
50

A Genetic-algorithm-based Approach to the Design of

DCT Hardware Accelerators

MARIO BARBARESCHI and SALVATORE BARONE, Department of Electrical Engineering

and Information Technologies, University of Naples Federico II, Italy

ALBERTO BOSIO, Univ Lyon, ECL, INSA Lyon, CNRS, UCBL, CPE Lyon, INL, UMR5270, France

JIE HAN, Department of Electrical and Computer Engineering, University of Alberta, Canada

MARCELLO TRAIOLA, University of Rennes, Inria, CNRS, IRISA, UMR 6074, France

As modern applications demand an unprecedented level of computational resources, traditional computing

system design paradigms are no longer adequate to guarantee significant performance enhancement at an

affordable cost. Approximate Computing (AxC) has been introduced as a potential candidate to achieve bet-

ter computational performances by relaxing non-critical functional system specifications. In this article, we

propose a systematic and high-abstraction-level approach allowing the automatic generation of near Pareto-

optimal approximate configurations for a Discrete Cosine Transform (DCT) hardware accelerator. We obtain

the approximate variants by using approximate operations, having configurable approximation degree, rather

than full-precise ones. We use a genetic searching algorithm to find the appropriate tuning of the approxi-

mation degree, leading to optimal tradeoffs between accuracy and gains. Finally, to evaluate the actual HW

gains, we synthesize non-dominated approximate DCT variants for two different target technologies, namely,

Field Programmable Gate Arrays (FPGAs) and Application Specific Integrated Circuits (ASICs). Experimental

results show that the proposed approach allows performing a meaningful exploration of the design space to

find the best tradeoffs in a reasonable time. Indeed, compared to the state-of-the-art work on approximate

DCT, the proposed approach allows an 18% average energy improvement while providing at the same time

image quality improvement.

CCS Concepts: • Hardware → Circuit optimization; Circuits power issues; Switching devices power is-

sues; Application specific integrated circuits; Full-custom circuits; • Applied computing→ Multi-criterion

optimization and decision-making;

Additional Key Words and Phrases: Code mutation, generic algorithm, approximate computing techniques,

design space exploration, JPEG, discrete cosine transform

ACM Reference format:

Mario Barbareschi, Salvatore Barone, Alberto Bosio, Jie Han, and Marcello Traiola. 2022. A Genetic-algorithm-

based Approach to the Design of DCT Hardware Accelerators. J. Emerg. Technol. Comput. Syst. 18, 3, Article 50

(January 2022), 25 pages.

https://doi.org/10.1145/3501772

Authors’ addresses: M. Barbareschi and S. Barone, Department of Electrical Engineering and Information Technologies,

University of Naples Federico II, Italy; emails: mario.barbareschi@unina.it, salvatore.barone@unina.it; A. Bosio, Univ Lyon,

ECL, INSA Lyon, CNRS, UCBL, CPE Lyon, INL, UMR5270, France; email: alberto.bosio@ec-lyon.fr; J. Han, Department of

Electrical and Computer Engineering, University of Alberta, Canada; email: jhan8@ualberta.ca; M. Traiola, University of

Rennes, Inria, CNRS, IRISA, UMR 6074, France; email: marcello.traiola@inria.fr.
Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee

provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and

the full citation on the first page. Copyrights for components of this work owned by others than ACM must be honored.

Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires

prior specific permission and/or a fee. Request permissions from permissions@acm.org.

© 2022 Association for Computing Machinery.

1550-4832/2022/01-ART50 $15.00

https://doi.org/10.1145/3501772

ACM Journal on Emerging Technologies in Computing Systems, Vol. 18, No. 3, Article 50. Pub. date: January 2022.

https://doi.org/10.1145/3501772
mailto:permissions@acm.org
https://doi.org/10.1145/3501772
http://crossmark.crossref.org/dialog/?doi=10.1145%2F3501772&domain=pdf&date_stamp=2022-01-29

50:2 M. Barbareschi et al.

1 INTRODUCTION

With the increasingly fast-growing amount of information processed by modern computing sys-
tems, energy efficiency has become a stringent requirement. Therefore, design activities are becom-
ing more challenging and traditional techniques seem more unsuitable. An increasingly popular
solution is the Approximate Computing (AxC) design paradigm. AxC exploits the gap between
the high accuracy level provided by a computer system and the moderate accuracy required by a
given application to achieve performance gains or energy savings by carefully reducing accuracy.
In this perspective, AxC is most effective when applied to applications dealing with redundant
data, end-user perceptual limitations, or error resilient algorithms [12, 13, 39].

AxC has raised many design challenges due to the variety of Approximate Computing Tech-

niques (AxCTs) [25]. Each AxCT can introduce different approximation degrees. This leads to
a huge amount of different approximate system configurations. Evaluating the approximation im-
pact on the output quality at the application level is often quite time-consuming and not trivial.
Indeed, it is usually achieved through simulations or executions of the whole approximate applica-
tion [12] to ensure that the quality specifications are met. An additional challenge is related to the
lack of a general automation tool and a methodology for the Design Space Exploration (DSE).

One of the main fields of application for AxC is image processing: Imperceptible reduction of
image quality can lead to important computational resources savings. Most of the research work
focuses on the JPEG compression, either considering the algorithms as a whole or its individual
computational steps. Concerning the design of hardware accelerators, researchers focused on the
approximation of Discrete Cosine Transform (DCT) accelerators, mainly targeting figures of
merit such as circuit complexity, delay, area, and power dissipation [2, 3, 21].

Unfortunately, the effect of the different approximation techniques and relative configurations
(i.e., approximation degrees) are only analyzed individually and without a supporting methodol-
ogy.

Conversely, in this work, we assess the impact of approximation—for different approximation
degrees—on the DCT computation by performing a fully automated DSE. Starting from the DCT

algorithm, we first perform an Abstract Syntax Tree (AST) analysis to gather information on
the operations suitable for approximation. Then, we generate parametric approximate versions.
Through the approximation parameters, we can tune the approximation degree. Finally, we build
a Multi-objective Optimization Problem (MOP) to find the Pareto-optimal values for the afore-
mentioned approximation parameters. To converge towards a Pareto front, we use a Genetic Al-

gorithm (GA). The fitness functions driving the GA are the quality reduction minimization and the
gain maximization. To perform the DSE in an acceptable time, we operate at high-abstraction level
by modeling the hardware approximation gains with an estimation function. We measure the qual-
ity reduction by evaluating the JPEG execution over a large image dataset. Finally, after the DSE,
we synthesize the obtained approximate DCT configurations on both Field Programmable Gate

Array (FPGA) and Application Specific Integrated Circuits (ASICs) target technologies and
demonstrate the effectiveness of the approach w.r.t. the state-of-the-art.

The remainder of this article is structured as follows: Section 2 reviews the existing related
work; Section 3 provides preliminary technical background, while Section 4 describes in detail the
proposed workflow. To evaluate the proposed approach, Section 5 describes the experimental setup,
reports result, and compares our approach with previous studies. Section 6 draws the conclusions.

2 RELATED WORK

The effectiveness of imprecise computation for error-resilient applications has been demonstrated
both for software and hardware components implementing inexact algorithms [12, 39]. The use of

ACM Journal on Emerging Technologies in Computing Systems, Vol. 18, No. 3, Article 50. Pub. date: January 2022.

A Genetic-Algorithm-Based Approach to the Design of DCT Hardware Accelerators 50:3

approximation is sometimes intrinsic, e.g., in digital signal processing, where analog signals are
discretized and quantized. In many scenarios, the voluntary introduction of approximation turns
out to be beneficial. For instance, the perceptual limitations of human senses can be leveraged to
reduce the data precision, thus to reduce the storage requirements [31] or to improve performances
of multimedia and signal processing applications [34]. Likewise, executing iterative-refinement
algorithms with a reduced precision of intermediate computation can improve performances, with
little or even no effects on the quality of results [30]. Different AxCTs have been proposed in the
scientific literature [25]. Some examples use bit-width optimization [19] and loop-perforation [36].

Employing the AxC full potential requires dealing with several challenges. (i) Approxima-
tion error-assessment: Since compliance with output quality constraints has to be guaranteed,
error-assessment is crucial. The actual error assessment may require the simulation of both exact
and approximate applications, which is very costly. Nevertheless, to reduce the required effort,
an estimation can be obtained by resorting to a representative workload. However, a different ap-
proach, based on Bayesian inference [37, 38], analytical models [11], machine-learning [26], and
even neural networks [43] have been proposed to avoid simulations. (ii) The choice of metrics for
error estimation: They may strongly depend on the particular application. Thus, choosing the right
metric, or the right combination of metrics, is of major concern, and it is not a trivial task. (iii) Ap-
proximate configuration choice: A given application can be approximated in many different ways.
Among all the different approximate configurations, choosing those providing the best tradeoff
between accuracy loss and resource gains is one of the major challenges in AxC. Indeed, low error
and high benefits are conflicting goals.

Concerning hardware design, initial approaches—although not efficient nor scalable—addressed
the aforementioned issues by manually identifying approximable sub-parts of a given applica-
tion. Afterwards, there have been several attempts to define systematic and automated approaches.
Ranjan et al. [33], for instance, identify combinational sub-circuits—such as arithmetic units—by
looking at the Register Transfer Level (RTL) description of the circuit to be approximated, se-
lecting the optimal quality/energy operating-point using stochastic gradient-descent to maximize
energy savings. Nepal et al. [27] perform AST manipulations to generate several approximate
versions of a given circuit, starting from either behavioral or RTL descriptions. The variant pro-
viding the optimal tradeoff between accuracy and gains is selected by means of a stochastic greedy
algorithm.

The synergetic effects of multiple approximation techniques, acting at different levels, have been
also investigated in the scientific literature. In Reference [43], for instance, the precision-scaling
technique is exploited in conjunction with voltage-scaling, since the former usually leads to lower
circuit delay, paving the way for aggressive voltage scaling, which provides higher impacts on
energy savings.

However, all the aforementioned approaches either combine multiple design objectives in a
single-objective optimization problem or optimize a single parameter while keeping the others
fixed. Therefore, the resulting solutions are centered around a few dominant design alternatives
and do not cover the whole Pareto front [15]. Researches in Reference [35] addressed the problem
by using Cartesian genetic programming to search for Pareto-optimal approximate circuit imple-
mentations requiring progressively fewer hardware resources. Unfortunately, such approaches did
not focus on complex systems, rather on arithmetic components, such as adders and multipliers,
which are used as building blocks for hardware accelerators.

In Reference [26], circuits from a library of approximate components are selected to generate
an approximate accelerator for a given application. On the basis of contributions from single com-
ponents, machine learning techniques are adopted to estimate the overall quality and hardware
cost of the accelerator, without requiring simulations and synthesis. A similar approach has been

ACM Journal on Emerging Technologies in Computing Systems, Vol. 18, No. 3, Article 50. Pub. date: January 2022.

50:4 M. Barbareschi et al.

Fig. 1. The workflow of our approach.

presented in Reference [11]. A set of analytical models of quality and resource requirements are
derived for a library of approximate components. Then these are used to estimate resource needed
and accuracy of accelerator designed through high-level synthesis of C language description.

In this work, we focus on a complex system, performing image processing. Specifically, we focus
on the JPEG compression. In Reference [3], a framework relying on inexact computing to perform
the DCT computation for the JPEG has been proposed. The framework acts on three levels: (i) at
the application level, it exploits human insensitivity to high-frequency variation to use a filter and
discard high-frequency components; (ii) at the algorithmic level, multiplier-less fast algorithms are
employed for the actual DCT computation on integer coefficients; (iii) at hardware level, rather
than using a simple truncation for adder circuits, authors used Inexact-Adder Cells (IACs) to
compute less significant bits instead of the Full-Adder Cells (FACs). Therefore, first, the JPEG
quantization step is performed only low-frequency components of an image block; thus, the high-
frequency filter implementation comes down to simply setting some DCT coefficients to zero. Then,
at algorithmic level, since the DCT is the most effort-demanding step in JPEG, fast DCT algorithms
have been used [7–10, 14, 28, 29]. Those algorithms reduce the DCT complexity from O (N 2) to
O (N) and require only integer additions. Finally, at the hardware level, three different IAC fam-
ilies are considered in Reference [3], i.e., the Approximate Mirror Adder (AMA) [21], the Ap-

proximate XOR-based Adder (AXA) [42] and the IneXact Adder (InXA) [2]. The framework
in Reference [3] mainly aims at assessing the joint impact of those three levels of approximation.
However, it presents two main weaknesses: (i) approximation is introduced by manually tuning
the individual approximation parameters and (ii) output quality is assessed over only four images.
In this article, we propose a methodology to overcome the highlighted problems by defining a
systematic and automatic approach for approximate hardware design.

3 PRELIMINARY TECHNICAL BACKGROUND

In this section, we discuss the proposed workflow, which is depicted in Figure 1, while providing
the required technical background. In particular, we first detail the proposed generation process
of approximate variants. Second, we describe how we perform a DSE to converge towards the
Pareto-optimal approximate variants.

ACM Journal on Emerging Technologies in Computing Systems, Vol. 18, No. 3, Article 50. Pub. date: January 2022.

A Genetic-Algorithm-Based Approach to the Design of DCT Hardware Accelerators 50:5

3.1 Approximate Variants Generation

Given an algorithm implementation, to automatically generate approximate variants while having
control on the error, gathering information on the operations suitable for approximation is nec-
essary. We obtain this information through the analysis of the algorithm implementation’s AST.
Hence, we employ mutators [5, 6] to make systematic modifications to the AST, producing altered
implementations. Mutators are defined as a set of rules to search and modify the AST. The rule def-
inition is generally application-independent and does not require the user to know the algorithm
or its specific implementation. In particular, we consider, as an approximation technique, the re-
placement of exact sums with approximate ones. We produce a mutator that automatically replaces
exact sums with the approximate counterparts, without knowing the particular algorithm or its
implementation. In this way, we obtain approximate variants of the original algorithm. Moreover,
the approximate sums are configurable in their degree of approximation.

The number of variants and the number of configurations grow quickly with the number of
operations suitable for approximation. Consider, for instance, an algorithm implementation with

n approximable operations, each allowing k different degrees of approximation:
(

n
j

)
different ap-

proximate variants can be defined by simultaneously approximating j operations, and k j different
approximate configurations can be defined for each of the variants. Therefore, the total number of

approximate configurations is
∑n

i=1 k
i ×
(
n
i

)
. At this point, the main challenge is to find values for

the approximation parameters leading to the Pareto-optimal tradeoffs between performance gains
and accuracy losses, i.e., to perform a DSE.

3.2 Design Space Exploration

As mentioned in the introduction, we model the DSE as a MOP. Basically, a MOP consists of a
set of fitness-functions to minimize/maximize at the same time and a set of constraints to be met,
as reported in Equation (1),

Γ = {γi : A→ R, i = 1 · · ·k }
Ψ = {ψj : A→ {0, 1}, j = 1 · · · l }
A ⊆ Rn ,

(1)

where Γ and Ψ are the set of fitness-functions and the set of constraint-functions, respectively.
While the functions of the former set assume values in R, or its subset, the constraint functions
assume either the value 1 or 0 to indicate that the constraint is or is not met, respectively.

Equation (2) describes the set of solutions for Equation (1). For non-trivial MOPs, |X | > 1, where
| · | expresses the size of the set, i.e., the number of elements it contains.

X = {x ∈ A : γi (x) ≤ γi (x ′), x � ψj , x
′ � x , i ∈ [1,k] , j ∈ [1, l]} (2)

Indeed, since different objectives (i.e., fitness functions) often represent conflicting goals, the
DSE goal is to seek for a set of equally good solutions being close to the Pareto-front (2). Let us
consider two solutions, x ,y ∈ X : x � y, x is said to dominate y i.f.f. (3) holds, i.e., x shows better
or equally good objective values than y in all objectives and at least better in one objective. If a
solution is not dominated by any others, then it is called a Pareto-optimal solution.

x ≺ y ⇐⇒ γi (x) ≤ γi (y) ∀i ∈ [1,k] ∧ ∃j ∈ [1,k] : γj (x) < γj (y) . (3)

Due to the rapid growth of the size of the solution space as the number of decision variables,
fitness functions, and constraints increases, using exact solving algorithms turns out to be very

ACM Journal on Emerging Technologies in Computing Systems, Vol. 18, No. 3, Article 50. Pub. date: January 2022.

50:6 M. Barbareschi et al.

Fig. 2. The NSGA-II selection strategy.

computation-intensive. Consequently, a variety of heuristics aiming at producing an approxima-
tion of the Pareto-front have been proposed in the scientific literature. Some well-known heuristics
are hill-climbing, ant-colony [18], and Evolutionary Algorithms (EAs).

GAs, a subclass of EAs, have been largely used in the literature to find Pareto-fronts for
MOPs [16]. GAs are inspired by and also borrow terminology from the evolutionary theory: mu-

tation, crossover, and selection mechanisms cause the extinction of weak and unfit species, while
strong ones have greater opportunities to survive and pass their genes to future generations. In
particular, we resort to Multi-Objective Evolutionary Algorithms (MOEAs). MOEAs operate
on a set of individuals, called population, that evolves and, eventually, converges to a set of Pareto-
dominant solutions. Each individual is represented as a chromosome, i.e., a data structure encoding
the search space. During the evolution process, new offspring is generated either through or in
combination of crossover and mutation [17]. A crossover takes two parent chromosomes to produce
a new chromosome. Thence, we resort to the Non-dominated Sorted Genetic Algorithm-II

(NSGA-II), which is widely employed as a standard approach [16].
It follows an elitist principle, i.e., the elites of a population are given the opportunity to be carried

to the next generation. The evolution process starts from an initial population, which is typically
randomly generated or seeded in areas where optimal solutions are likely to be found, and it goes
through the following steps:

At the beginning, the NSGA-II builds a random initial population P0 of sizeN and sorts the latter
using non-domination sorting, which will be presented below. Thus, each individual is assigned a
rank equal to its non-domination level. At the first iteration, usual crossover, mutation and binary
tournament selection operator are used to build the Q0 offspring population.

The behavior of the algorithm during a generic ith iteration is summarized in Figure 2: (i) a
combined population Ri = Pi ∪Qi is formed exploiting crossover and mutation, then sorted on the
basis of non-domination, and finally split in subsets {F1, . . . , Fm }; (ii) individuals from the highest
rank subsets F1 are preserved in the next iteration; if the amount of surviving individuals from
F1 is less than N, then individuals from lower rank subsets F2 · · · Fl are also preserved, and they
survive for the next iteration; (iii) to select exactly N individuals from Ri , individuals from the
last non-rejected non-domination subset Fl are sorted on the basis of the crowding distance and
selected using the crowded selection operator (4).

To perform non-domination sorting, for each individual p ∈ P , the NSGA-II computes (i) the
non-domination count np = |Dp |, Dp = {q ∈ P : q ≺ p}, i.e., the amount of individuals q that
dominate p, and (ii) the set Sp = {q ∈ P : p ≺ q}, i.e., the set of individuals q that are dominated
by p. Individuals in the highest rank subset of Ri , i.e., F1, have np = 0. Then, for each p : np = 0,
each q ∈ Sp is visited and nq is decremented by one. If the term nq becomes zero, then q is placed

ACM Journal on Emerging Technologies in Computing Systems, Vol. 18, No. 3, Article 50. Pub. date: January 2022.

A Genetic-Algorithm-Based Approach to the Design of DCT Hardware Accelerators 50:7

in the second-highest rank subset of Ri , i.e., F2. The procedure is iterated until each subset is fully
identified.

Along with convergence to the Pareto-front, it is also desired that an EA maintains a good spread
in the obtained set of solutions. To preserve diversity, the NSGA-II adopts the crowding distance as
a metric for the density of solutions surrounding a particular solution. Such distance is the average
distance of two points on either side of the considered solution, along each of the fitness functions.
The computation requires sorting the population M times, according to each fitness function, in
ascending order. Each time the population is sorted, the boundary solutions—i.e., solutions with
the smallest and the largest fitness—are assigned an infinite distance, while all other solutions are
assigned with a crowding distance equal to the absolute normalized difference of fitness of the two
adjacent solutions. The overall crowding distance is the sum of individual distances corresponding
to each fitness function. Using crowded distance, the usual definition of Pareto dominance (3) is
slightly modified as in Equation (4), where x ≈ y denotes x and y do not dominate each other and
d (·) is the crowding distance of a given solution. The crowded selection operator preserves diversity
by promoting solutions located in less crowded areas of the solution space.

x ≺n y ⇐⇒ x ≺ y ∪ (x ≈ y ∧ d (x) > d (y)) (4)

Modeling a specific optimization problem so it can be resolved by an MOEA is not trivial and
there are no general rules. In our case, as mentioned in Section 3.1, we approximate a number of
operations in the DCT algorithm. According to their approximation degree, each of the operations
contributes to error and gains differently. On the one hand, it may be easy to analytically define a
relationship between the degree of approximation and the corresponding gains by using properties
of the specific approximation. On the other hand, doing the same with the error is not trivial, due to
its propagation through the data-flow. Therefore, fitness functions should be defined case-by-case.
Finally, regarding the constraints, identifying acceptable variation ranges for one or more genes
or identify an error threshold is generally feasible. For instance, for an n-bits adder, the variation
interval of the gene could be {0, 1, . . . , n} to cover the degree that goes from “no-approximation”
to “totally approximate.”

Finally, from a technical standpoint, approximate configurations can be represented by using
a vector—i.e., a chromosome, in the MOEA context—having as many elements—i.e., genes—as
operations. The value of each element represents the approximation degree for the corresponding
operation.

Being that the goal of the DSE is to find the Pareto-optimal approximation degree for all the
operations, the NSGA-II provides a suitable tool to perform the exploration of such a large design
space, in a reasonable time.

4 TOWARDS APPROXIMATE DCT

In this section, first, we discuss the mathematical steps leading to a set of linear equations to
compute DCT coefficients using only additions. These equations are general and independent of
the particular DCT algorithm. Second, we present the approximate DCT variants generation and
how we model the DSE as a MOP so it can be resolved by using the NSGA-II.

4.1 Addition-based Computation of DCT Coefficients

As we already mentioned, the DCT computation is known to have O (N 2) complexity and re-
quires resource-intensive functional units, such as floating-point arithmetic modules. The algo-
rithm proposed in Reference [24] requires 11 multiplications and 29 additions to compute the one-
dimensional eight-point DCT needed by the JPEG compression. It is considered the most efficient
exact algorithm, since the lower bound on the number of multiplications required for such DCT

ACM Journal on Emerging Technologies in Computing Systems, Vol. 18, No. 3, Article 50. Pub. date: January 2022.

50:8 M. Barbareschi et al.

Table 1. Comparison among DCT Algorithms in Terms of

Number of Operations

Method Additions Multiplications Shifts Total operations
DFT (definition) 432 192 0 624

FFT 58 6 0 64
DCT (definition) 56 64 0 120
Arai algorithm 29 5 0 34

BAS08 [9] 18 0 2 20
BAS09 [10] 18 0 0 18

BAS11 [8] (a = 0) 16 0 0 16
BAS11 [8] (a = 1) 18 0 0 18
BAS11 [8] (a = 2) 18 0 2 20

CB11 [14] 22 0 0 22
BC12 [7] 14 0 0 14

PEA12 [29] 24 0 6 30
PEA14 [28] 14 0 0 14

computation has been proven to be 11 [20]. To achieve an additional reduction in resource require-
ments, authors of Reference [4] moved parts of the DCT computation to the JPEG quantization
step. Furthermore, transformed coefficients can be scaled and rounded such that floating-point
operations can be superseded by integer ones: The resulting algorithms are significantly faster,
and they find extensive use in practical applications. However, integer multiplication is still com-
plex and resource-intensive; thus, many low-complexity multiplier-less algorithms have been pro-
posed [7–10, 14, 28, 29]. As in Reference [4], all of these algorithms split the DCT computation
into two consecutive steps: The first one is referred to as approximate-DCT, which involves only
integer operations, while the second step is embedded into the quantization and takes advantages
of floating-point operations the latter requires. Moreover, they all avoid computing DCT coeffi-
cients separately or iteratively. Instead, they extensively use matrix algebra and its properties. To
show how the above-mentioned algorithms work, letX be an input image tile, which is an 8×8 ma-
trix; its two-dimensional DCT transform, from now on simply DCT, is described by the following
equation:

F = C · X ·C ′, (5)

whereC is referred to as DCT matrix.C contains the cosine function values at the needed frequen-
cies. The X and the F matrices have the same dimensions. The elements in F represent the DCT

coefficients as the frequency progressively increases: Low-frequency components are closer to
the top-left corner, while high-frequency ones are placed close to the bottom-right corner. The C
matrix can be split into two matrices, T and D, as reported in Equation (6).

F = C · X ·C ′ = D · (T · X ·T ′) · D (6)

Different algorithms define T and D in different ways, so the number of computation operations
may vary from algorithm to algorithm, as reported in Table 1. Splitting C allows integers-only
matrix multiplications. Indeed, T contains only the values {0,± 1

2 ,±1,±2} and it is orthogonal, i.e.,

T ′ = T −1 ⇒ TT ′ = T ′T = I , where I is the identity matrix. Note that multiplying by 1
2 or 2

comes down to shifting to the right or to the left, respectively; this, at hardware level, is reduced
to simple wiring. This meansT allows computing the DCT using only additions. Nevertheless, the
multiplication of D in Equation (6) still requires floating-point operations. In fact, D is a diagonal
matrix consisting of values in the [−1, 1] range, with { 12 ,

1√
2
, 1√

8
} being typical values. For this

reason, resorting to properties of diagonal matrices allows obtaining the following equation:

F = T · X ·T ′ ◦ (diaд(D) · diaд(D)′), (7)

ACM Journal on Emerging Technologies in Computing Systems, Vol. 18, No. 3, Article 50. Pub. date: January 2022.

A Genetic-Algorithm-Based Approach to the Design of DCT Hardware Accelerators 50:9

where ◦ is the Hadamard product, i.e., an element-wise multiplication. Thus, the integer null-
multiplicative part T · X · T ′ can be isolated from floating-point operations required by D. Af-
terwards, floating-point operations can be performed outside the DCT and embedded into the
JPEG quantization step, as shown in the following equation:

FQ = �F � Q� = �T · X ·T ′ ◦ (diaд(D) · diaд(D)′) � Q� = �T · X ·T ′ ◦ Q̂� = �(T · (T · X ′)′) ◦ Q̂�
(8)

Q̂ = (diaд(D) · diaд(D)′) � Q, (9)

where Q̂ in Equation (9) is the complete quantization matrix and the � operator is the Hadamard
division, i.e., an element-wise division. From Equation (8), it follows F = (T · (T · X ′)′), which
means that the approximate two-dimensional DCT transform can be computed using the one-
dimensional DCT transform twice, reducing the complexity from quadratic to linear.

The only substantial difference between the different multiplier-less DCT algorithms is
the T matrix. Hence, it is straightforward to derive a set of equations to calculate the one-
dimensional DCT coefficients. Equations in (10), for instance, refer to the BC12 algorithm [7].

f0 = x0 + x1 + x2 + x3 + x4 + x5 + x6 + x7 f1 = x0 − x7

f2 = x0 − x1 − x2 + x3 + x4 − x5 − x6 + x7 f3 = x4 − x3

f4 = x0 − x3 − x4 + x7 f5 = x5 − x2

f6 = x2 − x1 + x5 − x6 f7 = x6 − x1

(10)

Furthermore, some terms—for instance, (x0 + x7)—are involved in the computation of multiple fi
coefficients, which allows to further reduce the amount of operations.

4.2 Approximate Variants Generation and MOP Modeling

Once the addition-based equations for the DCT coefficients are defined, simple implementations
for the DCT computation algorithm can be derived, such as BAS08 [9], BAS09 [10], BAS11 [8],
BC12 [7], CB11 [14], PEA12 [29], and PEA14 [28]. Within those, we introduce further approxi-
mation by replacing exact sums by configurable approximate ones. Such approximate sums allow
setting two parameters, i.e., the Number of Approximate Bits (NAB) and the type of adder
hardware cell to use (namely, a classic FAC or an IAC). This was the same approach adopted
in Reference [3]. However, while in Reference [3] the approximation was manually introduced,
we propose to automate the replacement process by considering the AST of the algorithm im-
plementation. Moreover, in Reference [3], approximation parameters were tuned manually and
one at a time, keeping the others at fixed values. Unfortunately, this does not necessarily lead to
Pareto-optimal solutions. Conversely, we propose to find the optimal value for the approximation
parameters through an automatic DSE. We model the DSE as a MOP so it can be resolved by using
an MOEA. In the next subsections, we detail the MOP modeling.

4.2.1 Chromosome Encoding. To enable the MOEA to resolve the MOP, each approximate con-
figuration is modeled as a chromosome. Chromosome’s genes represent the two aforementioned
approximation parameters, i.e., the NAB value and the type of adder hardware cell to use. Thus,
if Nop is the number of addition required, then each chromosome is composed of 2 · Nop different
genes. Chromosomes are provided with an additional gene representing the approximation degree
for the high-frequency filter. Thus, each chromosome is composed of 2 · Nop + 1 genes.

Let us consider an approximate configuration from the population and its corresponding chro-
mosome. Suppose a mutation occurs: Depending on the particular gene being altered, a different
approximate configuration will be generated. The latter will differ from the origin one in (i) the

ACM Journal on Emerging Technologies in Computing Systems, Vol. 18, No. 3, Article 50. Pub. date: January 2022.

50:10 M. Barbareschi et al.

number of approximate bits for a certain sum operation, (ii) the adder cell to be used for a cer-
tain sum, or (iii) the number of frequencies discarded by the high-frequency filter. Despite the fact
that it involves multiple genes and, hence, multiple characteristics of a configuration, the same
reasoning also applies to crossover. The NSGA-II selection operator will determine which of the
individuals will survive on the basis of fitness. Fitness functions driving the DSE are detailed in
the following sections.

4.2.2 Error Fitness-function. For the MOEA to be able to evaluate the error entailed by the
approximations, we need to define and error fitness-function to minimize.

In Reference [2], the authors computed, through exhaustive simulations, the error-rate for dif-
ferent numbers of erroneous bits for IAC adders. Unfortunately, this kind of measurement is not
suitable for complex algorithms, such as the DCT, as it does not take into account the error prop-
agation. Therefore, we resort to the whole JPEG compression, performed on a representative data
set, to estimate the error. Section 5 discusses the experimental setup in more detail.

Regarding error metrics, in Reference [3] the Maximum Difference (MD), the Average Dif-

ference (AD), the Mean Square Error (MSE), and the Peak Signal-to-Noise Ratio (PSNR)
have been considered. Unfortunately, since all of them consider single pixels, these metrics turn
out to be too sensible to noise [32]. Therefore, they are not particularly suited to evaluate the effec-
tiveness of approximations on image processing algorithms. To overcome this issue, we resort to
the Structural SIMilarity (SSIM) [41] to evaluate differences among images. Its formal definition
is reported in Equation (11), where X and Y are two sets of data (i.e., the images), μX and μY are
their mean values, σ 2

X and σ 2
Y are their variances, σX Y is their co-variance, L is the value range in

which elements of X and Y can vary, and k1 and k2 are tuning parameters (typically equal to 0.01
and 0.03, respectively). Values of SSIM (X ,Y) span in the range [−1, 1]. Values of SSIM (X ,Y) ≈ 1
mean that X and Y are structurally similar, while values of SSIM (X ,Y) ≈ 0 mean that there is no
similarity between the two images. Values smaller than zero are meaningless [40].

SSIM (X ,Y) =
(2μx μy + k1) · (2σxy + L · k2)

(μx + μy + k1) · (σ 2
x + σ

2
y + L · k2)

(11)

The effectiveness of image quality assessment increases if Equation (11) is applied locally rather
than globally, since (i) image statistical features are usually highly spatially non-stationary, (ii) im-
age distortions, which may or may not depend on the local image statistics, may also be space–
variant, and (iii) only a local area in the image can be perceived with high resolution by human
observers [41]. Since, in practice, a single overall quality measure of the entire image is required,
the Mean SSIM (MSSIM) from Equation (12) is adopted. There, X and Y are the reference and the
distorted images, respectively, x j and yj are the image contents at the jth local window; and M is
the number of local windows in the image. Typically, the MSSIM index is computed considering
11 × 11 Gaussian weighted circular windows rather than on 8 × 8 square tiles [41].

MSSIM (X ,Y) =
1

M

M∑

j=1

SSIM (x j ,yj) (12)

As SSIM, the lower the MSSIM index, the lower the similarity between X and Y sets; thus,
to define a suitable fitness-function for the MOEA to minimize error, we adopt the Structural

DISSIMilarity (DSSIM)—DSSIM (X ,Y) = 1−MSSIM (X ,Y). In particular, we compute theDSSIM
between a standard JPEG compressed image X and an image Y , which is obtained by using a
certain approximate configuration of a given approximate algorithm. BothX and Y originate from

ACM Journal on Emerging Technologies in Computing Systems, Vol. 18, No. 3, Article 50. Pub. date: January 2022.

A Genetic-Algorithm-Based Approach to the Design of DCT Hardware Accelerators 50:11

Table 2. Transistor Count from Reference [3] for Inexact-adder Cells

Cell Full Adder AMA1 AMA2 AMA3 AMA4 AXA1 AXA2 AXA3 InXA1 InXA2 InXA3

Transistors 58 20 14 11 14 8 6 8 6 8 6

the same non-compressed source image. We perform this operation for several images and use the
average DSSIM as final error fitness-function.

4.2.3 The Reward Fitness Function. To accurately assess resource savings, area, power consump-
tion, and maximum clock speed should be measured. Unfortunately, this would require the syn-
thesis and simulation of large hardware designs. Thus, performing a hardware synthesis for each
design explored in the DSE is a very time-consuming process. Therefore, we resort to a gain es-
timation to drive the DSE. In particular, we estimate the gain (from now on “reward”) from the
number of transistors required to implement an inaccurate cell, using the data from Reference
[3]. This constitutes a good predictor for area and power gains, as experimentally evaluated in
Section 5.2, for both ASIC and FPGA. For convenience, in Table 2, we report, from Reference [3],
the number of transistors required to implement inaccurate cells of the mentioned IACs. Concern-
ing the operating frequency, in this case the approximation does not entail any change, as further
explained in Section 5.1.

Let us detail the reward function. Let Nop be the number of operations required to compute
the single-dimensional DCT and let nabi be the NAB for the ith addition. We compute the total
number of saved transistors as

Nop−1∑

i=0

nabi · (TF A −TI Ai) , (13)

whereTF A andTI Ai are the number of transistors required by the FAC and the ith IAC, respectively.
Finally, since the number of additions required by each algorithm varies, we use a normalized
measure, as reported in the following equation:

ρ =
1

2 · Nbits · Nop ·TF A

Nop−1∑

i=0

nabi · (TF A −TI Ai) , (14)

where Nbits and Nop are the number of bits on which each of the sums is expressed and the number
of sums required for the DCT computation, respectively.

Thanks to the so-defined reward function estimation, we are able to execute the DSE without
performing any time-consuming syntheses of the approximate designs explored. This allows us
to explore a lot more approximate designs, which would be infeasible otherwise. As a result of
the DSE, we obtain the Pareto-optimal approximate designs in terms of accuracy and gains. Hence,
we actually synthesize these designs to a particular technology.

5 EVALUATION AND EXPERIMENTAL RESULT

In this section, we first describe the hardware implementation of the DCT algorithm. Second, we
validate the suitability of the chosen reward fitness function. Third, we show our experimental
setup and related result. Finally, we perform a comparison with previous work.

5.1 DCT Algorithm Hardware Implementation

To be able—at the end of the DSE—to measure the final gains, we encoded all the above-
mentioned DCT algorithms in VHDL. Such implementations guarantee high flexibility: They han-
dle the configuration of both the type of adder cells to use for each addition and the number

of bits to approximate (NABs). This allows the synthesis of any solution eventually found

ACM Journal on Emerging Technologies in Computing Systems, Vol. 18, No. 3, Article 50. Pub. date: January 2022.

50:12 M. Barbareschi et al.

Fig. 3. RTL block schema for the BC12-2D hardware implementation.

Fig. 4. RTL block schema for the BC12-1D hardware implementation.

in the DSE process. VHDL implementations follow Equation (8), which allows splitting the two-
dimensional DCT into two consecutive one-dimensional DCTs, separated by a transposition block,
which transposes the signals. The transposition block implementation in hardware comes down
to being just wiring.

A block schema of the two consecutive one-dimensional DCTs is depicted in Figure 3:X1, . . . ,X7

represent the rows of the image tile being transformed, while F1, . . . , F7 represent the rows of
the transformed block. An RTL schema of the single-dimensional DCT computation block

(DCT1D) is shown in Figure 4; without loss of generality, the schema refers to BC12 [7], since the
differences between different algorithms are negligible.

The architecture of the one-dimensional DCT computing block is pipelined, with pipe registers
separating the adders needed for the partial-sums computation. The one-dimensional DCT has
three clock cycles latency; thus, the whole two-dimensional DCT block is six clock cycles latency.
Each of the partial sums is performed using a configurable approximate adder. The scheme of a
configurable approximate adder is depicted in Figure 5: It is a ripple-carry adder whose least signif-
icant bits are computed by IACs, while the most significant ones are computed by classical FACs.
The number of approximate sums, i.e., IACs, is configurable by means of the NAB parameter.

The DCT is computed on 8 × 8 image tiles, each one made of three different color channels.
Each element’s value spans from 0 to 255. For this reason, each one of the single-dimensional DCT

ACM Journal on Emerging Technologies in Computing Systems, Vol. 18, No. 3, Article 50. Pub. date: January 2022.

A Genetic-Algorithm-Based Approach to the Design of DCT Hardware Accelerators 50:13

Fig. 5. Inexact ripple-carry adder.

output terms can be expressed, at most, as the sum of eight elements. Therefore, the maximum
value for the single-dimensional DCT terms is 8 × 255 = 2, 040 < 2, 048 = 211. As a consequence,
the two-dimensional DCT output terms can have a maximum value of 8 × 2, 040 = 16, 320 <
16, 384 = 214. As a result, 14 bits turn out to be sufficient to represent the DCT frequency coef-
ficients. It is also worth highlighting that replacing FACs with IACs leaves the overall structure
unchanged. As anticipated in Section 4.2.3, this means that the approximation does not affect the
latency nor the operating frequency of the device. Therefore, we can conclude that the maximum
frequency of operation depends entirely on the target technology. To compute the maximum oper-
ating frequency for our hardware designs, we performed a preliminary FPGA and ASIC synthesis,
varying NABs and IACs, while targeting a Xilinx Zynq-7020 FPGA and a 65 nm Fin Field-Effect

Transistor (FinFET) technology. Preliminary synthesis confirmed our aforementioned observa-
tion: Approximation does not impact on the operating frequency, which depend only on the target
technology. Synthesis tools reported a maximum operating frequency in the 250 MHz and 770 MHz
range for FPGA and ASIC, respectively.

5.2 Reward Fitness Function Evaluation

As mentioned in Section 4.2.3, the reward fitness-function described in Equation (14) performs an
estimation of the approximate designs gains. As the main advantage, such an approach enables an
immediate gain estimation, without the need to resort to highly time-consuming circuit syntheses.
This paves the way to a much wider exploration, thus to a more thorough DSE.

Despite such an advantage, it is not trivial to reveal the correlation between transistor reduc-
tion and FPGA resource savings. To validate Equation (14) as suitable gain estimator for FPGA,
we conducted two preliminary experiments: (i) we synthesized several configurations of approxi-
mate adder by varying the IAC to be used and NABs to appreciate programmable resources over-
head; (ii) we further synthesized several approximate configurations of DCT hardware accelerators
on both a Xilinx Zynq-7020 FPGA and 65 nm FinFET [22] technologies. In these experiments, we
did not measure the accuracy, since we are only interested in resource savings.

As reported in Figure 6, there is an appreciable overhead reduction, in terms of occupied Look-

Up Tables (LUTs), for any adder using IAC as NABs increase. Indeed, Boolean minimization
process, performed during synthesis, gets more possibilities to reduce the size of circuits in terms
of literals, fan-in, and number of LUTs, since truth tables of IACs are designed to simplify Boolean
expressions [3].

Furthermore, we used different DCT algorithm hardware accelerators from the literature
(BAS08 [9], BAS09 [10], BAS11 [8], BC12 [7], CB11 [14], PEA12 [29], and PEA14 [28]). For each
accelerator, we gradually increased the NABs to observe the corresponding hardware resources
trend.

Figures 7 and 8 report the amount of LUTs and a comparison between reward estimation given
by Equation (14) and the actual reward on FPGA, respectively, for each of the considered DCT

ACM Journal on Emerging Technologies in Computing Systems, Vol. 18, No. 3, Article 50. Pub. date: January 2022.

50:14 M. Barbareschi et al.

Fig. 6. Area requirements of 16 bits adders on FPGA, varying the NABs.

Fig. 7. Area requirements of DCT algorithms on FPGA, varying the NABs.

algorithms. As for the former, an appreciable resource overhead reduction is observable; as for
the latter, the actual reward trend is sufficiently close to the predicted one. As one can notice, the
predicted reward from Equation (14) has the same slope as actual reward trend. Furthermore, the
predicted reward is almost a lower bound for the actual reward, which is significantly relevant to
achieve a fair DSE.

ACM Journal on Emerging Technologies in Computing Systems, Vol. 18, No. 3, Article 50. Pub. date: January 2022.

A Genetic-Algorithm-Based Approach to the Design of DCT Hardware Accelerators 50:15

Fig. 8. Expected vs. actual reward for DCT algorithms on FPGA, varying the NABs.

Finally, we measured the Mean Absolute Percentage Error (MAPE) between the reward val-
ues predicted by Equation (14) and the actual ones from the syntheses, for both FPGA and ASIC.
The measured MAPE ranges between [0.33%, 0.65%] and [0.82%, 2.44%], respectively, for ASIC

and for FPGA. Such low values of MAPE reveal that Equation (14) is an accurate estimator for the
involved reward. Therefore, we concluded that Equation (14) is a suitable estimation to forecast
approximation gains.

5.3 Experimental Setup

In this section, we describe the experimental setup that we used to evaluate our approach. We
considered 7 different DCT algorithms and 10 types of IACs. As for the DCT algorithms, we
considered BAS08 [9], BAS09 [10], BAS11 [8], BC12 [7], CB11 [14], PEA12 [29], and PEA14 [28].
As for the IACs families, we considered AMA [21], AXA [42], and InXA [2]. The considered DCT

algorithms and approximate adders are the same considered by the authors of Reference [3].
Figure 9 sketches our workflow as a whole: To speed up the simulation process, we modeled

each of the above-mentioned multiplier-less DCT algorithms by using C/C++ implementations
straightly derived from Equations (8) and (10). Starting from such implementations, the genera-
tion of approximate variants is performed using the Clang-Chimera tool, which is a Clang/LLVM-
based C/C++ source-to-source mutation engine part of the IDEA framework [5, 6]. For each DCT

algorithm, the Clang-Chimera tool produces mutated sources that allow configuring, for each of
the sums, both the NABs and type of adder cell to use (i.e., either FAC or IAC). Furthermore, as
mentioned in Section 4.2, we modeled the DSE as a MOP. The MOP resolution is performed by
using the ParadisEO framework, a template-based evolutionary computation library [23]. To per-
form the hardware synthesis, non-dominated solutions from the DSE are employed to configure
the VHDL implementation discussed in Section 5.1. Finally, we measure actual gains.

To find a suitable MOEA configuration, we conducted several DSE campaigns with differ-
ent MOEA parameters. As a result, we deduced two things: (i) to obtain a populous frontier and
avoid local sub-optimum, we need to increase the initial population size as much as possible; (ii) to
avoid long-run exploration around local sub-optimum, mutations have to take place frequently.
Hence, we set our MOEA parameters as follows: initial population equals to 2,000 individuals,

ACM Journal on Emerging Technologies in Computing Systems, Vol. 18, No. 3, Article 50. Pub. date: January 2022.

50:16 M. Barbareschi et al.

Fig. 9. Actual workflow of our approach.

mutation and crossover probabilities set to 0.7 and 0.9, respectively. We did not set any maximum
error threshold.

Details on the fitness-functions employed for the DSE have been provided in Section 4.2.2 and
Section 4.2.3. As mentioned in Section 4.2.2, we resort to the whole JPEG compression, performed
on a representative dataset, to estimate the error. The considered dataset [1] consists of 44 dif-
ferent images, covering a wide set of common features, including among others a flat gray scale,
foreground subject with a messy background, and high contrast images.

5.4 Experimental Result

In this section, we report experimental results. First, we discuss the DSE results. Second, we dis-
cuss both silicon die area and power consumption reductions we achieved for designs resulting
from DSE, synthesized on both FPGA and ASIC.

5.4.1 DSE Results. Figure 10 reports the Pareto front provided by the MOEA for all the con-
sidered algorithms. The reference is, for each algorithm, its non-approximate implementation, de-
picted as a gold star. It is important to bear in mind that such algorithms are non-exact DCT
versions (see Section 4) and that the JPEG implemented with a non-exact DCT algorithm produces
lower-quality images compared to its exact version. For this reason, the reported non-approximate
solutions exhibit already some error. Their reward value is zero, since they do not use any IACs, so
they do not achieve any approximation gain according to Equation (14). As envisioned, the graphs
highlight increasing expected rewards as the error increases.

Concerning the exploration time, the DSE has been conducted on a host PC equipped with 16
GB of RAM and an Intel i7-3770 CPU running at 3.9 GHz. On that hardware platform, the DSE for
each algorithm took about 20 hours to complete. Therefore, thanks to the proposed fitness-function

ACM Journal on Emerging Technologies in Computing Systems, Vol. 18, No. 3, Article 50. Pub. date: January 2022.

A Genetic-Algorithm-Based Approach to the Design of DCT Hardware Accelerators 50:17

Fig. 10. Pareto-front estimation provided by the MOEA.

(Equation (14)), we only needed few days to complete the exploration for all the algorithms. Indeed,
by simply evaluating the proposed fitness-function, we avoided performing a circuit synthesis to
compute the reward. In fact, on the same hardware platform, the ASIC synthesis tool requires, on
average, 22 minutes to accomplish a single synthesis, while the FPGA tool needs 30 minutes (17
for synthesis and 13 for technology mapping), on average. Considering that the MOEA configu-
rations had a population of 2,000 individuals (i.e., 4,000 circuit variants to synthesize at each itera-
tion), performing the first of the seven iterations alone would have required 22 × 4,000 = 88,000
minutes—i.e., about 60 days—for ASIC technology.

It is worth noting that exhaustive DSE is undoubtedly unfeasible, even in the case evaluating
a single solution requires negligible time, since the size of solution spaces ranges between 2.66 ×
1049 ≈ 2164 and 1.081 × 1080 ≈ 2265.

After the DSE, to correctly evaluate the final gains, we synthesized the obtained approximate
configurations to both ASIC and FPGA technologies. Over all the algorithms, the total number
of obtained non-dominated approximate configurations to synthesize was 164, i.e., ≈ 24 per each
algorithm, on average. For the reader’s convenience, in the following figures, we plotted the exper-
imental result data along with the corresponding first-order interpolation to highlight the trend.

5.4.2 ASIC Synthesis. We synthesized all the obtained non-dominated approximate configu-
rations to ASIC by using the 65 nm FinFET [22] technology and the Cadence Genus Synthesis

Solution tool. We resorted to the synthesis reports for the silicon die area of the approximate con-
figurations. In Figure 11, we report the result. Concerning the power consumption, to determine
whether the synthesis power report provides a satisfying accuracy, we simulated the whole work-
load for two algorithms (BAS08 and BAS09) and collected the resulting power consumption. As a
result, we realized that the difference between the power consumption resulted from the workload
simulation and that estimated by the synthesis tool only differed by 5%, on average. We considered
the synthesis report accuracy sufficient, thus, in Figure 12, we show the power results from the
synthesis report. Kindly note that the scale on the left axis (static power) is different from the scale
on the right axis (dynamic power).

Power savings are achieved due to both the reduced area and the lower switching activity
that IACs exhibit w.r.t. FACs, as also reported in Reference [3].

ACM Journal on Emerging Technologies in Computing Systems, Vol. 18, No. 3, Article 50. Pub. date: January 2022.

50:18 M. Barbareschi et al.

Fig. 11. ASIC silicon die area (μm2).

Fig. 12. Power consumption estimation for ASIC (nW).

It is worth highlighting that the trends shown in Figures 11 and 12 are perfectly in line with the
trend predicted by our approach (see Figure 10). Indeed, higher reward in Figure 10 corresponds
to lower area/power in Figures 11 and 12.

For the reader’s convenience, Table 3 reports a summary of the minimum and maximum
area/power savings we achieved during the experimental campaign while targeting ASIC.

5.4.3 FPGA Synthesis. We synthesized all the obtained non-dominated approximate configura-
tions to a Xilinx Zynq-7020 MPSoC. To get a fair estimation of hardware requirements, we used
only its embedded FPGA and inhibited Digital Signal Processors (DSPs) usage.

Figure 13 reports synthesis result in terms of number of LUTs for all the considered algorithms.
As expected, approximate solutions require less resources than the precise implementation, as
highlighted by the decreasing general trend.

ACM Journal on Emerging Technologies in Computing Systems, Vol. 18, No. 3, Article 50. Pub. date: January 2022.

A Genetic-Algorithm-Based Approach to the Design of DCT Hardware Accelerators 50:19

Table 3. Minimum and Maximum Savings while

Targeting ASIC

Algorithm
Area Savings (%) Power Savings (%)

min max min max

BAS08 9 25 5 20
BAS09 5 15 5 15
BAS11 5 12 9 13
BC12 6 27 6 25
CB11 5 17 3 10

PEA12 7 17 5 15
PEA14 5 23 4 18

Fig. 13. FPGA resource requirements.

To correctly evaluate energy savings, we performed a post-synthesis timing simulation, using
the Dynamic Power Analysis tool provided by the Xilinx Vivado. In this case, since the synthe-
sis report has a very low confidence level for power consumption estimation, we resorted to a
workload simulation for all the solutions the DSE provided, for all the algorithms. In this way, we
achieved a high confidence level power estimation.

Figure 14 shows static and dynamic power consumption for all the algorithms.
The static power of the FPGA is largely caused by the fabric of the device and does not directly

depend on used resources, while dynamic one is directly linked to the user design, due to the
input data pattern and the design internal activity. Being that our hardware implementations of
approximate DCT are characterized by low overhead, i.e., device resources usage falls between
6% and 13%, it is necessary to split power consumption in static and dynamic, since the former
turned out to be about an order of magnitude greater than the latter one for the target FPGA

device.
Also in this case, power savings are achieved thanks to both the reduced total area and the

logical structure of IACs: FPGA LUTs implementing IACs have a lower switching activity than
those implementing FACs, as reported in Reference [3].

ACM Journal on Emerging Technologies in Computing Systems, Vol. 18, No. 3, Article 50. Pub. date: January 2022.

50:20 M. Barbareschi et al.

Fig. 14. Power consumption estimation for FPGA (nW).

Table 4. Minimum and Maximum Savings for FPGA

Synthesized Approximate Configurations

Algorithm
LUTs Savings (%)

Dynamic

Power Savings (%)

min max min max

BAS08 27.5 48.2 0.1 3.4
BAS09 32.6 42.5 0.3 1.8
BAS11 30.6 40.4 0 2.5
BC12 31.1 50.8 0 5.2
CB11 30.9 42.7 0.5 2.6

PEA12 31.3 42.7 0.7 4.4
PEA14 29.2 44.5 0.1 2.8

As in the ASIC case, also for FPGA the trends shown in Figures 13 and 14 are perfectly in
line with the trend predicted by our approach (see Figure 10). Indeed, higher reward in Figure 10
corresponds to lower area in Figures 13.

As done for ASIC, we report a summary of the minimum and maximum area/power savings we
achieved during the experimental campaign while targeting FPGA in Table 4.

5.4.4 Visual Test. Since JPEG belongs to image processing domain, we also provide a visual
test: Figure 15 shows, from left to right, the standard JPEG-compressed image of Lena and Baboon,
the same images compressed using the exact version of the BC12 algorithm [7]—which exhibit a
DSSIM of 0.10, and requires 125,473.92 μm2 and 5,691,946 μW when implemented on ASIC, or
5,902 LUTs and 107,933,980 μW while targeting FPGA—and, finally, the ones compressed with its
approximate variant having 0.33 as DSSIM value and 0.22 of reward, which correspond to 8,362.64
μm2 and 352.711μW saved for ASIC and 1,846 LUTs and 94, 506.744μW saved for FPGA. As the
reader can easily figure out, the quality differences are barely perceivable.

5.5 Comparison with Previous Work

In this subsection, we compare the results obtained with our approach with those obtained in the
work in Reference [3]. Authors of Reference [3] estimated gainsG through the following equations:

ACM Journal on Emerging Technologies in Computing Systems, Vol. 18, No. 3, Article 50. Pub. date: January 2022.

A Genetic-Algorithm-Based Approach to the Design of DCT Hardware Accelerators 50:21

Fig. 15. Visual test.

Table 5. Energy Consumed by a Single Adder Cell from Reference [3]

Cell FullAdd AMA1 AMA2 AMA3 AMA4 AXA InXA1 InXA2 InXA3

Energy(fJ)
Avg. 0.9267 0.513 0.6631 0.6649 0.478 0.4042 0.1535 0.0563 0.3409
Max. 2.3668 0.9794 0.7203 0.7116 0.6271 0.8924 0.2096 0.1291 0.4211

G =
Vi −Ve

Ve
, (15)

Vi = Pi · nab + (N − nab) · Pe , (16)

whereVi andVe represent the average energy required to perform an addition, by an inexact N-bits
adder and by an exact N-bits adder, respectively, Pi and Pe represent the average energy required
by a single IAC and by a full-adder cell, respectively. Values of Pi and Pe used in Reference [3]
were measured by using the 45 nm Complementary Metal-Oxide Semiconductor (CMOS)
technology and are reported in Table 5. Such equations have the same goal as Equation (14), i.e.,
predicting the gains achieved, thanks to the approximation. While Equations (15) and (16) take
into account the energy consumption parameters of the individual adder cell, Equation (14) takes
into account only the number of transistors.

In Reference [3], authors performed a manual exploration. In particular, first they tried differ-
ent IACs and decided to always resort to InXA2 in their experiments, based on its energy delay
product. Then, they tried different NAB values for the InXA2 adder and finally set it to 4 for all the

ACM Journal on Emerging Technologies in Computing Systems, Vol. 18, No. 3, Article 50. Pub. date: January 2022.

50:22 M. Barbareschi et al.

Fig. 16. Comparison with results from Reference [3].

experiments (i.e., for all the DCT algorithms). Besides, they used the PSNR metric to measure the
JPEG error entailed by the approximate DCT variants. Conversely, we adopted the DSSIM index
as error metric—which is more suitable for image processing—and we let the MOEA decide which
inaccurate cell to use and how many bits to approximate (i.e., the NAB parameter) for each of the
sums. A minor difference concerns the implementation of the adders: While 32-bit adders were
considered in Reference [3], we considered 14-bit adders.

To effectively compare the two studies, it is necessary to place them under the same conditions.
Thus, we executed the JPEG algorithm on the same four images considered in Reference [3]—i.e.,
Lena, Cameraman, Boat, and Pepper—by using the approximate DCT variants obtained with our
approach and computed the PSNR metric. Hence, we computed energy savings according to Equa-
tion (15), considering 32-bit adders. Figure 16 shows the obtained results. Concerning both energy
consumption and PSNR, our approach allowed a significant improvement for all the considered
algorithms compared to the approach adopted in Reference [3]. In detail, our approach allowed
an absolute improvement spanning from 15.69% to 20.15% (average 18.38%) concerning the energy
gain and from 5.24 dB to 14.88 dB (average 7.91 dB) concerning the PSNR. Therefore, with our ap-
proach, we were able to produce higher-quality images, i.e., with less error, while consuming less
energy. This is the result of the thorough DSE made possible by the proposed approach. Indeed, us-
ing an MOEA allows performing a multi-objective optimization more efficiently and automatically.
Moreover, not needing to synthesize each approximate variant allows exploring more extensively
the design space in a reduced time.

6 CONCLUSION AND FUTURE WORK

In this article, we presented a novel generic and fully automatic approach for the approximation
of DCT hardware accelerators. It enables automatic approximate DCT variant generation and
automatic space exploration by using the GA approach.

We analyzed and modeled several algorithms from the literature to compute a fast and
lightweight version of the DCT. For each algorithm, we applied approximation by substituting
full-precise adders with several approximate ones from the literature having configurable approx-
imation degree. In this way, we can obtain different approximate configurations of the algorithms,
depending on the chosen approximate adders and their approximation degree. Approximate

ACM Journal on Emerging Technologies in Computing Systems, Vol. 18, No. 3, Article 50. Pub. date: January 2022.

A Genetic-Algorithm-Based Approach to the Design of DCT Hardware Accelerators 50:23

adders introduce inaccuracy in the computation, but also achieve gains in terms of area and power
consumption. For each algorithm, we performed a DSE to find the non-dominated approximate
designs in terms of tradeoff between inaccuracy and gains. We modeled the DSE as a MOP and
we used a GA to solve it.

After the DSE, we synthesized the obtained designs by targeting both FPGA and ASIC. To do
so, we implemented all the algorithms as re-configurable hardware designs. Finally, we evaluated
the actual gains in terms of area and power consumption. Experimental results clearly showed
that, with the proposed approach, it is possible to perform a meaningful DSE to find the best
tradeoffs between output accuracy and resource gains in a reasonable time. Finally, the comparison
performed with previous work clearly showed the advantages of the proposed approach.

ACKNOWLEDGMENT

The authors would like to thank Andrea Aletto for his technical support during experimental
campaigns.

REFERENCES

[1] 1977. SIPI Image Database. Retrieved from https://sipi.usc.edu/database/.

[2] Haider A. F. Almurib, T. Nandha Kumar, and Fabrizio Lombardi. 2016. Inexact designs for approximate low power

addition by cell replacement. In Design, Automation Test in Europe Conference Exhibition (DATE). 660–665.

[3] Haider A. F. Almurib, Thulasiraman Nandha Kumar, and Fabrizio Lombardi. 2018. Approximate DCT image compres-

sion using inexact computing. IEEE Trans. Comput. 67, 2 (Feb. 2018), 149–159. DOI:https://doi.org/10.1109/TC.2017.

2731770

[4] Yukihiro Arai, Takeshi Agui, and Masayuki Nakajima. 1988. A fast DCT-SQ scheme for images. IEICE Trans. (1976–

1990) 71, 11 (1988), 1095–1097.

[5] Mario Barbareschi, Federico Iannucci, and Antonino Mazzeo. 2016. Automatic design space exploration of approxi-

mate algorithms for big data applications. In 30th International Conference on Advanced Information Networking and

Applications Workshops (WAINA). 40–45. DOI:https://doi.org/10.1109/WAINA.2016.172

[6] Mario Barbareschi, Federico Iannucci, and Antonino Mazzeo. 2016. An extendible design exploration tool for support-

ing approximate computing techniques. In International Conference on Design and Technology of Integrated Systems in

Nanoscale Era (DTIS). 1–6. DOI:https://doi.org/10.1109/DTIS.2016.7483888

[7] F. M. Bayer and R. J. Cintra. 2012. DCT-like transform for image compression requires 14 additions only. Electron.

Lett. 48, 15 (2012), 919. DOI:https://doi.org/10.1049/el.2012.1148

[8] Saad Bouguezel, M. Omair Ahmad, and M. N. S. Swamy. 2011. A low-complexity parametric transform for image

compression. In IEEE International Symposium of Circuits and Systems (ISCAS). 2145–2148. DOI:https://doi.org/10.

1109/ISCAS.2011.5938023

[9] Saad Bouguezel, M. Omair Ahmad, and M. N. S. Swamy. 2008. Low-complexity 8×8 transform for image compression.

Electron. Lett. 44, 21 (2008), 1249–1250.

[10] Saad Bouguezel, M. Omair Ahmad, and M. N. S. Swamy. 2009. A Fast 8×8 Transform for Image Compression. In

International Conference on Microelectronics. 74–77. DOI:https://doi.org/10.1109/ICM.2009.5418584

[11] J. Castro-Godínez, H. Barrantes-García, M. Shafique, and J. Henkel. 2021. AxLS: A framework for approximate logic

synthesis based on netlist transformations. IEEE Trans. Circ. Syst. II: Expr. Briefs (2021), 1–1. DOI:https://doi.org/10.

1109/TCSII.2021.3068757

[12] Vinay K. Chippa, Srimat T. Chakradhar, Kaushik Roy, and Anand Raghunathan. 2013. Analysis and characterization

of inherent application resilience for approximate computing. In 50th Annual Design Automation Conference. ACM

Press, 1. DOI:https://doi.org/10.1145/2463209.2488873

[13] V. K. Chippa, D. Mohapatra, K. Roy, S. T. Chakradhar, and A. Raghunathan. 2014. Scalable effort hardware design.

IEEE Trans. Very Large Scale Integ. (VLSI) Syst. 22, 9 (Sept. 2014), 2004–2016. DOI:https://doi.org/10.1109/TVLSI.2013.

2276759

[14] Renato J. Cintra and Fábio M. Bayer. 2011. A DCT approximation for image compression. IEEE Sig. Process. Lett. 18,

10 (Oct. 2011), 579–582. DOI:https://doi.org/10.1109/LSP.2011.2163394

[15] I. Das and J. E. Dennis. 1997. A closer look at drawbacks of minimizing weighted sums of objectives for Pareto set

generation in multicriteria optimization problems. Struct. Optim. 14, 1 (Aug. 1997), 63–69. DOI:https://doi.org/10.1007/

BF01197559

ACM Journal on Emerging Technologies in Computing Systems, Vol. 18, No. 3, Article 50. Pub. date: January 2022.

https://sipi.usc.edu/database/
https://doi.org/10.1109/TC.2017.2731770
https://doi.org/10.1109/WAINA.2016.172
https://doi.org/10.1109/DTIS.2016.7483888
https://doi.org/10.1049/el.2012.1148
https://doi.org/10.1109/ISCAS.2011.5938023
https://doi.org/10.1109/ICM.2009.5418584
https://doi.org/10.1109/TCSII.2021.3068757
https://doi.org/10.1145/2463209.2488873
https://doi.org/10.1109/TVLSI.2013.2276759
https://doi.org/10.1109/LSP.2011.2163394
https://doi.org/10.1007/BF01197559

50:24 M. Barbareschi et al.

[16] K. Deb, A. Pratap, S. Agarwal, and T. Meyarivan. 2002. A fast and elitist multiobjective genetic algorithm: NSGA-II.

IEEE Trans. Evolut. Comput. 6, 2 (Apr. 2002), 182–197. DOI:https://doi.org/10.1109/4235.996017

[17] Kalyanmoy Deb, Karthik Sindhya, and Tatsuya Okabe. 2007. Self-adaptive simulated binary crossover for real-

parameter optimization. In 9th Annual Conference on genetic and Evolutionary Computation. ACM Press, 1187.

DOI:https://doi.org/10.1145/1276958.1277190

[18] Marco Dorigo, Mauro Birattari, and Thomas Stutzle. 2006. Ant colony optimization. IEEE Comput. Intell. Mag. 1, 4

(Nov. 2006), 28–39. DOI:https://doi.org/10.1109/MCI.2006.329691

[19] F. Fang, T. Chen, and R. A. Rutenbar. 2002. Floating-point bit-width optimization for low-power signal processing

applications. In IEEE International Conference on Acoustics, Speech, and Signal Processing, Vol. 3. III–3208–III–3211.

DOI:https://doi.org/10.1109/ICASSP.2002.5745332

[20] E. Feig and S. Winograd. 1992. On the multiplicative complexity of discrete cosine transforms. IEEE Trans. Inf. Theor.

38, 4 (July 1992), 1387–1391. DOI:https://doi.org/10.1109/18.144722

[21] Vaibhav Gupta, Debabrata Mohapatra, Anand Raghunathan, and Kaushik Roy. 2013. Low-power digital signal

processing using approximate adders. IEEE Trans. Comput.-aid. Des. Integ. Circ. Syst. 32, 1 (Jan. 2013), 124–137.

DOI:https://doi.org/10.1109/TCAD.2012.2217962

[22] Xuejue Huang, Wen-Chin Lee, Charles Kuo, Digh Hisamoto, Jakub Kedzierski, Erik Anderson, Hideki Takeuchi,

Yang-Kyu Choi, Kazuya Asano, Vivek Subramanian, Tsu-Jae King, Jeffrey Bokor, and Chenming Hu. 1999. Sub 50-

Nm FinFET: PMOS.

[23] Arnaud Liefooghe, Matthieu Basseur, Laetitia Jourdan, and El-Ghazali Talbi. 2007. ParadisEO-MOEO: A frame-

work for evolutionary multi-objective optimization. In Evolutionary multi-criterion Optimization, Shigeru Obayashi,

Kalyanmoy Deb, Carlo Poloni, Tomoyuki Hiroyasu, and Tadahiko Murata (Eds.). Vol. 4403. Springer Berlin, 386–400.

DOI:https://doi.org/10.1007/978-3-540-70928-2_31

[24] C. Loeffler, A. Ligtenberg, and G. S. Moschytz. 1989. Practical fast 1-D DCT algorithms with 11 multiplications. In In-

ternational Conference on Acoustics, Speech, and Signal Processing. 988–991. DOI:https://doi.org/10.1109/ICASSP.1989.

266596

[25] Sparsh Mittal. 2016. A survey of techniques for approximate computing. Comput. Surv. 48, 4 (May 2016), 1–33.

DOI:https://doi.org/10.1145/2893356

[26] V. Mrazek, M. A. Hanif, Z. Vasicek, L. Sekanina, and M. Shafique. 2019. autoAx: An automatic design space exploration

and circuit building methodology utilizing libraries of approximate components. In 56th ACM/IEEE Design Automation

Conference (DAC). 1–6.

[27] K. Nepal, Y. Li, R. I. Bahar, and S. Reda. 2014. ABACUS: A technique for automated behavioral synthesis of approximate

computing circuits. In dD, Automation Test in Europe Conference Exhibition (DATE). 1–6. DOI:https://doi.org/10.7873/

DATE.2014.374

[28] Uma Sadhvi Potluri, Arjuna Madanayake, Renato J. Cintra, Fábio M. Bayer, Sunera Kulasekera, and Amila Edirisuriya.

2014. Improved 8-Point approximate DCT for image and video compression requiring only 14 additions. IEEE Trans.

Circ. Syst. I: Reg. Pap. 61, 6 (June 2014), 1727–1740. DOI:https://doi.org/10.1109/TCSI.2013.2295022

[29] U. S. Potluri, A. Madanayake, R. J. Cintra, F. M. Bayer, and N. Rajapaksha. 2012. Multiplier-free DCT approximations

for RF multi-beam digital aperture-array space imaging and directional sensing. Meas. Sci. Technol. 23, 11 (Nov. 2012),

114003. DOI:https://doi.org/10.1088/0957-0233/23/11/114003

[30] Arnab Raha, Swagath Venkataramani, Vijay Raghunathan, and Anand Raghunathan. 2015. Quality configurable

reduce-and-rank for energy efficient approximate computing. In Design, Automation Test in Europe Conference Ex-

hibition (DATE). 665–670. DOI:https://doi.org/10.7873/DATE.2015.0569

[31] Abbas Rahimi, Amirali Ghofrani, Kwang-Ting Cheng, Luca Benini, and Rajesh K. Gupta. 2015. Approximate associa-

tive memristive memory for energy-efficient GPUs. In Design, Automation Test in Europe Conference Exhibition (DATE).

1497–1502. DOI:https://doi.org/10.7873/DATE.2015.0579

[32] Bhawna Rani, R. K. Bansal, and Savina Bansal. 2009. Comparison of JPEG and SPIHT image compression algorithms

using objective quality measures. In 2009 International Multimedia, Signal Processing and Communication Technologies.

90–93. DOI:https://doi.org/10.1109/MSPCT.2009.5164181

[33] A. Ranjan, A. Raha, S. Venkataramani, K. Roy, and A. Raghunathan. 2014. ASLAN: Synthesis of approximate sequential

circuits. In Design, Automation Test in Europe Conference Exhibition (DATE). 1–6. DOI:https://doi.org/10.7873/DATE.

2014.377

[34] Mehrzad Samadi, Janghaeng Lee, D. Anoushe Jamshidi, Amir Hormati, and Scott Mahlke. 2013. SAGE: Self-tuning

approximation for graphics engines. In 46th annual IEEE/ACM International Symposium on Microarchitecture. ACM

Press, 13–24. DOI:https://doi.org/10.1145/2540708.2540711

[35] Lukas Sekanina, Zdenek Vasicek, and Vojtech Mrazek. 2019. Automated search-based functional approximation for

digital circuits. In Approximate Circuits, Sherief Reda and Muhammad Shafique (Eds.). Springer International Publish-

ing, Cham, 175–203. DOI:https://doi.org/10.1007/978-3-319-99322-5_9

ACM Journal on Emerging Technologies in Computing Systems, Vol. 18, No. 3, Article 50. Pub. date: January 2022.

https://doi.org/10.1109/4235.996017
https://doi.org/10.1145/1276958.1277190
https://doi.org/10.1109/MCI.2006.329691
https://doi.org/10.1109/ICASSP.2002.5745332
https://doi.org/10.1109/18.144722
https://doi.org/10.1109/TCAD.2012.2217962
https://doi.org/10.1007/978-3-540-70928-2_31
https://doi.org/10.1109/ICASSP.1989.266596
https://doi.org/10.1145/2893356
https://doi.org/10.7873/DATE.2014.374
https://doi.org/10.1109/TCSI.2013.2295022
https://doi.org/10.1088/0957-0233/23/11/114003
https://doi.org/10.7873/DATE.2015.0569
https://doi.org/10.7873/DATE.2015.0579
https://doi.org/10.1109/MSPCT.2009.5164181
https://doi.org/10.7873/DATE.2014.377
https://doi.org/10.1145/2540708.2540711
https://doi.org/10.1007/978-3-319-99322-5_9

A Genetic-Algorithm-Based Approach to the Design of DCT Hardware Accelerators 50:25

[36] Stelios Sidiroglou-Douskos, Sasa Misailovic, Henry Hoffmann, and Martin Rinard. 2011. Managing performance vs.

Accuracy tradeoffs with loop perforation. In 19th ACM SIGSOFT Symposium and the 13th European Conference on

Foundations of Software Engineering. ACM Press, 124. DOI:https://doi.org/10.1145/2025113.2025133

[37] M. Traiola, A. Savino, M. Barbareschi, S. D. Carlo, and A. Bosio. 2018. Predicting the impact of functional approxi-

mation: From component- to application-level. In IEEE 24th International Symposium on On-line Testing and Robust

System Design (IOLTS). 61–64. DOI:https://doi.org/10.1109/IOLTS.2018.8474072

[38] Marcello Traiola, Alessandro Savino, and Stefano Di Carlo. 2019. Probabilistic estimation of the application-level

impact of precision scaling in approximate computing applications. Microelectron. Reliab. 102 (Nov. 2019), 113309.

DOI:https://doi.org/10.1016/j.microrel.2019.06.002

[39] Swagath Venkataramani, Srimat T. Chakradhar, Kaushik Roy, and Anand Raghunathan. 2015. Approximate com-

puting and the quest for computing efficiency. In 52nd ACM/EDAC/IEEE Design Automation Conference (DAC). 1–6.

DOI:https://doi.org/10.1145/2744769.2744904

[40] C. Wang, L. Gong, Q. Yu, X. Li, Y. Xie, and X. Zhou. 2017. DLAU: A scalable deep learning accelerator unit on FPGA.

IEEE Trans. Comput.-aid. Des. Integ. Circ. Syst. 36, 3 (Mar. 2017), 513–517. DOI:https://doi.org/10.1109/TCAD.2016.

2587683

[41] Z. Wang, A. C. Bovik, H. R. Sheikh, and E. P. Simoncelli. 2004. Image quality assessment: From error visibility to

structural similarity. IEEE Trans. Image Process. 13, 4 (Apr. 2004), 600–612. DOI:https://doi.org/10.1109/TIP.2003.819861

[42] Zhixi Yang, Ajaypat Jain, Jinghang Liang, Jie Han, and Fabrizio Lombardi. 2013. Approximate XOR/XNOR-Based

adders for inexact computing. In 13th IEEE International Conference on Nanotechnology (IEEE-NANO’13). 690–693.

DOI:https://doi.org/10.1109/NANO.2013.6720793

[43] Georgios Zervakis, Sotirios Xydis, Dimitrios Soudris, and Kiamal Pekmestzi. 2019. Multi-level approximate accelerator

synthesis under voltage island constraints. IEEE Trans. Circ. Syst. II: Expr. Briefs 66, 4 (Apr. 2019), 607–611. DOI:https:

//doi.org/10.1109/TCSII.2018.2869025

Received April 2021; accepted November 2021

ACM Journal on Emerging Technologies in Computing Systems, Vol. 18, No. 3, Article 50. Pub. date: January 2022.

https://doi.org/10.1145/2025113.2025133
https://doi.org/10.1109/IOLTS.2018.8474072
https://doi.org/10.1016/j.microrel.2019.06.002
https://doi.org/10.1145/2744769.2744904
https://doi.org/10.1109/TCAD.2016.2587683
https://doi.org/10.1109/TIP.2003.819861
https://doi.org/10.1109/NANO.2013.6720793
https://doi.org/10.1109/TCSII.2018.2869025

