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Recognizing cross-subject emotions based on brain imaging data, e.g., EEG, has

always been difficult due to the poor generalizability of features across subjects.

Thus, systematically exploring the ability of different EEG features to identify emotional

information across subjects is crucial. Prior related work has explored this question

based only on one or two kinds of features, and different findings and conclusions

have been presented. In this work, we aim at a more comprehensive investigation

on this question with a wider range of feature types, including 18 kinds of linear and

non-linear EEG features. The effectiveness of these features was examined on two

publicly accessible datasets, namely, the dataset for emotion analysis using physiological

signals (DEAP) and the SJTU emotion EEG dataset (SEED). We adopted the support

vector machine (SVM) approach and the “leave-one-subject-out” verification strategy

to evaluate recognition performance. Using automatic feature selection methods, the

highest mean recognition accuracy of 59.06% (AUC= 0.605) on the DEAP dataset and of

83.33% (AUC= 0.904) on the SEED dataset were reached. Furthermore, using manually

operated feature selection on the SEED dataset, we explored the importance of different

EEG features in cross-subject emotion recognition from multiple perspectives, including

different channels, brain regions, rhythms, and feature types. For example, we found that

the Hjorth parameter of mobility in the beta rhythm achieved the best mean recognition

accuracy compared to the other features. Through a pilot correlation analysis, we further

examined the highly correlated features, for a better understanding of the implications

hidden in those features that allow for differentiating cross-subject emotions. Various

remarkable observations have beenmade. The results of this paper validate the possibility

of exploring robust EEG features in cross-subject emotion recognition.

Keywords: EEG, emotion recognition, feature engineering, DEAP dataset, SEED dataset

1. INTRODUCTION

Emotion recognition as an emerging research direction has attracted increasing attention from
different fields and is promising for many application domains. For example, in human-computer
interaction (HCI), recognized user emotion can be utilized as a kind of feedback to provide better
content to enhance the user experiences in e-learning, computer games, and information retrieval
(Mao and Li, 2009; Chanel et al., 2011; Moshfeghi, 2012). Moreover, psychologists have verified
the important roles that emotion plays in human health. Difficulties in the regulation of negative

https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org/journals/neuroscience#editorial-board
https://www.frontiersin.org/journals/neuroscience#editorial-board
https://www.frontiersin.org/journals/neuroscience#editorial-board
https://www.frontiersin.org/journals/neuroscience#editorial-board
https://doi.org/10.3389/fnins.2018.00162
http://crossmark.crossref.org/dialog/?doi=10.3389/fnins.2018.00162&domain=pdf&date_stamp=2018-03-19
https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org
https://www.frontiersin.org/journals/neuroscience#articles
https://creativecommons.org/licenses/by/4.0/
mailto:dawei.song2010@gmail.com
mailto:pzhang@tju.edu.cn
mailto:bh@lzu.edu.cn
https://doi.org/10.3389/fnins.2018.00162
https://www.frontiersin.org/articles/10.3389/fnins.2018.00162/full
http://loop.frontiersin.org/people/416913/overview
http://loop.frontiersin.org/people/352838/overview


Li et al. EEG Features in Emotion Recognition

emotions may cause various mood disorders, such as stress
and depression (Gross and Muñoz, 1995), which may influence
people’s health (O’Leary, 1990). Hence, emotion recognition
techniques also contribute to developing e-services for mental
health monitoring. In particular, cross-subject emotion
recognition (i.e., depression prediction based on a person’s
physiological data, with a classifier learnt from the training data
from a group of patients who have been diagnosed as depression
or not) has been considered an important task for its generality
and wider applicability, compared with the intra-subject emotion
recognition.

Electroencephalogram (EEG)measurements reflect the neural
oscillations of the central nervous system (CNS) and are
directly related to various higher-level cognitive processes (Ward,
2003), including emotion (Coan and Allen, 2004). EEG-based
emotion recognition has shown a greater potential compared
with the facial expression- and speech-based approaches, as the
internal neural fluctuations cannot be deliberately concealed
or controlled. However, a main issue confronted in this
research area is how to improve the cross-subject recognition
performance. The performances of current recognition systems
are largely limited by the poor generalizability of the EEG features
in reflecting emotional information across subjects. For example,
Kim (2007) studied the bimodal data fusion method and utilized
LDA to classify emotions. Using this method, the best obtained
recognition accuracy on all three subjects’ data was 55%, which
was far lower than the best result of 92% obtained on a single
subject’s data. Zhu et al. (2015) adopted differential entropy as the
emotion-related feature and the linear SVM as the classifier. The
authors verified the recognition performance on intra-subject
and cross-subject experimental settings respectively. The average
recognition accuracy was 64.82% for cross-subject recognition
tasks, whichwas also far lower than the results of 90.97% obtained
in the intra-subject settings.

In the literature, there has been some related work that
attempted to tackle this problem and to identify robust EEG
features in cross-subject emotion recognition. For example, Li
and Lu (2009) examined the recognition performance using
ERD/ERS features extracted from different frequency bands
and found that 43.5–94.5 Hz, the higher gamma band, was
the optimal frequency band related to happiness and sadness.
Lin et al. (2010) extracted DASM features and summarized
the top 30 subject-independent features by measuring the ratio
of between- and within-class variance, and found that the
frontal and parietal electrode pairs were the most informative
on emotional states. However, no significant difference between
different frequency bands was observed in this work. Soleymani
et al. (2012) performed cross-subject emotion recognition tasks
on EEG and eye gaze data. The power spectral density (PSD)
for EEGs was extracted. The most discriminative features for
arousal were in the alpha band of the occipital electrodes, while
those for valence were in the beta and gamma bands of the
temporal electrodes. Kortelainen and Seppänen (2013) extracted
the PSD from different frequency bands, and the best cross-
subject classification rate for valence and arousal was obtained
on the feature subset in the 1–32 Hz band. Zheng et al. (2016)
focused on finding stable neural EEG patterns across subjects and

sessions for emotion recognition. The authors found that EEGs in
lateral temporal areas were activated more for positive emotions
than negative emotions in the beta and gamma bands and that
subject-independent EEG features stemmed mostly from those
brain areas and frequency bands.

In the aforementioned existing work, however, only few
kinds of features were examined and why those robust features
contribute to cross-subject emotion recognition was not studied.
Hence, in this work, we aim at a more comprehensive and
systematic exploration of a wider range of EEG features.
Specifically, we extracted nine kinds of time-frequency domain
features and nine kinds of dynamical system features from
EEG measurements. Through automatic feature selection, e.g.,
recursive feature elimination (RFE), we verified the effectiveness
and performance upper bounds of those features in cross-
subject emotion recognition. Furthermore, through manual
selection of features from different aspects, e.g., different EEG
channels, we studied the importance of different aspects in cross-
subject emotion recognition. We further conducted a correlation
analysis to better understand the implications of those features
for differentiating cross-subject emotions. The support vector
machine (SVM), a state of the art classifier, was used in all the
experiments.

2. MATERIALS AND METHODS

The procedure of the proposed methodology is illustrated in
Figure 1. We adopted a “leave-one-subject-out” verification
strategy. Each time we left one subject’s data out as the test set
and adopted the other subjects’ data as the training set. The
feature selection was conducted on the training set, and then, the
performance was evaluated on the test set. This procedure was
iterated until each subject’s data had been tested. This strategy
can eliminate the risk of “overfitting.”

2.1. Experimental Data
We conducted our analysis using two publicly accessible datasets,
namely, DEAP (dataset for emotion analysis using physiological
signals) (Koelstra et al., 2012) and SEED (SJTU emotion EEG
dataset) (Zheng et al., 2016). DEAP includes 32-channel EEG
data collected from 32 subjects (17 male, 27.2 ± 4.4 years). The
subjects’ emotions were induced through one-minute-longmusic
video clips. After each stimulus, the subjects rated their emotional
experience on a two-dimensional emotional scale proposed by
Russell (1980). The two dimensions are arousal (ranging from
relaxed to aroused) and valence (ranging from unpleasant to
pleasant). The higher a specific rating is, the more intense the
emotion is in a specific dimension. The SEED dataset contains
62-channel EEG data collected from 15 subjects (7 male, 23.27±
2.37 years), and each subject participated in the experiment three
times. The subjects’ emotions are induced through 15 film clips,
and each film clip lasts for approximately 4 min. Three classes
of emotions (positive, neutral, negative) are evaluated, and each
class has five corresponding film clips. In this study, we utilized
only the trials of positive and negative emotions to evaluate the
features’ ability to differentiate between these two emotions. For
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FIGURE 1 | The feature engineering-based method and the procedure for

verifying the performance of cross-subject emotion recognition.

consistency with the DEAP dataset, we used the one-minute-long
data extracted from the middle part of each trial in SEED.

2.2. Data Preprocessing
2.2.1. EEG Preprocessing
As a kind of neurophysiological signal, EEG data are high
dimensional and contain redundant and noisy information. In
this work, after data acquisition, the raw data was firstly pre-
processed, such as by removing the electrooculogram (EOG) and
electromyogram (EMG) artifacts and downsampling the raw data
to reduce the computational overhead in feature extraction. Two
additional preprocessing procedures were needed before feature
extraction, namely, rhythm extraction and data normalization.
The multi-channel EEG is typically regarded as a reflection of
brain rhythms. We first filtered out the four target rhythms,
namely, the theta rhythm (4–7 Hz), alpha rhythm (8–15 Hz),

FIGURE 2 | (A) The data normalization method for one subject’s multi-channel

signals. (B) The sliding window-based feature extraction method for one EEG

signal (taking one 12-s signal as an example). The mean of the calculated

values in all sliding windows was adopted as the feature.

beta rhythm (16–31 Hz), and gamma rhythm (>32 Hz). We
attempted to investigate the importance of these different
rhythms in reflecting subjects’ emotions. We excluded the delta
rhythm (<4 Hz), as this rhythm is traditionally regarded as
being correlated only with sleep. The four target rhythms
were extracted through a custom finite impulse response (FIR)
bandpass filter with a Hanning window. Secondly, we conducted
data normalization as shown in Figure 2A. The extracted rhythm
data for each subject were normalized channel by channel across
all the trials. This procedure helped to remove subject bias and
to generate more comparable features between subjects while
allowing the variability of different channels to be preserved.

2.2.2. Label Preprocessing
For DEAP, we divided the subject trials into two classes according
to their corresponding ratings on the valence dimension. A rating
higher than 5 indicated a positive class, whereas a rating lower
than 5 indicated a negative class. Hence, for valence, the two
classes were high valence (positive) and low valence (negative).
For SEED, the trials have already been categorized into three
emotional classes (positive, neutral, negative); hence, we do not
need to perform label preprocessing. For consistency, we studied
only the positive and negative samples in SEED. The emotion
recognition capability was evaluated using binary classification
tasks.

2.3. Feature Extraction
In this work, we explored the robustness of a wider range of EEG
features in cross-subject emotion recognition. Specifically, we
extracted nine kinds of time-frequency domain features and nine
kinds of dynamical system features from EEG measurements,
as listed in Table 1. Extracting features based on some domain
knowledge can provide a concise representation of the original
data and materials. In this work, after preprocessing the data,
we calculated the features for each of the four rhythms with a
4-s sliding window and a 2-s overlap, and then, the mean of the
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TABLE 1 | This table lists the two main categories of EEG features that we

extracted.

Feature type Extracted features

Time-frequency

domain features

1. Peak-Peak Mean. 2. Mean Square Value. 3. Variance.

4. Hjorth Parameter: Activity. 5. Hjorth Parameter: Mobility.

6. Hjorth Parameter: Complexity.

7. Maximum Power Spectral Frequency.

8. Maximum Power Spectral Density. 9. Power Sum.

Non-linear dynamical

system features

10. Approximate Entropy. 11. C0 Complexity.

12. Correlation Dimension. 13. Kolmogorov Entropy.

14. Lyapunov Exponent. 15. Permutation Entropy.

16. Singular Entropy. 17. Shannon Entropy.

18. Spectral Entropy.

The features were extracted for four rhythms. For the DEAP dataset, the total number of

features extracted for one trial is 2304. For the SEED dataset, the total number of features

extracted for one trial is 4464.

feature values extracted from those sliding windows was adopted
as the trial’s feature. The sliding window-based feature extraction
methods are illustrated in Figure 2B. For DEAP, the number of
features extracted for one trial is: ((9 + 9) × 32) × 4 = 2304.
For SEED, the number of features extracted for one trial is:
((9 + 9) × 62) × 4 = 4464. All features were normalized before
further analysis.

The details and reasons for selecting these candidate features
are elaborated below:

2.3.1. Time-Frequency Domain Features
Nine kinds of features in the time and frequency domains of each
signal were considered. The peak-to-peak mean is the arithmetic
mean of the vertical length from the very top to the very bottom
of the time series. Themean squared value is the arithmetic mean
of the squares of the time series. Variance measures the degree
of dispersion of the time series. After transforming the time
series into the frequency domain through Fourier transform,
we calculated the sum of the power spectral, and we further
extracted the maximum power spectral density along with its
corresponding frequency value. Three Hjorth parameters that
can reflect characteristics of activity, mobility, and complexity
were also extracted according to the work by Hjorth (1970): the
activity parameter reflects the information of the signal power,
the mobility parameter is an estimation of the mean frequency,
and the complexity reflects the bandwidth and the change in
frequency. The Hjorth parameters are considered suitable for
analyzing non-stationary EEG signals.

2.3.2. Non-linear Dynamical System Features
We also extracted nine kinds of features that can reflect the
characteristics of non-linear dynamical systems. Researchers
have found that human brain manifests many characteristics
specifically belonging to non-linear and chaotic dynamical
systems; thus, the EEG signal is inherently complex, non-linear,
non-stationary, and random in nature (Stam, 2005; Sanei and
Chambers, 2013). Approximate entropy (ApEn) is a non-linear
measure of the regularity of a signal; the more regular a signal is,
the smaller the ApEn will be (Pincus et al., 1991). C0 Complexity

is adopted to measure the amount of the stochastic components,
which assumes that a signal consists of a regular part and a
stochastic part (Lu et al., 2008).Correlation dimension determines
the number of dimensions (independent variables) that can
describe the dynamics of the system and reflects the complexity
of the process and the distribution of system states in the phase
space (Khalili andMoradi, 2009). The Lyapunov exponent is used
to measure the aperiodic dynamics of a chaotic system. This
feature can capture the separation and evolution of the system’s
initial states in the phase space. The positive Lyapunov exponent
indicates the chaos in the system (Übeyli, 2010). The Kolmogorov
entropy is also a metric of the degree of chaos and measures the
rate at which information is produced by the system as well as
the rate at which information is lost by the system (Aftanas et al.,
1997). Note that ApEn is closely related to Komolgorov entropy.
The calculation of Komolgorov entropy is greatly influenced by
the noise and dimensionality of the data. The complexity of
neural activity can also be measured using the symbolic dynamic
theory, in which a time series can be mapped to a symbolic
sequence, from which the permutation entropy (PE) can be
derived. The largest value of PE is 1, which indicates that the
time series is completely random, while the smallest value of PE
is 0, which indicates that the time series is completely regular (Li
et al., 2007). Singular spectrum entropy is calculated by a singular
value decomposition (SVD) of the trajectory, which is obtained
by reconstructing the one-dimensional time series into a multi-
dimensional phase space. This feature reflects the uncertainty
and complexity of the energy distribution and is an indicator
of event-related desynchronization (ERD) and event-related
synchronization (ERS) (Zhang et al., 2009). Shannon entropy is
a classical quantification of uncertainty and is frequently used to
measure the degree of chaos in the EEG signal. Power spectral
entropy is based on the Shannon entropy and measures the
spectral complexity of the system. After the Fourier transform
is performed, the signal is transformed into a power spectrum,
and the information entropy of the power spectrum is called the
power spectral entropy (Zhang et al., 2008).

2.4. Automatic Feature Selection
In this work, we first try to determine the upper bound of
the performance of the proposed features. Hence, we choose to
utilize some automatic feature selection techniques. Five different
automatic feature selection methods were used to extract the
most informative EEG features from the whole candidate set.
Specifically, the whole features are re-ranked according to a pre-
defined ranking criteria, e.g., based on the degree of correlation
between the feature and the target class or based on the value
of the feature weight, and then, the features above a pre-defined
threshold are selected (Huang et al., 2006; Maldonado and
Weber, 2008).

Two typical automatic feature selection techniques are the
filter-based strategy and the wrapper-based strategy (Guyon
and Elisseeff, 2003). The former is independent of any pattern
recognition algorithm and filters out a specific number of
features according to some statistical properties of the features.
The classical filter-based strategy includes the chi-squared (χ2),
mutual information, and F-test methods. The wrapper-based
strategy, on the other hand, cooperates with a specific pattern
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recognition algorithm. A widely adopted wrapper-based strategy
is the recursive feature elimination (RFE) method. We also
considered a more efficient L1-norm penalty-based feature
selection method, which has been widely used in recent years.

The details of these feature selection methods are elaborated
as follows:

2.4.1. Chi-Squared-Based Feature Selection (χ2)
The Chi-squared test is a classical statistical hypothesis test
method for testing the independence of two variables or to
investigate whether the distribution of one variable differs from
that of another. This work is concerned with the former,
formulated as below:

χ
2 =

r∑

i=1

c∑

j=1

(Oi,j − Ei,j)2

Ei,j
, (1)

where r and c are the number of categories in the two random
variables, Oi,j is the number of observations of type i, j, and the
Ei,j is the expected frequency of type i, j. In our work, a higher
χ
2 value indicates a higher correlation between a feature variable

and the target classes.

2.4.2. Mutual Information-Based Feature Selection

(MI)
The mutual information metric is derived from probability
theory and information theory. Thismetric is adopted tomeasure
the mutual dependence (shared information) between the feature
variables and the target classes. It is closely linked to the concept
of entropy, which defines how much information is contained in
a variable. Mutual information can be expressed as follows:

I(X;Y) = H(X)+H(Y)−H(X,Y)

=
∑

x

P(x) log
1

P(x)
+

∑

y

P(y) log
1

P(y)

−
∑

x,y

P(x, y) log
1

P(x, y)

=
∑

x,y

P(x, y) log
p(x, y)

P(x)p(y)
,

(2)

where H(X) and H(Y) are the marginal entropy of X and Y
respectively, and H(X,Y) is the joint entropy of X and Y .

2.4.3. ANOVA F-Value-Based Feature Selection (AF)
F-test is a representative version of the analysis of variance
(ANOVA). It is typically used to test whether the means
of multiple populations are significantly different. In feature
selection, ANOVA can measure the “F-ratio” of the between-
class variance (as in Equation 4) over within-class variance
(as in Equation 5). The “F-ratio” indicates the degree of class
separation, as formulated in Equation (3). The higher a feature
variable’s F-ratio is, the better this feature is in differentiating
different classes.

Fratio =
σ
2
between

σ
2
within

(3)

where the between-class variance and within-class variance are:

σ
2
between =

∑J
j=1(xj − x)2Nj

J − 1
(4)

and

σ
2
within =

(
∑J

j=1

∑Nj

i=1(xi,j − x)2)− (
∑J

j=1(xj − x)2Nj)

N − J
, (5)

respectively. J is the number of classes, Nj is the number of
measurements in the jth class, xj is the mean of the jth class, x is
the overall mean, and xi,j is the ith measurement of the jth class.

2.4.4. Recursive Feature Elimination (RFE)
As first introduced in Guyon et al. (2002) for gene selection,
RFE is a wrapper-based method that judges the importance of
features using an external machine learning algorithm. It adopts
a sequential backward elimination strategy. First, the algorithm
is trained on the initial whole set of features and assigns weight
to each of the features. Then, a pre-defined number of features
with the lowest-ranking absolute weights are pruned from the
current feature set. This procedure recursively repeats for several
steps until the desired number of selected features is reached.
The pseudo code of the RFE is illustrated below in Algorithm 1.
In this work, we used SVM with a linear kernel as the ranking
method, in which the RFE utilized ‖w‖ as the ranking criteria for
the importance of the features.

Algorithm 1: Pseudo Code for Recursive Feature
Elimination (RFE) Algorithm
Input:
Training set: T
Feature set: F = {f1, f2, ..., fp}
Ranking method:M(T, F)
Desired feature number: q
Number of feature to eliminate in each step: k
Output:
Final ranking feature set: R = {fr1, fr2, ..., frp}
Final selected feature set: F = {f1, f2, ..., fq}

1 Initialization;
2 Steps: S = (p-q)/k;
3 for i = 1→ S do

4 Rank set F according toM(T, F);
5 Lk ←− Last ranked k features in F;
6 R[p− i∗k+ 1 : p− (i− 1)∗k]←− Lk;
7 F←− F − Lk;

8 end

2.4.5. L1-Norm Penalty-Based Feature Selection (L1)
This method introduces a L1-norm regularization term into the
objective function to induce the sparsity by shrinking the weights
toward zero. Regularization is usually adopted in case that the
size of the training set is smaller relative to the dimensionality of
the features. This process favorites small parameters of the model
to prevent overfitting (Ng, 2004). It is natural in feature selection
settings for features with weights of zero to be eliminated from
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the candidate set. Some researchers have indicated that the L1-
norm-based method is better than the L2-norm-based method,
especially when there are redundant noise features (Zhu et al.,
2004). In this work, we adopted an SVMwith an L1-norm penalty
to select the important features. The formulation of the objective
function is as follows:

min
ω0 ,ω

n∑

i=1

[1− yi(ω0 +

q∑

j=1

ωjxi,j)]+ C‖ω‖1 (6)

‖ω‖1 is the L1-norm term, in which the ω represents the model
weights. The parameter “C” controls the trade-off between the
loss and penalty.

2.5. Manually Operated Feature Selection
The upper bound of the performance of the proposed features
can be verified using the previous automatic feature selection
methods. We chose to further evaluate the performance and
the importance of the features from different aspects, including
different electrodes, locations, rhythms, and feature types. Haufe
et al. (2014) indicated that the interpretation of the parameters
in backward methods (multivariate classifiers) may lead to the
wrong conclusions in neuroimaging data modeling. Hence,
in this work, we did not conduct analyses based on the
selected features or the corresponding feature weights of the
automatic feature selection methods. However, we adopted a
simple “searchlight” approach in which we manually selected
features from different aspects and evaluated the performances
independently.

The performances of automatic and manually operated
feature selection were verified by applying a linear SVM. The
codes for the data preprocessing, feature extraction, and cross-
subject verification processes with different feature selection
methods, as well as the extracted features, can be accessed
at the following web page: https://github.com/muzixiang/EEG_
Emotion_Feature_Engineering.

3. RESULTS

3.1. Overall Evaluation
We first determined the upper bound of the performance of
the proposed features using all of the mentioned automatic
feature selection methods. In the experiment, considering the
computational overhead of different methods as well as the
adequacy of the experiments, we employed different settings for
different methods. For filter- and RFE-based methods, we set
the step size for the number of selected features to 10. Hence,
the number of steps for DEAP and SEED are 230 and 446,
respectively. For the L1-norm penalty-based method, we set 100
different values for penalty parameter “C” ranging from 0.01
to 1 with a step size of 0.01. We adopted a “leave-one-subject-
out” verification strategy, and the performance was evaluated
by the mean recognition accuracy metric. Figures 3A–C, 4A–C
illustrate the performance of the automatic feature selection
methods with different settings on the DEAP and SEED dataset,
respectively.

For DEAP, when no feature selection method was utilized,
the recognition performance was 0.5531 (std:0.0839). The best
result of 0.5906 (std: 0.0868) was obtained with the L1-norm
penalty-based method when the value of “C” is 0.08. For SEED,
when no feature selection method was utilized, the recognition
performance was 0.7844 (std:0.1119). The best result of 0.8333
(std: 0.1016) was obtained with the RFE-based method when
the number of selected features is 130. Table 2 shows the
p-values calculated through one-way ANOVA test between the
method with best performance and other methods. For a better
comparison between those methods, as shown in Figures 3D,
4D, we also produced ROC curves. Different feature selection
methods were compared by analyzing their ROC curves and the
Areas under the ROC curves (AUC). The results showed that
the L1-norm penalty-basedmethod outperformed othermethods
on both DEAP (AUC = 0.605) and SEED (AUC = 0.904).
Moreover, the L1-norm penalty-based method incurred a lower
computational cost than the other methods. Hence, considering
both effectiveness and efficiency, the L1-norm penalty-based
feature selection method is recommended to verify the upper
bound of the recognition performance when a large amount of
features are provided.

The results demonstrate the effectiveness of our proposed
EEG features in cross-subject emotion recognition, especially on
the SEED dataset. The performance on DEAP is significantly
inferior to that on SEED. This is possibly due to the relatively low
quality of the data and the emotional ratings of trials in the DEAP
dataset. Hence, we chose to conduct further evaluation only on
the SEED dataset.

3.2. Evaluation From Different Perspectives
We also explored the importance of different EEG features in
cross-subject recognition from multiple perspectives, including
different channels, brain regions, rhythms, and feature types.

Figure 5A illustrates the performance of each individual
channel. We ranked the performance of these channels and
labeled the top one-sixth of the channels on the diagram of
the 10–20 international system of electrode placement. The
channels on the bilateral temporal regions achieved higher mean
accuracies for cross-subject emotion recognition. As shown
in Figure 5B, we also evaluated the performance of different
regions, including the left-right anterior regions, left-right
posterior regions, left-right hemispheres, and anterior-posterior
hemispheres. The partition of the regions is illustrated in the
figure, and the channels in the cross regions were eliminated
when evaluating the performance of the sub-regions. We
found that the left anterior region achieved better performance
compared to the right anterior region, left posterior region,
and the right posterior region, especially when the information
in the beta band was utilized. The left hemisphere performed
better than the right hemisphere in each band except for the
gamma band. Furthermore, the information from the anterior
hemisphere enhanced recognition performance in each band
more than that from the posterior hemisphere.

Validating the performance of different EEG rhythms was also
of interest to us. As we can see in Figure 5C, the individual beta
rhythm achieved the best performance, and the higher-frequency
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FIGURE 3 | Mean cross-subject recognition performance with different methods and settings on DEAP. (A) The filter-based methods. (B) The RFE-based method. (C)

The L1-based method. (D) The ROC curves of different methods with their best settings.

beta rhythm and gamma rhythm bands performed better than the
lower-frequency theta rhythm and alpha rhythm bands. When
the data on all four rhythms were concatenated, the performance
was greatly promoted.

The main research objective of this paper is to verify the
effectiveness of the proposed features. Thus, we also evaluated the
performances of each kind of feature. As shown in Figure 5D,
the information on linear features No. 5 (Hjorth parameter:
mobility), No. 6 (Hjorth parameter: complexity), and No. 7
(maximum power spectral frequency) in the beta rhythm led to
the best mean recognition accuracy. Only the non-linear features
No. 12 (correlation dimension), No. 13 (Kolmogorov entropy),
and No. 17 (Shannon entropy) can lead to a mean accuracy over
60%. Figure 5E presents the performance comparison between
the linear and non-linear features in different frequency bands.
The results show that using linear features outperformed the
use of non-linear features in each frequency band when linear
SVM and random forest (RF) classifiers were applied. Hence,
considering the high computational overhead of extracting the
non-linear features, solely adopting linear features seems an
effective choice for constructing a real-time emotion recognition
system. Nevertheless, we should also clarify that the values of the
non-linear features calculated in this work may be not optimal.
The performance of the non-linear features are influenced by
many factors, e.g., the parameter settings and the data volume

limitations for the search space. The optimal values of those
non-linear features are worth further exploration.

3.3. Correlation Analysis
As we can see in Figure 5D, the performances of some feature
type (e.g., features No. 2, No. 3, No. 4, and No. 9) are seemingly
identical. This result likely indicates that some features can be
highly correlated in identifying a certain emotion class. Hence,
for examining those highly correlated features, we calculated
the Pearson correlation coefficients for those 18 different feature
types. For example, as presented in Figure 6, the linear features
No. 2, No. 3, No. 4, and No. 9 are absolutely positively correlated
in each rhythm, which explains why the performances of these
features are approximately identical. Linear features No. 1 and
No. 8 are highly positively correlated with all other linear features
except for the Hjorth parameters. For the Hjorth parameters,
feature No. 5 is highly positively correlated with feature No. 7
in each rhythm, and is highly negatively correlated with feature
No. 6 in the beta rhythm. For the non-linear features, we can see
that feature No. 12 is highly and positively correlated with feature
No. 13 andNo. 17 in the higher-frequency bands, and that feature
No. 16 is highly and negatively correlated with feature No. 18 in
each rhythm.

Moreover, through analyzing the correlation of the channels
based on those features, we attempted to investigate the
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FIGURE 4 | Mean cross-subject recognition performance with different methods and settings on the SEED dataset. (A) The filter-based methods. (B) The RFE-based

method. (C) The L1-based method. (D) The ROC curves of different methods with their best settings.

TABLE 2 | The performance upper bound of the proposed features using different

automatic feature selection methods.

DEAP χ
2 MI AF RFE

Step No.: 56 Step No.: 29 Step No.: 22 Step No.: 181

Mean: 0.5773 Mean: 0.5617 Mean: 0.5789 Mean: 0.5594

St.Dev.: 0.0841 St.Dev.: 0.0914 St.Dev.: 0.1004 St.Dev.: 0.0818

L1

Step No.: 8
p = 0.5364 p = 0.1992 p = 0.6192 p = 0.1432

Mean: 0.5906

St.Dev.: 0.0868

SEED χ
2 MI AF L1

Step No.: 20 Step No.: 2 Step No.: 2 Step No.: 13

Mean: 0.8244 Mean: 0.8133 Mean: 0.8111 Mean: 0.8289

St.Dev.: 0.1151 St.Dev.: 0.1227 St.Dev.: 0.1389 St.Dev.: 0.0899

RFE

Step No.: 12
p = 0.8242 p = 0.6305 p = 0.4895 p = 0.8999

Mean: 0.8333

St.Dev.: 0.1016

Meanwhile, the p-values calculated through one-way ANOVA between the method with

best performance and other methods are also exhibited. The highest mean recognition

accuracy is shown in bold type.

underlying mechanisms of those features that allow for
differentiating cross-subject emotions. Specifically, for each
subject and for each specific feature, we constructed correlation

matrices of the 62 channels for subjects’ negative trials and
positive trials. After all of the correlation matrices had been
constructed, we averaged the correlation matrices in the negative
group and positive group. The mean correlation matrices for
specific features are presented in Figure 7. We also conducted
statistical analyses to compare the differences in channel
correlations between the negative group and the positive group.
The t test results are illustrated in Figure 8. The results in both
Figures 7, 8 indicate that for almost every feature, the mean
correlations in the negative group are higher than those in the
positive group.

The connection network of the 62 channels is represented in
the form of a binary matrix, which was constructed based on
the obtained correlation matrices. We first needed to determine
the threshold of the correlation coefficients, based on which the
connection between two channels could be established. To be
more specific, the value in the binary matrix was set to 1 when the
corresponding value in the correlation matrix was greater than
the threshold. Otherwise, the value in the binary matrix was set
to 0. The value of 1 in the binary matrix indicates that there is a
connection between the two corresponding nodes. Based on the
obtained binary matrix, the connection network of the channel
nodes was constructed.

For measuring the coherence of different channel locations
in different emotional states, we calculated the clustering
coefficients of each node in the connection network. The
clustering coefficient was a reflection of the degree of aggregation
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FIGURE 5 | The cross-subject recognition performance based on features from different channels (A), different regions (B), different rhythms (C), different features

(D), and different feature types (E).

of different channel locations. The thresholds at which the
global clustering coefficients were significantly different between
the positive group and negative group are illustrated in
Table 3. As mentioned above in Figure 5D, feature No. 5
(Hjorth parameter: mobility) in beta rhythm achieved the best
recognition performance. Thus, in this paper, we use this feature
as an example to illustrate the topographic plot of the clustering

coefficients of the groups with negative and positive emotions. As
shown in Figure 9A, at each threshold, the clustering coefficients
in the left anterior regions of the negative groups are consistently
higher than those of the positive groups. This dynamic may
account for the results obtained in Figure 5B indicating that
the left anterior regions yields the best recognition performance
when beta rhythm information is utilized. Nevertheless, different
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FIGURE 6 | The Pearson correlation between 18 different features (linear features: f1, f2, f3, f4, f5, f6, f7, f8, f9; non-linear features: f10, f11, f12, f13, f14, f15, f16,

f17, f18) in theta rhythm (A), alpha rhythm (B), beta rhythm (C), and gamma rhythm (D), respectively.

features and thresholds could have different topographic plots
in which the clustering coefficients may be quite different from
those of feature No. 5 in the beta rhythm. For example, in
addition to feature No. 5 in beta rhythm, feature No. 6 in
beta rhythm also led to a high performance. We have also
presented the clustering coefficients in Figure 9B. However, the
topographic plot was different from that in Figure 9A, and the
left anterior region was no longer significantly different between
the two groups. Hence, the important locations for emotion
recognition cannot be determined simply by analyzing only one
or two features.

As described above, we should point out that such correlation
analysis may not be adequate to fully interpret the mechanism
of the features. Moreover, for example, as shown in Figure 8,
the feature No. 1 in the gamma rhythm cannot significantly

differentiate the correlation coefficients of the two groups.
However, as shown in Figure 5D, this feature can still
lead to a better performance than most of the non-linear
features.

4. DISCUSSIONS

In this work, we verified the effectiveness of 18 kinds of
EEG features in cross-subject emotion recognition, including
9 kinds of time-frequency domain features and 9 kinds of
dynamical system features. We adopted a “leave-one-subject-
out” method to verify the performance of the proposed features.
After automatic feature selection, the highest mean recognition
accuracies of 59.06% (AUC = 0.605) on the DEAP dataset and
83.33% (AUC = 0.904) on the SEED dataset were reached.
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FIGURE 7 | The constructed correlation matrices of the negative emotion group and the positive emotion group when the 18 different features in different rhythms are

adopted.

The performance on DEAP was not as good as that on SEED,
which could be due to the low quality of the data in the
emotional ratings of the trials. The noise in the emotional
ratings degraded the ability of the model to differentiate
between different classes. Through drawing the ROC curves,
we found that the L1-norm penalty-based feature selection
method exhibited robust performance on both two datasets.
Considering its lower computational overhead, this method is the

best strategy to adopt when analyzing large numbers of candidate
features.

We also evaluated the cross-subject recognition performance
from different perspectives, including different EEG channels,
different regions, different rhythms, different features, and
different feature types. We chose to conduct analyses on the
SEED dataset because of its better performance. Specifically,
through evaluation over individual channels, we found that
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FIGURE 8 | The comparison of the mean global correlation between the groups of negative emotion and positive emotion when the 18 different features in theta

rhythm (A), alpha rhythm (B), beta rhythm (C), and gamma rhythm (D) are adopted. (***p<0.001, **p<0.01, *p<0.05)

the channels with the best performances were mainly located
in the bilateral temporal regions, which was consistent with
the finding in Soleymani et al. (2012), Zheng et al. (2016).
We partitioned the channels into different groups according
to the different regions and evaluated the performances of the
different groups.We found that the left anterior region achieved a
better performance compared to the other sub-regions, especially
when the information in the beta band was utilized. The left
hemisphere performed better than the right hemisphere except
for in the gamma band. Furthermore, the anterior hemisphere
exhibited an improved recognition performance compared to
the posterior hemisphere, especially when data from all rhythms
were utilized. The relationship between emotion recognition
and frontal regions was illustrated in the studies of Schmidt
and Trainor (2001), Lin et al. (2010). Schmidt and Trainor
(2001) found the relatively higher left frontal EEG activity under
exposure to happy musical excerpts and relatively higher right
frontal EEG activity under exposure to sad musical excerpts, and
the overall frontal EEG activity could distinguish the intensity
of the emotions. Lin et al. (2010) found that the frontal and
parietal electrode pairs were the most informative on emotional
states.

The evaluation of different rhythms indicated that the
information in higher-frequency bands contributed more to
cross-subject emotion recognition compared to lower-frequency
bands. The effectiveness of the beta and gamma rhythms
in promoting emotion recognition was also presented in

Lin et al. (2010), Soleymani et al. (2012), Zheng et al.
(2016). Moreover, some neuroscience studies have found that
emotion-related neural information mainly resides in higher-
frequency bands (Müller et al., 1999; Kortelainen et al.,
2015). By evaluating the performances of individual features,
we found that linear features No. 5 (Hjorth parameter:
mobility), No. 6 (Hjorth parameter: complexity), and No.
7 (maximum power spectral frequency) in the beta rhythm
led to the best mean recognition accuracy. However, the
Hjorth parameters have not been widely adopted in EEG-
based emotion recognition. We also found that the combination
of the linear features greatly outperformed the combination
of non-linear features in each frequency band. Considering
the high computational overhead in extracting the non-linear
features, adopting linear features in designing real-time emotion
recognition systems is recommended. Nevertheless, the non-
linear features calculated here may be not the optimal ones,
given that emotional information is very likely processed in a
non-linear way. The optimal values of the non-linear features
for reflecting emotional processes are certainly worth further
exploration.

For a better understanding of the mechanisms of those
features that allow for differentiating between emotions, we
further conducted a correlation analysis for 62 channels for
each feature. We calculated and constructed correlation matrices
using different features. We found that for nearly every feature,
the negative group has a higher mean correlation coefficient

Frontiers in Neuroscience | www.frontiersin.org 12 March 2018 | Volume 12 | Article 162

https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org
https://www.frontiersin.org/journals/neuroscience#articles


Li et al. EEG Features in Emotion Recognition

TABLE 3 | The threshold scope that can significantly differentiate the clustering coefficients in groups of positive emotion and negative emotion (p < 0.05).

Rhythm Feature Threshold scope Feature Threshold scope

Theta No.1 0.34∼0.65, 0.92∼0.99 No.10 0.01∼0.36, 0.62∼0.63, 0.69∼0.71, 0.89∼0.92

Theta No.2 0.01∼0.66, 0.92∼0.99 No.11 0.14∼0.47, 0.71∼0.74, 0.84∼0.87, 0.97∼0.98

Theta No.3 0.01∼0.66, 0.92∼0.99 No.12 0.01∼0.35, 0.59∼0.62, 0.77∼0.78, 0.94∼0.96

Theta No.4 0.01∼0.66, 0.92∼0.99 No.13 0.01∼0.20, 0.49∼0.50

Theta No.5 0.01∼0.39 No.14 0.21∼0.31

Theta No.6 0.01∼0.24 No.15 0.07∼0.32, 0.40∼0.49, 0.70∼0.72, 0.95∼0.96

Theta No.7 0.01∼0.15 No.16 0.01∼0.34, 0.54∼0.58

Theta No.8 0.01∼0.65, 0.93∼0.99 No.17 0.01∼0.42

Theta No.9 0.01∼0.66, 0.93∼0.99 No.18 0.49∼0.50, 0.90∼0.98

Alpha No.1 0.01∼0.58, 0.66∼0.95 No.10 0.01∼0.08, 0.53∼0.56, 0.67∼0.72, 0.96∼0.99

Alpha No.2 0.01∼0.27, 0.49∼0.60, 0.75∼0.91 No.11 0.01∼0.32, 0.64∼0.76, 0.95∼0.99

Alpha No.3 0.01∼0.41, 0.56∼0.66, 0.83∼0.95 No.12 0.01∼0.08, 0.23∼0.32, 0.67∼0.76, 0.95∼0.99

Alpha No.4 0.01∼0.40, 0.47∼0.59, 0.90∼0.93 No.13 0.01∼0.05, 0.28∼0.32, 0.67∼0.78, 0.95∼0.99

Alpha No.5 0.01∼0.29, 0.50∼0.52 No.14 0.01∼0.25

Alpha No.6 0.01∼0.25, 0.48∼0.73 No.15 0.01∼0.17, 0.24∼0.28, 0.38∼0.40, 0.89∼0.92

Alpha No.7 0.01∼0.35, 0.46∼0.48, 0.95∼0.97 No.16 0.01∼0.14, 0.36∼0.39

Alpha No.8 0.01∼0.36, 0.49∼0.70, 0.79∼0.99 No.17 0.01∼0.05, 0.64∼0.66, 0.90∼0.99

Alpha No.9 0.01∼0.35, 0.82∼0.85, 0.95∼0.98 No.18 0.01∼0.06, 0.65∼0.78, 0.95∼0.99

Beta No.1 0.01∼0.44, 0.53∼0.58, 0.90∼0.92 No.10 0.01∼0.13, 0.68∼0.69

Beta No.2 0.01∼0.47 No.11 0.01∼0.32, 0.42∼0.43, 0.46∼0.54, 0.67∼0.80

Beta No.3 0.01∼0.49, 0.85∼0.86 No.12 0.01∼0.26, 0.91∼0.98

Beta No.4 0.01∼0.49, 0.53∼0.56, 0.85∼0.86 No.13 0.01∼0.34, 0.48∼0.54, 0.87∼0.92

Beta No.5 0.01∼0.16, 0.20∼0.23, 0.48∼0.61 No.14 0.01∼0.26, 0.38∼0.43, 0.62∼0.74, 0.81∼0.87

Beta No.6 0.01∼0.41, 0.55∼0.64, 0.85∼0.91 No.15 0.01∼0.21

Beta No.7 0.01∼0.31, 0.67∼0.71, 0.91∼0.99 No.16 0.01∼0.21, 0.57∼0.62, 0.81∼0.83, 0.86∼0.88

Beta No.8 0.01∼0.40, 0.86∼0.89, 0.96∼0.99 No.17 0.01∼0.12, 0.67∼0.69, 0.86∼0.88, 0.95∼0.99

Beta No.9 0.01∼0.47 No.18 0.01∼0.29, 0.39∼0.46, 0.74∼0.88

Gamma No.1 0.14∼0.27, 0.66∼0.70, 0.76∼0.81 No.10 0.15∼0.33, 0.40∼0.64, 0.83∼0.88

Gamma No.2 0.01∼0.33, 0.85∼0.98 No.11 0.17∼0.22, 0.28∼0.29

Gamma No.3 0.01∼0.17, 0.50∼0.51 No.12 0.26∼0.49

Gamma No.4 0.01∼0.47, 0.97∼0.98 No.13 0.23∼0.54

Gamma No.5 0.01∼0.31, 0.73∼0.98 No.14 0.01∼0.35, 0.97∼0.99

Gamma No.6 0.01∼0.30, 0.80∼0.99 No.15 0.01∼0.22, 0.42∼0.47, 0.72∼0.74, 0.83∼0.88

Gamma No.7 0.01∼0.35, 0.93∼0.99 No.16 0.01∼0.05, 0.81∼0.84

Gamma No.8 0.48∼0.61, 0.98∼0.99 No.17 0.01∼0.49, 0.97∼0.99

Gamma No.9 0.01∼0.32, 0.90∼0.91, 0.95∼0.99 No.18 0.01∼0.17, 0.21∼0.32, 0.40∼0.42

than the positive group. Based on the constructed correlation
matrices, we further calculated the clustering coefficients at
different thresholds. We listed the thresholds at which the
clustering coefficients were significantly different between the
two groups, and we presented the clustering coefficients in
detail with a topographic plot for features No. 5 and No. 6
in the beta rhythm. The preliminary analysis implied that the
features’ ability to reflect the channel correlation may contribute
to the recognition of emotions. Nevertheless, considering the
differences in the clustering coefficients of the different features,
we should note that the correlation analysis is not sufficient to
fully explain the mechanism of those features or to determine

the important locations. Additional analyses from different
perspectives using different approaches are still needed in future
work.

In the future, we should also further study the oscillatory
and temporal process of emotion perception based on these
features and verify the effectiveness of the proposed features
on other datasets. In addition to correlation analysis, we
need an in-depth study of the mechanisms of the features
that allow for differentiating between positive and negative
emotions. Another potential line of research is to further
verify the ability of those features to identify emotion-
related mental disorders, e.g., depression, as well as the
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FIGURE 9 | (A,B) The topographic plot of the clustering coefficient of the groups of negative emotion and positive emotion when feature No. 5 (Hjorth parameter:

mobility) and feature No. 6 (Hjorth parameter: complexity) in beta rhythm were utilized. Conditions with different thresholds (T) are illustrated.

effectiveness of those features in studying other cognitive
processes.
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