
University of Windsor University of Windsor

Scholarship at UWindsor Scholarship at UWindsor

Electronic Theses and Dissertations Theses, Dissertations, and Major Papers

2009

Implementation and Evaluation of an NoC Architecture for FPGAs Implementation and Evaluation of an NoC Architecture for FPGAs

Thuan Le
University of Windsor

Follow this and additional works at: https://scholar.uwindsor.ca/etd

Recommended Citation Recommended Citation
Le, Thuan, "Implementation and Evaluation of an NoC Architecture for FPGAs" (2009). Electronic Theses
and Dissertations. 8077.
https://scholar.uwindsor.ca/etd/8077

This online database contains the full-text of PhD dissertations and Masters’ theses of University of Windsor
students from 1954 forward. These documents are made available for personal study and research purposes only,
in accordance with the Canadian Copyright Act and the Creative Commons license—CC BY-NC-ND (Attribution,
Non-Commercial, No Derivative Works). Under this license, works must always be attributed to the copyright holder
(original author), cannot be used for any commercial purposes, and may not be altered. Any other use would
require the permission of the copyright holder. Students may inquire about withdrawing their dissertation and/or
thesis from this database. For additional inquiries, please contact the repository administrator via email
(scholarship@uwindsor.ca) or by telephone at 519-253-3000ext. 3208.

https://scholar.uwindsor.ca/
https://scholar.uwindsor.ca/etd
https://scholar.uwindsor.ca/theses-dissertations-major-papers
https://scholar.uwindsor.ca/etd?utm_source=scholar.uwindsor.ca%2Fetd%2F8077&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholar.uwindsor.ca/etd/8077?utm_source=scholar.uwindsor.ca%2Fetd%2F8077&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:scholarship@uwindsor.ca

Implementation and Evaluation of an
NoC Architecture for FPGAs

By

Thuan Le

A Thesis
Submitted to the Faculty of Graduate Studies
through Electrical and Computer Engineering

in Partial Fulfillment of the Requirements for the
Degree of Master of Applied Science at the

University of Windsor

Windsor, Ontario, Canada
2009

1*1 Library and Archives
Canada

Published Heritage
Branch

395 Wellington Street
OttawaONK1A0N4
Canada

Bibliotheque et
Archives Canada

Direction du
Patrimoine de I'edition

395, rue Wellington
Ottawa ON K1A 0N4
Canada

Your We Votre inference
ISBN 978-0-494-82086-5
Our file Notre r6f6rence
ISBN 978-0-494-82086-5

NOTICE: AVIS:

The author has granted a non
exclusive license allowing Library and
Archives Canada to reproduce,
publish, archive, preserve, conserve,
communicate to the public by
telecommunication or on the Internet,
loan, distribute and sell theses
worldwide, for commercial or non
commercial purposes, in microform,
paper, electronic and/or any other
formats.

L'auteur a accorde une licence non exclusive
permettant a la Bibliotheque et Archives
Canada de reproduce, publier, archiver,
sauvegarder, conserver, transmettre au public
par telecommunication ou par I'Internet, preter,
distnbuer et vendre des theses partout dans le
monde, a des fins commerciales ou autres, sur
support microforme, papier, electronique et/ou
autres formats.

The author retains copyright
ownership and moral rights in this
thesis. Neither the thesis nor
substantial extracts from it may be
printed or otherwise reproduced
without the author's permission.

L'auteur conserve la propnete du droit d'auteur
et des droits moraux qui protege cette these Ni
la these ni des extraits substantiels de celle-ci
ne doivent etre imprimes ou autrement
reproduits sans son autorisation

In compliance with the Canadian
Privacy Act some supporting forms
may have been removed from this
thesis.

Conformement a la loi canadienne sur la
protection de la vie pnvee, quelques
formulaires secondaires ont ete enleves de
cette these.

While these forms may be included
in the document page count, their
removal does not represent any loss
of content from the thesis

Bien que ces formulaires aient inclus dans
la pagination, il n'y aura aucun contenu
manquant

l + l

Canada

© 2009 Thuan Le

All Rights Reserved. No Part of this document may be reproduced, stored or otherwise
retained in a retrieval system or transmitted in any form, on any medium by any means

without prior written permission of the author

Authors Declaration of Originality

I hereby certify that I am the sole author of this thesis and that no part of this thesis

has been published or submitted for publication.

I certify that, to the best of my knowledge, my thesis does not infringe upon

anyone's copyright nor violate any proprietary rights and that any ideas, techniques,

quotations, or any other material from the work of other people included in my thesis,

published or otherwise, are fully acknowledged in accordance with the standard referencing

practices. Furthermore, to the extent that I have included copyrighted material that

surpasses the bounds of fair dealing within the meaning of the Canada Copyright Act, I

certify that I have obtained a written permission from the copyright owner(s) to include

such material(s) in my thesis and have included copies of such copyright clearances to my

appendix.

I declare that this is a true copy of my thesis, including any final revisions, as

approved by my thesis committee and the Graduate Studies office, and that this thesis has

not been submitted for a higher degree to any other University or Institution.

IV

Abstract

The Networks-on-Chip (NoC) approach for designing Systems-on-Chip (SoC) is currently

emerging as an advanced concept for overcoming the scalability and efficiency problems of

traditional bus-based systems. A great deal of theoretical research has been done in this

area that provides good insight and shows promising results. There is a great need for

research in hardware implementation of NoC-based systems to determine the feasibility of

implementing various topologies and protocols, and also to accurately determine what

design tradeoffs are involved in NoC implementation. This thesis addresses the challenges

of implementing an NoC-based system on FPGAs for running real benchmark applications.

The NoC used a mesh topology and circuit-switched communication protocol. An

experimental framework was developed that allowed implementation of NoC-based system

from a high level specification, using the Celoxica Handel-C hardware description

language. Two test applications: charged couple device (CCD) and JPEG were developed

in Handel-C to be used as our benchmark applications. Both benchmarks are

computational expensive and require large quantities of data transfer that will test the NoC

system. Implementation results show that the NoC-based system gives superior area

utilization and speed performance compared to the bus-based system, running the same

benchmarks.

v

Acknowledgements

I would like to express my sincere gratitude to my supervisor, Dr. Mohammed A. S.

Khalid, where my research would not be possible without his advice and wisdom that

guided me over the course of this research. Dr. Khalid, who first offered an undergraduate

course in reconfigurable computing for embedded system had introduced me to this

exciting field. For this very reason, it had moth ated me to continue my academic career in

this field. My appreciation also goes out to my thesis committee members. Dr. K. Tepe and

Dr. A. Ngom, for their time to sit on my committee and for reviewing my thesis.

I want to thanks my parents, for their constant support, encouragement, and to

remind me every day to make time to eat. Thanks to my brothers (Steven and David) and

sisters (MyLai and Dianna) for all those time I pester around when my research feels

overwhelming.

Finally, I need to acknowledge my friends and fellow graduate students at the

University of Windsor. Dat, Gordon, Jason. Omesh, Geraldo, and David, thank you for

your friendship and for amusing me with your \ arious stories. Ngan, I always enjoyed our

conversation and how we continue to motivate each other as we pursuit our own graduate

study. Thanks to Omar, Marwan, Junsong and Aws for your company and making those

long days at the office more enjoyable. Lastly, thanks to the rest of my colleagues: to

Hongmei, Matt, Mike, Liton, Yasser. Lin Lin, Carl. Neil, Anthony. Ashkan and everyone

else who made this great milestone in my life more enjoyable.

VI

Table of Contents

Author's Declaration of Originality iv

Abstract v

Acknowledgements vi

List of Figures xi

List of Tables xiii

List of Abbreviations xiv

1 Introduction 1

1.1 Thesis Objectives -

1.2 Thesis Organization 3

2 Background and Previous Work 4

2.1 Overview of NoC 4

2.1.1 NoC Building Blocks 4

2.1.2 NoC Architecture 5

2.2 FPGA Technology 9

2.3 Soft-core Processors 12

2.3.1 Nios II Soft-core Processor 13

2.3.2 MicroBlaze II Soft-core Processor 13

2.4 Related Work 14

2.5 Summary 16

3 NoC Architecture 17

3.1 Topology 17

3.2 Protocol 19

3.2.1 Physical Layer 19

3.2.2 Data Link Layer 20

3.2.3 Network Layer 21

3.2.4 Transport Layer 21

3.3 Data Transactions 21

3.4 Quality of Service 22

3.5 Summary 23

4 The Proposed NoC Design 24

4.1 Router 24

4.1.1 Partial-Crossbar Design 26

4.1.2 Crossbar Configuration 29

4.2 Configuration Block 34

4.2.1 Primary latency 34

4.3 Network Adaptor 35

4.4 Links 35

4.5 Summary 36

5 Experimental Evaluation Framework 37

5.1 NoC Specification and Implementation Methodology 37

5.1.1 Communication Infrastructure 38

5.1.2 Communication Paradigm 39

5.1.3 Application Mapping 40

5.1.4 Celoxica Handel-C 40

5.2 Xilinx MicroBlaze Soft-Core Processor 41

5.2.1 On-Chip Peripheral Bus 42

5.2.2 Specifying a MicroBlaze-Based System Using Handel-C 42

vin

5.3 Charged-Couple Device Benchmark 43

5.3.1 Pure software system 45

5.3.2 Bus-based system 45

5.3.3 NoC-Based Implementation of a Microblaze System 47

5.4 JPEG Benchmark 48

5.4.1 Pure software system 48

5.4.2 Bus-based system 49

5.4.3 NoC system 49

5.5 Summary 50

6 Comparison of NoC-Based System and Bus-Based System 51

6.1 Processing Cycle 51

6.1.1 CCDBM Processing Cycle 51

6.1.2 JPEG Processing Cycle 54

6.2 Implementation Results 55

6.2.1 Area Results 55

6.2.2 Speed Results 59

6.3 Summary 59

7 Conclusions and Future Work 61

7.1 Summary of Research Contributions 62

7.2 Future Work 62

Appendix A 64

Simulating a real CCD 64

A.1 CCD Module in C 66

A.2 CCDPP |Module in C 67

A.3 UART Module in C 68

A.4 CODEC Module in C 69

A.5 CNTRL module in C 71

A.6 MAIN Module in C 72

References 73

IX

VITA AUCTORIS 78

x

List of Figures

Figure 2.1: Hardware Components of an NoC [4]

Figure 2.2: Shared-Medium Networks: a Traditional Bus-Based System.

Figure 2.3: Direct networks: (a) Mesh, (b) Torus, and (c) Hypercube

Figure 2.4: Indirect Networks (adapted from [1])

Figure 2.5: Schematic for a Generic FPGA Logic Element (LE) [14]

Figure 2.6: Schematic of a Lookup Table (LUT) [3]

Figure 2.7: Generic FPGA Routing Architecture

Figure 3.1: 2-Dimensional Mesh Topology

Figure 3.2: Port Interface

Figure 3.3: Data Transmission Handshake Protocol

Figure 4.1: Block diagram of a Router [9]

Figure 4.2: Cascading Intermediate Partial Crossbars

Figure 4.3: Partial Crossbar

Figure 4.4: Crossbar Interconnection

Figure 4.5: Routing South Port to Core Port

Figure 4.6: Configuration Control Word 30

Figure 4.7: Example of a Test Scenario

Figure 4.8: Crossbar Configuration Block 34

Figure 4.9: Block Diagram of Network Adaptor

Figure 5.1: Design Space for NoC Architectures [2] 38

Figure 5.2: Design Choices for Communication Paradigm [2]

XI

Figure 5.3: Microblaze Bus Configurations 41

Figure 5.4: Integration of MB and Handel-C Slaves with Slaves at the Top-le\ el 1

Figure 5.5: Internal of a CCD [26] 1

Figure 5.6: Flow-Diagram for CCD 1

Figure 5.7: Flow-Diagram of the Executable Model of the CCD [29] 1

Figure 5.8: Integration of MB and CCDBM Slaves Peripherals 46

Figure 5.9: Integration of MB and NoC 1

Figure 5.10: JPEG Encoding Sequence for a Block of 8 x 8 Pixels 1

Figure 5.11: Integration of MB and JPEG Slave Peripherals 1

Figure 5.12: NoC System for JPEG 1

Figure 6.1: Bus-Based Processing Cycle for CCDBM 1

Figure 6.2: NoC-Based Processing Cycle for CCDBM 1

Figure 6.3: Bus-Based Processing Cycle for JPEG 54

Figure 6.4: NOC-Based Processing Cycle for CCDBM 1

Figure 6.5: Area Comparison 58

xn

List of Tables

Table 4.1: Connections Assignment for Partial Crossbar 27

Table 4.2: Port Conversion Table 30

Table 4.3: Configuration Bits Value for Test Scenario 32

Table 4.4: Connection Assignment for Configuration Block 34

Table 6.1: Synthesis Results of Three Systems 56

Xlll

List of Abbreviations

Abbreviation Definition

ASIC
CAD
CB
CCD
CCDBM
CCN
CLB
CPU
CS
DOPB
DK
DLMB
DRM
DSP
FDCT
FIFO
FPGA
GUI
HC
I/O
IC
ILMB
IOB
IP
JHDL
JPEG
LE
LUT
MB
MIN
MSI

Application Specific Integrated Circuit
Computer Aided Design
Crossbar
Charged Couple Device
Charged Couple Device Benchmark
Central Coordination Node
Configurable Logic Block
Central Processing Unit
Circuit Switched
Data On-Chip Peripheral Bus
Design Kit
Data local Memory Bus
Digital Radio Mondiale
Digital Signal Processing
Forward Discrete Cosine Transform
First In First Out
Field Programmable Gate Array
Graphic User Interface
Handel-C
Input/Output
Integrated Circuit
Instruction Local Memory Bus
Input/Output Block
Intellectual Property
Java-based Hardware Description Language
Joint Photographic Experts Group
Logic Element
Lookup Table
MicroBlaze
Multistage Interconnection Network
Medium Scale Integration

xiv

MUX
NoC
OPB
PC
PCC
PS
PLD
QoS
RAM
RISC
Rx
SoC
SOPC
SSI
Tx
UART
VC
VHDL

Multiplexer
Network-on-Chip
On-chip Peripheral Bus
Personal Computer
Packet Connected Circuit
Packet Switched
Programmable Logic Device
Quality of Service
Random Access Memory
Reduced Instruction Set Computer
Receiver
System-on-Chip
System on a Programmable Chip
Small Scale Integration
Transmitter
Universal asynchronous Receiver/Transmitters
Virtual Circuit
Very High Speed Integrated Circuit Hardware Description Language

XV

Chapter 1

Introduction

The complexity of a system on silicon is comparable to other macro systems such as

space shuttle or skyscrapers, when measured in terms of the number of basic elements

intricately connected together, but at a micro level. As semiconductor technology evolves,

electronics industry continuously pushes the envelope for greater functional and

performance capabilities in new electronic systems. Thus, there is a continuing need for

new design methodologies and design space exploration.

With the continuation of technology paradigm shifts of integrated circuit (IC)

technology, complete embedded systems can be built onto a single chip. This paradigm

shift is known as System-on-Chip (SoC) paradigm. Since the introduction of SoC

concept, designers relied on a custom-designed ad-hoc mixture of buses and point-to-

point links as communication mechanisms. Design reuse of standard interface modules

is considered as a way to allow designers to keep pace with the technological

advancement of SoC. But as SoC complexity scales, it becomes more difficult, if not

impossible, to fully capture their functionality and still satisfy performance requirements.

A significant amount of research goes into the development of new on-chip

communication methods and there is a growing interest in Networks-on-Chip (NoC).

NoC approach is currently seen as a unifying concept for addressing two main challenges.

First, traditional bus-based communication mechanisms do not scale well with increasing

system complexity, thus performance will continue to deteriorate with increased

1

complexity. Second, design and verification times for complex systems continue to grow;

therefore, there is a great desire for efficiency in design and verification [1], [2].

The development of field programmable gate arrays (FPFAs) and other

programmable logic devices (PLDs) has provided designers with a flexible and rapid

prototyping medium for embedded systems designs. Any digital circuit can be

implemented on an FPGA, subjected to the limitations imposed by the logic capacity of

the FPGAs. Using FPGAs, different design tradeoffs can be rapidly explored, allowing

better design decisions to be made and reducing the overall development time of a system

[3].

Since NoC is a relatively new research area, there is immense potential and

opportunities for research. A great deal of theoretical research has been done in this area

that provides good insight and shows promising results. However, these results may not

have much practical value since the evaluation methods used rely on NoC simulation

under assumptions and approximation of conditions rarely found when running real

practical applications [2], There is a great need for research in hardware implementation

of NoC-based systems to determine the feasibility of implementing various topologies

and protocols, and also to accurately determine what design tradeoffs are involved in NoC

implementation.

This thesis is primarily concerned with the challenges of implementing an NoC-

based system for on-chip communication running real applications. The emphasis is on

the design of NoC targeted for implementation on FPGAs, since FPGAs serve as an

excellent platform for rapid prototyping and design space exploration.

i.i Thesis Objectives

The main goal of this research was to design and implement an NoC-based system for

image processing applications, on an FPGA. This research has the following major

objectives:

1. Investigate the feasibility of NoC implementation on FPGAs.

2. Investigate and acquire real world benchmark applications with features that

would severely test the NoC implementation.

2

3. Compare the results obtained by running these benchmarks on an NoC-based

system and a bus-based system.

For the first objective, an experimental framework was developed that allowed

implementation of NoC-based system from a high level specification, using the Celoxica

Handel-C hardware description language. To address the second objective, two test

applications: charged couple device (CCD) and JPEG were developed in Handel-C to be

used for our benchmark applications. Both benchmarks are computational expensive and

required large quantities of data transfer that will test the NoC system. Finally, for the

third objectives, results from the NoC-based system and the bus-based system, running

the same benchmarks are compared and evaluated in terms of speed performance and area

utilization on an FPGA.

1.2 Thesis Organization

The outline of this thesis is as follows. Chapter 2 introduces the reader to the greater

context of this research by presenting relevant background information and previous work

that has been done by researchers in this area. Chapter 3 discusses NoC hierarchy and

various architectures. Chapter 4 discusses the design process of basic NoC components

and the functionality of each component block. In Chapter 5, implementation

methodology of two benchmark applications on NoC-based system and bus-based system

are discussed in detail. Chapter 6 presents the results obtained by implementing the NoC-

based system and bus-based system on an FPGA. Finally, Chapter 7 concludes this thesis

and discusses possible future work in this area.

3

Chapter 2

Background and Previous Work

In this chapter, the background and previous work that is relevant to this research is

presented. This chapter begins with an overview of Network-on-Chip (NoC) for readers

to build an understanding of basic concepts in this field. That is followed by sections

describing FPGA technology and two soft-core microprocessors that are popular among

the embedded systems community. Lastly, this chapter concludes with a presentation of

previous work that is closely related to this research.

2.1 Overview of NoC

There are many research papers and books dealing with micro-networks, with many

subtle differences in definitions, concepts, and theories. In this section, for the sake of

clarity, we present a collection of concise definitions of relevant concepts and theory that

holds true for most NoC systems.

2.1.1 NoC Building Blocks

Micro-networks such as NoC consist of many individual hardware components that have

the task of carrying out two main functions; computation and communication. The

communication infrastructure of the NoC allows the establishment of a communication

channel set up by a router for transmitting information between computational

components (commonly referred to as cores). An example of an NoC interconnection is

shown in Figure 2.1, which consists of routers and links. A router is solely dedicated to

4

Figure 2.1: Hardware Components of an NoC [4]

carrying out the task of dispatching data inside the network, base on a routing algorithm.

Links are physical connections between routers which can be latency insensitive and may

contain buffering resources, if needed by a particular application.

2.1.2 NoC Architecture

The network architecture specifies the topology and the protocol which determine the

routing and control flow scheme.

• Topology refers the logical layout of the interconnection network.

• Protocol refers to the switching mechanism in place for packaging data and a

routing system for directing the flow of data through the network.

2.1.2.1 Network Topology

The network architectures are classified into four groups according to their topology [5]:

1. Shared-medium networks: The transmission medium is shared by all nodes and

only one node at a time can have access to the transmission medium.

5

Master
Processor

Sla/e
Processor 1

Address

Data

K'̂ Tiory DSP Slave
Processor 2

, Control

Figure 2.2: Shared-Medium Networks: a Traditional Bus-Based System

2. Direct networks: Each node has a router and point-to-point links to some or all of

the other nodes.

3. Indirect networks: Each node is connected to a set of switches which can be

programmed to implement given inter-node connections.

4. Hybrid networks: A mixture of the approaches listed above.

Shared-medium network is currently the most commonly used topology for Systems-

on-Chips (SoCs) and has the simplest interconnection, in which all the communication

devices share the transmission medium. A master processor will act as an arbitrator by

prioritizing the slave processors to determine which node has access to the transmission

medium. Therefore, when several slave processors are requesting the use of the bus, the

processor with the highest priority gets primary access. Thus, it is important to have the

arbitration process to quickly resolve the simultaneous requests. An example of shared-

medium network is a bus-based systems, its simple topology carries low-overhead but

does not scale well with high number of processors, as more buses are integrated to

accommodate more processors. Thus, the shared-medium network is ideal for systems

with small number of processors

Direct network architecture is designed to overcome the scalability problem of the

shared-medium networks by allowing each router to directly connect to its neighboring

routers. This network is a popular platform for building systems with many processors

because increasing the number of processors also increases communication bandwidth.

Performance trade-off for direct network architecture has been mainly between

connectivity and wire cost. Higher connectivity will increase network performance but

6

Figure 2.3: Direct networks: (a) Mesh, (b) Torus, and (c) Hypercube

also corresponds to higher area utilization and energy consumption [5]. Examples of

popular direct network architectures are n-dimensional mesh, the torus and the hypercube

depicted in Figure 2.3 These are the most practical implementations of orthogonal

infrastructure, where the interconnection is arranged in n-dimensional orthogonal space.

These prove to be the most simple in term of routing and hardw are implementation.

The alternative to direct network is indirect network where the interconnection

between nodes has to go through a set of switches or crossbars. Crossbar is a

programmable component for establishing communication paths, connecting a node to all

possible nodes is depicted in Figure 2.4. Crossbar can be very costly in terms of

hardware requirements. The hardware complexity of connecting N nodes is 0(N2).

Finally, the last architecture topology is the hybrid network which combines two

or all three of the networks discussed above. Since each network class has their own

merits, combining a mixture of these classes give the designer the flexibility of

developing a network for addressing certain performance aspects. The main drivers for

implementing a hybrid network are that they provide high-bandwidth and consume less

energy. Therefore, hybrid network is seen as an ideal topology for applications that

requires high performance but low energy consumption.

7

Source
<-

Source 2

Destin ntion
1

Destination

^Destin 3t'on

Figure 2.4: Indirect Networks (adapted from [1])

Each of the architecture topologies discussed, have positive and negative

attributes that can be exploited for addressing performance issues. Studies conducted

show a two dimensional mesh is considered to be the most suitable NoC for running most

applications because a two dimensional mesh gives reasonable wire cost while still

provide reasonably high bandwidth with predictable latency [6], [7].

2.1.2.2 Switching Protocol

Switching protocol determines how data flows through the NoC network. Deciding on a

switching technique involves determining the granularity of data transfer. Strictly

speaking, the switching techniques are classified in two basic modes of transporting data:

packet switched (PS) and circuit switched (CS).

Since the early days of NoC, PS was used as a main switching technique where

data are broken down into manageable packets, each containing data and routing

information in the packet's header. These packets are injected into the network where

they are independently routed before reaching its destination. Packets may not always

follow the same paths, thus reaching its destination at different time [1], [8]. A major

8

drawback in employing PS is as more packets are being injected into the network, packet

latency becomes unpredictable and also congestion control will become an issue In order

to avoid this type of situation, each router has buffers to queue-up packets before routing

to the next router [7] PS suffer from a rather significant area overhead because majority

of the hardw are is dedicated to buffers [10]-[13]

In contrast. CS establishes a dedicated connection (a virtual channel), a direct link

for data transmission and does not require buffers to store packets for routing How e\ er,

CS has a high initial latency incurred by building the virtual circuit before data can be

transmitted CS is appropriate when data is sent very often, and then the initial latency

becomes less relevant [1], [8], [9].

2.1.2.3 Performance

NoCs architecture are designed to meet certain performance demands, which include, but

are not limited to, latency, throughput, energy consumption, scalability and area cost.

While performance aspect such as latency and throughput are an important metrics for

one application, it may not necessary be relevant for others that prioritize area and energy

consumption.

Another performance metric that needs additional attention is Quality of Service

(QoS) which has a direct relationship to the protocol used for routing. Typical parameter

measured in relation to performance includes delay and bandwidth. Delay can be

decomposed into several components depending on the different phases of the transfer

process. Bandwidth corresponds to the measured bandwidth obtained by the application

and only equals the capacity of the network under ideal assumptions w hich normally

depends on traffic load and flow control protocols [4]

2.2 FPGA Technology

Field programmable gate arrays (FPGA) are semiconductor devices containing

reconfigurable logic blocks and interconnections that can implement almost any digital

circuit that fits within their logic capacity. FPGAs tend to run slower and consume more

area and energy compared to application-specific integrated circuits (ASICs) But they

9

Input -

Logic Element

-5>

4-input
LUT

» Output

Figure 2.5: Schematic for a Generic FPGA Logic Element (LE) [14]

offer the circuit designer much greater flexibility. Their advantages over ASIC design

included a shorter time to market, lower non-recurring engineering cost, and the ability to

fix bugs by reprogramming. Thus, FPGAs are reconfigurable IC chips that serve as a

good platform for design space exploration and prototyping.

The two largest manufactures of FPGAs are Altera Corporation [15] and Xilinx

Incorporated [16]. The basic building block in an FPGA, referred to as a Logic Element

(LE) is shown in Figure 2.5.

At the core of each LE is a block of programmable memory called a Lookup

Table (LUT) shown in Figure 2.6. The LUT consists of an array of 1-bit memories

connected to a multiplexed output pin. If the LUT has n inputs, then the memory array

will have 2" bits. This array can be programmed with the truth table of any possible n-

input Boolean logic function, and the n multiplexer (MUX) select inputs decide which of

the 2" memory array bits appears at the LUT output [3].

A Logic Block consists of large number of LEs that are connected together using

reconfigurable interconnections shown in Figure 2.7 as (L). FPGA routing architecture is

made up of many programmable Switch Blocks (S) that are programmed to complete a

circuit. The Logic Block connects to a set of horizontal and vertical wires to the

Connection Block (C) where each output from the Logic Block are programmed to

10

0

15

o

1

16-to-1
MUX

-> Output

A B C D

Figure 2.6: Schematic of a Lookup Table (LUT) [3]

connect to the wire segments of the routing architecture. At each junction lies a Switch

Blocks which are programmable to connect to other wire segments to complete the

circuit. Input/Output Blocks (I/O) which can be unidirectional or bidirectional are

arranged around the perimeter of the FPGA chip, are used for receiving external signal

and sending signal.

Xilinx Spartan3 xc3sl5001fg320 FPGA has been selected as the target device in

this research; therefore a brief description of the Spartan3 architecture [17] is given. All

of the devices in the Spartan-3 family contain four different types of logic resources:

Configurable Logic Blocks (CLBs), block RAMs, Dedicated Multipliers, and I/O Blocks

(IOBs). CLBs constitute the main logic resource for implementing sequential as well as

combinatorial logic. CLB are blocks which consists four connected slices to implement

user-defined logic functions. For our target FPGA device, there are 64 rows and 52

columns of CLB with a total of 3,328 slices. The target FPGA device has 32 block

RAMs, each containing 16 kilobits of memory and 18,432 bits including the parity bits,

totaling 589,824 memory bits. The block RAM has a dual port structure to provide

single-port or simple dual-port memory operation. All Spartan-3 devices provide

embedded multiplier and the target FPGA device has 32 dedicated multipliers that accept

11

I/O I/O I/O I/O I/O I/O

Figure 2.7: Generic FPGA Routing Architecture

two 18-bit words as inputs to produce a 36-bit product. Lastly, there are 487 IOBs that

provide a programmable bidirectional interface between an I/O pin and the FPGA's

internal logic [17].

2.3 Soft-core Processors

Historically, FPGAs were used to implement SSI and MSI level logic functions.

Following Moore's law, FPGA logic capacity has increased substantially to the point that

multi-million gate FPGAs are currently available. This enables one or more CPU's to be

implemented on a single FPGA. Most FPGA vendors commonly provide their own soft

core processors targeting their own device as well as other intellectual property (IP) cores

for commonly used functions such as digital signal processing, encryption, etc [3]. Altera

[15] and Xilinx [16] provide soft-cores processors targeting their devices help facilitate

the development of embedded systems on FPGAs.

12

2.3.1 Nios II Soft-core Processor

Nios II soft-core processor [18] is the flagship processor core of Altera Corporation [15]

that is targeted for Altera's FPGAs. The Nios II soft-core processor is a general purpose

reduced instruction set computer (RISC) processor that is optimized for embedded

applications. This soft-core consists of three processor variants that can be selected based

on a designer's specific needs: the Nios Il/f fast core, which is designed for maximum

performance, the Niox Il/e economy core, which is the smallest processor core, and the

NiosII/s standard core, which is a tradeoff between the fast core and the economy core.

These cores each feature their own set of configurable options, and all of them provide

support for up to 256 custom instructions and interfacing to peripheral devices using the

automatically-generated Avalon bus [19]. Using Quartus II Cad tool suite with System

on a Programmable Chip (SOPC) Builder from Altera Corporation, designers can develop

their embedded systems designs to connect other soft-core processors and peripherals

such as timers, memories, and universal asynchronous receiver/transmitters (UARTs)

[20].

2.3.2 MicroBlaze II Soft-core Processor

MicroBlaze [21] is a 32-bit general purpose RISC soft-core processor optimized and

targeted for Xilinx FPGAs. MicroBlaze soft-core processor is highly configurable,

allowing embedded systems designer to select a specific set of features that includes 32-

bit general purpose registers, a 32-bit instruction word with three operands, two

addressing modes for data, instruction memories, and a 5-stage single issue pipeline.

MicroBlaze also includes a large number of parameters, including an optional hardware

barrel shifter, multiplier, divider, floating point unit (FPU), and others [21]. MicroBlaze

system design relies on number of slave peripherals placed on the interface known as the

On-chip Peripheral Bus (OPB) to interface with MicroBlaze with memories and other

peripheral components [22]. In this research, we used MicroBlaze as our soft-core

processor.

13

2.4 Related Work

Wiklund et al. [7] proposed a two-dimensional mesh, CS network called SoCBUS for real

time embedded systems which is strictly an ASIC/SoC design. The SoCBUS architecture

uses five port router that allocate four ports for connecting to adjacent routers and one

port to connect to the local IP core. There are at least four phases for each router

transaction where four phases occur in a successful routing attempt and additional phase

for each failed attempt when a router is blocked. As this request finds its way through the

network, the router is temporarily locked and cannot be used in other transactions. To

decrease the chances of blocking, Wiklund et al. uses some of the packet switching

routing technique in addition to the circuit switched routing technique called Packet

Connected Circuit (PCC). PCC does not lock resources during routing transaction. Thus,

no blocking will occur by introducing a buffer for holding request package during routing

transaction. The test application is a typical real time embedded system that runs in a

simulator; Telephone-to-VoIP Gateway. The authors do admits that SoCBus is not

suitable for computing platforms where random traffic patterns are observed to exhibit a

higher probability of blocking when running without scheduling. Therefore, Wiklund

concluded that their CS NoC had a high latency for setting up a new circuit.

T. A. Batric et. al. [12], [23] argued that different types of networks will be require for

addressing different application domains. Depending on topology and on the number of

cores attached, router ports are parameterized at design stage. This approach allows for a

very flexible network design and allows users to instantiate arbitrary network topologies.

Each router contains a routing table that keeps the record of network resources and then

the router arbitrary makes routing decision to fully utilize routing resources. This

proposed routing algorithm does not scale very well where memory space grows

exponentially with the additional of more inputs. The authors implemented a two-

dimensional PS with five inputs and 5 outputs crossbar on a Xilinx Vertex2Pro FPGA

synthesized in VHDL. The network using virtual cut-through switching as a routing

algorithm has a low latency while maintaining a high throughput but it comes at a cost.

The design suffers from a rather significant area overhead from buffers used in the router.

14

For example, 97% of total NoC area utilized is dedicated for buffers only. Therefore, this

architecture is more suitable for networks with a known traffic pattern.

Hilton and Nelson [1] implemented a CS NoC on Xilinx Virtex FPGA and a Java-

based HDL language (JHDL) was used in design description. The proposed network

topology consists of a series of subnets; a router and a collection of network nodes. This

topology allowed the placement of modules that communicate frequently in the same

subnet for increasing the efficient of the overall communication system. Hilton et al.

proposed a router structure where the number of ports used can be parameterized at build

time and can also supports the dynamic removal and insertion of nodes in the system at

run time. Establishing a connection path is done through the router where all requests are

sent to the routing table and the success on establishing a connection is base on the

availability of free port. The test application used a simple image binarization system for

thresholding to quantize grayscale image into binary pixels of black and white values.

The authors compare their results to the NoC system from T. A. Batric et. al [12] to point

out some significant improvements. The simplicity of the circuit switched NoC

architecture reduces hardware cost by over two times and it also increases the clock rate

by almost three times. The authors also admit that "Depending on the FPGA used, router

connectivity may be compromised when support for dynamic module replacement is

desired." This clearly restricts the topology that this NoC is build-upon.

From Wiklund [7] and Batric [12], [23], the establishment of connections is

independently done by router with the aid of a routing table for managing routing

resources. Main drawback of such routing system is the great overhead cost dedicate for

the use of buffers for each router. Wolkotte [9] proposed a regular two-dimensional mesh

CS network that allocates the task of routing system to one core, called Central

Coordination Node (CCN). The CCN perform scheduling of individual processes and

communications during execution by configuring each router. The advantages of this

scheduling system over Batric [12] and Wilund [7] is that since the connections path is

predetermine by the CCN, blocking in the router do not occur. Therefore, there is no

need for buffer in individual router. The ASIC design runs three wireless test

applications: HiperLAN/2, UMTS and Digital Radio Mondiale (DRM). Comparing to a

15

PS equivalent, the area of the circuit switched router is three times less compared to the

PS router due to the effect of the absence of buffers and extra controller in the router for

packet switched.

2.5 Summary

In this chapter, the relevant background material and related previous work was

presented. First, a short collection of concise definitions of relevant concepts and theories

were presented. Next, the basic concepts of FPGA technology were discussed with a

brief discussion of the features of the Xilinx Spartan-3 FPGA. Then, soft-core

microprocessors targeting FPGA was discussed followed by examples of the two popular

soft-core microprocessors: Nios II from Altera [15] and MicroBlaze from Xilinx [16].

Finally, the Chapter concluded with a discussion of some of the previous work that is

closely related to this research. In Chapter 3. a detailed description of the NoC

architecture hierarchy and abstraction layers is presented.

16

Chapter 3

NoC Architecture

In this chapter a detailed description of our proposed NoC architecture is presented. This

chapter begins with a discussion of trade-offs involved in selecting different architectures.

That is followed by a discussion of the role each abstraction layer plays in protocol

implementation which provides a useful insight into switching techniques. This chapter

concludes with a discussion of the many issues designers face when developing a NoC

system.

3.1 Topology

In section 2.1 we discussed different topologies used for NoC implementation. When

selecting a topology, designers must evaluate key performance trade-offs such as area

utilization, speed performance and power consumption.

First, the proposed NoC system is developed targeting an FPGA device. Since the

logic capacity of an FPGA is limited, the NoC system should be as small as possible to

allow most of the hardware resources in FPGA to be dedicated for user defined logic for

computational tasks, rather than communication.

Second, the performance of an NoC is generally measured by the ability of the

system to process high volume of data. Higher performing NoC implies more

connections, bigger channel width, and increased system capacity. But a high-

performance NoC often translates into higher area cost and less reliable system.

17

Ccr * r
F O'j rer

Core A

m \

P^ulfr

Core 1 T

Re .iter M Router

Figure 3.1: 2-Dimensional Mesh Topology

Therefore, a simple and small NoC architecture is desirable which satisfies performance

requirements.

Finally, energy consumption depends on the number of active components in NoC

independently routing data through the network and the power dissipation due to data in

the NoC itself [8]. Topologies that consume less energy have shorter routes, and have

components to stay inactive when not in use.

From extensive work [4], [7]-[9], a two-dimensional mesh depicted in Figure 3.1

is considered to be suitable for most NoC implementations because a two dimensional

topology provide reasonable high bandwidth with predictable latency at reasonable wire

cost [24]. For this reason, a two-dimensional mesh topology was chosen to simplify our

design. Also, implementing a router based on partial crossbar system (discussed in

Chapter 4) further decreases the energy consumption, when compared to using a full

crossbar for implementing the router.

3.2 Protocol

Implementing a communication protocol is done by distributing the service to each

abstraction layer. The higher the abstraction layers, the broader the scope in which the

protocol operates over the network. This section will address the various tasks at each

abstraction layer [4], [8].

1. Physical layer, task of the physical implementation of transmitting information

over a physical link.

2. Data link layer, task of guaranteeing a reliable data transfers across inherently

unreliable physical links.

3. Network layer, task of establishing network connection for the purpose of data

transfer determined by the choice of switching and routing algorithms.

4. Transport layer, task of the decomposition of data for transmission at the source

and assembly at the destination while addressing the flow control and congestion

issues.

A circuit switched (CS) protocol is implemented and the following subsections

explain the operations at each of the above abstraction layers.

3.2.1 Physical Layer

Physical layer has the sole responsibility of transmitting data through physical links. In

our case, a unidirectional point-to-point link connects neighboring nodes. The port has

three groups of signals depicted in Figure 3.2.

• Data signal: the width of this communication channel is parameterizable and

transmits the data bits in parallel.

• Valid signal and Request signal: these physical wires are use in a handshake

protocol to mark the beginning and the end of data transmission.

Each routing port consists of unidirectional output port and input port, each with

three types of signals: Data channel, Valid signal and Request signal. For output port, the

Data channel connects to the neighboring router input port and the two other signals

19

Data

Valid

Request

Data

Valid

Request

Figure 3.2: Port Interface

connects to two adjacent routers, one in each direction with the Valid signal following the

direction of the Data channel and the Request signal the opposite.

3.2.2 Data Link Layer

The main task of data link layer is to guarantee reliable data transfers across the physical

links and to provide error correction.

If errors were to ensue, there's a high probability of the error to occur during data

transmission. Simplifying the data transmission protocol by developing a light weight

handshake protocol can reduce the chance of error occurring. In the protocol, data

transmission can only take place when the destination core has sent a request for

receiving data. If data is transmitted when the destination core has not sent a request, the

level Valid signal would indicates the data is invalid.

In NoC. especially NoC employing PS, there is a tendency to allow two or more

transmitters to concurrently send data to the same core [8]. This can be minimized by

deploying an indirect system that uses a crossbar system for routing since crossbars are

programmed to establish a direct data path and the NoC should have a flow control

measure in place to control traffic congestion.

20

3.2.3 Network Layer

The task of network layer is to establish the type of connection and to also determine the

path to be taken to reach its final destination. The CS routing protocol can be described

as deterministic [4] since the path is already determined by the virtual circuit. Unlike

packet switched, storing data in buffers is not necessary since incoming data is forwarded

immediately, thus insuring Quality-of-Service (discussed in 3.4).

3.2.4 Transport Layer

The transport layer tasks are the decomposition of data for transmitting at the source and

assembly at the destination, while also addressing congestion and flow control. At this

layer, there are two approaches that address the flow control: deterministic approach and

statistical approaches.

PS protocol is referred to as the adaptive approach. The advantage of the adaptive

approach is the increased efficiency in utilization of network resources during run time.

In contrast, deterministic techniques may lead to under-utilization of network resources

based on worst cases scenarios, whereby most of the resources may not be utilized during

run time.

3.3 Data Transactions

Before the transmission of data, cores from each node must notify the network of its

current state of its readiness for accepting data by deploying a light weight handshake

protocol. The data transmission handshake protocol uses four phases and is summarized

in Figure 3.3:

1. When a destination core is ready for accepting data, it will send out a Request

signal, a request for receiving data.

2. The source core will transmit data, accompanying the data is the Valid signal to

indicate the transmission of data is still in progress and valid.

21

Source Core

Sen d Data * \ ^

Valid=1 * ^

Done Sending i

Vahd=0 ' N

Destination Core

^ ^ Accepting Data

i Request=1

• ^ ^ * j Receive Data

i Check if Sending
i is complete

S^ Done Receiving

, RequestO

Figure 3.3: Data Transmission Handshake Protocol

3. When transmission is complete, the source core will send a Valid signal of 0,

signaling the transmission of data is complete and wishes to start new

transmission.

4. The destination core will send back an Request signal of 0 to signal that all data

have been received and will resend the Request signal when cores is ready to

process new data.

3.4 Quality of Service

Quality-of-Service (QoS) is a networking term that refers to the specification of network

services that need to be provided in a specific application. Certain application such as

DSP or video streaming will required a guarantee of high uninterrupted bandwidth

because of the uniqueness of the application. It is difficult to actually predict the

behavioral nature of the data in the network, thus making it nearly impossible to

guarantee the required bandwidth without some margin of errors. To guarantee QoS,

network should consider the following causes of failure to minimize the traffic disruption

in the network [4]. [8]:

1. Deadlock: data is prevented from reaching its destination because it is blocked at

some intermediate resource.

22

2. Livelock: data is prevented from reaching its destination because it is in a cyclic

path.

3. Starvation: data is prevented from reaching its destination because some resource

does not grant access.

Deadlock is cause by packet being continuously blocked and it is the hardest problem

to solve because packets that are blocked stay blocked while waiting for an event that

cannot happen. Since deadlock is more associated with PS, employing CS will avoid any

problems associating with deadlock.

Livelock occurs when the packets are being routed around their destination and

are placed in a cyclic holding manner. Livelock can be avoided by allowing the packet to

travel the shortest route.

Starvation occurs when the packet is discriminated against as low-priority packet

data, thus never getting service. This can be avoided by allocating resources to process

all packets equally such as employing a round robin or FIFO scheme. Also, starvation

can be avoided by reserving some resources for processing low-priority packets.

Majority of these failures are associated with PS. In CS, the only cause for failure

is livelock, which can be easily solve by placing cores with high interaction closer

together and route path with the shortest distance. Therefore, circuit switched can better

offer higher QoS.

3.5 Summary

A detailed description of NoC architecture hierarchy and design principles was presented.

The selection of topology and protocol was made to satisfy some general goals. In this

research, a 2-dimensional mesh topology was chosen because its simple topology is less

area intensive while still providing reasonably high performance. We chose CS as our

switching protocol because it provides a high degree of QoS compared to PS. In Chapter

4, the proposed NoC design is described in detail.

23

Chapter 4

The Proposed NoC Design

In this chapter, a detailed description of the proposed NoC components such as routers,

configuration blocks, network adaptors, and links is presented. First, the router internal

structure and lay-out is described. This is followed by a description of virtual circuit

(VC) set up by the configuration block. Then we describe the integration of

computational hardware blocks with the NoC system using the network adaptor. Lastly,

we briefly discuss the issue of protecting signal integrity in NoC-based systems.

4.1 Router

The development of a router can presents some unique challenges where designers have

to evaluates trade-offs to determine a configuration that is best suited for their needs. Our

research goal is to develop a generic router that is highly configurable and area efficient,

for NoC implementation. Although Sethurman et al. [25] developed a packet switched

(PS) router called LiPaR, a light-weight scalable parallel router, area can be further

reduced by employing a circuit switched (CS) scheme where buffering is not necessary.

Our goal was to develop a highly modular and scalable router that is light weight with

low area cost. The block diagram of a generic CS router is depicted in Figure 4.1

24

We implemented a router with 5 bidirectional ports: North Port, East Port, South

Port, West Port, and Core Port. The first four ports are for connecting to neighboring

routers and the Core Port is for connecting to the local port that could be connected to a

computational hardware block. Each port consists of IN and OUT unidirectional port

consisting of three physical links: Input link, Valid link, and Request link.

jejnoyjeijio

Figure 4.1: Block diagram of a Router [9]

25

IHPort

' Ml - MT Ml ' Ml
IN j [Westf -IN J [i C . . P « * : N I NorthPortlH j [_ E*aPortIN

South Partial
Crossbar

West Partial
Crossbar

Core Partial
Crossbar

NorthPartial
Crossbar

OUT Port

EastPartial
Crossbar

•it i .Prt' .T W«« Port OUT Career. OUT] NcrthPartOUT E«*PortOl

*> < | o *> < l o ?o < | o w < | o * < |
• a l e <• « I C » « I C h> » I C •» » I

il*if Hint hint lilut telsl

Partial
•- Crossbars

System

Figure 4.2: Cascading Intermediate Partial Crossbars

The functionality of the router can be viewed as the multiplexing and

demultiplexing of data to direct the flow of incoming and outgoing signals. Crossbars

provide a programmable interconnection for establishing paths between ports, where the

multiple buses from all incoming ports ha\e a corresponding bus to connect to all

outgoing ports, constituting a full crossbar. Because a full crossbar is a very complex

structure, it is possible to implement the functionality of a full crossbar by using a number

of smaller crossbars. This is called a partial crossbar. Compared to full crossbar, partial

crossbars are significantly smaller and consume much less energy [8].

4.1.1 Partial-Crossbar Design

Partial crossbar is an effective alternative to full crossbar for reducing structure

complexity and promoting energy efficiency. To implement a crossbar using partial

crossbars, each individual partial crossbar is cascaded into a multistage interconnection

network (MIN) as shown in Figure 4.2, a partial crossbar for each output port.

26

Configuration_Bits

Ready

z m
o 0>

< <

? • a

1 2 3 4 7 8 9 :o 11

19 Partial Crossbar

12 13 14 15 16 17 IS

cr

jr

<
LU CO I I

Figure 4.3: Partial Crossbar

Table 4.1: Connections Assignment for Partial Crossbar

Connection Number
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19

Description
Input north valid signal
Input north data signal
Input east valid signal
Input east data signal
Input south valid signal
Input south data signal
Input west valid signal
Input west data signal
Input core valid signal
Input core data signal
Output partial crossbar request signal
Input north request signal
Input east request signal 1
Input south request signal
Input west request signal
Input core request signal
Output partial crossbar valid signal
Output partial crossbar data
Input crossbar configuration information

27

South Partial
Crossbar

SoathPort

West Partial
Crossbar

1 2 3 4 3 6 7 8 ° 10 II

r* 19
Core Partial

Crossbar

12 13 14 IS 16 17 18

NorthPartial
Crossbar

)
Output Stgul*

EastPartial
Crossbar

> - § ?

Figure 4.4: Crossbar Interconnection

The block diagram of the partial crossbar is depicted in Figure 4.3 with Table 4.1

giving a brief description of the connection assignments. Before partial crossbar is

operational, it will first receive a routing scheme (from Configjtlits, connection

assignment 19) to program its interconnection according to the scheme. Partial crossbar

does not perform any information processing which reduces latency and the unused paths

are inactive which helps to reduce energy consumption.

Figure 4.4 demonstrates how a specific routing scheme is implemented in the

partial crossbars. For clarity, the figure shows only the connections for the core partial

crossbar, while all partial crossbars are connected in the same manner. As mentioned

earlier, each partial crossbar is only responsible to route data from the input port, to its

output port.

All the Data signals from the input port; North, East, South, West, and Core are

connected to the partial crossbar on connection assignment 2, 4, 6, 8, and 10 respectively.

The Valid signals from the input port connect to the partial crossbar on connection

assignment: 1, 3, 5, 7, and 9 respectively and the Request signals from the output port

28

Input Sigttl*

J

i\i I* tfl'l* IW $l'lf W\
IK WeHPortlN CorePortlN j NorthPort IN | E««PortlN South Port IN

SouthPtitul
Craobw

CorePortlN

1̂

WtitPutul
Cto«bu

1 2 3 4 5 * 7 8 9 10 11

Core Partial
Crowbar

12 13 14 15 16 17 18

NorthPutwl
Crenbtr

EtttPtitul
Cronbu

I
S

Output Slffl4l»

Figure 4.5: Routing South Port to Core Port

connect to the partial crossbar on connection assignment: 12, 13, 14, 15, and 16

respectively.

In the example depicted in Figure 4.5, the core partial crossbar is configured to

receive data from the south input port and routed it to the core output port. All the

connections are involved in this example is shown in red. The partial crossbar takes the

Data signal and the Valid signal from South input port; connections assignment 1 and 2

respectively, and connects it to the core output port, connections assignment 17 and 18

respectively. The partial crossbar connects the Request signal from the south output port,

connection assignment 12, to the core acknowledge input port, connection assignment 11.

This MIN interconnection allows parallel transactions of all five ports, which eliminates

the need for buffering resulting in the decrease of data latency and area cost.

4.1.2 Crossbar Configuration

In the previous section, we described the interconnection, layout and functionality of the

partial crossbar. In this section, the process of configuring these partial crossbars is

29

described. Before the transmission of data, each router receives a configuration control

word that holds the routing information for the router, shown in Figure 4.6.

l ^ _ 3 bits >l< 3 bits >l< 3 bits >i< 3 bits >l< 3 bits >l< 3 bits _ > i

Channel
North

PortID
East

PortID
South
PortID F. it ID

I

Cor*
PortID

Configu-:: on Control /*'ord

Figure 4.6: Configuration Control Word

Table 4.2: Port Conversion Table

Port

North
East

South
West
Core

PortID

0
1
2
3
4

Binary
Representation

000
001
010
011
100

30

Figure 4.7: Example of a Test Scenario

Each configuration control word is 18 bits which is divided into 6 fields of 3 bits

each, depicted in Figure 4.6. Each field is designated for a partial crossbar, containing an

ID port to instruct the partial crossbar as to which input and output ports to use.

For a better understanding of how the configuration control word is determined,

an example, illustrated in Figure 4.7. is used to demonstrate this process. In this example,

data needs to be transmitted from Core 0 to Core 1. Data from Core I needs to travel to

Core 2 and data from Core 2 travels to Core 3. This example will help us show how the

configuration bit values are determined.

Table 4.3 shows the operations that are taking place in each router. A white arrow

represents the path the data needs to travel while a solid black arrow represents the

reserved communication channel.

31

Table 4.3: Configuration Bits Value for Test Scenario

Router Scenario Configuration Bits Value
North

In I Out

J:
* 5

= T ,

V

Out ' In
South

i yj

rs<

• !S

X X

K: I

•;

X

'55.1. |

1 j

I

9 *

'

III

' 1

i

• a

;.3

:» '

118

T

-

i

9 »

•••JTf

* ^A

1

X

I

• t !

:

X

Cri

Cse

"••J "-

%s

I
'"* ...

32

Take the first scenario; data from Core 0 needs to travel to Core 1 which has to go

through the north port. In the sub-packet for the north partial crossbar, the port ID for

core ("100") is placed while the other ports service is not needed so we placed an "X" for

don't care. Core 0 will be expecting communication signals from Core 1, so in the

reserve channel sub-packet, a port ID of "000" is placed because the communication

signals coming from Core 1 have to go through the north port.

In the second scenario, more operations are taking place. First, data coming from

Core 0 needs to go to Core I and data coming out of Core I need to travel to Core 2. A

binary representation of "010" is placed in the Core sub-packet to establish a connection

between the south input port to the core output port. Second, Core I will need to

communication with Core 0 in the south direction through the south port. Then, the core

ID is placed in the south partial crossbar sub-packet. Third, data from Core 1 need to be

route to Core 2 in an east direction. The core ID is placed in the east partial crossbar sub-

packet. Lastly, a communication channel is reserved for the east port since the

communication signals from Core 2 is coming from the east port and the rest is left

unused.

In the third scenario, incoming data from Core 1 is coming from the west port will

need to be routed to Core 2 and also data from Core 2 will need to be travel to Core 3

through the south port. Thus, west ID and core ID is placed in the core sub-packet and

south sub-packet respectively. Core 2 will be sending communication signals to Core 1,

so the core ID is place in the west sub-packet. Lastly, the reserve channel will reserved

the communication signals coming from Core 3 from the south port.

Finally, data from Core 2 comes in from the north port and the communication

signals from Core 3 will also be going through the north port. Therefore, north ID is

placed in core sub-packet and the core ID is place in the north sub-packet. This

concludes our example which shows the process of configuring each router.

33

4-2 Configuration Block

The configuration block passes the configuration information it received from the PC host

to the router. Using a handshake protocol, the PC host will signal the configuration block

for a new configuration. The configuration block recognize this by stopping all operations

by sending a low Ready signal to the router and send a request to the PC host for the

configuration bits. NoC can only resume its operation only after all routers are

configured.

From PC Host

Configuration
Bits

Request

<—

Write

1

Cros€.b:ir
2 Configuration

> 3

Configuration
Bits

Ready

To Router

Figure 4.8: Crossbar Configuration Block

Table 4.4: Connection Assignment for Configuration Block

Connections Number
1
2
3
4
5

Description
Write signal from PC host to signal write operation
Request signal to PC host to request a write operation
Configuration Bits \ alue send by the PC host
Ready signal to signal router configuration is complete
Configuration Bits value send by the configuration
block

4.2.1 Primary latency

As discussed in chapter 2, the disadvantage of implementing a circuit switched protocol is

the initial latency incurred for establishing the virtual circuit. This causes the blocking of

all routers because the physical link is now reserved for setting up the new connection.

For our application which requires large quantity of data and frequent data transfers, the

34

Core

Network Adaptor

Router

Figure 4.9: Block Diagram of Network Adaptor

initial latency becomes insignificant. Our proposed NoC system have nine routers that

need to be configure and the execution time to configure all nine routers is 10.8

milliseconds, at a clock speed of 50 MHz.

4.3 Network Adaptor

The task of a network adaptor is to integrate the core computational hardware block into

the NoC system. The network adaptor is responsible for communicating with the router

to receive data as input to the core and to transmit data as output from the core.

4.4 Links

Links are physical wires that transfer data from one node to another. Links are very

susceptible to the degradation of signal integrity caused by intrinsic and extrinsic noise

from the circuit, when driving the signals on a long wire. Although they may not be a

major component, links are the backbone of the infrastructure that need to be optimized

for signal integrity. Therefore, the protection of physical wires from noise and

minimizing power consumption are important design goals that should be considered at

the physical level. These issues are more important when developing NoC for ASIC

implementation.

35

4.5 Summary

In this chapter, detailed descriptions of the functionality of each NoC blocks are given.

The implementation and functionality of the router was described and examples were

used to illustrate the operation of the router. Lastly the important functions of the

network adaptor and physical links were described. In chapter 5, the design methodology

for the proposed NoC implementation is described. We also describe the application

mapping process for evaluating the proposed NoC.

36

Chapter 5

Experimental Evaluation Framework

This chapter starts with a discussion of the design methodology for implementing an

Network-on-Chip (NoC) system. This methodology also facilitates rapid prototyping and

exploration of various aspects of NoC implementation. This is followed by a description

the Celoxica DK tool, used for NoC implementation. Then, we describe how a

Microblaze-based system is specified using the Celoxica Handel-C hardware description

language. Lastly, the applications mapping process for mapping two test applications into

the target systems, bus-based system and NoC-based system is presented.

5.1 NoC Specification and Implementation Methodology

For this research, it is important to define a framework that helps guide this research for

exploring the design space for NoC implementation. As discussed earlier in Chapter 3,

any NoC architecture implementation can be described at several layers of abstraction.

Figure 5.1 illustrates the design space for NoC architectures.

37

C Tmumcation
Infraslnjiure

Communication
Paradigm

Application
Mappin g

Hard F rm

»
Floor plan

1

• t

Switching Tecnniq-''

Routing Strategy

Communication &
Task Scheduling

»

*

Soft

V

Topology 3/ r i-e-sts

i »r iel * ' i ! h *~ zi-i<3

Ar|p nation
Mapping

Figure 5.1: Design Space for NoC Architectures [2]

5.1.1 Communication Infrastructure

Communication infrastructure determines the communication architecture for providing

optimal performance, with particular attention to design trades-offs to meet the

performance needs of the chosen application. Although customized NoC is highly

desirable for great improved performance, they bring other issues into focus such as

physical links optimization (driving uneven wire length) and low scalability (irregular

floor planning) [2]. While low complexity architecture such as the mesh can provides an

excellent platform for rapid prototyping for many applications, its performance may not

be adequate for some higher end applications. Also, communication infrastructure is

involved with network floor planning, the placement of various NoC components for

optimal performance and routability.

38

5.-. Khing

Irro emer:a:on

Figure 5 2: Design Choices for Communication Paradigm [2]

5.1.2 Communication Paradigm

Network does not dictate the behavior of the traffic flow, rather the traffic flow dictates

how the network beha\es. The performance of the network is greatly affected b\ the

selection of the routing schemes and routing strategies as depicted in Figure 5.2.

Compared to adaptive routing, deterministic routing requires fewer resources

while guaranteeing an orderly data arrival. Deterministic routing is free of deadlock and

livelock and is more appropriate for traffic that is predictable. On the other hand, adaptive

routing provides better area utilization and lower latency by allowing alternate paths

based on the network congestion [27]. But this routing strategy is highh susceptible to

deadlock and livelock discussed in Chapter 3.

Deterministic routing can provide high QoS with low area o\erhead. is a

promising alternative to adaptive routing such as wormhole switching which allocate

more resources such as buffers for routing. A drawback of deterministic routing such as

circuit switched (CS) is they are static in nature which works well when traffics is

predictable. Therefore, further research should be done exploring hybrid routing

39

>t&rnnrm:ic

St'.re and
F - . 3rd

Vi-Tjai
S*T'n ng

- * • — * -

SOU' -^OuDn ;

f — - —

•. n a : :

' ; > " - i t

3.. 'en ng

schemes, a combination of deterministic and adaptive routing that can take advantage of

both systems.

5.1.3 Application Mapping

Application mapping is involved with integrating the application into the NoC system and

task scheduling. Designers have to decide the optimal arrangement of IP cores into the

network for optimizing certain design metrics such as communication congestion, high

bandwidth, power consumption, and area utilization. For optimal mapping, the task

scheduling and the IP mapping should be ideally performed in parallel [2].

5.1.4 Celoxica Handel-C

Our main research goal is to design an NoC-based system to be used for comparison with

a bus-based system using the Celoxica's Handel-C.

Handel-C language is used to illustrate the advantages of using a C-like language

to speed-up the design process. Celoxica Design Kit (DK), a compiler for Handel-C,

allows designers to develop an algorithm in software for targeting hardware

implementation. In the design process, Celoxica's DK graphical user interface (GUI)

along with third party FPGA design tools (e.g. Xilinx EDK and ISE) are used together to

produce automatically, equivalent data path and control logic expressed in the form of an

EDIF netlist. This EDIF output can then be taken as the input to physical design tools

targeting FPGAs provided by Altera Corp. [15] or Xilinx Inc. [16], or alternatively, to

physical design tools targeting ASICs [28]

Celoxica's Handel-C environment does not come without some drawbacks. Issues

were encountered during the design process while transporting design data from the DK

environment to the Xilinx environment, following Celoxica's design flow. This problem

was easily be resolved by applying missing patches needed for the Xilinx EDK tool.

40

5.2 Xilinx Microblaze Soft-Core Processor

Microblaze (MB) [21] was been selected as the soft-core processor for this research that

is optimized and targeted for Xilinx's FPGAs family. Therefore a brief description of the

Microblaze architecture [22] is given. The MB processor has four bus interfaces:

1. Instruction Memory Bus (IOPB) for the connection of internal or large external

instruction memory

2. Data OPB bus (DOPB) for the connection of Slave (OPB) peripherals, internal

memory and large external data memory

3. Instruction Local Memory Bus (ILMB) for the connection of fast local block

RAMS that acts as an instruction memory for the Microblaze Core

4. Data Local memory Bus (DLMB) for connection of fast local block RAM that

acts as data memory for the Microblaze core

IOPB DOPB

DLMB

IOPB

ILMB

DOPB j

DLMB

1
ILMB

DOPB

DLMB :

1 2 3

IOPB DOPB

ILMB

DOPB ! IOPB

ILMB

DOPB

4 5 6

Figure 5.3: Microblaze Bus Configurations

There are six different configurations with which the Microblaze core can operate; they

are shown in Figure 5.3.

1. IOPB, DOPB, ILMB, and DLMB are all enabled

2. Only IOPB, DOPB, and DLMB are enabled

3. Only DOPB, ILMB, and DLMB are enabled

4. Only IOPB, DOPB, and ILMB are enabled

41

5. Only IOPB and DOPB are enabled

6. Only DOPB and ILMB are enabled

The designed system used configuration 3 which is more suitable for applications

where the code can fit into the on-chip block RAM and more memory is required for data.

5.2.1 On-Chip Peripheral Bus

The on-chip peripheral bus (OPB) is one element of IBM's CoreConnect architecture, and

is a general purpose synchronous bus designed for easy connections of on-chip peripheral

devices. It includes the following features:

1. 32-bit or 64-bit data bus

2. Up to 64-bit addressing

3. Supports 8-bit, 16-bit. 32-bit, and 54-bit slaves

4. Supports 32-bit and 64-masters

The OPB is designed for easy connection of on-chip peripheral devices. It provides a

common design point for various on-chip peripherals. Celoxica provides libraries to ease

the design and integration of OPB devices in an embedded processor system. This library

allows the designer to connect Handel-C coded OPB peripherals to the Microblaze

processor based system.

5.2.2 Specifying a Microblaze-Based System Using

Handel-C

The architecture of the Microblaze-based system used in this research using Handel-C at

the top-level of the design is demonstrated in Figure 5.4. OPB Bus at the top-level is

represented in the form of a macro that communicates with the actual Microblaze OPB

bus through the OPBHC Bridge. In this manner. OPB peripherals are designed at a

higher level of abstraction.

Choosing Handel-C slave peripherals to be at the top-level rather than using

Microblaze at the top-level enables the designer to address some design disadvantages

such as:

1. No direct access to the data and instruction OPB buses

42

n 1 Out

Handel-C
generated HW

, r

In t l o u t
Handel-C

generated HW

In'
i

1 Out

Handel-C
generated HW

OPB Bus in Handel-C
i

MicroBlaze system macro

MicroBlaze Processor

Instrut
LM

ILMB

;tion
b

DOPB

DLMB

.
DualPorl

Block RAT

OPR Rn<?

w

OPB_HC
Bridge

M

IV

rf I I
1

w

w

XilmxGPIO

1 r

Xilinx UART

Data • 1 1
- M b In Out TX RX

Figure 5.4: Integration of MB and Handel-C Slaves with Slaves at the Top-level

2. A set of support files must be created and current support files for current OPB

peripherals must be updated when a new OPB peripheral is added.

Figure 5.4 shows the architecture of the system being designed. The Microblaze is

represented by a rectangle with four quadrants and the space outside the large rectangle is

hardware specified in Handel-C environment with full access to the OPB and input/output

to/from the processor.

5.3 Charged-Couple Device Benchmark

A Charged-Coupled Device (CCD) is a special senor that captures an image using a light-

sensitive silicon solid-state device composed of many small cells. Light falling on a cell

is converted into a small amount of electric charge, which is then measured by the CCD

electronics and stored as a number. The number usually ranges from 0, meaning no light,

to 256 or 65,535, meaning very intense light per pixel.

43

Covered
columns

v_

Pixel Columns

Some of the columns are
covered with black strip of
paint. The light-intensity of
these pixels is used for zero-
bias adjustments of all the
cells

Figure 5.5: Internal of a CCD [26]

Due to manufacturing errors, the converted values from the light-sensitive cells

need to be calibrated. This error, called the zero-bias error, is typically the same across

columns but different across rows. For this reason, some of the left most columns of a

CCD's light-sensitive cells are blocked by a strip of black paint shown in Figure 5.5. The

actual intensity registered by these blocked cells should be zero.

If these blocked cells doe not registered a zero, the zero-bias error can be correct

by taking the average of these blocked cells of the same row and subtracting each element

from the same row. This process is repeated until all the rows have been corrected for

zero bias errors.

After zero bias errors correction, the image is compressed to reduce the number of

bits needed for storing the image in memory. Compression allows us to store more

images in limited amount of memory. Image data is divide into many 8x8 blocks where

each block is encoded using Forward Discrete Cosine Transform (FDCT) for its high

compression ratios [26].

After compression, the next step is quantizing to further compress the image by

reducing the bit precision of encoded data, thus achieving higher compression ratios at the

expense of lower image quality. The high-level functionality of the CCD can be described

44

CCD Input
Zero-Bias Adjust

yes

FDCT

Archive in
memory

/ More x

8x8

\ blocks?

_^ Compressed
Image Output

Figure 5.6: Flow-Diagram for CCD

using the flow-diagram from Figure 5.6. The four functions are Zero-Bias adjust, FDCT,

quantize, and archive in memory.

5.3.1 Pure software system

The software prototype is developed and executed on a PC which consists of 5 programs

describing the functionality of the CCD. Figure 5.7 described the flow-diagram of the

high-level model of the executable model composing of five models; CCD, CCDPP.

CNTRL, CODEC, and UART. Readers can refer to appendix A for a full description,

describing the execution of the program simulating a real CCD with the executable

models in C language [26].

5.3.2 Bus-based system

Microblaze system relies on a number peripherals connected to the Microblaze OPB bus.

To implement the CCDBM, four function blocks were created as separate entities in

Handel-C as slave peripherals for Microblaze, and connected to the OPB bus. The four

45

7 50101010
1O1S0O10
10(01101

/
-*\ CCDC

image file
CCOPPC

CNTRL.C)

UARTC)-

CODEC.C

loooioio
11101010
OQ10101Q

outputfile

Figure 5.7: Flow-Diagram of the Executable Model of the CCD [29]

slave peripherals are; Zero-Bias peripheral, FDCT peripheral, Quantize peripheral, and

Memory Archiving peripheral are depicted in Figure 5.8.

Zero-Bias
Peripheral

FDCT
Peripheral

Quantize
Peripheral

Memory
Peripheral

, , OPB Bus in Handel-C

MicroBlaze system macro

MicroBlaze Processor

OPB_HC
Bridge

ILMB

OPB Bus
DOPB

Instruction
LMB

Dual Port
Block RAM

DUMB i | ,

>ort I I

W * | Data
LMB

I
XilmxGPIO 1 Xilmx UART

p T

In Out TX RX

Figure 5.8: Integration of MB and CCDBM Slaves Peripherals

The slave peripherals are connected to the Microblaze OPB bus and communicate

with the Microblaze processor through the OPB-HC Bridge which is a Handel-C

generated hardware that brings the OPB signals to the Handel-C environment. This is

46

Figure 5.9: Integration of MB and NoC

how a bus-based implementation of a Microblaze system was implemented, for

comparison with the NoC-based system.

5.3.3 NoC-Based Implementation of a Microblaze System

In the bus-based system, function blocks are created as separate slave peripherals. In

contrast, in NoC-based system, the function blocks are mapped into hardware cores

within the NoC and the whole NoC is treated one peripheral as shown in Figure 5.9. In

the NoC, the four cores are; Zero-Bias core, FDCT core, Quantize core, and Memory

Archiving core.

For simplicity, the bottom left router is use as reference node or a starting node.

The first core which is the Zero-Bias core is connected to the reference router. From a

clockwise direction, the next three cores then follow: FDCT core, Quantize core and

Memory core. How the cores are arranged is determined by the designer. But in general,

47

Figure 5.10: JPEG Encoding Sequence for a Block of 8 x 8 Pixels

it is a good idea to place cores that have high interaction close together because driving

long wires increases latency and power consumption.

5.4 JPEG Benchmark

The whole process of the CCD benchmark is to capture the image and compress the

image for encoding. Now, the compressed image needs to be encoded that can be serially

transmitted and for storage by other external devices such as a computer. Therefore, this

step is to encode the data into JPEG format where the values are serialized in a zigzag

pattern shown in Figure 5.10.

5.4.1 Pure software system

An encoding module was created to complete the encoding process of an image in a

digital camera. This module imports the compressed data that goes through the CCD

process and following the zigzag pattern, the data is encoding into JPEG format. Once

the data is JPEG encoded, it is ready to be store in memory and its format can be read by

external device.

48

Zero-Bias
Peripheral

, i
i

FDCT
Peripheral

ik

Quantized
Peripheral

Memory
Penpheral

A

i r

OPBBus

MicroBlaze Processor

Instruc
LMt

ILMB

tion
i

DOPB .

DLMB -
i

DPRRiis

Encoding
Penpheral

a

r

OPB_HC
Bridge

a

11

'

,,
li

i
1 Xilinx GPIO .

Dual Port 1
Block RAM

i
,i

Data u

LMB

'

XihnxUART

t
! 1

In Out TX RX

Figure 5.11: Integration of MB and JPEG Slave Peripherals

5.4.2 Bus-based system

To complete the JPEG benchmark, in addition to the CCD peripherals, an encoding

peripheral was created addition to the CCD benchmark shown in Figure 5.11. The

advantage of using Celoxica's Design Kit (DK) graphical user interface (GUI) along with

third party FPGA design tools (e.g. Xilinx EDK and ISE) is the simplicity of

incorporating new peripheral on existing system. For creating a new peripheral, the

hardware component is designed which includes libraries provided by the DK tools to

connect the peripheral to the OPB bus. Then, changes are made to the memory addresses

to include the new peripheral. This demonstrates the power and ease of using an ESL

tool in designing a processor-based system.

5.4.3 NoC system

For the NoC system, a JPEG encoding core was created and placed on an empty core.

Since most of the data transactions for the encoding core are made between the memory

49

Figure 5.12: NoC System for JPEG

core and the encoding core. Logically, the encoding core is placed next to the memory

core shown in Figure 5.12.

5.5 Summary

In this chapter, the design methodology for NoC implementation was first presented,

followed by a description of the design tools and the environment in which the NoC was

designed and implemented. A detailed description of the implementation of bus-based

and NoC-based Microblaze systems in the Celoxica Handel-C environment was

presented. Finally, the application mapping process for the two test applications was

presented. These two applications were mapped into three types of systems: purely

software-based system, bus-based system, and NoC-based system. The next chapter

discusses the results obtained from application mapping.

CO

2

50

Chapter 6

Comparison ofNoC-Based System and Bus-
Based System

In this chapter, the implementation results for NoC-based system and bus-based system

are presented and compared. First, the processing cycle of the two test applications

implemented on the NoC-based system and bus-based system is described. Next, the area

cost of implementing the NoC-based system and the bus-based system targeting an FPGA

is discussed. Finally, speed comparison is presented in two parts; first a comparison

between an NoC-based system and a purely software system; and second a comparison

between an NoC-based system and a bus-based system.

6.1 Processing Cycle

An NoC-based system increases performance by allocating more resources for

communication tasks through pipelining. The following section describes the processing

cycle of the two systems; a bus-based system and an NoC-based system running two

applications; CCDBM and JPEG.

6.1.1 CCDBM Processing Cycle

Figure 6.1 shows the CCDBM processing cycle for a bus-based system. In the bus-based

system, the processing cycle starts when Zero-Bias block receiving raw data from the host

PC and performing zero-bias adjustment. After the raw data is adjusted, the zero-bias

51

Block Cycle

Function Block 1 2 3 4 5 6 7 8

Zero-Bias

FDCT

Quantization

Memory

ZB Tx

Rx FDCT Tx

Quantize Tx

Store
Data

Processing Cycle

Figure 6.1: Bus-Based Processing Cycle for CCDBM

data is transmitted to Forward Discrete Cosine Transform (FDCT) block in the next block

cycle.

In a bus-based system, only one peripheral is activated at any given time.

Therefore, data is first temporally stored until the next function block is activated. After

the FDCT block has received the adjusted data, the FDCT block will run its

computational hardware and the data is transmitted to the next function block on the next

processing cycle. On block cycle 6 and 7, the Quantized block is activated for data

quantization and the quantized data is transmitted on block cycle 7, to be stored in the

Memory Archive block. It takes a total of 8 block cycles to complete the processing cycle

of an 8 x 8 block. And this procedure continues until all 8 x 8 blocks are processed.

In contrast, an NoC system allows for more parallelism. The processing cycle for

CCDBM implemented on a NoC-based system is depicted in Figure 6.2.

The Zero-Bias block starts after receiving raw data from the host PC. On block

cycle 1, Zero-Bias block will perform zero-bias adjust and then the data is transmitted on

the next block cycle. Since all the function blocks are active, the Zero-Bias block can

transmits the data directly to FDCT block without the need of the data to be temporally

stored, saving one block cycle.

52

Block Cycle

Function Block 1 2 3 4 5 6 7 8

Zero-Bias

FDCT

Quantization

Memory

l*Procesan

2"* Processor

3"* Processin

ZB Tx

Rx FDCT

ZB

Tx

Quantize

g Cycle

gCycle

g Cycle

Tx

Rx

Tx

Store
Data

FDCT

ZB

Tx

Quantize

Tx

Rx

Tx

Store
Data

Figure 6.2: NoC-Based Processing Cycle for CCDBM

On block cycle 3, the FDCT function block performs its computational hardware

and the data is transmitted to Quantized block on block cycle 4 while Zero-Bias block

performs zero-bias adjust on a new set of data block. As the first processing cycle is

completed, a new processing cycle have already been started and this cycle continue until

all 8 x 8 blocks are processed.

In the bus-based system, it takes 8 block cycles to processed 8 operation blocks

while in the same block cycles for NoC system, it has processed 19 operation blocks; an

NoC speed up of 2.375.

53

Block Cycle

Function Block 1 2 3 4 5 6 7 8 9 10 11

Zero-Bias

FDCT

Quantization

Memory

JPEG

ZB Tx

Rx FDCT Tx

Quantize Tx

Store
Data Tx

Rx Encodej

Processing Cycle

Figure 6.3: Bus-Based Processing Cycle for JPEG

6.1.2 JPEG Processing Cycle

The processing cycle for JPEG application is implemented on a bus-based system and on

an NoC system are depicted in Figure 6.3 and Figure 6.4 respectively. JPEG application

is made up of 5 function blocks that include the 4 function blocks from the CCDBM with

an additional of a JPEG function block. We can see that with the addition of the JPEG

function block, the processing cycle is increased by 3 to a total of 11 block cycle.

In the NoC system, the addition of the JPEG block increased the processing cycle

by 2 to a total of 7 processing cycle. Comparing both systems, the bus-based system

takes 11 block cycle to completed one processing cycle. While in an NoC system, it has

processed 33 operation blocks in the same amount of block cycles, an NoC speed up of 3.

What we can conclude from this that the NoC-based system increase performance by

allocating more resources to the communication aspect of the network for pipelining.

Also, we can see a greater NoC speed up for larger system with greater number of

function blocks.

54

Block Cycle

Function Block 1 2 3 4 5 6 7 8 9 10 11

Zaro-Bias

FDCT

Quantization

Memory

JPEG

Z B
r

Tx
i

Rx FDCT

ZB

Tx

Quantize

Tx

Rx

Tx

Store
Data

1 * Processing Cycle

V Processing Cycle

9* Processing Cycle

4F» Processin g Cycle

FDCT

Tx

Rx

ZB

Tx

Quantize

Encode

Tx

Rx FDCT

Tx

Store
Data Tx

Rx

ZB

Tx

Quantize

Encode

Tx

Rx

Tx

Store
Data

Figure 6.4: NOC-Based Processing Cycle for CCDBM

6.2 Implementation Results

The implementation results are presented in Table 6.1 which shows the speed

performance and area utilization of each system including area utilization of each

individual computational hardware block.

6.2.1 Area Results

As mention earlier, MB is a 32-bit embedded soft-core RISC processor and from Table

6.1, at 2,061 slices, MB takes up 17% and 37% of the total logic hardware for the bus-

based system and the NoC-based system respectively.

In the CCDBM application implemented on the bus-based system, the biggest

peripheral in terms of area utilization is Zero-Bias peripheral at 4,189 slices. The reason

for the large area cost is not only the Zero-Bias peripheral performs zero-bias adjustment,

it also stores the raw data. The next largest peripheral is FDCT at 2,290 slices, where

most of the computational operation for image compression takes place. This is followed

by Quantize and Memory Archive peripherals at 1,281 slices and 1,985 slices

respectively.

55

Table 6.1: Synthesis Results of Three Systems

System

Channel Width

MB (slice)

NoC (slice)

Zero-Bias (slice)

FDCT (slice)

Quantize (slice)

Memory (slice)

JPEG (slice)

Total (slice)

Hardware freq.

Execution time

NoC Speed-up

CCDBM

Bus-Based

32 bit

NoC

16 bit

Software

n.a.

2061 2061

2407

4189 880

2290 153

1281 34

1985 50

11806

50 MHz

18.65 ms

2.47

5585

50 MHz

7.53 ms

-

-

12 ms

1.59

JPEG

Bus-Based

32 bit

NoC

16 bit

Software

n.a.

2061 2061

2407

4189 880

2290 153

1281 34

1985 101

1506 118

13310

50 MHz

23.55 ms

3.12

5599

50 MHz

7.54 ms

-

-

12.79 ms

1.69

56

For NoC-based implementation of CCDBM, the NoC peripheral is the only

peripheral that housed the whole NoC system. At 2,407 slices, it is comparable to

industrial designs. The four cores; Zero-Bias, FDCT, Quantize and Memory Archiving

takes up 880, 153, 34, and 50 slices respectively. At 5,585 slices of the total area utilized

for NoC based system, it is much smaller compared to the bus-based system at 11,806

slices.

Figure 6.5a compares the area cost of the computational block of both systems

implementing CCDBM. Both graphs clearly show that the peripherals in the bus-based

system have larger area cost compared to the NoC-base system cores. For example, the

Quantize peripheral in the bus-based system is 37 times larger than the Quantize core in

the NoC-based system, while both computational blocks perform the same functions. The

reason for the great variation in area cost is because implementing peripherals comes with

great area overhead.

Looking at area utilization for JPEG implementation depicted in Figure 6.5b, it

reinforces our finding that implementing peripherals comes with great area overhead.

The total area utilization for JPEG implementation in the bus-based system and NoC-

based system is 13,310 and 5,599 slices respectively.

57

Hardware Cost per Function Block

a MB Bus-Based

• MB NoC

Zero-Bias FDCT Quantize

Function Block

Memory

a) CCDBM Application

Hardware Cost per Function Block

• MB Bus-Based

• MB NoC

Zero-Bias FDCT Quantize Memory JPEG

Function Block

b) JPEG Application

Figure 6.5: Area Comparison

58

6.2.2 Speed Results

We have demonstrated the advantage in area utilization of implementing an NoC-based

system over bus-based system. In this section, we will focus on speed performance

comparison of the two systems. Also, we compare speed performance between a

hardware implementation of an NoC-based system to a purely software system running

the same applications.

From Table 6.1, the software execution time of a purely software system

implementing the CCDBM is 12 milliseconds compared to 7.53 milliseconds from NoC

system, an NoC speed up of 1.59. For JPEG implementation, software execution time is

12.79 milliseconds and 7.54 milliseconds for NoC system, an NoC speed up of 1.69. This

shows that hardware implementation is faster than the software system even though the

MB runs at only 50 MHz compared to a CPU with clock frequency in GHz for software

implementation on a PC.

For hardware comparison, the NoC-based system execution time is 7.53

milliseconds while the execution time for bus-based system is 18.65 milliseconds, an

NoC speed up of 2.47 for CCDBM implementation. For JPEG implementation, the

execution time is 7.54 milliseconds for NoC-based system and 23.55 milliseconds for

bus-based system, an NoC speed up of 3.12. Even though the NoC system is not

optimized since it is written in a high level language. This research has shows that the

NoC-based svstem gives superior performance compared to the bus-based system.

6.3 Summary

In this chapter, the implementation results for the NoC-based system and the bus-based

systems were presented. The advantages of using cores in NoC-based system over

peripherals in bus-based system can have a tremendous impact on area cost for FPGA

implementation. The total area cost for CCDBM applications in NoC system and bus-

based system is 5,585 and 11,806 slices respectively and for JPEG applications. 5.599

and 13.310 slices respectively. Finally, in our speed performance analysis, we have

59

shown that NoC-based system is superior to the bus-based system. This is because the

NoC architecture encourages a higher level of pipelining compared to bus-based system.

The next chapter concludes this thesis by providing a summary of the research

contributions. In addition, a discussion of some of the work my colleagues are currently

working and future work that remains to be done in this area is also presented.

60

Chapter 7

Conclusions and Future Work

As the complexity of system on chip continues to grow at its present pace, new challenges

will surface that require solutions through the development of new technology, design

techniques and methodologies. Communication infrastructure has always been

overlooked during the development of electronic systems but with the increase in

complexity, communication infrastructure will play a crucial role in future development.

It is evident that a new design methodology is required and the adoption of Networks-on-

Chip is inevitable in the near future.

NoCs present a new communication architecture where the infrastructure allows

for greater dimension of parallel processing and resources utilization compared to a bus-

based system. NoC's greater flexibility and robustness allows for more opportunities for

hardware customization for addressing various application needs. Significant amount of

theoretical work supports the vast potential of NoC and more practical studies are needed

to evaluate NoCs driven by real applications.

This thesis explored design and implementation of an NoC-based system for

FPGAs, running two real world applications. We compared the results to a bus-based

system running the same applications. After much exploration and literature review, we

concluded that a mesh circuit-switched NoC architecture is most suited for FPGA

implementation. In Chapter 4, the design and implementation of NoC components such

as, router, crossbar, network adaptor and links were discussed in detail. In Chapter 5,

61

application mapping on an NoC-based system and bus-based system was presented. In

Chapter 6, the results from the NoC-based system and bus-based system implementing

real test applications were presented.

7.1 Summary of Research Contributions

The following contributions were made over the course of this research:

1. A preliminary case study was conducted in which the feasibility of applying a

NoC-based approach for FPGA implementation was investigated.

2. We succeeded in creating and implementing a working a NoC platform in Handle-

C, a high level language to facilitate rapid prototyping for meeting today's

communication challenges.

a. The simple mesh topology can significantly reduce network complexity while

still providing reasonable area utilization, reduced data latency, and faster

speed compared to a bus-based system.

b. The implementation of circuit-switched as a switching protocol eliminates

most of the traffic disruption (i.e. deadlock, livelock and starvation) in the

network. Thus, it can better provide higher Quality of Service.

3. A case study was conducted that evaluated and compared the area utilization and

speed performance of an NoC-based system and a bus-based system running real

applications. The results from the prototypes provide more accurate performance

estimation and prediction which gives this research more practical value.

7.2 Future Work

Through the progression of this research, many interesting topics continue to surface

during the development of the NoC. Because of time constraints, these topics are out of

the scope of this research but they can provide an excellent opportunity for future work to

further the design space exploration of NoC. Follow-up research can use these

benchmarks and NoC-based system that was developed, for implementing and evaluating

different NoC architectures.

62

First, most router implementation in a mesh topology consists of ports connecting

to its immediate horizontal and vertical neighbours. Although this is a typical router

configuration, router can be further expand to include diagonally connections. This can

further increase bandwidth for routing and also diagonal connection can reduce the

number of hops need to be taken for longer routes. Few concerns are increasing physical

wires will increase area cost, more wires consume more energy and the increase

complexity of the router system for incorporate more routing ports.

Second, circuit-switched are best for applications where traffics are mostly static

and predictable, while packet-switched works well with dynamic traffic. Therefore, a

more sophisticate protocols can be developed by combining a mixture of both circuit-

switched and packet-switched protocols that can be used for any types of traffic.

Finally, our proposed NoC system was developed using a high level language and

could be further improved by optimizing hardware components. Latency, speed

performance and noise immunity will be improved while requiring less area. The

network should be tested thoroughly and the evaluation metrics should expand to include

energy consumption by utilizing new tools.

63

Appendix A

Simulating a real CCD

This program is from Vahid and Givargis book on embedded system design [26]. The

high-level model starts with the CCD module which simulated a real CCD on a digital

camera by capturing an image. In this case, read it from a parameterized file that

contained pixel data of an image along with the zero-bias error. The CCD model

initializes our model just prior for image processing by simple reading the image directly

from a file.

The next model is CCDPP which performs the zero-bias adjustment processing.

This module also exports three procedures called Ccdpplnitialize. CcdppCapture, and

CcdppPopPixel. The Ccdpplnitialize procedure performs any necessary initializations.

The CcdppCapture procedure is called to actually capture an image. Note that this

procedure calls on the CcdCapture and CcdPopPixel procedures of the CCD module to

obtain an image. As it is obtaining the image pixels, it also performs the zero-bias

adjustment. The CcdppPopPixel procedure is called to get the pixels out of the CCDPP

The next module is called CODEC which models the forward DCT encoding.

The CODEC module exports the procedures Codeclnitialize, CodecPushPixel,

CodecPopPixel, and CodecDoFdct. The Codeclnitialize procedure resets an index that is

used by the push and pop procedures for traversing two buffers. The CodecPushPixel is

called 64 times to fill an input buffer, called ibuffer, which holds the original block of 8x8

pixels that is to be encoded. The CodecDoFdct is called to actually perform the

transform. Therefore, to encode a block of 8x8 pixels, we call CodecPushPixel 64 times,

64

and CodecDoFdct once followed by 64 calls to CodecPopPixel. This module simply

implements the FDCT for the given equation:

C(h) = if (h=0) then l/sqrt(2) else 1.0

F(u,v) = V* * C(u) * C(v) Sx=a7 S>=0 7 Dxy * COS(JI(2X + l)u/16) * COS(JI(2V + 1)\/16)

For performance purposes, the cosine function is recomputed to 64 possibilities

and are store in a table because the only variables in the cosine argument expression are

the integers x and u and each of these variables can take one of 8 values, from 0 to 7

The last module that will complete the implementation of the digital camera is the

heart of the system, called CNTRL, short for controller. This module exports three

procedures name CntrlCompressImage and CntrlSendlmage. The CntrlCompressImage

procedure uses the other modules that were use so far, namely the CCDPP and the

CODEC to capture and perform FDCT and quantization on an image. Part of what this

procedure has to do is to break the image into windows, or what can be referred to as

blocks of 8x8 pixels. Once a block is FDCT encoded, it is quantized and stored in

memory. The CntrlSendlmage procedure simply transmits the encoded image, serially,

using the UART module.

65

A.i CCD Module in C

#include <stdio.h>
#define SZ_ROW 64
#define SZCOL (64 + 2)
static FILE *imageFileHandle;
static char buffer[SZ_ROW][SZ_COL];
static unsigned rowlndex, collndex;

void Ccdinitialize (const char *imageFileName) {
imageFileHandle = fopen(imageFileName, "r"):
rowindex = -1 :
collndex = -1 ;

}

void CcdCapture (void) {
int pixel:
rewind(imageFileHandle);
for (rowlndex=0; rowIndex<SZ_ROW; rowIndex++) {

for (collndex=0; colIndex<SZ_COL; colIndex++) {
if (fscanf(imageFileHandle, "%i", &pixel) = 1) {

buffer [rowlndex] [colindex] = (char)pixel:

}
}

}
rowlndex=0;
collndex=0;

}

char CcdpopPixel (void) {
char pixel;
pixel = bufferfrowlndex] [collndex];
if (++colIndex=SZ_CP) {

collndex=0;
if (++rowIndex=SZ_ROW) {

colIndex=-l;
rowIndex=-l;

}
}
return pixel;

}

66

A.2 CCDPP I Module in C

#define S Z R O W 64
#define S Z C O L 64
static char buffer[SZ_ROW][SZ_COL];
static unsigned rowlndex, collndex;

void Ccdppinitialize() {
rowIndex=-1;
colIndex=-l;

}

void CcdppCature(void) {
char bias:
CcdCaptureO
for (rowlndex=0; rowIndex<SZ_COL; rowIndex++) {

for (colIndex=0;colIndex<SZ_COL; colIndex++) {
buffer[rowIndex][colIndex]=CcdPopPixel();

}
bias=(CcdPopPixel() + CcdpopPixel()) 12;
for (collndex=0; colindex<SZ_COL; colIndex++) {

buffer[rowIndex][colIndex]-=bias;
}

}
rowlndex=0;
collndex=0;

}

char CcdppPopPixel(void) {
char pixel;
pixel=buffer[rowIndex] [collndex];
if (++colIndex==SZ_COL) {

collndex=0;
if(++rowIndex==SZ_ROW) {

colIndex=-l;
rowIndex=-l;

}
}
return pixel;

}

67

A.3 UART Module in C

#include <stdio.h>
static FILE *outputFileHandle;

void UartInitialize(const char *outputFileName) {
outputFileHandle=fopen(outputFileName, "\v"):

}

void UartSend(char d) {
fprintf(outputFilehandle, "%i/n", (int)d);

i

68

A.4 CODEC Module in C

static const short COS_TABLE[8][8]= {
{ 32768. 32138, 30273, 27245, 23170, 18204, 12539, 6392 j ,
{ 32768. 27245, 12539, -6392, -23170, -32138, -30273, -18204}.
{ 32768, 18204, -12539, -32138, -23170, 6392, 30273, 27245},
{ 32768, 6392, -30273, -18204, 23170, 27245, -12539, -32138},
{ 32768, -6392. -30273, 18204, 23170, -27245, -12539, 32138},
{ 32768, -18204, -12539, 32138, -23170, -6392, 30273, -27245}.
{ 32768, -27245, 12539, 6392. -23170, 32138, -30273. 18204}.
{ 32768, -32138, -30273, 27245, 23170, -18204, 12539, -6392}.

static short ONE_OVER_SQRT_TWO=23170, ibuffer[8][8]. obuffer[8][8], idx;
static double COS(int xy. int uv) { return COS_TABLE[xy][uv]/32768.0;)
static double C(int h) { return h? 1.0:ONE_OVER_SQRT_TWO/32768.0;)

static int FDCT(int u, int v, short img[8][8]) {
double s[8], r=0; int x;
for (x=0; x<8; x++) {

s[x] = img[x][0]*COS(0,v) + img[x][l]*COS(l,v) + img[x][2]*COS(2,v)
+ img[x][3]*COS(3,v) + img[x][4]*COS(4,v) + img[x][5]*COS(5.v)
+ img[x][6]*COS(6,v) + img[x][7]*COS(7.v);

}
for (x=0; x<8; x++) r+=s[x]*COS(x,u);
return (short)(r*.25*C(u)*C(v));

void Codeclnitialize (void) {idx=0}

void CodexpushPixel (short p) {
if(idx=64) idx=0;
ibuffer[idx/8][idx%8]=p; idx++;

}

short CodecPopPixel (void) {
short p;
if(i d x = 6 4) idx=0;
p=obuffer[idx/8][idx%8]; idx++;
return p;

void CodecDoFdct(void) {

69

int x, y;
for(x=0; x<8; x++) {

for(y=0; y<8; y++) obuffer[x][y] ; FDCT(x,y. ibuffer);
}
idx=0;

70

A.5 CNTRL module in C

#define S Z R O W 64
#define S Z C O L 64
#define NUM ROW_BLOCKS (SZROW/8)
#defme NUM_COL_BLOCKS (SZCOL/8)
static short buffer[SZ_ROW][SZ_COL}, i, j , k, 1, temp;
void Cntrllnitialize (void) {}
void CntrlCapturelmage (void) {

CcdppCapture ();
for(i=0; i<SZ_ROW; i++) {

for(j=0;j<SZ_COL;j++) {
buffer[i] [j]=CcdppPopPixel();

}
}

}
void CntrlCompressImage (void) {

for (i=0; i<NUM_ROW_BLOCKS; i++) {
for (j=0; j<NUM_COL_BLOCKS; j++) {

for (k=0; k<8; k++) {
for (1=0; 1<8; 1++) {

CodecPushPixel((char)buffer[i*8+k][j*8+l]);
CodecDoFdct();
for (k=0; k<8; k++) {

for (1=0; 1<8; 1++) {
buffer[i*8+k][j*8+l]=CodecPopPixel();
buffer[i*8+k][j*8+l] » = 6 ;

}
}

}
}

}
void CntrlSendlmage(void) {

for(i=0; i<SZ_ROW; i++) {
for(j=0;j<SZ_COL;j++) {

temp=buffer[i][j];
UartSend(((char*)«&temp)[0]);
uartSend(((char*)&temp)[1]);

}
}

}

71

A.6 MAIN Module in C

int main (int argc, char * argv[]) {
char *uarOutputFileName=argc > 1? argv[l]:"uart_out.txt";
/* initialize the modules*/
Uartlnitialize(uartOutputFileName);
Ccdlnitialize(imageFileName);
Ccdpplnitialize();
CodecInitialize();
Cntrllnitialize();
/* simulate functionality*/
Cntrl Capturelmage();
CntrlCompressImage();
CntrlS endlmage();

}

References

[1] C. Hilton, B. Nelson, "PNoC: a flexible circuit-switched NoC for FPGA-based
systems," In Proc IEE Computer. Digit Technology, Vol. 153, No. 3, May 2006.

[2] U. Y Ogras, R. Marculescu, H. G. Lee, P Choudhary, D. Marculescu. M.
Kaufman, P. Nelson, "Challenges and Promising Results in NoC Prototyping
using FPGA ", In IEEE Computer Society, 2007.

[3] I. D. L. Anderson, "A Cad Tool for Design Space Exploration of Embedded CPU
Cores for FPGAs," M.S. thesis, University of Windsor, 2007

[4] Siguenza-Tortosa, "Proteo: The Development of a Practical Network-on-Chip,"
Ph.D. dissertation, Tampere University of Technology, Nov. 30, 2005.

[5] J. Duato, S. Yalmanchili and L. Ni. "Interconnection networks: An Engineering
Approach," Morgan Kaufmann, San Francisco, CA, 2003.

[6] S. P Sample and M. R. Butts, "Optimized Emulation and Prototyping
Architecture," U.S. Patent, US 6,625,793 B2, Sept. 23, 2003.

[7] D. Wiklund, D. Liu, "SoCBUS: Switched Network on Chip for Hard Real Time
Embedded Systems," In Proc. International Parallel and Distributed Processing
Symposium (IPDPS'03), p. 78a, 2003.

[8] G. D. Micheli, L. Benini, "Technology and Tools Networks on Chips," Morgan
Kaufmann, 2006.

[9] P. T. Wolkotte, G J. M. Smit, G. K. Rauwerda, L. T. Smit, "An Energy-Efficient
Reconfigurable Circuit-Switched Network-on-Chip," In Proc IEEE 19thParallel
and Distriubuted Processing Symposium, 2005.

[10] W. Dally and B. Towles, "Route Packets, Not Wires: OnChip Interconnection
Networks," In Proceedings of Design Automation Conference. DAC 2001, pp.
684-689, 18-22 June 2001.

73

[11] C. Bobda, M. Majer. D. Koch, A. Ahmadinia, and J. Teich, "A Dynamic NoC
Approach for Communication in Reconfigurable Devices," In Proc. Field
Programmable Logic & Applications Conference, 2005.

[12] T. A. Bartic, J.-Y Mignolet, V Nollet, T. Marescaux, D. Verkest, S. Vernalde,
and R. Lauwereins, "Highly Scalable Network on Chip for Reconfigurable
Systems." In Proc. International Symposium on System-on-Chip. pp. 79-82,
November 2003.

[13] T. Bjerregaard and S. Mahadevan, "A Survey of Research and Practices of
Network-on-Chip," ACM Computing Surveys, Vol.38. Article 1, March 2006.

[14] EECS instructional and Electronics Groups Homepage at University of California
Berkeley, http://inst.eecs.berkeley.edu/. January 2007.

[15] Altera Corporation Website. October 2008, http://www.altera.com/.

[16] Xilinx Incorporated Website. October 2008, http://www.xilinx.com/.

[17] Xilinx Incorporated. "Spartan-3 FPGA Family: Complete Data Sheet," January
2005.

[18] Nios II Website. January 2007,
http://www.altera.com/products/ip/processors/nios2/ni2/index/html.

[19] Altera Corporation. "Quartus II Version 5.0 Handbook," Version 5.0.0, May
2005.

[20] Altera Corporation. SOPC builder. January 2007,
http://www.altera.com/producst/software/products/sopc/sop-index.html.

[21] Xilinx Incorporated. "Microblaze Processor Reference Guide," UG081 (v5.1)
April 2, 2005.

[22] Celoxica Limited, "Platform Developer's Kit MicroBlaze Manual," September
2007.

[23] T. A. Bartic, D.Verkest, S.Vernalde, T. Marescaux, R. Lauwereins,
"Interconnection Networks Enable Fine-Grain Dynamic Multi-Tasking on
FPGAs," In Proc. Field Programmable Logics, p795-805, 2002.

[24] D. Wiklund and D. Liu, "Design of a system-on-chip switched network and its
design support," In Proc of the Design Automation Conference, 2001.

74

http://inst.eecs.berkeley.edu/
http://www.altera.com/
http://www.xilinx.com/
http://www.altera.com/products/ip/processors/nios2/ni2/index/html
http://www.altera.com/producst/software/products/sopc/sop-index.html

[25] B. Sethuraman, P Bhattacharya, J. Khan, R. Vemuri, "LiPaR: A Light-Weight
Parallel Router for FPGA-based Networks-on-Chip," ACM GLSVLSI, April 17,
2005.

[26] F Vahid, T. Givargis, "Embedded System Design a Unified Hardware/Software
Introduction," Hoboken, NJ: Wiley, 2002.

[27] P.P Pande, C. Grecu, M. Jones, A. Ivanov, R. Saleh, G. D. Micheli "Design,
Synthesis, and Test of Networks on Chips," IEEE Design and Test of Computers,
Vol.22, pp. 404-413, September, 2005.

[28] EETimes Website, "Sharp, Celoxica leverage C variants to speed design,"
December 08, 2000, http://EETimes.com.

[29] C. Wayne Brown and B. J. Shepherd. "Graphics File Formats - Reference and
Guide," Connecticut: Manning Publications Company, 1995.

[30] L. Benini and D. Bertozzi, "Network-on-chip Architectures and Design
Methods, " In Proc. IEE Computer Digit Technology, Vol. 152, pp. 261-272,
2005.

[31] K. C. Chang, J. S. Shen, T. F Chen, "A Low-Power Crossroad Switch
Architecture and Its Core Placement for Network-On-Chip," ACM ISLPED,
August8-10, 2005.

[32] J. C. P Ortiz, "Design of Components for a NoC-Based MPSoC Platform,"
Eindhoven University of Technology, June 30, 2005.

[33] C. R. Hilton, "A Flexible Circuit-Switched Communication Network for FPGA-
Based SoC Design," Brigham Young University, August, 2005.

[34] N. Kavaldjiev, G. J. M. Smit, P. G. Jansen, "A Virtual Channel Router for On-
Chip Networks," In Proc. IEEE SoC Conference, September, 2004.

[35] J. D. Owens, W J. Dally, R. Ho, D. N. Jayasimha, S. W Keckler, L. Peh,
"Research Challenges for On-Chip Interconnection Networks," In Proc. IEEE
Computer Society, 2007.

[36] K. Ravindran, N. Satish, Y Jin, K. Keutzer, "An FPGA-based Soft
Multiprocessor system for IPV4 Packet Forward," In Proc. Field Programmable
Logic, pp 487-492, August, 2005.

75

http://EETimes.com

[37] D. Wiklund, D. Liu, "Switched Interconnect for System-on-a-Chip Designs," In
Proc. IP Europe Conference, 2000.

[38] I. Saastamoinen, "Interconnect IP Node for Future System-on-Chip Designs,"
IEEE International Workshop on Electronic Design, Test and Applications, 2002.

[39] J. Hu, R. Marculescu, "Exploiting the Routing Flexibility for Energy Terformance
Aware Mapping of Regular NoC Architectures," In Proc. DATE Conference,
March, 2003.

[40] J. Liu. L Zheng, H. Tenhunen, "A Circuit-Switched Network Architecture for
Network-on-Chip," In Proc. IEEE SOC Conference, pp. 12-15 Sept., 2004.

[41] J. Hu, R. Marculescu, "Energy-aware mapping for Tile-based XoC Architectures
under performance Constraints," In Proc. Asia and South pacific Design
Automation Conference, pp 223-233. January, 2003.

[42] L. Benini and G. D. Micheli. "Networks on Chips: A new Soc Paradigm," IEEE
Computer. 35(1):pp. 70-80, January. 2002.

[43] P. H. Pham, Y. Kumar, C. Kim, "High Performance and Area-Efficient Circuit-
Switched Network on Chip Design," In Proc. IEEE International Conference on
Computer and Information Technology, 2006.

[44] P.P. Pande, C. Grecu, M. Jones, A. Ivanov, R. Saleh, "Performance evaluation and
Design Trade-offs for Network-on-Chip Interconnection Architectures," IEEE
Transaction onComputers, Vol. 54(8), pp. 1025-1040. Aug., 2005.

[45] D. Kim, K. Lee, S. Lee, H. J. Yoo, "A Reconfigurable Crossbar Switch with
Adaptive Bandwidth Control for Networks-on-Chip," In Proc. ISACS. Vol.3, pp.
2369-2372. 2005.

[46] A. Ahmadinia, et al., "A Practical Approach for Circuit Routing on Dynamic
Reconfigurable Devices," In Proc. RSP. pp. 84-90, 2005.

[47] S. Sathe, D. Wiklund, D. Liu, "Design of a Switching Node (Router) for on-chip
Networks," In Proc. ASICON 2003 Conference, March, 2003.

[48] P. Kundu, L. Peh, "On-Chip Interconnects for Multicores," IEEE Computer
Society. 2007.

[49] M. Saldana, L. Shannon, P. Chow. "The Routability of Multiprocessor Network
Topologies in FPGAs," In Proc. ACM/SIGDA, 2006.

76

[50] W Dally, "Virtual-channel flow control," IEEE Transactions on Parallel and
Distributed systems, Vol. 3, pp. 194-205, March, 1992.

[51] T. S. T. Mak, P Sedcole, P Y. K. Cheung, W. Luk, "On-FPGA Communication
Architectures and Design Factors," FPL, 2006.

[52] V D. Ngo, H. N. Nguyen, H. W Choi, "Analyzing the Performance of Mesh and
Fat-Tree Topologies for Network on Chip Design," EUC LNCS, pp. 300-316,
2005.

[53] Celoxica Limited, "Using Handel-C with DK," 2006.

[54] Celoxica Limited, "Platform Developer's Kit PAL Manual," 2006.

[55] Celoxica Limited, "Platform Developer's Kit Cosim Manager Manual," 2006.

[56] EEC Electrical and Computer Engineering at University of Toronto. October,
2008, http://www.eecg.toronto.edu/~lemieux/sega/ispd97/.

[57] Altera Corporation. "Avalon Bus Specification Reference Manual," Version 2.3,
July 2003.

[58] Celoxica Limited, "DK4 Handel-C Language Reference Manual," 2005.

[59] Celoxica Limited, "DK Libraries Manual," Version 4.0 SP1, 2005.

[60] Celoxica Limited, "DK deisgn Suite user guide," Version 4.0 SP1. 2005.

[61] Celoxica Limited, "Platform Developer's Kit RC host library and FTU 3 Manual"
2005.

77

http://www.eecg.toronto.edu/~lemieux/sega/ispd97/

VITA AUCTORIS

Thuan Le was born in Hong Kong on April 25, 1983. He received his B.A.Sc. degree in

electrical engineering in 2006 from the University of Windsor in Windsor. Ontario,

Canada. He is currently a candidate in the electrical and computer engineering M.A.Sc.

program at the University of Windsor. His research interests include field programmable-

related technologies, hardware and software development for embedded system.

78

	Implementation and Evaluation of an NoC Architecture for FPGAs
	Recommended Citation

	tmp.1573160099.pdf.KJL66

