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Introduction: The DNA N4-methylcytosine (4mC) site levels of those suffering 
from digestive system cancers were higher, and the pathogenesis of digestive 
system cancers may also be  related to the changes in DNA 4mC levels. 
Identifying DNA 4mC sites is a very important step in studying the analysis 
of biological function and cancer prediction. Extracting accurate features 
from DNA sequences is the key to establishing a prediction model of effective 
DNA 4mC sites. This study sought to develop a new predictive model, 
DRSN4mCPred, which aimed to improve the performance of the predicting 
DNA 4mC sites.

Methods: The model adopted multi-scale channel attention to extract features 
and used attention feature fusion (AFF) to fuse features. In order to capture features 
information more accurately and effectively, this model utilized Deep Residual 
Shrinkage Network with Channel-Wise thresholds (DRSN-CW) to eliminate 
noise-related features and achieve a more precise feature representation, 
thereby, distinguishing the sites in DNA with 4mC and non-4mC. Additionally, the 
predictive model incorporated an inverted residual block, a Multi-scale Channel 
Attention Module (MS-CAM), a Bi-directional Long Short Term Memory Network 
(Bi-LSTM), AFF, and DRSN-CW.

Results and Discussion: The results indicated the predictive model DRSN4mCPred 
had extremely good performance in predicting the DNA 4mC sites across 
different species. This paper will potentially provide support for the diagnosis and 
treatment of gastrointestinal cancer based on artificial intelligence in the precise 
medical era.
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1. Introduction

Recently, artificial intelligence has achieved exciting achievements 
in many fields (1–3), which offers precision diagnosis and treatment 
services to human beings by combining various artificial intelligence 
techniques especially deep learning with medical theory (4). DNA 
4mC is an epigenetic variation that may be  associated with the 
occurrence of digestive system cancers. DNA methylation plays an 
essential role in defending against veracious repetitious element 
activity, gene silencing, genomic stability in the process of cell 
karyomitosis, etc. (5). In addition, the alteration of the DNA 
methylation pattern may lead to the occurrence of diseases, particularly 
cancers caused by environmental factors and aging (6, 7). The DNA 
4mC sites defend host DNA against the degradation of restriction 
enzymes. Besides, it corrects the error of prokaryotic DNA replication, 
as well as regulates the DNA replication and generation cycle of 
prokaryotic organisms (8). Thus, the identification of DNA methylation 
is very important for studying the mechanisms of action in biology and 
medicine. Therefore, applying deep learning in artificial intelligence to 
detect DNA methylation sites can provide auxiliary functions for 
smart medicine.

However, traditional experimental techniques were used to detect 
the DNA methylation, which required higher costs (9). Moreover, due 
to the limitations of short-read sequencing, bisulfite sequencing could 
not describe DNA methylation in duplicate genomic regions (10, 11). 
For this reason, current research is increasingly concentrated on the 
development of intelligent methods to predict DNA methylation from 
DNA sequences directly, especially in machine learning. These DNA 
methylation identification methods were constructed as binary 
prediction tasks, and the machine learning models were trained to 
discriminate the actual methylation sites or not. In the past decades, 
many sequence-based models utilized a combination of conventional 
machine learning approaches and deep learning architectures to 
differentiate DNA 4mC sites. Chen (12) recently proposed an efficient 
prediction tool, iDNA4mC, that utilized the properties of nucleotide 
chemistry and frequency coding of DNA sequences to distinguish the 
4mC sites. He (13) then proposed a second 4mC site prediction model, 
4mCPred, which utilized novel feature encoding methods that 
combined the positional specificity of the trinucleotide trend and the 
pseudo-potentials of electron-ion interaction. Wei (14) proposed an 
iterative feature representation method for 4mC site prediction, which 
allowed the information features learned from several sequential 
models in the monitored iterative mode. Deep Torrent (15) was a deep 
learning-based predictive model; the model integrated an inception 
module, transfer learning, and attention module into the predictive 
model to improve the predictive performance. Jhabindra Khanal (16) 
proposed a 4mC-w2vec prediction tool that adopted distributed feature 
display method and a word embedding technique to discriminate the 
different species. Zeng (17) proposed the Deep4mcPred predictor, 
which automatically learned high-level features and captured specific 
characteristics to differentiate between 4mC sites or not. Wang (18) 
proposed a feature representation method that introduced the 
Pointwise Joint Mutual Information (PJMI) and bi-directional 
k-nucleotide Position-Specific Propensities (PSP), and the extraction 
of nucleotide position information was used to predict RNA 
methylation sites.

The i4mC-ROSE algorithm (19) was the first predictive model to 
predict 4mC sites of Rosaceae genomes and had been used to 
discriminate 4mC sites of Fragaria vesca (20) and Rubia chinensis (21) 

genomes. The 4mcDeep-CBI (22) deep learning framework proposed 
using a 3-convolution neural network (CNN) and Bi-LSTM (23) to 
obtain deep information and develop advanced features for 
discriminating 4mC sites in the DNA sequences of Caenorhabditis 
elegans (C. elegans). The DNC4mC-Deep (24) utilized several 
encoding techniques, which included 2Kmer (25), 3Kmer, binary 
encoding (26, 27), the chemical property and frequency of nucleotides 
(28) – along with a CNN and a grid search algorithm to perform 4mC 
site prediction across cross-species genomes.

The 4mCCNN (29) predictive model detected 4mC sites using a 
one-hot encoding matrix and CNN, but because the deep learning 
architecture of the model was small, it could not further expand its 
learning abilities (15). To improve predictive performance, the 
DNA4mC-LIP (30) model integrated six classical predictive models 
(12, 14, 30–32) and used a linear iterative strategy to explore and 
assign the best weights to each predictor. The comparison testing on 
independent test datasets revealed that the predictive performance 
was significantly enhanced. Additionally, the Hyb4mC (33) tool 
embedded sequences using the DNA2vec method and complemental 
networks, Hyb_Caps and Hyb_Conv, to get more accurate information 
than other methods based on the sequence features. Despite there 
being various predictive models for DNA 4mC sites, all the prediction 
performances were not very high, so the predictive performances need 
further improvement.

The primary objective of the paper was to enhance the 
performance of predicting 4mC sites. The DRSN4mCPred model used 
DRSN-CW to eliminate noise-related features and achieved a more 
accurate feature representation, allowing for better distinguishing of 
DNA 4mC sites or not. Additionally, inverted residual block, 
MS-CAM (34), Bi-LSTM (23), AFF (34), and DRSN-CW (35) were 
integrated into the prediction model. As a result, it was found that our 
predictor achieved superior performance in predicting the 4mC sites 
of different species. This research may support the diagnosis and 
treatment of digestive system cancers from an artificial 
intelligence perspective.

2. Materials and methods

2.1. Datasets

The research made use of the Hyb_2021 and Li_2020 datasets, 
both of which contained the species of C. elegans, D. melanogaster, 
A. thaliana, E. coli, G. subterraneus, and G. pickeringii. The Hyb_2021 
dataset (33) was selected based on the technical methylation analysis 
(36, 37), ensuring that the IPD ratio for each position was evidently 
different from the expected background (the default value was 
modQV ≥30). In addition, these DNA sequences were 41 bp in length 
(12). As a comparison, we used the Li_2020 dataset (15) to prove that 
the proposed DRSN4mCPredmodel can predict 4mC sites across 
different species.

2.2. DRSN4mCPred

In this article, a novel prediction model was presented that 
integrated the feature extraction of multi-scale, fusion mechanism, 
and deep residual shrinkage network. The study’s innovation was to 
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bring a deep residual shrinkage network into the prediction model to 
eliminate feature noise. As shown in Figure 1, our model consists of 
five modules: encoding, multi-scale feature extraction, feature fusion, 
noise elimination, and prediction.

The encoding module used four encoding schemes, 1-gram, 
2-grams, NAC, and DNC (23), to represent DNA sequences, resulting 
in four feature matrices. The features of 1-gram and NAC encoding 
were combined, as well as the 2-grams and DNC encoding features, 
and then they were concatenated.

Next, in the extracting feature module, the matrices of the above 
two features were fed into the point-wise convolution layer and then 
supplied to the projection point-wise layer. We extracted more feature 
information using MS-CAM (34) network to combine the two matrices 
features of global and local before they were fused with a Bi-LSTM 
layer (23).

Third, in the fusion module, AFF (34) was used to concatenate the 
features that were extracted from the Bi-LSTM layer with addition 
operation, and the concatenated features were fed into the module of 
MS-CAM for calculating the weights of fusing two matrices features. 
We  applied the fusion weights to the feature matrices through 
multiplication and combined results through addition operation, thus 
obtaining the features that aggregate global and local context features 
of four different coding methods.

Fourth, in the noise reduction module, we utilized DRSN-CW 
(35) to deal with the input features. The features were first processed 
by two 1D convolutions and then reduced using an absolute 

operation and Global Average Pooling (GAP). The resulting features 
were input into the two-layer Fully Connected (FC) network. There 
was more than one neuron in the two-layer FC network; the 
neurons’ count of FC matched the count of channels in the feature 
map of the input. Then we scaled the FC network’s output to ensure 
it fell within the range of zero and one, and soft thresholds were 
computed based on the scale parameters and features. The thresholds 
need to be within an appropriate range and have positive values to 
prevent all zero-output attributes. The soft thresholds were applied 
to features and then the original input features from MS-CAM were 
multiplied to obtain the final features that eliminated the noise-
related features. In the eliminate noise module, the DRSN-CW was 
executed twice.

Finally, in the prediction module, the extracted features described 
above were processed by dropout layers to prevent overfitting during 
training. To better utilize the feature vectors of the preceding layers, 
we applied a flatten function to convert them into a single vector, and 
then we used the FC layer with 32 neurons. Ultimately, the sigmoid 
function was used in the FC layer, squeezing the values between zero 
and one for discriminating either DNA 4mC sites or not. During 
training, we used Adam Optimizer and implemented the loss function 
of binary cross-entropy. It predicted the score that determines the 
detection of 4mC sites in DNA sequences where a score higher than 
0.5 indicated the 4mC sites existed, while a score lower than 0.5 
indicated no 4mC sites existed. The model was coded using Keras 
2.9.0. The model of DRSN4mCPred will be described in detail below.

FIGURE 1

The framework of the proposed predictor. Conv was the 1 × 1 convolution layer; N represented the number of convolution layers. C, W, and one were 
the indicators of the number of channels, width, and height of the feature map, respectively. K is the number of convolution kernels in the convolution 
layer.
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2.2.1. Encoding module
The DNA sequences are comprised of four nucleotides: Adenine 

(A), Thymine (T), Cytosine (C), and Guanine (G). S  denoted the DNA 
sequence, S s s s si L= 1 2, , ,  , si  denoted the nucleotide at position 
i, and L represented the single DNA sequence’s length. The 4mC DNA 
sequences were encoded using the encoding methods, n-gram, NAC, 
and DNC.

2.2.1.1. N-gram coding
N-grams were a set of all possible nucleobases’ subsequences (23). 

By setting the value of n to 1, we  can generate 1-gram encoding 
features, and by setting it to 2, we  can generate 2-gram encoding 
features. For 1-gram coding, the sequences were expressed as 
nucleotides ‘A’ , ‘T’, ‘C’, and ‘G’; the nucleotides were mapped to 
numbers: A ~ 1, T ~ 2, C ~ 3, and G ~ 4. Thus, a DNA sequence can 
be  mapped to a vector with a length of 41; the vectors were 
represented as Vi gram,1− .

V v v v v vi gram i, ,1 1 2 3 40 41− =  , , , v , , ,∈ 1 2 3 4
 

(1)

The 2-gram nucleotide sequences included ‘AA’, ‘AT’, ‘AG’, ‘TA’, 
‘TC’, ‘TG’, ‘CA’, ‘CT’, ‘CG’, and ‘TT’. For example, the sequence 
‘GAGGA … ACT’ can be encoded as ‘GA’, ‘AG’, ‘GG’, ‘GA’, …, ‘AC’, 
and ‘CT’. These encoded sequences were mapped with numbers 
from 1 to 16. With this dictionary, we can map any DNA sequence 
to a numerical vector of length 40; the vectors were 
denoted as Vi gram,2− .

V v v v v vi gram i, ,2 1 2 3 39 40− =  , , , v∈ 1 2 3 14 15 16, , , , ,
 

(2)

2.2.1.2. Nucleic acid composition (NAC) encoding
The NAC encoding method was used to calculate the frequency 

of nucleotide sequence for each nucleic acid type. The frequencies of 
the four nucleic types were represented as f tNAC ( ) :

 
f t

N t
L

t A T C GNAC ( ) =
( )

∈{ }, , , ,
 

(3)

The length of the DNA sequence was represented by L; Vi NAC,  
represented the NAC encoding of the DNA sequence; the vector 
length of Vi NAC,  was four.

 
V f A f T f C f Gi NAC NAC NAC NAC NAC i, = ( ) ( ) ( ) ( ) , , ,

 
(4)

2.2.1.3. Di-nucleotide composition (DNC) encoding
The DNC encoding method was used to count the frequency of 

every two nucleotides in the DNA sequence, thereby representing the 
DNA sequence as 16 descriptors. The frequency was defined as fDNC  
of every two nucleotides in the DNA sequence.

 
f r s N

L
r s A T C GDNC

rs, , , ,( ) =
−

∈{ }
1

, ,
 

(5)

Nrs  represented the amount of di-nucleotide; the DNA sequence 
was denoted using a vector with a length of 16 recorded as Vi DNC, :

 
V f AA f AC f TC f TGi DNC DNC DNC DNC DNC i, = ( ) ( ) ( ) ( ) , , , ,

 
(6)

Then, the vectors Vi gram,1− , Vi NAC, , Vi gram,2− , and Vi DNC,  
were supplied to the embedding layer and transformed into learnable 
embedding vectors. A new vector Xi  was created by concatenating 
the embedding vectors of Embedding Vi gram,1−( )  and 
Embedding Vi NAC,( ) . We performed an identical operation on the 
vectors of Vi gram,2−  and Vi DNC, , generating a new feature vector Yi .

 
X Con V , Vi i gram i NAC= ( ) ( )( )−Embedding Embedding, ,1

 
(7)

 
Y Con V , Vi i gram i DNC= ( ) ( )( )−Embedding Embedding, ,2

 
(8)

In order to obtain accurate and effective features, Xi  and Yi  
were input to a subsequent module of extraction and fusion features.

2.2.2. Multi-scale feature extraction and fusion
Multi-Scale Feature Extraction includes inverted residual block, 

MS-CAM, and Bi-LSTM module. In an inverted residual module (34), 
the input features were first passed through a 1×1 convolution layer, 
which was used to increase the number of channels. This was followed 
by an N-layer convolution layer to significantly reduce the number of 
network parameters and computation, which included a 1*1 
convolution layer, 1D zero padding layer, batch normalization layer, 
and dropout layer. Finally, another 1×1 convolution layer was used to 
reduce the number of channels back to the original number.

2.2.2.1. Multi-scale attention mechanism block
Multi-scale attention mechanism block (MS-CAM) (34) was capable 

of extracting both local features and global features and then combining 
the features with two feature matrices. To more accurately and effectively 
capture feature information, we used a Bi-LSTM (23) layer before the two 
feature matrices were fused. For a given feature X ∈ RH × W × C, the feature 
map had a dimension of H × W and was composed of C channels; the 
MS-CAM combined global and local features:

 
M X G X L X( ) = ( )⊕ ( )  

(9)

where G(X) represented global features and L(X) represented local 
features. The structure of MS-CAM is shown in Figure 1. G(X) ∈ RC 
and L(X) ∈ RC × H × W(when H=W = 1, represents extracting global 
features information). The G(X) and L(X) were computed using the 
GAP and Batch Normalization (BN) as follows:

 
L X BN PWConv BN PWConv X( ) = ( )( )( )( )2 1

 
(10)
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G X BN PWConv BN PWConv GAP X( ) = ( )( )( )( )( )2 1

 
(11)

 

GAP X
H W

X ,i,j
i

H

j

W
( ) =

×
 

= =
∑∑1

1 1
:

 

(12)

where the point-wise convolution (PWConv) was used for 
extracting local features, each separate filter size for PWConv1 and 
PWConv2 was (H × W × C)/r and H × W × C. Unlike the conventional 
MS-CAM, to preserve the feature information and prevent its 
destruction, we removed the non-linear activation function from the 
convolution layers. The expansion ratio of PWConv1 was r, and the 
expansion ratio of PWConv2 was 1/r. The refined features ′X  and ′Y  
were expressed as:

 
′ = ⊗ ( )( ) = ⊗ ( )⊕ ( )( )X X M X X G X L Xσ σ

 
(13)

 
′ = ⊗ ( )( ) = ⊗ ( )⊕ ( )( )Y Y M Y Y G Y L Yσ σ

 
(14)

where σ represented sigmoid function, ⊕  represented 
broadcasting addition, and ⊗ represented element-
wise multiplication.

2.2.2.2. Bi-directional long- and short-term memory
Bi-directional long- and short-term memory (Bi-LSTM) (23) 

was capable of capturing long-range sequence dependencies and 
thus could provide a better context. It processed sequences in both 
directions before and after and had been shown to yield the best 
performance when configuring 128 hidden neurons and one layer 
depth. To prevent overfitting and avoid cooperative adaptation, 
we set the dropout rate to 0.2 in our predictor. The probability of a 
4mC site in the input sequence was represented by one neuron in 
the output layer, which utilized the sigmoid activation function.
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W
W

h c
t

t

t

x

h

C

t
′

−
















=
































σ
σ

tanh
1, tt

i

f

g

b
b
b

− +

































1

 

(15)

The i-th equation for encoding DNA sequence is shown below:

 
C i C f C W h W x W C bt t t t t t x t h t c t= + = + + +( )′

− −1 1ο σ ο   

 h Ct t t=ο tanh   (16)

Where it  represented input gate, ft  represented forget gate, οt  
represented output gate, Ct

′  was the auxiliary value of the calculation 
cell memory Ct , t  was the current time, Wx , Wy , Wc  were the 
corresponding weight coefficient, bο  was constant at time t, and ht  
represented the output of the LSTM cell. Since Bi-LSTM consists of 
two opposite-direction LSTM networks, the i-th nucleotide of the 
DNA sequence was represented using the following encoding:

 
ht

h ht t

= →⊕←










 
(17)

2.2.3. Multi-scale feature fusion
The AFF (34) extracted local features according to global 

channel attention. The local and global features can be integrated, 
and the context of multiple-scale features can be obtained through 
point-wise convolution. This can collect more details from lower-
level features and reduce the use of parameters. Its lightweight 
characteristic made it an ideal replacement for the existing feature 
fusion module. The construction of AFF is shown in Figure 1. The 
fused features, Z ∈ RH × W × C, were calculated by the 
following equation:

 

Z M X Y X M X Y Y
L X Y G X Y X

L X Y G X Y

= +( )⊗ + − ⊕( )( )⊗
= ⊕( )⊕ ⊕( )( )⊗
+ − ⊕( )⊕ ⊕(

1

1
σ

σ ))( )( )⊗Y
 

(18)

The σ represented the sigmoid function, ⊕  denoted addition 
operation, ⊗  denoted element multiplication, and X Y⊕  represented 
the combination of feature X  and Y . M X Y+( )  represented the 
weights of fusion for X; the weights of fusion for Y were denoted as 
1− ⊗( )M X Y . With values ranging from zero to one, the function of 
this module was to perform a computation that combined the values 
of X  and Y  in a weighted manner. The weighting can be considered 
as a soft selection or weighted averaging process.

2.2.4. Eliminate noise module
The DRSN set unimportant features to zero by inserting a soft 

threshold with a trainable shrinkage function and made the high-level 
features more distinguishable. By combining threshold and depth 
learning, the information related to noise can be removed and high-
quality identification features can be obtained. The soft threshold was 
defined by the following formula:

 

O =
− >
− ≤ ≤
+ < −









I t I t
t I t

I t I t

,
,

,
0

 

(19)

where I  represented the input feature, O represented the output 
feature, and t  denoted the threshold, which was a positive number. 
Some activation functions set negative features to zero, such as 
Rectified Linear Unit (ReLU). Nevertheless, the soft threshold had the 
ability to assign features that were nearly zero to zero, allowing the 
network to retain useful negative features. The results of the derivative 
for output to input had two values, either one or zero, which aided in 
avoiding the gradient vanishing or explosion. We  obtained the 
derivative formula for formula (19):

 

∂
∂

=
>

− ≤ ≤
< −









O
I

I t
t I t
I t

1
0

1
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(20)
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2.2.4.1. Residual Shrinkage Building Unit with 
Channel-Wise thresholds

Residual Shrinkage Building Unit with Channel-Wise thresholds 
(RSBU-CW) was the submodel of DRSN-CW. In this predictor, 
we used DRSN-CW consisting of two RSBU-CWs to remove noise 
associated with features. Figure  1 illustrates the architecture of 
RSBU-CW. The features underwent two one-dimensional convolutions 
before being transformed into 1D vectors by applying the absolute 
function and GAP layer, followed by feeding the features into a 
two-layer FC network. The second layer had multiple neurons equal 
to the number of channels in input features. After passing the 
two-layer FC network, the scaling parameter was adjusted to fall 
within the range (zero and one) by applying the sigmoid function. The 
output of the FC network was then scaled using the following 
expression to fall within the range of (zero and one).

 
αc ze c

=
+ −

1
1  

(21)

The variable zc  referred to the feature of the c-th neuron and was 
also the output of the two-layer FC network, and the c-th neuron’s 
scaling parameter was represented by αc . For our predictor, the value 
of C was 256. Following that, the thresholds were calculated by the 
following equation:

 
τ α=  , ,c c i j caverage x

 
(22)

We adopted two stacked RSBU-CWs to eliminate the noise-
related information in our predictor. The RSBU-CW layer with a 
soft threshold as shrinkage functions, and was observed through 
a variety of nonlinear transformation. After a series of 
experiments, we found that the two stacked RSBU-CWs yielded 
the best effect in our predictor. As part of the implementation 
process, we computed the scaling parameter C and corresponding 
thresholds τc  for the C-th channel of the features in the features 
map. i denoted width, j  denoted height, and C denoted channel. 
A value of 256 was chosen for C, and the thresholds were selected 
to be  positive and within an appropriate range to prevent the 
features of zero-valued output.

2.2.5. Prediction module
In the prediction module, we integrated the feature vectors using 

a flatten function generated by the dropout layer; the vector was 
subsequently passed through a fully connected dense layer, which was 
referred to as dense(n) and contained 32 neurons. In the FC layer, 
we used the Exponential Linear Units activation function and sigmoid 
function to produce the ultimate outcomes. The values were scaled to 
a range of zero to one using the sigmoid function, which represented 
the probability that was 4mC or non-4mC sites.

The predictor used the Adam optimizer (37) to train, which was 
efficient, required small memory, and was suitable for large parameter 
problems. For the binary classification task, binary cross-entropy (12) 
was utilized to measure the discrepancy between the predicted and 
target results.

2.3. Performance evaluation metrics

To estimate DRSN4mCPred’s effectiveness, we used a range of 
metrics, including accuracy (ACC), Matthews correlation coefficient 
(MCC), sensitivity (Sn), specificity (Sp), precision, and F1− score (38), 
as well as the receiver operating characteristics curve (ROC) and the 
associated area under the curve (AUC).

 
ACC TP TN

TP FN FP TN
=

+
+ + +  

(23)

 
Sn TP

TP FN
=

+  
(24)

 
Sp TN

TN FP
=

+  
(25)

 
Precision TP

TP FP
=

+  
(26)

 
F score TP

TP FP FN1
2

2
− =

× + +  
(27)

The abbreviations TP, TN, FP, and FN were used to denote true 
positive, true negative, false positive, and false negative, respectively. TP 
represented a total of 4mC sites that were correctly classified into 4mC 
sites; TN denoted the number of correctly classified non-4mC sites, while 
FP represented the total number of 4mC sites that were wrongly classified 
as 4mC. Similarly, FN indicated the total number of non-4mC sites that 
were wrongly classified as 4mC sites. The performance of DRSN4mCPred 
was also evaluated using AUC, and its ability to correctly classify 4mC 
and non-4mC sites was measured.

3. Results and discussion

DRSN4mCPred was developed using Keras 2.9.0 and TensorFlow 
1.12.0  in Python 3.9. The model was trained using 10-fold cross-
validation, where each fold was trained for 50 epochs with a batch 
size of 142.

3.1. Analysis of DNA sequences

To uncover distribution variations for 4mC and non-4mC sites, the 
pLogo web server (23) with FLOW (v1.12.0) was used to uncover the 
differences. Sequence logos were generated to display the nucleotides 
that were over- or under-represented, indicating the excess and 
insufficient (p = 0.05) at every position of DNA sequences. The 
Hyb_2021 dataset is displayed in Figure 2 using the pLogo tool, the red 
horizontal lines indicating a distinct threshold with 3.51 (p < 0.05).
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The nucleotide distribution of various species was different from 
each other. For example, in C. elegans, adenine (A) was significantly 
enriched at positions p1-18, 22–25, 27, and 31–41 (p < 0.05), while 
thymine (T) was significantly depleted at positions 20, 26, and 28. In 
A. thaliana, G nucleotides were significantly enriched at positions p22, 
p23, and p24, while the nucleotides of A were significantly enriched 
at positions p1-18, 25, 26, 28, 29, and 31–41. In D. melanogaster, G was 
enriched at positions 9, 12, 18, and 20. In E. coli, the nucleotides of A 
were obviously abundant at positions 16, 17, 18, 25, and 28, while G, 
C, and T were abundant at other positions. In the species of 
G. pickeringii and G. subterraneus, the nucleotides were obviously 
abundant in most upstream and downstream positions, while the 
nucleotides of T were abundant at position p22.

The above results showed that the position of nucleotides in DNA 
sequences was a key feature to distinguish the position of 4mC and 
non-4mC sites. Relying solely on observed features for judgment can 
result in numerous false positives, so it was necessary to elucidate the 
related information for the specific location; hence, the method based 
on machine learning was also necessary, which had been proven to 
be effective in many fields (Table 1).

3.2. Performance on datasets

The datasets of Hyb_2021 and Li_2020 were used for performing 
performance evaluation tests, respectively. The results of the evaluation 

FIGURE 2

Sequence logo representations of the nucleotide 4mC sites and non-4mC sites on datasets from six species. (A) C.elegans, (B) D.melanogaster, 
(C) A.thaliana, (D) E.coli, (E) G.pickeringii, and (F) G.subterraneus.
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tests showed that DRSN4mCPred was an effective predictor for 
distinguishing 4mC and non-4mC sites. When using DRSN4mCPred 
to test the Hyb_2021 dataset, we obtained individual AUC values of 
0.992, 0.985 0.823, 0.994, 0.992, and 0.992 for the species C. elegans, 
D. melanogaster, A. thaliana, E. coli, G. subterraneus, and G. pickeringii, 
as shown in Table 2. Additionally, when we tested DRSN4mCPred on 
the Li_2020 dataset, the resulting individual AUC values for these 
species were 0.994, 0.989, 0.946, 0.992, 0.927, and 0.934, separately; the 
DRSN4mCPred’s AUC average value was 0.964. The above results 
showed the effectiveness of DRSN4mCPred in distinguishing 4mC sites 
(Tables 3, 4).

3.3. Analysis of cross-species validation

The six species benchmark datasets used for cross-species 
experimental validation were all sourced from the Hyb_2021 

dataset. Each DNA sequence has 41 base pairs in length. While one 
species dataset was used for training the predictive model, the 
other five species datasets were employed to test the model’s 
performance. Figure 3 shows the experimental results of the six 
cross-species using a heat map. The prediction models exhibit a 
significant performance variation among the six species. The 
accuracy of the predictive models was the lowest for E. coli species 
when applied to the species of C. elegans, D. melanogaster, and 
A. thaliana. However, the models based on datasets of C. elegans 
species, D. melanogaster species, and A. thaliana species 
demonstrated excellent accuracy when predicting each other, with 
96.69, 97.73, and 90.97% accuracy, respectively. The models based 
on the species of G. subterraneus and G. pickeringii also achieve 
high accuracy in predicting the four species.

Overall, the prediction model based on the features of extraction 
by DRSN4mCPred was highly effective in identifying DNA 4mC sites 
across species, demonstrating the strong categorical information 

TABLE 3 Performance on Hyb_2021 datasets.

Species ACC Sn Sp Precision F1_score Auc

C. elegans 0.970 0.968 0.972 0.974 0.974 0.996

D. melanogaster 0.955 0.961 0.949 0.950 0.955 0.990

A. thaliana 0.736 0.889 0.584 0.825 0.841 0.829

E. coil 0.978 0.975 0.981 0.981 0.978 0.993

G. subterraneus 0.961 0.971 0.952 0.975 0.967 0.992

G. pickeringii 0.965 0.947 0.982 0.976 0.973 0.992

TABLE 1 Statistical summary of six species datasets.

Species datasets Number of train samples Number of test samples

Positive Negative Positive Negative

D. melanogaster 81289 81289 28000 28000

C. elegans 56770 56770 12147 12147

A. thaliana 74662 74661 50966 50966

E. coli 1908 1908 160 160

G. subterraneus 7064 7064 7813 7813

G. pickeringii 3761 3761 1926 1926

TABLE 2 The individual AUC values for the six species.

Species AUC

Hyb_2021 Li_2020

C. elegans 0.996 0.994

D. melanogaster 0.990 0.989

A. thaliana 0.829 0.946

E. coli 0.993 0.992

G. subterraneus 0.992 0.985

G. pickeringii 0.992 0.986
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available in the extracted features. This suggests that our 
DRSN4mCPred predictive model can effectively extract significant 
information from DNA sequences for identifying both 4mC and 
non-4mC sites of DNA.

4. Conclusion

This paper introduced the DRSN4mCPred model to 
discriminate DNA 4mC sites. To verify its accuracy, we used two 
datasets Hyb_2021 and Li_2020, which comprise species such as 
C. elegans, D. melanogaster, A. thaliana, E. coli, G. subterraneus, 
and G. pickeringii. On the Hyb_2021 dataset, the AUC of 
DRSN4mCPred for the species of C. elegans, D. melanogaster, 
E. coli, and G. pickeringii achieved 0.996, 0.995, 0.995, 0.991, and 
0.992. Additionally, DRSN4mCPred’s performance on the Li_2020 
database was also very good.

Incorporating DSBU-CW into the model of DRSN4mCPred 
resulted in improved prediction performance, which effectively 
eliminated noise-related features and captured critical features. The 
use of multi-scale channel attention and attentional feature fusion 
to automatically learn both high-level and low-level features leads 
to better accuracy in distinguishing 4mC sites and non-4mC sites. 

This research could offer assistance to the diagnosis and treatment 
of gastrointestinal cancer in the precision medicine era.
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