503 research outputs found

    Enhancement of Digital Photo Frame Capabilities With Dedicated Hardware

    Get PDF
    Photo frames have come a long way since the typical ones that needed to have a photo printed and stuck on them. Today in this digital era we have a new concept, named digital photo frame, a modern representation of the conventional photo frame. A digital photo frame is basically a picture frame that displays photos without the need to print them. They are available in a variety of sizes and with varied configurations. A typical frame varies in size from 7 inches to 20 inches. There are also key chain sized frames available. These frames also support a variety of formats like .jpeg, .tiff, .bmp and so on. Most of the frames provide an option to run the photos in a sequential or random manner as a slideshow with an adjustable time interval. The mode of input of the photos to the frame is also multi-fold. It can be done directly via the memory card of the camera, or else various memory devices like USB drives, SD Cards, MMC Cards and so on can be used. Nowadays even Bluetooth technology is being used. Another option that is becoming quite popular is that, users can take their photos directly from the Internet from sites like Flickr, Picassa or from their e-mail. Also these frames generally come with built in speakers and with remote controls. Our initial objective was to decide on which all features can be added to the Digital Photo Frame that we design. For this purpose we conducted simulation exercises in MATLAB so as to prove its feasibility. This simulation exercise was divided into two parts. The first part was to perform compression and decompression and the second half dealt with the various enhancements that can be added to the frame. For our compression and decompression we considered the JPEG standard. Joint Photographic Experts Group - an ISO/ITU standard for compressing still images. The JPEG format is very popular due to its variable compression range. A few limitations of JPEG include the fact that it is lossy and also not great for displaying text. The common extension for it include *.jpg, *.jff, *.m-jpeg,*.mpeg The various enhancement features that we tested for feasibility include Mean Filter, Median Filter, Image Sharpening, Negative Image Extraction, Logarithmic Transformations, Power Law Correction (Gamma Correction), Contrast Stretching, Grey Level Slicing, Bit Plane Slicing, Laplace Filtering. We then proceeded onto the hardware implementation of the above said features. We only implemented a handful of features owing to the complexity of design and lack of time. We first implemented the Compression and Decompression algorithm. The two enhancement features we implemented were Laplace Filter and Median Filter. For our implementation we used the VIRTEX 2 FPGA Board

    A general framework for efficient FPGA implementation of matrix product

    Get PDF
    Original article can be found at: http://www.medjcn.com/ Copyright Softmotor LimitedHigh performance systems are required by the developers for fast processing of computationally intensive applications. Reconfigurable hardware devices in the form of Filed-Programmable Gate Arrays (FPGAs) have been proposed as viable system building blocks in the construction of high performance systems at an economical price. Given the importance and the use of matrix algorithms in scientific computing applications, they seem ideal candidates to harness and exploit the advantages offered by FPGAs. In this paper, a system for matrix algorithm cores generation is described. The system provides a catalog of efficient user-customizable cores, designed for FPGA implementation, ranging in three different matrix algorithm categories: (i) matrix operations, (ii) matrix transforms and (iii) matrix decomposition. The generated core can be either a general purpose or a specific application core. The methodology used in the design and implementation of two specific image processing application cores is presented. The first core is a fully pipelined matrix multiplier for colour space conversion based on distributed arithmetic principles while the second one is a parallel floating-point matrix multiplier designed for 3D affine transformations.Peer reviewe

    LOCO-ANS: An Optimization of JPEG-LS Using an Efficient and Low-Complexity Coder Based on ANS

    Full text link
    Near-lossless compression is a generalization of lossless compression, where the codec user is able to set the maximum absolute difference (the error tolerance) between the values of an original pixel and the decoded one. This enables higher compression ratios, while still allowing the control of the bounds of the quantization errors in the space domain. This feature makes them attractive for applications where a high degree of certainty is required. The JPEG-LS lossless and near-lossless image compression standard combines a good compression ratio with a low computational complexity, which makes it very suitable for scenarios with strong restrictions, common in embedded systems. However, our analysis shows great coding efficiency improvement potential, especially for lower entropy distributions, more common in near-lossless. In this work, we propose enhancements to the JPEG-LS standard, aimed at improving its coding efficiency at a low computational overhead, particularly for hardware implementations. The main contribution is a low complexity and efficient coder, based on Tabled Asymmetric Numeral Systems (tANS), well suited for a wide range of entropy sources and with simple hardware implementation. This coder enables further optimizations, resulting in great compression ratio improvements. When targeting photographic images, the proposed system is capable of achieving, in mean, 1.6%, 6%, and 37.6% better compression for error tolerances of 0, 1, and 10, respectively. Additional improvements are achieved increasing the context size and image tiling, obtaining 2.3% lower bpp for lossless compression. Our results also show that our proposal compares favorably against state-of-the-art codecs like JPEG-XL and WebP, particularly in near-lossless, where it achieves higher compression ratios with a faster coding speedThis work was supported in part by the Spanish Research Agency through the Project AgileMon under Grant AEI PID2019-104451RB-C2

    Implementation and Evaluation of an NoC Architecture for FPGAs

    Get PDF
    The Networks-on-Chip (NoC) approach for designing Systems-on-Chip (SoC) is currently emerging as an advanced concept for overcoming the scalability and efficiency problems of traditional bus-based systems. A great deal of theoretical research has been done in this area that provides good insight and shows promising results. There is a great need for research in hardware implementation of NoC-based systems to determine the feasibility of implementing various topologies and protocols, and also to accurately determine what design tradeoffs are involved in NoC implementation. This thesis addresses the challenges of implementing an NoC-based system on FPGAs for running real benchmark applications. The NoC used a mesh topology and circuit-switched communication protocol. An experimental framework was developed that allowed implementation of NoC-based system from a high level specification, using the Celoxica Handel-C hardware description language. Two test applications: charged couple device (CCD) and JPEG were developed in Handel-C to be used as our benchmark applications. Both benchmarks are computational expensive and require large quantities of data transfer that will test the NoC system. Implementation results show that the NoC-based system gives superior area utilization and speed performance compared to the bus-based system, running the same benchmarks

    A Genetic-algorithm-based Approach to the Design of DCT Hardware Accelerators

    Get PDF
    As modern applications demand an unprecedented level of computational resources, traditional computing system design paradigms are no longer adequate to guarantee significant performance enhancement at an affordable cost. Approximate Computing (AxC) has been introduced as a potential candidate to achieve better computational performances by relaxing non-critical functional system specifications. In this article, we propose a systematic and high-abstraction-level approach allowing the automatic generation of near Pareto-optimal approximate configurations for a Discrete Cosine Transform (DCT) hardware accelerator. We obtain the approximate variants by using approximate operations, having configurable approximation degree, rather than full-precise ones. We use a genetic searching algorithm to find the appropriate tuning of the approximation degree, leading to optimal tradeoffs between accuracy and gains. Finally, to evaluate the actual HW gains, we synthesize non-dominated approximate DCT variants for two different target technologies, namely, Field Programmable Gate Arrays (FPGAs) and Application Specific Integrated Circuits (ASICs). Experimental results show that the proposed approach allows performing a meaningful exploration of the design space to find the best tradeoffs in a reasonable time. Indeed, compared to the state-of-the-art work on approximate DCT, the proposed approach allows an 18% average energy improvement while providing at the same time image quality improvement

    High-performance hardware accelerators for image processing in space applications

    Get PDF
    Mars is a hard place to reach. While there have been many notable success stories in getting probes to the Red Planet, the historical record is full of bad news. The success rate for actually landing on the Martian surface is even worse, roughly 30%. This low success rate must be mainly credited to the Mars environment characteristics. In the Mars atmosphere strong winds frequently breath. This phenomena usually modifies the lander descending trajectory diverging it from the target one. Moreover, the Mars surface is not the best place where performing a safe land. It is pitched by many and close craters and huge stones, and characterized by huge mountains and hills (e.g., Olympus Mons is 648 km in diameter and 27 km tall). For these reasons a mission failure due to a landing in huge craters, on big stones or on part of the surface characterized by a high slope is highly probable. In the last years, all space agencies have increased their research efforts in order to enhance the success rate of Mars missions. In particular, the two hottest research topics are: the active debris removal and the guided landing on Mars. The former aims at finding new methods to remove space debris exploiting unmanned spacecrafts. These must be able to autonomously: detect a debris, analyses it, in order to extract its characteristics in terms of weight, speed and dimension, and, eventually, rendezvous with it. In order to perform these tasks, the spacecraft must have high vision capabilities. In other words, it must be able to take pictures and process them with very complex image processing algorithms in order to detect, track and analyse the debris. The latter aims at increasing the landing point precision (i.e., landing ellipse) on Mars. Future space-missions will increasingly adopt Video Based Navigation systems to assist the entry, descent and landing (EDL) phase of space modules (e.g., spacecrafts), enhancing the precision of automatic EDL navigation systems. For instance, recent space exploration missions, e.g., Spirity, Oppurtunity, and Curiosity, made use of an EDL procedure aiming at following a fixed and precomputed descending trajectory to reach a precise landing point. This approach guarantees a maximum landing point precision of 20 km. By comparing this data with the Mars environment characteristics, it is possible to understand how the mission failure probability still remains really high. A very challenging problem is to design an autonomous-guided EDL system able to even more reduce the landing ellipse, guaranteeing to avoid the landing in dangerous area of Mars surface (e.g., huge craters or big stones) that could lead to the mission failure. The autonomous behaviour of the system is mandatory since a manual driven approach is not feasible due to the distance between Earth and Mars. Since this distance varies from 56 to 100 million of km approximately due to the orbit eccentricity, even if a signal transmission at the light speed could be possible, in the best case the transmission time would be around 31 minutes, exceeding so the overall duration of the EDL phase. In both applications, algorithms must guarantee self-adaptability to the environmental conditions. Since the Mars (and in general the space) harsh conditions are difficult to be predicted at design time, these algorithms must be able to automatically tune the internal parameters depending on the current conditions. Moreover, real-time performances are another key factor. Since a software implementation of these computational intensive tasks cannot reach the required performances, these algorithms must be accelerated via hardware. For this reasons, this thesis presents my research work done on advanced image processing algorithms for space applications and the associated hardware accelerators. My research activity has been focused on both the algorithm and their hardware implementations. Concerning the first aspect, I mainly focused my research effort to integrate self-adaptability features in the existing algorithms. While concerning the second, I studied and validated a methodology to efficiently develop, verify and validate hardware components aimed at accelerating video-based applications. This approach allowed me to develop and test high performance hardware accelerators that strongly overcome the performances of the actual state-of-the-art implementations. The thesis is organized in four main chapters. Chapter 2 starts with a brief introduction about the story of digital image processing. The main content of this chapter is the description of space missions in which digital image processing has a key role. A major effort has been spent on the missions in which my research activity has a substantial impact. In particular, for these missions, this chapter deeply analizes and evaluates the state-of-the-art approaches and algorithms. Chapter 3 analyzes and compares the two technologies used to implement high performances hardware accelerators, i.e., Application Specific Integrated Circuits (ASICs) and Field Programmable Gate Arrays (FPGAs). Thanks to this information the reader may understand the main reasons behind the decision of space agencies to exploit FPGAs instead of ASICs for high-performance hardware accelerators in space missions, even if FPGAs are more sensible to Single Event Upsets (i.e., transient error induced on hardware component by alpha particles and solar radiation in space). Moreover, this chapter deeply describes the three available space-grade FPGA technologies (i.e., One-time Programmable, Flash-based, and SRAM-based), and the main fault-mitigation techniques against SEUs that are mandatory for employing space-grade FPGAs in actual missions. Chapter 4 describes one of the main contribution of my research work: a library of high-performance hardware accelerators for image processing in space applications. The basic idea behind this library is to offer to designers a set of validated hardware components able to strongly speed up the basic image processing operations commonly used in an image processing chain. In other words, these components can be directly used as elementary building blocks to easily create a complex image processing system, without wasting time in the debug and validation phase. This library groups the proposed hardware accelerators in IP-core families. The components contained in a same family share the same provided functionality and input/output interface. This harmonization in the I/O interface enables to substitute, inside a complex image processing system, components of the same family without requiring modifications to the system communication infrastructure. In addition to the analysis of the internal architecture of the proposed components, another important aspect of this chapter is the methodology used to develop, verify and validate the proposed high performance image processing hardware accelerators. This methodology involves the usage of different programming and hardware description languages in order to support the designer from the algorithm modelling up to the hardware implementation and validation. Chapter 5 presents the proposed complex image processing systems. In particular, it exploits a set of actual case studies, associated with the most recent space agency needs, to show how the hardware accelerator components can be assembled to build a complex image processing system. In addition to the hardware accelerators contained in the library, the described complex system embeds innovative ad-hoc hardware components and software routines able to provide high performance and self-adaptable image processing functionalities. To prove the benefits of the proposed methodology, each case study is concluded with a comparison with the current state-of-the-art implementations, highlighting the benefits in terms of performances and self-adaptability to the environmental conditions

    Streaming Lossless Volumetric Compression of Medical Images Using Gated Recurrent Convolutional Neural Network

    Full text link
    Deep learning-based lossless compression methods offer substantial advantages in compressing medical volumetric images. Nevertheless, many learning-based algorithms encounter a trade-off between practicality and compression performance. This paper introduces a hardware-friendly streaming lossless volumetric compression framework, utilizing merely one-thousandth of the model weights compared to other learning-based compression frameworks. We propose a gated recurrent convolutional neural network that combines diverse convolutional structures and fusion gate mechanisms to capture the inter-slice dependencies in volumetric images. Based on such contextual information, we can predict the pixel-by-pixel distribution for entropy coding. Guided by hardware/software co-design principles, we implement the proposed framework on Field Programmable Gate Array to achieve enhanced real-time performance. Extensive experimental results indicate that our method outperforms traditional lossless volumetric compressors and state-of-the-art learning-based lossless compression methods across various medical image benchmarks. Additionally, our method exhibits robust generalization ability and competitive compression speedComment: 18 pages, 8 figure

    Image Processing Using FPGAs

    Get PDF
    This book presents a selection of papers representing current research on using field programmable gate arrays (FPGAs) for realising image processing algorithms. These papers are reprints of papers selected for a Special Issue of the Journal of Imaging on image processing using FPGAs. A diverse range of topics is covered, including parallel soft processors, memory management, image filters, segmentation, clustering, image analysis, and image compression. Applications include traffic sign recognition for autonomous driving, cell detection for histopathology, and video compression. Collectively, they represent the current state-of-the-art on image processing using FPGAs
    corecore