2,534 research outputs found

    A visual workspace for constructing hybrid MDS algorithms and coordinating multiple views

    Get PDF
    Data can be distinguished according to volume, variable types and distribution, and each of these characteristics imposes constraints upon the choice of applicable algorithms for their visualisation. This has led to an abundance of often disparate algorithmic techniques. Previous work has shown that a hybrid algorithmic approach can be successful in addressing the impact of data volume on the feasibility of multidimensional scaling (MDS). This paper presents a system and framework in which a user can easily explore algorithms as well as their hybrid conjunctions and the data flowing through them. Visual programming and a novel algorithmic architecture let the user semi-automatically define data flows and the co-ordination of multiple views of algorithmic and visualisation components. We propose that our approach has two main benefits: significant improvements in run times of MDS algorithms can be achieved, and intermediate views of the data and the visualisation program structure can provide greater insight and control over the visualisation process

    A virtual workspace for hybrid multidimensional scaling algorithms

    Get PDF
    In visualising multidimensional data, it is well known that different types of algorithms to process them. Data sets might be distinguished according to volume, variable types and distribution, and each of these characteristics imposes constraints upon the choice of applicable algorithms for their visualization. Previous work has shown that a hybrid algorithmic approach can be successful in addressing the impact of data volume on the feasibility of multidimensional scaling (MDS). This suggests that hybrid combinations of appropriate algorithms might also successfully address other characteristics of data. This paper presents a system and framework in which a user can easily explore hybrid algorithms and the data flowing through them. Visual programming and a novel algorithmic architecture let the user semi-automatically define data flows and the co-ordination of multiple views

    A Platform for the Analysis of Qualitative and Quantitative Data about the Built Environment and its Users

    Get PDF
    There are many scenarios in which it is necessary to collect data from multiple sources in order to evaluate a system, including the collection of both quantitative data - from sensors and smart devices - and qualitative data - such as observations and interview results. However, there are currently very few systems that enable both of these data types to be combined in such a way that they can be analysed side-by-side. This paper describes an end-to-end system for the collection, analysis, storage and visualisation of qualitative and quantitative data, developed using the e-Science Central cloud analytics platform. We describe the experience of developing the system, based on a case study that involved collecting data about the built environment and its users. In this case study, data is collected from older adults living in residential care. Sensors were placed throughout the care home and smart devices were issued to the residents. This sensor data is uploaded to the analytics platform and the processed results are stored in a data warehouse, where it is integrated with qualitative data collected by healthcare and architecture researchers. Visualisations are also presented which were intended to allow the data to be explored and for potential correlations between the quantitative and qualitative data to be investigated

    Emerging technologies for learning report (volume 3)

    Get PDF

    Sensing the Past. Contributions from the ArcLand Conference on Remote Sensing for Archaeology

    Get PDF

    Visual analysis of anatomy ontologies and related genomic information

    Get PDF
    Challenges in scientific research include the difficulty in obtaining overviews of the large amount of data required for analysis, and in resolving the differences in terminology used to store and interpret information in multiple, independently created data sets. Ontologies provide one solution for analysis involving multiple data sources, improving cross-referencing and data integration. This thesis looks at harnessing advanced human perception to reduce the cognitive load in the analysis of the multiple, complex data sets the bioinformatics user group studied use in research, taking advantage also of users’ domain knowledge, to build mental models of data that map to its underlying structure. Guided by a user-centred approach, prototypes were developed to provide a visual method for exploring users’ information requirements and to identify solutions for these requirements. 2D and 3D node-link graphs were built to visualise the hierarchically structured ontology data, to improve analysis of individual and comparison of multiple data sets, by providing overviews of the data, followed by techniques for detailed analysis of regions of interest. Iterative, heuristic and structured user evaluations were used to assess and refine the options developed for the presentation and analysis of the ontology data. The evaluation results confirmed the advantages that visualisation provides over text-based analysis, and also highlighted the advantages of each of 2D and 3D for visual data analysis.Overseas Research Students Awards SchemeJames Watt Scholarshi

    Urban Characterisation; Expanding Applications for, and New Approaches to Building Attribute Data Capture

    Get PDF
    As cities face increasing pressure to develop long-term sustainability strategies, the need for detailed quantitative data on urban resources, and their behaviour over time, has become critical. Building stocks are a city’s largest socio-cultural and economic resource and account for around 40% of total energy consumption in developed countries. Despite ongoing problems with access to data on stock composition and dynamics, advances are now being made, particularly within sustainability science. Automated approaches to the analysis of historical building attribute data are also allowing long-term patterns of change in cities to be better understood. This is of significance to the conservation sector, and to the development of effective conservation strategies. At the same time, knowledge held by the conservation sector is of growing importance to sustainability science. This paper selects specific advances within this new research landscape, and identifies their importance in developing a more scientific, data-driven approach to the analysis of older stock. It concludes with an introduction to a new type of data collection and visualisation platform being developed for London, as a result of this review

    Acoustic data optimisation for seabed mapping with visual and computational data mining

    Get PDF
    Oceans cover 70% of Earth’s surface but little is known about their waters. While the echosounders, often used for exploration of our oceans, have developed at a tremendous rate since the WWII, the methods used to analyse and interpret the data still remain the same. These methods are inefficient, time consuming, and often costly in dealing with the large data that modern echosounders produce. This PhD project will examine the complexity of the de facto seabed mapping technique by exploring and analysing acoustic data with a combination of data mining and visual analytic methods. First we test the redundancy issues in multibeam echosounder (MBES) data by using the component plane visualisation of a Self Organising Map (SOM). A total of 16 visual groups were identified among the 132 statistical data descriptors. The optimised MBES dataset had 35 attributes from 16 visual groups and represented a 73% reduction in data dimensionality. A combined Principal Component Analysis (PCA) + k-means was used to cluster both the datasets. The cluster results were visually compared as well as internally validated using four different internal validation methods. Next we tested two novel approaches in singlebeam echosounder (SBES) data processing and clustering – using visual exploration for outlier detection and direct clustering of time series echo returns. Visual exploration identified further outliers the automatic procedure was not able to find. The SBES data were then clustered directly. The internal validation indices suggested the optimal number of clusters to be three. This is consistent with the assumption that the SBES time series represented the subsurface classes of the seabed. Next the SBES data were joined with the corresponding MBES data based on identification of the closest locations between MBES and SBES. Two algorithms, PCA + k-means and fuzzy c-means were tested and results visualised. From visual comparison, the cluster boundary appeared to have better definitions when compared to the clustered MBES data only. The results seem to indicate that adding SBES did in fact improve the boundary definitions. Next the cluster results from the analysis chapters were validated against ground truth data using a confusion matrix and kappa coefficients. For MBES, the classes derived from optimised data yielded better accuracy compared to that of the original data. For SBES, direct clustering was able to provide a relatively reliable overview of the underlying classes in survey area. The combined MBES + SBES data provided by far the best accuracy for mapping with almost a 10% increase in overall accuracy compared to that of the original MBES data. The results proved to be promising in optimising the acoustic data and improving the quality of seabed mapping. Furthermore, these approaches have the potential of significant time and cost saving in the seabed mapping process. Finally some future directions are recommended for the findings of this research project with the consideration that this could contribute to further development of seabed mapping problems at mapping agencies worldwide
    • …
    corecore