283 research outputs found

    Understanding the limits of LoRaWAN

    Full text link
    The quick proliferation of LPWAN networks, being LoRaWAN one of the most adopted, raised the interest of the industry, network operators and facilitated the development of novel services based on large scale and simple network structures. LoRaWAN brings the desired ubiquitous connectivity to enable most of the outdoor IoT applications and its growth and quick adoption are real proofs of that. Yet the technology has some limitations that need to be understood in order to avoid over-use of the technology. In this article we aim to provide an impartial overview of what are the limitations of such technology, and in a comprehensive manner bring use case examples to show where the limits are

    A COMPREHENSIVE REVIEW OF INTERNET OF THINGS WAVEFORMS FOR A DOD LOW EARTH ORBIT CUBESAT MESH NETWORK

    Get PDF
    The Department of Defense (DOD) requires the military to provide command and control during missions in locations where terrestrial communications infrastructure is unreliable or unavailable, which results in a high reliance on satellite communications (SATCOM). This is problematic because they use and consume more digital data in the operational environment. The DOD has several forms of data capable of meeting Internet of Things (IoT) transmission parameters that could be diversified onto an IoT network. This research assesses the potential for an IoT satellite constellation in Low Earth Orbit to provide an alternative, space-based communication platform to military units while offering increased overall SATCOM capacity and resiliency. This research explores alternative IoT waveforms and compatible transceivers in place of LoRaWAN for the NPS CENETIX Ortbial-1 CubeSat. The study uses a descriptive comparative research approach to simultaneously assess several variables. Five alternative waveforms—Sigfox, NB-IoT, LTE-M, Wi-sun, and Ingenu—are evaluated. NB-IoT, LTE-M, and Ingenu meet the threshold to be feasible alternatives to replace the LoRaWAN waveform in the Orbital-1 CubeSat. Six potential IoT transceivers are assessed as replacements. Two transceivers for the NB-IoT and LTE-M IoT waveforms and one transceiver from U-blox for the Ingenu waveform are assessed as compliant.Lieutenant, United States NavyApproved for public release. Distribution is unlimited

    Survey on wireless technology trade-offs for the industrial internet of things

    Get PDF
    Aside from vast deployment cost reduction, Industrial Wireless Sensor and Actuator Networks (IWSAN) introduce a new level of industrial connectivity. Wireless connection of sensors and actuators in industrial environments not only enables wireless monitoring and actuation, it also enables coordination of production stages, connecting mobile robots and autonomous transport vehicles, as well as localization and tracking of assets. All these opportunities already inspired the development of many wireless technologies in an effort to fully enable Industry 4.0. However, different technologies significantly differ in performance and capabilities, none being capable of supporting all industrial use cases. When designing a network solution, one must be aware of the capabilities and the trade-offs that prospective technologies have. This paper evaluates the technologies potentially suitable for IWSAN solutions covering an entire industrial site with limited infrastructure cost and discusses their trade-offs in an effort to provide information for choosing the most suitable technology for the use case of interest. The comparative discussion presented in this paper aims to enable engineers to choose the most suitable wireless technology for their specific IWSAN deployment

    Secure decentralised deployment of LoRaWAN sensors

    Get PDF
    Low-power wide-area networks (LPWAN) technologies, such as LoRaWAN, have become a popular and cost-effective way of monitoring assets. Two considerations which still present a barrier to deployment are the cost of deployment and the potential cost and disruption of re-keying a compromised network. This loss of functionality from a compromised network has made security conscious industries reluctant to embrace LPWAN technology. This paper will address these concerns by simplifying the deployment and re-keying of LoRaWAN devices, by detailing a procedure which uses a smartphone’s camera flash to transfer the necessary credentials. Smartphones were chosen as a transfer mechanism since they are both abundant and suitably powerful to generate and transfer secure keys. Using smartphones and light also removes the need for a laptop, a wired connection and programming software, allowing devices to be provisioned out in the field without the need for calibration or specialised tools. The design was created and successfully programs sensor devices in variety of environments, and has demonstrated benefits to critical national infrastructure industries such as utilities

    A Survey on Long-Range Wide-Area Network Technology Optimizations

    Get PDF
    Long-Range Wide-Area Network (LoRaWAN) enables flexible long-range service communications with low power consumption which is suitable for many IoT applications. The densification of LoRaWAN, which is needed to meet a wide range of IoT networking requirements, poses further challenges. For instance, the deployment of gateways and IoT devices are widely deployed in urban areas, which leads to interference caused by concurrent transmissions on the same channel. In this context, it is crucial to understand aspects such as the coexistence of IoT devices and applications, resource allocation, Media Access Control (MAC) layer, network planning, and mobility support, that directly affect LoRaWAN’s performance.We present a systematic review of state-of-the-art works for LoRaWAN optimization solutions for IoT networking operations. We focus on five aspects that directly affect the performance of LoRaWAN. These specific aspects are directly associated with the challenges of densification of LoRaWAN. Based on the literature analysis, we present a taxonomy covering five aspects related to LoRaWAN optimizations for efficient IoT networks. Finally, we identify key research challenges and open issues in LoRaWAN optimizations for IoT networking operations that must be further studied in the future

    A SURVEY ON DEVICES EXPLOITING LORA COMMUNICATION

    Get PDF
    Information and Communication Technologies (ICT) have experienced a large application in many fields, such as smart homes, health monitoring, environmental monitoring, and a great number of studies is present in literature. In particular, it is expected that the Internet of Things (IoT) will become increasingly pervasive in everyday life. Among different technologies, devices based on Long Range (LoRa) and LoRaWAN stand out due to their relative low cost, low power consumption and large cover range. In this survey, recent papers investigating applications of LoRa modules have been selected. The different usecases are presented with a comparison between communication parameters and results obtained

    Performance Evaluation of Long Range (LoRa) Wireless RF Technology for the Internet of Things (IoT) Using Dragino LoRa at 915 MHz

    Get PDF
    Internet of Things (IoT) is a developing concept that introduces the network of physical sensors that are interconnected to each other. Within this smart environment, smart objects use the interconnectivity to process, communicate, and exchange data among themselves without any human interaction. Some sensors are wirelessly connected among themselves and to the internet. Currently, IoT applications demand substantial requirements in terms of Radio Access Network (RAN) such as long-range outdoor coverage, environmental factors, obstructions, interference, power consumption, and many others. Also, the current wireless technologies are not able to satisfy all these requirements simultaneously. Therefore, there is no single wireless standard that would predominate the IoT. However, one relevant wireless radio solution to IoT is known as Long Range Wide Area Network (LoRaWAN), which is one of the Low Power Wide Area Network (LPWAN) technologies [1]. LPWAN has appeared as a significant solution to offer advantages such as long-range coverage connectivity with low power consumption, an unlicensed spectrum, and affordability. Most likely LoRa with the inherent long-range coverage and low power consumption features will become the “go-to” technology for IoT applications [2]. LoRa is a novel solution that is attracting considerable attention for both academic and industrial purposes [3, 4]. For that reason, the proposed research entails the feasibility analysis and performance evaluation of LoRa communication focusing on the physical layer, which involves the radio configuration parameters such as Spreading Factor (SF), Signal Bandwidth (BW), Coding Rate (CR), and payload size. This experimental work includes connecting to different IoT servers in the cloud, such as “The Things Network” (TTN), “ThinkSpeak”, and integration with “Cayenne”. Therefore, 348 (120 first + 228-second test) different configurations are carried out among SF, BW, CR, and payload in order to measure the impact on Time-on-air (ToA). When a payload size of 25 bytes (2 sensors) was connected to the ThingSpeak server, only 57 out of 120 configurations met the FCC’s requirement on ToA (\u3c 400 ms) [5]. It was observed that the number of configurations reduced further to 23 when the payload size was increased up to 118 bytes (10 sensors)

    Towards the efficient use of LoRa for wireless sensor networks

    Get PDF
    Since their inception in 1998 with the Smart Dust Project from University of Berkeley, Wireless Sensor Networks (WSNs) had a tremendous impact on both science and society, influencing many (new) research fields, like Cyber-physical System (CPS), Machine to Machine (M2M), and Internet of Things (IoT). In over two decades, WSN researchers have delivered a wide-range of hardware, communication protocols, operating systems, and applications, to deal with the now classic problems of resourceconstrained devices, limited energy sources, and harsh communication environments. However, WSN research happened mostly on the same kind of hardware. With wireless communication and embedded hardware evolving, there are new opportunities to resolve the long standing issues of scaling, deploying, and maintaining a WSN. To this end, we explore in this work the most recent advances in low-power, longrange wireless communication, and the new challenges these new wireless communication techniques introduce. Specifically, we focus on the most promising such technology: LoRa. LoRa is a novel low-power, long-range communication technology, which promises a single-hop network with millions of sensor nodes. Using practical experiments, we evaluate the unique properties of LoRa, like orthogonal spreading factors, nondestructive concurrent transmissions, and carrier activity detection. Utilising these unique properties, we build a novel TDMA-style multi-hop Medium Access Control (MAC) protocol called LoRaBlink. Based on empirical results, we develop a communication model and simulator called LoRaSim to explore the scalability of a LoRa network. We conclude that, in its current deployment, LoRa cannot support the scale it is envisioned to operate at. One way to improve this scalability issue is Adaptive Data Rate (ADR). We develop two ADR protocols, Probing and Optimistic Probing, and compare them with the de facto standard ADR protocol used in the crowdsourced TTN LoRaWAN network. We demonstrate that our algorithms are much more responsive, energy efficient, and able to reach a more efficient configuration quicker, though reaching a suboptimal configuration for poor links, which is offset by the savings caused by the convergence speed. Overall, this work provides theoretical and empirical proofs that LoRa can tackle some of the long standing problems within WSN. We envision that future work, in particular on ADR and MAC protocols for LoRa and other low-power, long-range communication technologies, will help push these new communication technologies to main-stream status in WSNs

    Supporting Transportation System Management and Operations Using Internet of Things Technology

    Get PDF
    Low power wide-area network (LPWAN) technology aims to provide long range and low power wireless communication. It can serve as an alternative technology for data transmissions in many application scenarios (e.g., parking monitoring and remote flood sensing). In order to explore its feasibility in transportation systems, this project conducted a review of relevant literature to understand the current status of LPWAN applications. An online survey that targeted professionals concerned with transportation was also developed to elicit input about their experiences in using LPWAN technology for their projects. The literature review and survey results showed that LPWAN’s application in the U.S. is still in an early stage. Many agencies were not familiar with LPWAN technology, and only a few off-the-shelf LPWAN products are currently available that may be directly used for transportation systems. To conceptually explore data transmission, a set of lab tests, using a primary LPWAN technology, namely LoRa, were performed on a university campus area as well as in a rural area. The lab tests showed that several key factors, such as the mounting heights of devices, distance between the gateway and sensor nodes, and brands of devices affected the LPWAN’s performance. Building upon these efforts, the research team proposed a high-level field test plan for facilitating a potential Phase 2 study that will address primary technical issues concerning the feasibility of transmitting data of different sizes, data transmission frequency, and transmission rate, deployment requirements, etc
    • …
    corecore