolation and compare the model predictions with empirical data on explosive volcanism. The most important points are a) bubbles and magma have different 3-D critical percolation points; we show numerically that with power law bubble distributions that the important magma percolation threshold <i>P<sub>3c,m</sub></i> has the high value ≈0.97±0.01, b) a generic result of 3-D percolation is that the resulting primary fragments will have power law distributions with exponent <i>B<sub>3f</sub></i>≈1.186±0.002, near the empirical value (for pumice) ≈1.1±0.1; c) we review the relevant percolation literature and point out that the elastic properties may have lower – possibly more realistic – critical vesicularities relevant to magmas; d) we explore the implications of long range correlations (power law bubble distributions) and discuss this in combination with bubble anisotropy; e) we propose a new kind of intermediate "elliptical" dimensional percolation involving differentially elongated bubbles and show that it can lead to somewhat lower critical thresholds. <br><br> These percolation mechanisms for catastrophically weakening magma would presumably operate in conjunction with the classical critical stress and critical strain mechanisms. We conclude that percolation theory provides an attractive theoretical framework for understanding highly vesicular magma

    Numerical simulation on structural safety and dynamic response of coal mine rescue ball with gas explosion load using Arbitrary Lagrangian-Eulerian (ALE) algorithm

    Get PDF
    Coal mine rescue devices, which can supply miners underground with fundamental shelters after gas explosion, are essential for safety production of coal mines. In this paper, a novel and composite structure-rescue antiknock ball for coal mine rescue is designed. Further, the structural safety and dynamic response under gas explosion of the antiknock ball is investigated by ALE algorithm. To achieve this goal, the ALE finite element method is described in dynamic form, and governing equations and the finite element expressions of the ALE algorithm are derived. 3 balls with different structures are designed and dynamic response analysis has been conducted in a semi-closed tunnel with explosive load of pre-mixed gas/air mixture by using ALE algorithm based on explicit nonlinear dynamic program LS-DYNA. Displacement field, stress field and energy transmission laws are analyzed and compared via theoretical calculations. Results show that the cabin door, emergency door and spherical shell are important components of the rescue ball. The 3# composite ball is the optimization structure that can delay the shock effect of the gas explosion load on a coal mine rescue system; the simulation results can provide reference data for coal mine rescue system design
    corecore