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Abstract. This paper describes the soil-structure inte-
raction (SSI) effects to the Nuclear Power Plant (NPP) 
structure with reactor VVER-1200. The simplified 1D and 
numerical 3D FE models of the nonhomogeneous subsoil 
are investigated. The methodology of the calculation of the 
frequency dependent complex functions of the soil stiffness 
and damping is presented. 
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1. Introduction 

After the accident of nuclear power plant (NPP) in 
Fukushima the IAEA in Vienna adopted a large-scale 
project "Stress Tests of NPP", which defines new 
requirements for the verification of the safety and 
reliability of NPP. Based on the recommendations of the 
ASCE standard [1] and IAEA in Vienna [11, 12], the 
effective seismic resistance of objects is assessed in PGA 
sites up to 0,3g according to the "Seismic Margin 
Assessment" methodology (SMA) [6]. 

 The required methodology was based on a reference 
earthquake (RLE) or a "Seismic Margin Earthquake" 
(SME) earthquake, which is an earthquake with 
seismological parameters of a given site and response 
spectrum at the free terrain level corresponding to 84.1% 
probability of non-elevation (median overs), including 
Peak Ground Acceleration (PGA) for a given acceptable 
annual occurrence probability (typically 10-4 /year). 
During the last couple of decades, it has been well 
recognized that the soil on which a structure is constructed 
may interact dynamically with the structure during 
earthquakes, especially when the soil is relatively soft and 

the structure is stiff [2-5, 7-10, 13-33]. This kind of 
dynamic soil-structure interaction can sometimes modify 
significantly the stresses and deflections of the whole 
structural system from the values that could have been 
developed if the structure were constructed on a rigid 
foundation [7, 27, 31- 33]. Two important characteristics 
that distinguish the dynamic soil-structure interaction 
system from other general dynamic structural systems are 
the unbounded nature and the nonlinearity of the soil 
medium [9, 14, 20, 23, 31, 33]. Generally, when 
establishing numerical dynamic soil-structure interaction 
models [12], the following problems should be considered: 

• Radiation of dynamic energy into the unbounded 
soil; 

• The hysteretic nature of soil damping; 
• Separation of the soil from the structural model; 
• Possibility of soil liquefaction under seismic loads;  
• Other inherent nonlinearities of the SSI model. 

 However, due to the complexity of dynamic soil-
structure interaction, numerical modelling of this 
phenomenon remains a challenge. There still exist many 
difficulties to cover in one model all the problems listed 
above. 

 The recommendations for the simplified NPP 
calculation model and the calculation methods are based 
on recommendation of ASCE 4/98 [1] and refer to standard 
approaches to dynamic calculations using finite element 
method with a sufficiently precise spatial model of 
structures [4, 20-22, 29, 31-33]. 

 A complete analysis of seismic soil–structure 
interaction should include the following steps: 

• Site response analysis; 
• Foundation scattering analysis; 
• Foundation impedance analysis; 
• Structural modelling; 
• Analysis of the coupled system interaction 

response. 
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2. Stiffness and damping soil 
parameters in the subsoil 

Dynamic soil characteristics are obtained with sufficient 
accuracy from the refractive and reflexive survey of a 
given site [2, 10, 27, 31-33]. Depending on the propagation 
rates of the longitudinal and transverse waves in the soil, 
we can determine its physical characteristics. For each 
sublayer layer in the depth of foundation direction, the 
velocity propagation velocities between the two wells are 
determined.  

 The basic rigid parameter characterizing the earth body 
for dynamic calculations is the dynamic Gdyn (or Young's 
elastic modulus modulus) 

 2
dyn sG v ρ= ,   ( )2. .2 1dyn s dynE v ρ ν= + ,  

      ( ) ( )2 2 2 2v 2v / 2 v vdyn p s p sν  = − −    (1) 

where ρ is the density, vs - the velocity of the shear waves 
propagation in the respective earth (layer), vp is the 
velocity of the longitudinal waves.  

  

 

 

 

 

 

 

 

 
Fig. 1: Shear modulus dependence on the shear strain. 

 

 

 
 

 

 
 

Fig. 2: Proportional attenuation on the shear strain. 

 In the case of earthquakes, there is a large movement 
of the soil, and because of plastic deformation, the value 
of the dynamic soil module also drops. According to the 
recommendations of international standards, this reduction 
will maximally reach 65% of the dynamic module 
measured for small seismic events. The process of the 
shear modulus can be seen in Fig. 1 depending on the shear 

strain [2, 7]. The damping is proportional to the 
attenuation on the shear strain (see Fig. 2). 

 Depending on the level of seismic stress, both the 
stiffness and the attenuation characteristics of the subsoil 
change according to Eurocode 8 recommendations. The 
typical range of the longitudinal (P) and shear (S) wave 
velocities for different subsoil conditions [2]. 

Tab.1: The ratio of dynamic to static modulus of elasticity [26]. 

Soil Edyn/Estat Estat [MPa] 
No cohesive soil 2.5 ÷ 4.0 30 ÷ 120 
Cohesive soil 4.0 ÷ 10.0 6 ÷ 30 
Rigid soil. rock 6.0 ÷ 60.0 60 ÷ 700 

3. Geophysical characteristics of the 
heterogeneous subsoil 

Three types of the site are defined by IAEA NSG 3.6 [12] 
standard in dependency on value of vs: 

• Type 1 sites: vs  > 1100 m/s; 
• Type 2 sites: 1100 m/s  > vs  > 300 m/s; 
• Type 3 sites: 300 m/s  >  vs; 

 The geology profile under NPP main building is 
variable and complicated in plane and in depth. The 
geology profile was determined from 12 surveys (see 
Fig. 3).  

 
Fig. 3: Engineering geological cross-section under NPP main building. 

Tab.2: The comparison of the vs.30 values defined by the various 
methodology [31]. 
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hole 
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 The average shear wave vs.30 can be determined by 
various experimental methods (see Tab. 2) or numerically 
in accordance with the Eurocode 8 in following form: 

 .30
1,N

30s i i
i

v h v
=

 
=  

 
 , (2) 

where hi and vi denote the thickness (in meters) and shear-
wave velocity (at a shear strain level of 10-5 or less) of the 
i-th formation or layer, in a total of N, existing in the top 
30m. 

 The average shear velocity vs.30 for NPP foundation. 
obtained with the use of different methods are compared 
in Table 2. 

 The mean values of the subsoil geophysical 
characteristics under the reactor building center were 
determined from the   experimental measurement (see 
Tab. 3). 

Tab.3: Geophysical soil characteristics under reactor center.  

vs vp z. ρ Gd μ 

[m] [m] [m] [g/cm3] [MPa] [-] 

382 1668 -7.5 2.685 392 0.47 

439 1965 -10.5 2.685 517 0.47 

673 2141 -12.0 2.685 1216 0.45 

901 2978 -16.0 2.685 2180 0.45 

1257 3660 -23.0 2.685 4242 0.43 

1964 3984 -25.0 2.700 10415 0.34 

1860 4256 -33.5 2.648 9161 0.38 

2370 4335 -43.5 2.658 14930 0.29 

2809 5254 -50.0 2.704 21336 0.30 

2530 5318 -92.0 2.738 17526 0.35 

3013 5738 -100 2.720 24693 0.31 

4. General principles of structural-
base interaction 

For most common structures, the effect (SSI) of the 
structure-substrate interaction will be more advantageous 
as it reduces the effect of bending moments and shear 
forces on individual structural elements. The effect of the 
dynamic interaction of the soil-structure must be 
considered for all constructions [6, 11, 19, 33]. 

• Method of direct integration. 
• Method of impedance functions. 

 The effect of foundation depth is considered when an 
object is laid at a depth greater than 6m. 

 The direct method of the design and substrate 
interaction consists of the solution of the following tasks: 

• Localize the contact between the structure and the 
subsoil,  

• Define the seismic load at the level of the base 

joint,  
• Create the calculation model subsoil, its 

properties, soil layering under the foundation, 
• Carry out the interaction in one or two steps, 

 If the direct method is considered, the stiffness and 
attenuation of the substrates can be modelled as a set of 
independent springs or, in more detail, based on the finite 
element method.  

 The impedance function method [30] consists of the 
following steps: 

• Determine the seismic load assuming a rigid base, 
• Determine impedance functions for given 

foundations, 
• Analysis the interactions between the structure 

and the base. 

 The impedance functions define the dependence of 
stiffness and subtle stress on the substrate based on 
frequency. It is assumed that the harmonic force is applied 
to the rigid base deposited on the flexible half-frame. Such 
a computational model assuming linear behaviour, 
provides a better understanding of the properties of the 
underlying behaviour, depending on the actual frequencies 
of the structure itself. 

 In the case of a simple base model and substrate, the 
impedance functions are determined by the ratio of the 
harmonic force P(t) acting on the rigid base to its 
displacement u(t) in the shape 

 2
1 2( ) ( ) ( ) ( ) ( )impK P t u t k m ic k ikω ω ω ω= = − + = +  (3) 

where k (resp. c) represent the stiffness (resp. attenuation) 
of the substrates, m is the mass of the base, ω is the circular 
frequency (see Fig. 4). 

 
Fig. 4: Calculation model of base with mass m and without mass. 

5. Impedance of foundation using 
FE Model 

For complex foundation geometries or soil conditions, the 
dynamic soil impedance can be determined by dynamic 
analysis of a three-dimensional or two-dimensional 
continuum model of the soil-foundation system. The six 
steps can be implemented using the finite element (FE) 
method [3, 4, 9, 17, 19, 32, 33]. In this case, the soil is 
modelled as an elastic or viscoelastic material, which can 
be considered isotropic, anisotropic, homogeneous or 
nonhomogeneous. In a FE model, only a portion of the soil 
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(i.e., a soil island) can be discretized; therefore, 
appropriate boundary conditions (non-reflective 
boundaries) must be applied where the soil is arbitrarily 
truncated. The response of a rigid foundation to static or 
dynamic load arises solely from the deformation of the 
supporting soil. The static soil stiffness (K = P/U) is used 
to model the soil-foundation response to static load. In an 
analogous manner, the dynamic soil impedance/stiffness 
(K = P(t)/U(t)) is used to model the soil-foundation 
response to dynamic loads. In particular, six dynamic 
impedances are required, three translational and three 
rotational, to formulate the dynamic equilibrium equation 
of a rigid foundation. These impedances are a function of 
the foundation geometry, the soil properties and vibration 
frequency of the dynamic loads (fm, ωm ). 

 The procedure used to calculate the dynamic 
impedances of a rigid surface foundation can be 
summarized in the following steps: 

1.  The foundation can be modelled as massless and 
infinitely rigid; therefore, only the geometry of the area in 
contact with the soil is required. The use of a massless 
foundation is important since it avoids the need for 
recalculating the dynamic impedance every time that the 
foundation mass changes, which often happens during the 
design process. 

2.  A harmonic force or moment of frequency ω and of 
unit magnitude is applied to the rigid foundation  

( ) ( ). . i t i t
o oe g P t P e or M t M eω ω = =  . Such force/mo-

ment generates stress waves that propagate into the 
underlying soil, which is modelled as a viscoelastic 
material.  

3.  The steady state vibration amplitude of the foundation  
( ) ( )i t i i t i

o oU t U e or t eω φ ω φθ θ+ + = =   under the harmonic 
force is obtained by keeping track of the reflections and 
refractions that take place every time that the stress waves 
reach a soil layer boundary.  

4.  The dynamic impedance is defined as the ratio 
between the harmonic force acting on the foundation and 
its vibration amplitude as shown in Eq. (4). It must be 
noted that this is a frequency dependent complex quantity.  

 ( ) ( ) ( ) ( )i t i t i i
o o o oK P t U t P e U e P e Uω ω φ φω + −= = =  

5. In soil dynamics, it is customary to express the 
complex dynamic impedance defined below. In addition, 
the real and imaginary parts of the dynamic impedance are 
associated, by analogy, with a dynamic (frequency 
dependent) spring and dashpot as shown in following 
equations:  
 ( ) 1 2K k i kω ω= + , 

 ( ) ( )( ) ( ) ( )1 o ok Re K P U cosω ω φ= = , (4) 

 ( ) ( )( ) ( ) ( )2 o ok Im K P U sinω ω ω φ ω= = − , 
 Steps 2 to 5 are repeated for each frequency   of 
interest, until the range of vibration frequencies of the 
machine is covered. 

6. Calculation FE model 

The presented methodology was used for the analysis of 
the soil-structure interaction of the NPP main building with 
reactor VVER1200 which was situated in the complicated 
subsoil area. The dimension of the reactor building is 
83.8m x 78m in plane and 74.9m in high. The simplified 
methods to specify of the stiffness and damping 
parameters based on the homogenization od the material 
properties of the subsoil are not representative in case of 
the soil layers with shear velocity vs < 1000m/s. 

 

 
Fig. 5: FE model of the subsoil under NPP main building (231226 

elements, 91 materials) 

 The subsoil around the NPP main building VVER-
1200/491 PWR is modelled by solid elements SOLID185, 
the foundation plate by shell elements SHELL181 and 
surface around soil block by elements SURF154 in the 
software ANSYS (see Fig. 5). 

7. Impedance functions of NPP main 
building 

On the base of the methodology presented in chap. 5 the 
impedance functions for the NPP main building VVER-
1200/491 PWR considering the real layered subsoil 
properties determined by experimental testing of the 
subsoil were calculated on FE model in software ANSYS 
(see Fig. 5).  
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Fig. 6: Real part of the impedance functions for translation and rotation 

 

 
Fig. 7: Imaginary part of the impedance functions for translation and 

rotation 

 The impedance functions shape in figs. 6 and 7 are not 

simple and continuous functions as in the case of the 
analytical solutions of the impedance functions of the rigid 
plate on homogenous soil [31]. The layered properties of 
the soil under rigid plate and the discretisation of the 
subsoil using FE Model with the solid elements give us 
more detailed information’s of the dynamic soil-structure 
interaction effects. The global stiffness and damping 
properties depend on the geometry and material properties 
of the soil under the rigid rectangular plate. 

8. Conclusions 
This paper describes the soil-structure interaction effects 
in the case of the NPP main buildings with reactor VVER-
1200/491 PWR during earthquake excitation. The 
methodology of the calculation of the impedance functions 
were considered. The dynamic impedance is defined as the 
ratio between the harmonic force acting on the foundation 
and its vibration amplitude. The results from the 3D FE 
analysis show as that the impedance functions are not 
smooth functions in case of the layered subsoil with 
various material properties as in case of the homogeneous 
subsoil. 
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