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Abstract: Approximate entropy (ApEn) and sample entropy (SampEn) are widely used for temporal
complexity analysis of real-world phenomena. However, their relationship with the Hurst exponent
as a measure of self-similarity is not widely studied. Additionally, ApEn and SampEn are susceptible
to signal amplitude changes. A common practice for addressing this issue is to correct their input
signal amplitude by its standard deviation. In this study, we first show, using simulations, that
ApEn and SampEn are related to the Hurst exponent in their tolerance r and embedding dimension m
parameters. We then propose a modification to ApEn and SampEn called range entropy or RangeEn.
We show that RangeEn is more robust to nonstationary signal changes, and it has a more linear
relationship with the Hurst exponent, compared to ApEn and SampEn. RangeEn is bounded in
the tolerance r-plane between 0 (maximum entropy) and 1 (minimum entropy) and it has no need
for signal amplitude correction. Finally, we demonstrate the clinical usefulness of signal entropy
measures for characterisation of epileptic EEG data as a real-world example.

Keywords: approximate entropy; sample entropy; range entropy; complexity, self-similarity; Hurst
exponent

1. Introduction

Complexity is a global concept in data analysis that is observed in a wide range of real-world
phenomena and systems including biological signals [1–6], brain dynamics [7–9], mechanical
systems [10,11], climate change [12], volcanic eruption [13], earthquakes [14], and financial markets [15].
It is difficult to provide a formal definition for signal complexity. This concept, however, can be
approached as a mid-point situation between signal regularity and randomness. From this perspective,
complexity can be defined as the amount of nonlinear information that a time series conveys over
time. Highly random fluctuations (such as white noise as an extreme case) have very low complexity,
because they present no regular pattern in their dynamical behaviour. Real-world phenomena, on the
other hand, usually contain spreading patterns of nonlinear ’structured activity’ across their frequency
components and temporal scales. Dynamics of the brain or fluctuation of stock markets are examples
of complex processes. Despite the importance of complexity in science, its quantification is not
straightforward. Time-frequency distributions and wavelet transforms [16] are examples of analysis
tools for capturing signal dynamics, but they may be insensitive to nonlinear changes.

A promising avenue for understanding temporal complexity is through signal entropy analysis,
a family of methods rooted in information theory. Entropy rate of a random process is defined as
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the average rate of generation of new information [17]. In this context, independent and identically
distributed white noise is assumed to have maximal entropy and disorder. This is because identically
distributed white noise has a normal distribution where each upcoming time point contains new
information. On the other hand, a completely periodic signal with a repeating pattern of constant
values will lead to minimal entropy, as there is no generation of new information. The most prominent
types of signal entropy measures include Shannon entropy [17], Renyi entropy [18], Kolmogorov
entropy [19,20], Kolmogorov–Sinai entropy [21], Eckmann–Ruelle entropy [22], approximate entropy
(ApEn) [23], sample entropy (SampEn) [24], and multi-scale entropy [25]. See [26] for more examples of
entropy-based signal measures.

Among the aforementioned signal entropy measures, ApEn and SampEn are two of the most
commonly used measures in contemporary science, especially in the analysis of biological signals [27].
Like ApEn, SampEn resembles a template-matching search throughout the input signal with two main
parameters: embedding dimension m and tolerance r. The former governs the length of each segment
(template) to be searched and the later controls the level of similarity between segments. In fact,
SampeEn stems from ApEn after addressing some of its limitations including inconsistency over the
parameter r and strong dependency to the input signal length [24]. However, both measures still suffer
from sensitivity to signal amplitude changes. Another important aspect of these measures is their
inverse relationship with the Hurst exponent as a measure of self-similarity in signals [28]. The analysis
of this link, however, deserves more attention.

In this study, we investigate the behaviour of ApEn and SampEn in the presence of self-similarity
and examine their relationship with the Hurst exponent through their tolerance and embedding
dimension parameters. We also address the issue of sensitivity to signal amplitude changes in ApEn
and SampEn by developing modified versions called range entropies or RangeEn. We compare RangeEn
with ApEn and SampEn from different perspectives using multiple simulations. Finally, we demonstrate
the capacity of signal entropy measures for epileptic EEG characterisation. A Python implementation
of this study is publicly available at https://github.com/omidvarnia/RangeEn.

2. Materials and Methods

2.1. Signal Complexity Analysis

2.1.1. Reconstructed Phase Space

Numerical computation of signal entropy for a uniformly-sampled signal x = {x1, x2, ..., xN} can
be done through the concept of reconstructed phase space [27]. It represents the dynamical states of a
system with state variables Xm,τ

i defined as [29]:{
Xm,τ

i = {xi, xi+τ , ..., xi+(m−1)τ}
i = 1, ..., N − (m− 1)τ

, (1)

where m denotes the embedding dimension and τ is the delay time. Xm,τ
i represents a state vector in

an m-dimensional phase space Vx. The parameter τ is also referred to as scale.
Given a reconstructed state vector Xm,τ

i , it is possible to partition Vx into small non-overlapping
and equisized regions εk, so that

⋃
k εk = Vx and

⋂
k εk = 0. Signal entropy can then be computed by

assigning a probability value pk to each region as the probability of visiting the phase trajectory [27].
From now on, we consider a special case of Vx where τ = 1. In this case, the state vector Xm,τ

i is
reduced to a vector sequence of xi through to xi+m−1, i.e.,:

Xm
i = {xi, xi+1, ... , xi+m−1}, i = 1, ..., N −m + 1. (2)

https://github.com/omidvarnia/RangeEn
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2.1.2. Approximate Entropy

Let each Xm
i in Equation (2) be used as a template to search for neighbouring samples in the

reconstructed phase space. Two templates Xm
i and Xm

j are matching if their relative distance is
less than a predefined tolerance r. The distance function used in both ApEn and SampEn is the
Chebyshev distance defined as dchebyshev(Xm

i , Xm
j ) := max

k
(|xi+k − yj+k|, k = 0, ..., m− 1). It leads to

an r-neighbourhood conditional probability function Cm
i (r) for any vector Xm

i in the phase space Vx:

Cm
i (r) =

1
N −m + 1

Bm
i (r), i = 1, ..., N −m + 1, (3)

where {
Bm

i (r) = {No. o f Xm
j s | dchebyshev(Xm

i , Xm
j ) ≤ r}

j = 1, ..., N −m + 1
. (4)

Let Φm(r) be the sum of natural logarithms Cm
i (r); that is,

Φm(r) =
N−m+1

∑
i=1

ln Cm
i (r). (5)

The rate of change in Φm(r) along the embedding dimension m is called the Eckmann–Ruelle
entropy and is defined as [22]:

HER = lim
r→0

lim
m→0

lim
N→∞

Φm(r)−Φm+1(r). (6)

An approximation of HER, proposed by Pincus through fixing r and m in Equation (6), is called
approximate entropy (ApEn) [23,30]:

ApEn = lim
N→∞

Φm(r)−Φm+1(r), r, m f ixed. (7)

ApEn quantifies the mean negative log probability that an m-dimensional state vector will repeat
itself at dimension (m + 1). It is recommended that the tolerance is corrected as r× SD (SD being the
standard deviation of x) to account for amplitude variations across different signals.

2.1.3. Sample Entropy

As Equations (3) and (4) suggest, ApEn allows for the self-matching of templates Xm
i in the

definition of Cm
i (r) to avoid the occurrence of ln(0) in its formulation [30]. However, this will result in

an unwanted bias that occurs in particular for short signal lengths (small N). Inconsistency of ApEn
over the tolerance parameter r has also been reported [24,30]. In order to address these issues, sample
entropy was developed by updating Bm

i (r) in Equation (4) [24]:{
Bm

i (r) = {No. o f Xm
j s | dchebyshev(Xm

i , Xm
j ) ≤ r}

j = 1, ..., N −m, j 6= i
, (8)

averaging over time as:

Br
m =

1
N −m

N−m

∑
i=1

Bm
i (r). (9)

Sample entropy is then defined as:

SampEn = lim
N→∞

−ln
Br

m+1
Br

m
. (10)
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There are three major differences between SampEn and ApEn:

(1) Conditional probabilities of SampEn, i.e., Bm
i (r) in Equation (8), are obtained without

self-matching of the templates Xm
i .

(2) Unlike ApEn, which takes the logarithm of each individual probability value (see Equation (5)),
SampEn considers the logarithm of the sum of probabilities in the phase space (see
Equations (9) and (10)).

(3) ApEn is defined under all circumstances due to its self-matching, while SampEn can sometimes
be undefined, as Br

m and Br
m+1 in Equation (10) are allowed to be zero.

Since dchebyshev(Xm
i , Xm

j ) is always smaller than or equal to dchebyshev(X
m+1
i , Xm+1

j ), Br
m+1 is less

than Br
m for all values of m. Therefore, SampEn is always non-negative [24]. The parameter set of m = 2

and r between 0.2 to 0.6 has been widely used for extracting SampEn in the literature [9,24,28].

2.2. Signal Self-Similarity Analysis

2.2.1. Self-Similar Processes

The time series x(t) is self-similar or scale-invariant if it repeats the same statistical characteristics
across multiple temporal scales [31]. In this case, scaling along the time axis by a factor of a requires
a rescaling along the signal amplitude axis by a factor of aH ; that is, x(at) = aHx(t) for all t > 0,
a > 0, and H > 0. The Hurst exponent is a common measure of quantifying self-similarity in signals.
Intuitively, the more a signal is self-similar, the more its long-term memory increases. Given the
definition of signal entropy as ‘the average rate of generation of new information’ [17], we expect a link
between signal entropy and self-similarity. This can be investigated by looking into the signal entropy
values of time series with certain degrees of self-similarity. Fractional Levy and Brawnian motions
(fLm and fBm, respectively) are well suited for this purpose. The fBm signal BH(t) is a continuous-time
Gaussian process whose difference also leads to a Gaussian distribution, and its self-similarity level is
controlled by its Hurst parameter. It is given by [31]:

BH(t) =
∫ ∞

−∞
{(t− u)H−1/2

+ − (−u)H−1/2
+ } dB(u), (11)

where H is the Hurst exponent (0 < H < 1), (x)+ := max(x, 0). B(t) is an ordinary Brownian motion,
a spacial case at H = 0.5, whose frequency spectrum follows the 1/ f 2 pattern. fBm has the following
covariance function:

E{BH(t)BH(s)} =
1
2
(t2H + s2H− | t− s |2H), t, s ≥ 0. (12)

It represents self-similarity (or long-term memory) for H > 0.5 and anti self-similarity (or
short-term memory) for H < 0.5. A more general form of fBm is the fLm which is defined based
on α-stable Levy processes Lα(t) with the following characteristic function (the Fourier transform of the
probability density function) [32]:

f (x) =
1
π

∞∫
0

e−|Ck|α cos(kx) dk, (13)

where α is the Levy index (0 < α ≤ 2), and C > 0 is the scale parameter controlling the standard

deviation of Gaussian distributions. The fLm signal Zα
H(t) is given by [31]:

Zα
H(t) =

∫ ∞

−∞
{(t− u)d

+ − (−u)d
+} dLα(u), (14)



Entropy 2018, 20, 962 5 of 22

where d = H − 1/α. For α = 2, Equation (13) is reduced to the characteristic function of a Gaussian
distribution and Zα

H(t) is converted to fBm.

2.2.2. Rescaled Range Analysis for Self-Similarity Assessment

A commonly used approach for estimating the Hurst exponent of an N-long time series x is
through rescaled range analysis [33]. It applies a multi-step procedure on x = {x1, x2, ..., xN} as follows:

(1) Divide x into n equisized non-overlapping segments xs
n with the length of N/n, where

s = 1, 2, 3, ..., n and n = 1, 2, 4, ... . This process is repeated as long as xs
n has more than four

data points.
(2) For each segment xs

n,

(a) Center it as ys
n = xs

n −ms
n, where ms

n is the mean of xs
n. ys

n shows the deviation of xs
n from

its mean.
(b) Compute the cumulative sum of centered segment ys

n as zs
n = ∑N/n

i=1 ys
n(i). zs

n shows the
total sum of ys

n as it proceeds in time.
(c) Calculate the largest difference within the cumulative sum zs

n, namely,

Rs
n = max

k
zs

n(k)−min
k

zs
n(k). (15)

(d) Calculate the standard deviation of xs
n as Ss

n and obtain its rescaled range as Rs
n/Ss

n.

(3) Compute the average rescaled range at n as R(n)/S(n) = (1/n)∑n
s=1 Rs

n/Ss
n.

The average rescaled range R(n)/S(n) is modelled as a power law function over n whose
asymptotic behaviour represents the Hurst exponent:

lim
n→∞

E{R(n)/S(n)} = CnH . (16)

H can be estimated as the slope of the logarithmic plot of the rescaled ranges versus ln(n). The main
idea behind rescaled range analysis is to quantify the fluctuations of a signal around its stable mean [33].
Next, we relate ApEn and SampEn with rescaled range analysis through their embedding dimension
parameter m. We then introduce a change into these measures, which makes them more sensitive to
self-similarity of signals. We will show the link between entropy measures and the Hurst exponent in
Section 3 through simulations of the fBm and fLm processes.

2.3. Complexity and Self-Similarity Analyses Combined

2.3.1. RangeEn: A Proposed Modification to ApEn and SampEn

Both ApEn and SampEn aim to extract the conditional probabilities of Bm
i (r) by computing

the Chebyshev distance between two templates (or state vectors) Xm
i and Xm

j in the reconstructed
m-dimensional phase space, as shown in Equations (4) and (8). The idea here is to estimate the
(logarithmic) likelihood that runs of patterns that are close remain close on next incremental comparisons [30].
The closer the two states stay together in the reconstructed phase space over time, the less change they
will introduce into the signal dynamics. The idea of quantifying the Chebyshev distance between two
state vectors originated from the seminal paper by Takens [34].

Although dchebyshev(Xm
i , Xm

j ) can provide useful information about the variation of state vectors,
it has two limitations. First, it is not normalised as it has no upper limit. It leads to an unbounded
range for the tolerance parameter r in the conditional probabilities Bm

i (r) (see Equations (4) and (8)).
Second, it only considers the maximum element-wise difference between two state vectors, so it is
blind to the lower limit of this differences. To address these issues, we adapt the general idea behind
the average rescaled range R(n)/S(n) in Equation (16) and propose an updated version of distance
function for ApEn and SampEn as follows:
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drange(Xm
i , Xm

j ) =
max

k
|xi+k−xj+k | − min

k
|xi+k−xj+k |

max
k
|xi+k−xj+k | + min

k
|xi+k−xj+k |

k = 0, ..., m− 1
. (17)

In the spacial case of a two-dimensional reconstructed phase space (m = 2), drange(Xm
i , Xm

j ) is
reduced to the simple form of (a − b)/(a + b), where a = max{(xi − xj), (xi+1 − xj+1)} and b =

min{(xi − xj), (xi+1 − xj+1)}. In fact, drange considers the stretching of state vectors across time and
dimension. In contrast to dchebyshev(Xm

i , Xm
j ), the proposed drange(Xm

i , Xm
j ) is normalised between 0

and 1. It also recognises the range of element-wise differences between Xm
i and Xm

i by combining the
absolute value, min and max operators. drange(Xm

i , Xm
j ) is defined over all values, except for identical

m-dimensional segments where the denominator in Equation (17) becomes zero.
Strictly speaking, drange(Xm

i , Xm
j ) is not a distance per se, because it does not satisfy all conditions

of a distance function. For any two equilength vectors v1 and v2, these requirements are defined as
follows [35]: 

(1) dist(v1, v2) ≥ 0 (non− negativity)

(2) dist(v1, v2) = dist(v2, v1) (symmetry)

(3) dist(v1, v1) = 0 (re f lexivity)

. (18)

drange(Xm
i , Xm

j ) violates the first and third conditions, as it is undefined for equal templates. In
fact, drange(Xm

i , Xm
j ) does not necessarily increase as Xm

i and Xm
j become farther away from one another

by other definitions of distance functions. For instance, assume all elements of Xm
i are increased by

a constant positive value. The numerator of drange then remains unchanged, while the denominator
increases, leading to a reduction in drange, even though the Euclidean distance between Xm

i and Xm
j has

increased. Having this in mind, we have referred to drange(Xm
i , Xm

j ) as a distance function throughout
this paper for practicality. By replacing dchebyshev(Xm

i , Xm
j ) in Equations (4) and (8) with drange(Xm

i , Xm
j ),

we update ApEn and SampEn as two new range entropy measures, i.e., RangeEnA and RangeEnB,
respectively.

2.3.2. Properties of RangeEn

Property 1: RangeEn is more robust to nonstationary amplitude changes. Unlike SampEn and ApEn,
which are highly sensitive to signal amplitude changes, RangeEn is less affected by variation in the
magnitude of signals. This originates from the in-built normalisation step in drange(Xm

i , Xm
j ), which is

directly applied to the amplitude of all templates.
Property 2: In terms of r, RangeEn is constrained in the interval [0, 1]. It becomes more obvious if we

rewrite Equation (4) (and similarly, Equation (8)) as:

Bm
i (r) =

N−m+1

∑
j=1

Ψ(r− drange(Xm
i , Xm

j )), (19)

where Ψ(.) is the Heaviside function defined as:

Ψ(a) =

{
0 a < 0

1 a ≥ 0
. (20)

Since drange(Xm
i , Xm

j ) is normalised, we conclude from Equation (19) that:

{
RangeEnA : Bm

i (r) = N −m + 1 ∀ r ≥ 1

RangeEnB : Bm
i (r) = N −m ∀ r ≥ 1

. (21)
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This ensures that both conditional probability functions Cm
i (r) in Equation (3) and Br

m in
Equation (9) will always be equal to 1 for r ≥ 1 leading to the following property for RangeEnA
and RangeEnB: {

RangeEnA(x, m, r) = 0 ∀ r ≥ 1

RangeEnB(x, m, r) = 0 ∀ r ≥ 1
. (22)

Property 3: RangeEn is more sensitive to the Hurst exponent changes. We will show through simulations
that all of ApEn, SampEn, and RangeEn reflect self-similarity properties of the signals in the r and m
domains to different extents. However, ApEn and SampEn may become insensitive to self-similarity
over a significant interval of Hurst exponents, while RangeEn still preserves its link.

2.4. Simulations
We used simulated data in order to test the behaviour of ApEn, SampEn, and RangeEn on

random processes.

2.4.1. Synthetic Data

We simulated 100 realisations of Gaussian white noise (N(0,1)), pink (1/ f ) noise, and brown noise
(1/ f 2) and extracted their different entropy estimates across a range of signal lengths and tolerance
parameters r. We used Python’s acoustics library (https://pypi.org/project/acoustics/) to generate
noise signals.

We also generated a range of fixed-length fBm and fLm signals (N = 1000) with pre-defined
Hurst exponents ranging from 0.01 (minimal self-similarity) to 0.99 (maximal self-similarity) with the
increasing step of ∆H = 0.01. We fixed the α parameter of all fractional Levy motions to 1. We used
Python’s nolds library (https://pypi.org/project/nolds/) to simulate the fBm time series and flm
(https://github.com/cpgr/flm) library to generate fLm signals.

2.4.2. Tolerance Parameter r of Entropy and the Hurst Exponent

For each of the fBm and fLm signals at different self-similarity levels, we set the embedding
dimension parameter m to 2 (a widely used value across the literature) and computed different
entropies over a span of tolerance values r from 0.01 to 1 with 0.01 increasing steps. In this way,
we investigated the relationship between a systematic increase in self-similarity (modelled by the
Hurst exponent) and the tolerance parameter r in the measures. For each r-trajectory, we estimated the
slope of a fitted line to the entropy measures with respect to log(r) and called this quantity r-exponent.

2.4.3. Embedding Dimension m of Entropy and the Hurst Exponent

Similar to Section 2.4.2, this time we fixed the tolerance parameter r to 0.2 (a common choice in
previous studies) and investigated entropy measures over different embedding dimensions m from 2
to 10. Therefore, we examined the relationship between a systematic change in the Hurst exponent
and the embedding dimension m. For each m-trajectory, we estimated the slope of a fitted line to the
entropy measures with respect to log(m) and called this quantity m-exponent.

For both analyses described in Sections 2.4.2 and 2.4.3, we did not perform line fitting for
those time series whose extracted entropy measures were undefined for at least one r or m values.
We repeated the above tests with and without amplitude correction (i.e., dividing the signal amplitude
by its standard deviation). This correction step is recommended for ApEn and SampEn analyses, as it
can reduce their sensitivity to differences in signal amplitudes (see [24]).

2.5. Epileptic EEG Datasets

We used three out of five datasets of a public epileptic EEG database [36] in our study. Each dataset
consisted of 100 single-channel EEG segments with the length of 23.6 s and sampling frequency of
173.61 Hz (N = 4097) which were randomised over recording contacts and subjects. Datasets C, D,

https://pypi.org/project/acoustics/
https://pypi.org/project/nolds/
https://github.com/cpgr/flm
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and E of [36] are intracranial EEG (iEEG) from five epilepsy patients who had epilepsy surgery at the
hippocampal area and became seizure-free after that. Dataset C was recorded from the hippocampal
formation on the opposite (contralateral) side of seizure focus, while dataset D was recorded from
the hippocampal area on the seizure (ipsilateral) side. Both datasets C and D were obtained during
interictal (seizure-free) intervals. In contrast, dataset E covered ictal (seizure) intervals only.

All datasets were obtained using a 128-channel EEG recorder with common average referencing.
Additionally, eye movement artefacts and strong pathological activities were identified and removed
from the signals through visual inspection. A band-pass filter of 0.53–40 Hz was applied to the data.
See [36] for more details about these datasets.

3. Results

3.1. Sensitivity to Signal Length

We simulated three color noise types at different lengths varying from 50 to 1000 samples
increasing with 10-sample increasing steps. One hundred realisations of each noise type were generated.
Four entropy measures (ApEn, SampEn, RangeEnA, and RangeEnB) were then computed from the
simulated noise signals. For all entropy measures, we fixed the dimension m to 2 and the tolerance
r to 0.2. Figure 1 illustrates the errorbar plot of each entropy measure for the three noise types over
different signal lengths. As the figure suggests, the variations of RangeEnA and RangeEnB are smaller
than both ApEn and SampEn over different lengths. Among the four measures, SampEn has the largest
standard deviations (poor repeatability) at each signal length, especially for shorter signals. A common
observation in all measures is that their standard deviation increases and their mean decreases by
increasing the exponential decay in the frequency domain, given a higher spectral exponent of Brown
noise compared to pink noise and of pink noise compared to white noise. ApEn is the most sensitive
measure to signal length, as its mean tends to change (almost linearly) with the data length. RangeEn
measures present a more stable mean (in contrast to ApEn) with small variance (in contrast to SampEn).

3.2. The Role of Tolerance r

To investigate the effect of tolerance r on entropy measures, we again simulated three noise types
at the fixed length of N = 1000 samples. We computed the measures at m = 2, but over a range of
tolerance values r from 0.01 to 1 in increments of 0.01. Figure 2 illustrates the entropy patterns in the
r-plane for each noise type. Five observations can be drawn from this analysis. First, both RangeEnA
and RangeEnB reach zero at r = 1. This is not the case for ApEn and SampEn. Second, SampEn shows
the highest standard deviation, in particular at low r values (r ≤ 0.3). Third, RangeEnA has the
highest number of undefined values across the four measures (note the missing values of RangeEnA
as vacant points in the figures, especially in the white noise and pink noise results). Finally, the level of
exponential decay in the frequency domain appears to be coded in the slope and starting point of the
RangeEn trajectories in the r-plane. Figure 2 suggests that Brown noise (1/ f 2, with the largest spectral
decay amongst the three noise types) has the lowest entropy pattern, while white noise with no decay
in the frequency domain has the steepest entropy trajectory, with the largest starting value of ≥ 4 at
r = 0.
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Figure 1. Variation of the entropy measures over different signal lengths (N in time samples). Each noise
type has been simulated 100 times, and errorbars represent the variation over noise realisations.
RangeEnA (in black) and RangeEnB (in blue) show less deviation around their mean values compared
to ApEn (in green) and SampEn (in red), in particular over short signal lengths. In all panels, the x-axis
is on a logarithmic scale.



Entropy 2018, 20, 962 10 of 22

Figure 2. Impact of the tolerance parameter r on the signal entropy measures extracted from three
noise types. Note that RangeEn measures always reach to 0 at r = 1, but this is not the case for ApEn
and SampEn. In all panels, entropy measures have been illustrated in distinct colors and the x-axis is on
a logarithmic scale.
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3.3. Dependency to Signal Amplitude

To evaluate the effect of signal amplitude on entropy, we simulated a white noise signal x1(n)
with N = 1000 time points and its copy multiplied by 5, i.e., x2(n) = 5x1(n) (see first and second
rows in the top panel of Figure 3, respectively). We then computed ApEn, SampEn, RangeEnA, and
RangeEnB for m = 2 and a range of tolerance values r from 0.01 to 1 with ∆r = 0.01. As Figure 3 shows,
RangeEnA and RangeEnB obtained from x1(n) and x2(n) are nearly identical, while ApEn and SampEn
diverge. In most of the existing ApEn and SampEn studies in the literature, the input signal is divided
by its SD to reduce the dependency of the entropy on the signal gain factor. This solution is useful
only for stationary changes of signal amplitude, where the entire SD of the whole signal is an accurate
description of its variability. We therefore designed a more difficult test for the entropies using a
nonstationary signal x3(n), whose SD is time-varying:

x3(n) =



x1(n) n = 1, ..., 200

3x1(n) n = 201, ..., 400

10x1(n) n = 401, ..., 600

4x1(n) n = 601, ..., 800

x1(n) n = 801, ..., 1000.

. (23)

The signal x3(n) (illustrated in the third row in the top panel of Figure 3) resembles a nonstationary
random process which has been generated through a stationary process modelled by x1(n), but also
affected by a time-varying amplitude change. In order to correct for the amplitude (gain) variation
prior to computing the entropies ApEn and SampEn, we replaced x3(n) by x3(n)/σx3 for these two
entropy measures where σx3 is the standard deviation of x3(n). As entropy patterns of Figure 3 suggest,
even after applying this amplitude correction, ApEn and SampEn are still sensitive to amplitude
changes. This is, however, not the case for RangeEn measures that are much less affected by this
nonstationary change.

3.4. Relationship with the Hurst Exponent

The results of ApEn and SampEn for fLm signals with different Hurst exponents are summarised
in Figure 4. As seen in Figure 4A–D, ApEn and SampEn show a systematic relationship with the
Hurst exponent. In particular, SampEn has an inverse monotonic relationship with the Hurst exponent
in the r-plane (note the descending colour scale along the y-axis at all r values). Although the
relationship between ApEn and Hurst is not as monotonic as that of SampEn, it still shows a systematic
change. One way of quantifying these changes is by examining their corresponding m-exponents
and r-exponents (i.e., the linear slopes of entropy patterns versus ln(m) and ln(r), respectively. See
Sections 2.4.2 and 2.4.3). Figure 4E–H suggest that m- and r-exponents of both ApEn and SampEn are
related to the Hurst exponent in a nonlinear way, before signal amplitude correction. Additionally,
their trajectories reach a plateau in the r and m domains at high self-similarity levels (note the relatively
flat regions of red dots in Figure 4E–H). This implies that ApEn and SampEn lose their link with the
Hurst exponent in highly self-similar signals. The black dotted plots in Figure 4E–H suggest that signal
amplitude correction results in a more linear relationship between the Hurst exponent and r-exponent,
but it is less for the m-exponent.

We repeated the same analysis for fBm signals with the results illustrated in Figure 5. As the figure
shows, signal amplitude correction has a more significant impact on entropy patterns of fBm than
fLm. For example, there is almost no systematic relationship between SampEn and the Hurst exponent
without amplitude correction (see Figure 5B versus Figure 5D). Additionally, the number of defined
SampEn is reduced if we do not perform this correction (note the very low number of red dots in
Figure 5F and the absence of any red dot in Figure 5H). Similar to the fLm results in Figure 4, amplitude
correction can linearise the relationship between entropy exponents and the Hurst exponent.
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Figure 3. Dependency of the signal entropy measures to stationary and nonstationary amplitude
changes. Top panel shows three input signals, i.e., white noise (x1(t), in black), scaled white noise by a
constant coefficient (x2(t) = 5x1(t), in red), and scaled white noise by a time-varying coefficient (x3(t)
defined in Equation (23), in green). Panels A–D demonstrate the signal entropy trajectories over the r
interval of 0.01 to 1, with 0.01 increasing steps. Note that the patterns of RangeEnA and RangeEnB are
almost identical for white noise and both of its scaled versions, but ApEn and SampEn show drastic
changes after any change in the amplitude of their input signal.

A similar analysis using RangeEnA and RangeEnB highlights their properties in contrast to ApEn
and SampEn. The results extracted from fLm and fBm signals are summarised in Figures 6 and 7,
respectively. Firstly, the patterns of RangeEnA and RangeEnB are relatively similar to each other,
except that RangeEnA has a considerable amount of missing (undefined) values, specially over low
r values. Secondly, the r- and m-exponents of both RangeEnA and RangeEnB have a more linear
relationship with the Hurst exponent than ApEn and SampEn. In particular, the flat regions of their
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exponents over high H values are shorter than those of ApEn and SampEn (see Panels E to H of
Figures 6 and 7).

Figure 4. ApEn and SampEn analyses of fractional Levy motion (fLm). Panels (A–D) illustrate the
entropy trajectories in the r-plane with pre-defined Hurst exponents ranging from 0.01 to 0.99 with
increasing steps of ∆H = 0.01. Each analysis has been repeated for two conditions: with and without
amplitude correction (i.e., dividing the input signal by its standard deviation). The H values have
been colour-coded. The missing points in each plot have been left as blank. In all panels, the x-axis is
on a logarithmic scale. Panels (E) and (F) represent the scatter plots of r-exponents (i.e., the slope of
the fitted line to the measure versus ln(r)), before and after amplitude correction. Panels (G) and (H)
represent the scatter plots of m-exponents (i.e., the slope of the fitted line to the measure versus ln(m)),
before and after amplitude correction.



Entropy 2018, 20, 962 14 of 22

Figure 5. ApEn and SampEn analyses of fractional Brownian motion (fBm). See the caption of Figure 4
for more details.
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Figure 6. Analyses of RangeEnA and RangeEnB of fractional Levy motion (fLm). See the caption of
Figure 4 for more details.
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Figure 7. RangeEnA and RangeEnB analyses of fractional Brownian motion (fBm). See the caption of
Figure 4 for more details.

3.5. Linear Scaling of the Covariance Matrix in fBm

As another test of robustness to amplitude variations, we investigated whether the relationship
between signal entropy and Hurst exponents of fBm (Figures 5 and 7) are independent from linear
scaling of its covariance matrix defined in Equation (12). We simulated fBm signals using the Cholesky
decomposition method [37] ( f bm function of Python’s nolds library) at a Hurst exponent of H = 0.75
and five scaling coefficients D = 0.001, 0.01, 1, 10, and 100, where the value of D = 1 leads to the original
form of fBm. Figure 8 shows the estimated entropy patterns of altered fBm. Note that we did not correct
the input signals to ApEn and SampEn by their standard deviation to ensure the same testing condition
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for all four measures. The results in Figure 8 show that ApEn and SampEn are more vulnerable to linear
scaling of the covariance matrix than RangeEn.

Figure 8. Sensitivity of the entropy measures to linear scaling of the covariance matrix in fBm (see
also Equation (12)). Panels (A–D) illustrate the entropy trajectories in the r-plane at H = 0.75 and five
scaling factors of D = 0.001, 0.01, 1, 10, and 100. The D values have been colour-coded. The missing
points in each plot have been left as blank.

3.6. Analysis of Epileptic EEG

We performed self-similarity analysis of epileptic EEG datasets by extracting their Hurst exponent
through the standard rescaled range approach [38] (hurst_rs function of Python’s nolds library).
Figure 9A illustrates the distributions of Hurst exponents for three datasets. Whilst interictal segments
are clustered toward higher self-similarity levels, ictal segments have been distributed across a wider
range between high and low self-similarity. Figure 9B–E represent the patterns of ApEn, SampEn,
RangeEnA, and RangeEnB in the r-plane for the three EEG datasets (corrected amplitudes and fixed
m of 2). In all plots, the two interictal r-trajectories are close to each other and represent a relatively
different trajectory to the ictal state.
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Figure 9. Self-similarity and complexity analyses of epileptic EEG. Datasets C, D, and E have been taken
from the public EEG database of [36]. In the legends, iEEG stands for intracranial EEG. (A) Distributions
of the Hurst exponent extracted from EEG segments. (B–E) Trajectories of ApEn, SampEn, RangeENA,
and RangeEnB, respectively. For all entropy measures, the embedding dimension parameter m was
fixed to 2. In each plot, error bars show one standard deviation.

4. Discussion

In this study, we showed that signal complexity measures of ApEn and SampEn are linked
to the self-similar properties of signals quantified by their Hurst exponent. However, they may
become insensitive to high levels of self-similarity due to the nonlinear nature of this relationship.
We subsequently introduced a modification to ApEn and SampEn (called RangeEn) that not only
improves their insensitivity issue but also alleviates the need for amplitude correction.

Signal complexity analysis can be approached through the concept of state vectors in the
reconstructed phase space [23,30,39]. From this perspective, ApEn and SampEn of a random process
assess its dynamics in the phase space by quantifying the evolution of its states over time. This
is done through computing the Chebyshev distance dchebyshev, as a measure of similarity between
state vectors, and obtaining the conditional probability of space occupancy by the phase trajectories,
as detailed in Sections 2.1.1–2.1.3. However, dchebyshev only considers the maximum element-wise
difference between two state vectors while ignoring the lower limit of this differences. In addition,
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it is not normalised, thus sensitive to changes in signal magnitude (gain) and defined for all values
of the tolerance parameter r (from 0 to ∞). This last issue leads to unbounded values of ApEn and
SampEn along the r-axis. In order to alleviate these limitations, we replaced dchebyshev with a normalised
distance (called range distance or drange) defined in Equation (17) prior to computing the entropies
ApEn and SampEn. This led to modified forms of ApEn and SampEn, namely RangeEnA and RangeEnB,
respectively.

RangeEnA and RangeEnB offer a set of desirable characteristics when applied to simulated and
experimental data. First, they are more robust to signal amplitude changes compared to ApEn and
SampEn. This property originates from the fact that the distance used in the definition of the proposed
entropies is normalised between 0 and 1. Unlike ApEn and SampEn measures that require an extra
amplitude regulation step that involves multiplying the tolerance parameter r by the input signal’s
standard deviation [24], the RangeEn measures are needless of any amplitude correction. This is
a plausible feature when analysing real-world signals, which are usually affected by confounding
amplitude changes such as artefacts. Figure 3 illustrates two situations where ApEn and SampEn are
highly sensitive to variations of signal amplitude, contrary to RangeEn measures. It is for future work
to investigate the vulnerability of RangeEn to more complicated cases of nonstationarity compared
with those shown in Figure 3.

The second desirable property of RangeEn is that, regardless of the dynamic nature of the signal,
both RangeEnA and RangeEnB measures always reach 0 at the tolerance value r of 1. The explanation
of this property is straightforward: r = 1 is the value where all m-long segments Xm

i and Xm
j match.

This leads to the joint conditional probability being 1 (see Equations (19)–(22)).
According to the simulation results of fLm and fBm signals with certain Hurst exponents, all of

ApEn, SampEn, and RangeEn measures are able to reflect the self-similarity of time series to different
extents. However, RangeEn have a more linear relationship with the Hurst exponent. This brings
us to the third property of the RangeEn measures, namely a more linear link between their r- and
m-exponents and the Hurst exponent, compared to ApEn and SampEn. We evaluated this property
by extracting RangeEn measures from fLm and fBm signals, as their level of self-similarity can be
accurately controlled through their Hurst exponent. We simulated these processes for different values
of the Hurst exponents ranging from 0.01 (very short memory or high anti self-similarity) to 0.99 (very
long memory or high self-similarity). The simulation results (Figures 4–7) reveal a regular pattern of
almost linearly decreasing Hurst exponents associated with the slope of RangeEn trajectories versus
ln(r) and ln(m). This pattern is more nonlinear and sometimes non-monotonically increasing for ApEn
and SampEn.

Among the four signal entropy measures investigated in our study, ApEn is the only measure
that is always defined due to the self-matching of state vectors (or templates) in its definition [23].
SampEn and RangeEnB may result in undefined values, as they compute the logarithm of the sum of
conditional probabilities Cm

i (r), which could lead to ln(0) (see Sections 2.1.3 and 2.3.1 for more details).
This issue may also happen to RangeEnA, as it calculates the sum of log probabilities (i.e., ln Cm

i (r)).
However, the number of undefined values in RangeEnA is usually much higher than SampEn and
RangeEnB. This is because it is more likely that all joint conditional probabilities (Cm

i (r)) between
a single state vector and the rest of the state vectors in the phase space become zero, in particular,
at small tolerance values of r where the small partitions of phase space are not visited by any trajectory.
Figure 7 provides an exemplary situation where there are many undefined RangeEnA values for fBm
compared to the other three.

A realisation of real-world signal complexity is reflected in EEG signals. EEG conveys information
about electrical activity of neuronal populations within cortical and sub-cortical structures in the brain.
Epilepsy research is a field that significantly benefits from EEG analysis, as the disease is associated
with abnormal patterns in EEG such as seizures and interictal epileptiform discharges [40]. Therefore,
characterisation of abnormal events in epileptic EEG recordings is helpful in the diagnosis, prognosis,
and management of epilepsy [27,41,42]. Our results suggest that interictal EEG at the intracranial
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level is more self-similar than ictal EEG with clustered Hurst exponents toward 1. On the other
hand, the Hurst exponent of ictal EEG covers high and low self-similarity (see Figure 9A). Therefore,
self-similarity may not be a discriminative feature of ictal state. All entropy measures represent
distinctive trajectories in the r-plane for interictal versus ictal states with relatively low variance
over EEG segments (see Figure 9B–E). This implies that signal complexity analysis may be more
beneficial than self-similarity analysis for epileptic seizure detection and classification. Note that, in the
absence of any time-varying artefact, EEG signals can be considered as weak stationary processes [43].
Therefore, a correction of the amplitude changes by the standard deviation of the signal in ApEn and
SampEn may lead to comparable results with RangeEn.

Multiscale entropy is a generalisation of SampEn where the delay time (or scale factor) τ in
Equation (1) is expanded to an interval of successive integers starting from 1 through coarse-graining
of the input signal [25]. It is straightforward to extend this idea to the RangeEn measures. Exploring
the properties and capacities of multiscale RangeEn is left for future research.

5. Conclusions

In this study, we proposed modifications to ApEn and SampEn called RangeEnA and RangeEnB,
respectively. We showed that these new signal complexity measures, compared with ApEn and SampEn,
are more sensitive to self-similarity in the data and more robust to changes in signal amplitude.
Additionally, they do not need any signal amplitude correction. We showed, in an exemplary
application, that signal entropies can differentiate between normal and epileptic brain states using EEG
signals. Given the high interest accorded to ApEn and SampEn in different scientific areas (more than
4000 citations each since being introduced), we believe that our present study has targeted a significant
problem by addressing some of their important practical limitations.
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