9 research outputs found

    FKRR-MVSF: A Fuzzy Kernel Ridge Regression Model for Identifying DNA-Binding Proteins by Multi-View Sequence Features via Chou\u27s Five-Step Rule

    Get PDF
    DNA-binding proteins play an important role in cell metabolism. In biological laboratories, the detection methods of DNA-binding proteins includes yeast one-hybrid methods, bacterial singles and X-ray crystallography methods and others, but these methods involve a lot of labor, material and time. In recent years, many computation-based approachs have been proposed to detect DNA-binding proteins. In this paper, a machine learning-based method, which is called the Fuzzy Kernel Ridge Regression model based on Multi-View Sequence Features (FKRR-MVSF), is proposed to identifying DNA-binding proteins. First of all, multi-view sequence features are extracted from protein sequences. Next, a Multiple Kernel Learning (MKL) algorithm is employed to combine multiple features. Finally, a Fuzzy Kernel Ridge Regression (FKRR) model is built to detect DNA-binding proteins. Compared with other methods, our model achieves good results. Our method obtains an accuracy of 83.26% and 81.72% on two benchmark datasets (PDB1075 and compared with PDB186), respectively

    M6AMRFS: Robust Prediction of N6-Methyladenosine Sites With Sequence-Based Features in Multiple Species

    Get PDF
    As one of the well-studied RNA methylation modifications, N6-methyladenosine (m6A) plays important roles in various biological progresses, such as RNA splicing and degradation, etc. Identification of m6A sites is fundamentally important for better understanding of their functional mechanisms. Recently, machine learning based prediction methods have emerged as an effective approach for fast and accurate identification of m6A sites. In this paper, we proposed “M6AMRFS”, a new machine learning based predictor for the identification of m6A sites. In this predictor, we exploited a new feature representation algorithm to encode RNA sequences with two feature descriptors (dinucleotide binary encoding and Local position-specific dinucleotide frequency), and used the F-score algorithm combined with SFS (Sequential Forward Search) to enhance the feature representation ability. To predict m6A sites, we employed the eXtreme Gradient Boosting (XGBoost) algorithm to build a predictive model. Benchmarking results showed that the proposed predictor is competitive with the state-of-the art predictors. Importantly, robust predictions for multiple species by our predictor demonstrate that our predictive models have strong generalization ability. To the best of our knowledge, M6AMRFS is the first tool that can be used for the identification of m6A sites in multiple species. To facilitate the use of our predictor, we have established a user-friendly webserver with the implementation of M6AMRFS, which is currently available in http://server.malab.cn/M6AMRFS/. We anticipate that it will be a useful tool for the relevant research of m6A sites

    Discovering Cancer Subtypes via an Accurate Fusion Strategy on Multiple Profile Data

    Get PDF
    Discovering cancer subtypes is useful for guiding clinical treatment of multiple cancers. Progressive profile technologies for tissue have accumulated diverse types of data. Based on these types of expression data, various computational methods have been proposed to predict cancer subtypes. It is crucial to study how to better integrate these multiple profiles of data. In this paper, we collect multiple profiles of data for five cancers on The Cancer Genome Atlas (TCGA). Then, we construct three similarity kernels for all patients of the same cancer by gene expression, miRNA expression and isoform expression data. We also propose a novel unsupervised multiple kernel fusion method, Similarity Kernel Fusion (SKF), in order to integrate three similarity kernels into one combined kernel. Finally, we make use of spectral clustering on the integrated kernel to predict cancer subtypes. In the experimental results, the P-values from the Cox regression model and survival curve analysis can be used to evaluate the performance of predicted subtypes on three datasets. Our kernel fusion method, SKF, has outstanding performance compared with single kernel and other multiple kernel fusion strategies. It demonstrates that our method can accurately identify more accurate subtypes on various kinds of cancers. Our cancer subtype prediction method can identify essential genes and biomarkers for disease diagnosis and prognosis, and we also discuss the possible side effects of therapies and treatment

    Discovering Cancer Subtypes via an Accurate Fusion Strategy on Multiple Profile Data

    Get PDF
    Discovering cancer subtypes is useful for guiding clinical treatment of multiple cancers. Progressive profile technologies for tissue have accumulated diverse types of data. Based on these types of expression data, various computational methods have been proposed to predict cancer subtypes. It is crucial to study how to better integrate these multiple profiles of data. In this paper, we collect multiple profiles of data for five cancers on The Cancer Genome Atlas (TCGA). Then, we construct three similarity kernels for all patients of the same cancer by gene expression, miRNA expression and isoform expression data. We also propose a novel unsupervised multiple kernel fusion method, Similarity Kernel Fusion (SKF), in order to integrate three similarity kernels into one combined kernel. Finally, we make use of spectral clustering on the integrated kernel to predict cancer subtypes. In the experimental results, the P-values from the Cox regression model and survival curve analysis can be used to evaluate the performance of predicted subtypes on three datasets. Our kernel fusion method, SKF, has outstanding performance compared with single kernel and other multiple kernel fusion strategies. It demonstrates that our method can accurately identify more accurate subtypes on various kinds of cancers. Our cancer subtype prediction method can identify essential genes and biomarkers for disease diagnosis and prognosis, and we also discuss the possible side effects of therapies and treatment

    FKRR-MVSF: A Fuzzy Kernel Ridge Regression Model for Identifying DNA-Binding Proteins by Multi-View Sequence Features via Chou\u27s Five-Step Rule

    Get PDF
    DNA-binding proteins play an important role in cell metabolism. In biological laboratories, the detection methods of DNA-binding proteins includes yeast one-hybrid methods, bacterial singles and X-ray crystallography methods and others, but these methods involve a lot of labor, material and time. In recent years, many computation-based approachs have been proposed to detect DNA-binding proteins. In this paper, a machine learning-based method, which is called the Fuzzy Kernel Ridge Regression model based on Multi-View Sequence Features (FKRR-MVSF), is proposed to identifying DNA-binding proteins. First of all, multi-view sequence features are extracted from protein sequences. Next, a Multiple Kernel Learning (MKL) algorithm is employed to combine multiple features. Finally, a Fuzzy Kernel Ridge Regression (FKRR) model is built to detect DNA-binding proteins. Compared with other methods, our model achieves good results. Our method obtains an accuracy of 83.26% and 81.72% on two benchmark datasets (PDB1075 and compared with PDB186), respectively

    PredT4SE-Stack: Prediction of Bacterial Type IV Secreted Effectors From Protein Sequences Using a Stacked Ensemble Method

    Get PDF
    Gram-negative bacteria use various secretion systems to deliver their secreted effectors. Among them, type IV secretion system exists widely in a variety of bacterial species, and secretes type IV secreted effectors (T4SEs), which play vital roles in host-pathogen interactions. However, experimental approaches to identify T4SEs are time- and resource-consuming. In the present study, we aim to develop an in silico stacked ensemble method to predict whether a protein is an effector of type IV secretion system or not based on its sequence information. The protein sequences were encoded by the feature of position specific scoring matrix (PSSM)-composition by summing rows that correspond to the same amino acid residues in PSSM profiles. Based on the PSSM-composition features, we develop a stacked ensemble model PredT4SE-Stack to predict T4SEs, which utilized an ensemble of base-classifiers implemented by various machine learning algorithms, such as support vector machine, gradient boosting machine, and extremely randomized trees, to generate outputs for the meta-classifier in the classification system. Our results demonstrated that the framework of PredT4SE-Stack was a feasible and effective way to accurately identify T4SEs based on protein sequence information. The datasets and source code of PredT4SE-Stack are freely available at http://xbioinfo.sjtu.edu.cn/PredT4SE_Stack/index.php

    DRSN4mCPred: accurately predicting sites of DNA N4-methylcytosine using deep residual shrinkage network for diagnosis and treatment of gastrointestinal cancer in the precision medicine era

    Get PDF
    IntroductionThe DNA N4-methylcytosine (4mC) site levels of those suffering from digestive system cancers were higher, and the pathogenesis of digestive system cancers may also be related to the changes in DNA 4mC levels. Identifying DNA 4mC sites is a very important step in studying the analysis of biological function and cancer prediction. Extracting accurate features from DNA sequences is the key to establishing a prediction model of effective DNA 4mC sites. This study sought to develop a new predictive model, DRSN4mCPred, which aimed to improve the performance of the predicting DNA 4mC sites.MethodsThe model adopted multi-scale channel attention to extract features and used attention feature fusion (AFF) to fuse features. In order to capture features information more accurately and effectively, this model utilized Deep Residual Shrinkage Network with Channel-Wise thresholds (DRSN-CW) to eliminate noise-related features and achieve a more precise feature representation, thereby, distinguishing the sites in DNA with 4mC and non-4mC. Additionally, the predictive model incorporated an inverted residual block, a Multi-scale Channel Attention Module (MS-CAM), a Bi-directional Long Short Term Memory Network (Bi-LSTM), AFF, and DRSN-CW.Results and DiscussionThe results indicated the predictive model DRSN4mCPred had extremely good performance in predicting the DNA 4mC sites across different species. This paper will potentially provide support for the diagnosis and treatment of gastrointestinal cancer based on artificial intelligence in the precise medical era

    Predicting Ion Channels Genes and Their Types With Machine Learning Techniques

    Get PDF
    Motivation: The number of ion channels is increasing rapidly. As many of them are associated with diseases, they are the targets of more than 700 drugs. The discovery of new ion channels is facilitated by computational methods that predict ion channels and their types from protein sequences.Methods: We used the SVMProt and the k-skip-n-gram methods to extract the feature vectors of ion channels, and obtained 188- and 400-dimensional features, respectively. The 188- and 400-dimensional features were combined to obtain 588-dimensional features. We then employed the maximum-relevance-maximum-distance method to reduce the dimensions of the 588-dimensional features. Finally, the support vector machine and random forest methods were used to build the prediction models to evaluate the classification effect.Results: Different methods were employed to extract various feature vectors, and after effective dimensionality reduction, different classifiers were used to classify the ion channels. We extracted the ion channel data from the Universal Protein Resource (UniProt, http://www.uniprot.org/) and Ligand-Gated Ion Channel databases (http://www.ebi.ac.uk/compneur-srv/LGICdb/LGICdb.php), and then verified the performance of the classifiers after screening. The findings of this study could inform the research and development of drugs

    Система виявлення мережевих втручань з використанням машинного навчання

    Get PDF
    Дипломний проєкт складається з 62 сторінок, 44 рисунків, 4 таблиць. В дипломному проєкту досліджено придатність методів машинного навчання до задачі класифікації мережевих втручань. У роботі виконано порівняльний аналіз існуючих рішень для виявлення аномалій в мережі. За результатом проведеного аналізу було сформовано функціональні вимоги системи, що розробляється. В дипломному проєкті реалізовано шість оптимальних моделей класифікації з використанням різних алгоритмів машинного навчання,а саме: Рандомний ліс, Дерево рішень, Метод k найближчих сусідів, Метод опорних векторів, Логістична регресія, Градієнтне прискорення. Проведений аналіз створених моделей за допомогою метрик якості: fit_time, score_time, accuracy, f1_weighted, recall, auc_roc. Дипломний проєкт виконано мовою програмування Python з використанням інструменту для ітерактивної розробки даних у сфері Data Science, а саме Jupyter Notebook, надано можливості використання алгоритмів машинного навчання, для класифікації мережевих втручань, обраний найкращий алгоритм для даної задачі.The diploma project consists of 62 pages, 44 images, 4 tables. The purpose of the diploma project is to explore the applicability of machine learning techniques to the classification of the network interventions. The comparative analysis of existing analog solutions for identifying network anomalies was conducted in the project. The advantages and disadvantages were described. As results of the analysis functional requirements for the the developed models were formed. Six optimal classification models using different machine learning algorithms such as Random Forest, Decision tree, k Nearest Neighbor, Support Vector Machine,Logistic regression, Gradient Boosting, implemented in the diploma project. Also a quality metrics analysis of the models created by: fit_time, score_time, accuracy, f1_weighted, recall, auc_roc. As a result of this project, acquired skills in the Python programming language using the iterative tool for development in the field of Data Science, namely Jupyter Notebook. I learned the possibility of using machine learning algorithms to classify network interventions, was selected the best algorithm for this problem
    corecore