4,078 research outputs found

    Object Segmentation in Images using EEG Signals

    Get PDF
    This paper explores the potential of brain-computer interfaces in segmenting objects from images. Our approach is centered around designing an effective method for displaying the image parts to the users such that they generate measurable brain reactions. When an image region, specifically a block of pixels, is displayed we estimate the probability of the block containing the object of interest using a score based on EEG activity. After several such blocks are displayed, the resulting probability map is binarized and combined with the GrabCut algorithm to segment the image into object and background regions. This study shows that BCI and simple EEG analysis are useful in locating object boundaries in images.Comment: This is a preprint version prior to submission for peer-review of the paper accepted to the 22nd ACM International Conference on Multimedia (November 3-7, 2014, Orlando, Florida, USA) for the High Risk High Reward session. 10 page

    Range entropy: A bridge between signal complexity and self-similarity

    Get PDF
    Approximate entropy (ApEn) and sample entropy (SampEn) are widely used for temporal complexity analysis of real-world phenomena. However, their relationship with the Hurst exponent as a measure of self-similarity is not widely studied. Additionally, ApEn and SampEn are susceptible to signal amplitude changes. A common practice for addressing this issue is to correct their input signal amplitude by its standard deviation. In this study, we first show, using simulations, that ApEn and SampEn are related to the Hurst exponent in their tolerance r and embedding dimension m parameters. We then propose a modification to ApEn and SampEn called range entropy or RangeEn. We show that RangeEn is more robust to nonstationary signal changes, and it has a more linear relationship with the Hurst exponent, compared to ApEn and SampEn. RangeEn is bounded in the tolerance r-plane between 0 (maximum entropy) and 1 (minimum entropy) and it has no need for signal amplitude correction. Finally, we demonstrate the clinical usefulness of signal entropy measures for characterisation of epileptic EEG data as a real-world example.Comment: This is the revised and published version in Entrop

    Inverse Modeling for MEG/EEG data

    Full text link
    We provide an overview of the state-of-the-art for mathematical methods that are used to reconstruct brain activity from neurophysiological data. After a brief introduction on the mathematics of the forward problem, we discuss standard and recently proposed regularization methods, as well as Monte Carlo techniques for Bayesian inference. We classify the inverse methods based on the underlying source model, and discuss advantages and disadvantages. Finally we describe an application to the pre-surgical evaluation of epileptic patients.Comment: 15 pages, 1 figur

    Computational study of resting state network dynamics

    Get PDF
    Lo scopo di questa tesi è quello di mostrare, attraverso una simulazione con il software The Virtual Brain, le più importanti proprietà della dinamica cerebrale durante il resting state, ovvero quando non si è coinvolti in nessun compito preciso e non si è sottoposti a nessuno stimolo particolare. Si comincia con lo spiegare cos’è il resting state attraverso una breve revisione storica della sua scoperta, quindi si passano in rassegna alcuni metodi sperimentali utilizzati nell’analisi dell’attività cerebrale, per poi evidenziare la differenza tra connettività strutturale e funzionale. In seguito, si riassumono brevemente i concetti dei sistemi dinamici, teoria indispensabile per capire un sistema complesso come il cervello. Nel capitolo successivo, attraverso un approccio ‘bottom-up’, si illustrano sotto il profilo biologico le principali strutture del sistema nervoso, dal neurone alla corteccia cerebrale. Tutto ciò viene spiegato anche dal punto di vista dei sistemi dinamici, illustrando il pionieristico modello di Hodgkin-Huxley e poi il concetto di dinamica di popolazione. Dopo questa prima parte preliminare si entra nel dettaglio della simulazione. Prima di tutto si danno maggiori informazioni sul software The Virtual Brain, si definisce il modello di network del resting state utilizzato nella simulazione e si descrive il ‘connettoma’ adoperato. Successivamente vengono mostrati i risultati dell’analisi svolta sui dati ricavati, dai quali si mostra come la criticità e il rumore svolgano un ruolo chiave nell'emergenza di questa attività di fondo del cervello. Questi risultati vengono poi confrontati con le più importanti e recenti ricerche in questo ambito, le quali confermano i risultati del nostro lavoro. Infine, si riportano brevemente le conseguenze che porterebbe in campo medico e clinico una piena comprensione del fenomeno del resting state e la possibilità di virtualizzare l’attività cerebrale

    EEG-based mental workload neurometric to evaluate the impact of different traffic and road conditions in real driving settings

    Get PDF
    Car driving is considered a very complex activity, consisting of different concomitant tasks and subtasks, thus it is crucial to understand the impact of different factors, such as road complexity, traffic, dashboard devices, and external events on the driver’s behavior and performance. For this reason, in particular situations the cognitive demand experienced by the driver could be very high, inducing an excessive experienced mental workload and consequently an increasing of error commission probability. In this regard, it has been demonstrated that human error is the main cause of the 57% of road accidents and a contributing factor in most of them. In this study, 20 young subjects have been involved in a real driving experiment, performed under different traffic conditions (rush hour and not) and along different road types (main and secondary streets). Moreover, during the driving tasks different specific events, in particular a pedestrian crossing the road and a car entering the traffic flow just ahead of the experimental subject, have been acted. A Workload Index based on the Electroencephalographic (EEG), i.e., brain activity, of the drivers has been employed to investigate the impact of the different factors on the driver’s workload. Eye-Tracking (ET) technology and subjective measures have also been employed in order to have a comprehensive overview of the driver’s perceived workload and to investigate the different insights obtainable from the employed methodologies. The employment of such EEG-based Workload index confirmed the significant impact of both traffic and road types on the drivers’ behavior (increasing their workload), with the advantage of being under real settings. Also, it allowed to highlight the increased workload related to external events while driving, in particular with a significant effect during those situations when the traffic was low. Finally, the comparison between methodologies revealed the higher sensitivity of neurophysiological measures with respect to ET and subjective ones. In conclusion, such an EEG-based Workload index would allow to assess objectively the mental workload experienced by the driver, standing out as a powerful tool for research aimed to investigate drivers’ behavior and providing additional and complementary insights with respect to traditional methodologies employed within road safety research
    corecore