7,809 research outputs found

    Exploring EEG Features in Cross-Subject Emotion Recognition

    Get PDF
    Recognizing cross-subject emotions based on brain imaging data, e.g., EEG, has always been difficult due to the poor generalizability of features across subjects. Thus, systematically exploring the ability of different EEG features to identify emotional information across subjects is crucial. Prior related work has explored this question based only on one or two kinds of features, and different findings and conclusions have been presented. In this work, we aim at a more comprehensive investigation on this question with a wider range of feature types, including 18 kinds of linear and non-linear EEG features. The effectiveness of these features was examined on two publicly accessible datasets, namely, the dataset for emotion analysis using physiological signals (DEAP) and the SJTU emotion EEG dataset (SEED). We adopted the support vector machine (SVM) approach and the "leave-one-subject-out" verification strategy to evaluate recognition performance. Using automatic feature selection methods, the highest mean recognition accuracy of 59.06% (AUC = 0.605) on the DEAP dataset and of 83.33% (AUC = 0.904) on the SEED dataset were reached. Furthermore, using manually operated feature selection on the SEED dataset, we explored the importance of different EEG features in cross-subject emotion recognition from multiple perspectives, including different channels, brain regions, rhythms, and feature types. For example, we found that the Hjorth parameter of mobility in the beta rhythm achieved the best mean recognition accuracy compared to the other features. Through a pilot correlation analysis, we further examined the highly correlated features, for a better understanding of the implications hidden in those features that allow for differentiating cross-subject emotions. Various remarkable observations have been made. The results of this paper validate the possibility of exploring robust EEG features in cross-subject emotion recognition

    Examining Emotion Perception Agreement in Live Music Performance

    Get PDF
    Current music emotion recognition (MER) systems rely on emotion data averaged across listeners and over time to infer the emotion expressed by a musical piece, often neglecting time- and listener-dependent factors. These limitations can restrict the efficacy of MER systems and cause misjudgements. In a live music concert setting, fifteen audience members annotated perceived emotion in valence-arousal space over time using a mobile application. Analyses of inter-rater reliability yielded widely varying levels of agreement in the perceived emotions. A follow-up lab study to uncover the reasons for such variability was conducted, where twenty-one listeners annotated their perceived emotions through a recording of the original performance and offered open-ended explanations. Thematic analysis reveals many salient features and interpretations that can describe the cognitive processes. Some of the results confirm known findings of music perception and MER studies. Novel findings highlight the importance of less frequently discussed musical attributes, such as musical structure, performer expression, and stage setting, as perceived across different modalities. Musicians are found to attribute emotion change to musical harmony, structure, and performance technique more than non-musicians. We suggest that listener-informed musical features can benefit MER in addressing emotional perception variability by providing reasons for listener similarities and idiosyncrasies

    Music emotion recognition: a multimodal machine learning approach

    Get PDF
    Music emotion recognition (MER) is an emerging domain of the Music Information Retrieval (MIR) scientific community, and besides, music searches through emotions are one of the major selection preferred by web users. As the world goes to digital, the musical contents in online databases, such as Last.fm have expanded exponentially, which require substantial manual efforts for managing them and also keeping them updated. Therefore, the demand for innovative and adaptable search mechanisms, which can be personalized according to users’ emotional state, has gained increasing consideration in recent years. This thesis concentrates on addressing music emotion recognition problem by presenting several classification models, which were fed by textual features, as well as audio attributes extracted from the music. In this study, we build both supervised and semisupervised classification designs under four research experiments, that addresses the emotional role of audio features, such as tempo, acousticness, and energy, and also the impact of textual features extracted by two different approaches, which are TF-IDF and Word2Vec. Furthermore, we proposed a multi-modal approach by using a combined feature-set consisting of the features from the audio content, as well as from context-aware data. For this purpose, we generated a ground truth dataset containing over 1500 labeled song lyrics and also unlabeled big data, which stands for more than 2.5 million Turkish documents, for achieving to generate an accurate automatic emotion classification system. The analytical models were conducted by adopting several algorithms on the crossvalidated data by using Python. As a conclusion of the experiments, the best-attained performance was 44.2% when employing only audio features, whereas, with the usage of textual features, better performances were observed with 46.3% and 51.3% accuracy scores considering supervised and semi-supervised learning paradigms, respectively. As of last, even though we created a comprehensive feature set with the combination of audio and textual features, this approach did not display any significant improvement for classification performanc

    The role of artist and genre on music emotion recognition

    Get PDF
    Dissertation presented as the partial requirement for obtaining a Master's degree in Information Management, specialization in Knowledge Management and Business IntelligenceThe goal of this study is to classify a dataset of songs according to their emotion and to understand the impact that the artist and genre have on the accuracy of the classification model. This will help market players such as Spotify and Apple Music to retrieve useful songs in the right context. This analysis was performed by extracting audio and non-audio features from the DEAM dataset and classifying them. The correlation between artist, song genre and other audio features was also analyzed. Furthermore, the classification performance of different machine learning algorithms was evaluated and compared, e.g., Support Vector Machines (SVM), Decision Trees, Naive Bayes and K-Nearest Neighbors. We found that Support Vector Machines attained the highest performance when using either only Audio features or a combination of Audio Features and Genre. Namely, an F-measure of 0.46 and 0.45 was achieved, respectively. We concluded that the Artist variable was not impactful to the emotion of the songs. Therefore, by using Support Vector Machines with the combination of Audio and Genre variables, we analyzed the results and created a dashboard to visualize the incorrectly classified songs. This information helped to understand if these variables are useful to improve the emotion classification model developed and what were the relationships between them and other audio and non-audio features

    Performer Identification From Symbolic Representation of Music Using Statistical Models

    Get PDF
    Music Performers have their own idiosyncratic way of interpreting a musical piece. A group of skilled performers playing the same piece of music would likely to inject their unique artistic styles in their performances. The variations of the tempo, timing, dynamics, articulation etc. from the actual notated music are what make the performers unique in their performances. This study presents a dataset consisting of four movements of Schubert's ``Sonata in B-flat major, D.960" performed by nine virtuoso pianists individually. We proposed and extracted a set of expressive features that are able to capture the characteristics of an individual performer's style. We then present a performer identification method based on the similarity of feature distribution, given a set of piano performances. The identification is done considering each feature individually as well as a fusion of the features. Results show that the proposed method achieved a precision of 0.903 using fusion features. Moreover, the onset time deviation feature shows promising result when considered individually
    • 

    corecore