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Abstract

Challenges in scientific research include the difficulty in obtaining overviews of the large

amount of data required for analysis, and in resolving the differences in terminology used

to store and interpret information in multiple, independently created data sets. Ontologies

provide one solution for analysis involving multiple data sources, improving cross-referencing

and data integration.

This thesis looks at harnessing advanced human perception to reduce the cognitive load

in the analysis of the multiple, complex data sets the bioinformatics user group studied use

in research, taking advantage also of users’ domain knowledge, to build mental models of

data that map to its underlying structure. Guided by a user-centred approach, prototypes

were developed to provide a visual method for exploring users’ information requirements

and to identify solutions for these requirements. 2D and 3D node-link graphs were built to

visualise the hierarchically structured ontology data, to improve analysis of individual and

comparison of multiple data sets, by providing overviews of the data, followed by techniques

for detailed analysis of regions of interest.

Iterative, heuristic and structured user evaluations were used to assess and refine the

options developed for the presentation and analysis of the ontology data. The evaluation

results confirmed the advantages that visualisation provides over text-based analysis, and

also highlighted the advantages of each of 2D and 3D for visual data analysis.
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Chapter 1

Introduction

Improvements in technology have led to increasingly complex experiments in scientific re-

search, resulting in a large amount of equally complex, multi-dimensional data [105, 124,

160]. The data stored, in and of itself, is not very useful; it is its information content

that is valuable to researchers [137]. The same technology must be used to provide effec-

tive methods for the storage, management and analysis of the complex data it generates

[151, 163, 165, 184, 185]; data generation has however exceeded the ability to manage and

analyse it [129, 88].

Storing data in digital format allows a wide range of data analysis techniques to be

used in information retrieval (IR). Fully-automated indexing and searching in addition to

computer-aided data analysis result in more efficient and effective analysis; computers can

be used to perform large amounts of repetitive processing on complex, structured data,

relieving humans of what would be boring, tedious work [2]. This allows researchers to

focus on analysis of less structured data, where human analysis capability surpasses that of

automated analysis.

Information sharing is also made simpler; digital data is easily disseminated over com-

puter networks, with restrictions to access based only on availability of appropriate software

and/or hardware, and certification for sensitive data. Public access to scientific data has sig-

nificant impact on research [9, 121, 145]: data (in its original form, without pre-processing

or filtering) is more easily obtained, allowing independent analysis to be performed by

researchers using secondary sources of information, to confirm or disprove hypotheses for-

mulated [18].

1.1 Data analysis

Scientific data is normally multi-variate, with a large amount of interaction between data

elements [140]. Data from experimentation is often padded with additional information

such as descriptions of experimental conditions. Data annotation, often employing different

methods and sometimes conflicting terminology, further bloats the amount of data generated
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in research, increasing resources required for its management. Data from new experiments

may add to or contradict previous findings.

Challenges for data analysis include its management — efficient storage of raw and

processed data and analysis results, in addition to the development of effective techniques

for exploratory and more detailed analysis. This is impacted by methods used for recording

and storing data; annotation of data varies depending on research fields, organisational

standards and purpose for which research is being performed. Data exchange and retrieval

is dependent on the different underlying schemas used for the large number of data stores

available [19]. Development of tools employing intuitive methods for navigation through

data is important for effective data analysis and IR [140]. Finally, data analysis requires

effective methods for communicating its results [71, 105, 124, 165].

1.1.1 Visual data analysis

Limitations in the ability of humans to store and process especially large amounts of complex

data (manually) mean that intuitive methods are required to aid data analysis and provide

effective storage of intermediate and final analysis results [73, 130, 165]. This is important

not only in scientific research: large amounts of complex, interacting data form a part of

daily life [24], and require efficient management and analysis to retrieve knowledge important

to both simple and critical decision making [95, 179].

Data mining, which employs machine learning for pattern recognition and feature extrac-

tion, is one option for uncovering information hidden within large data sets [72]. However

complexity of analysis increases with data set size [2], reducing the ability to extract useful

information.

Another solution that allows intuitive analysis is to visualise the information contained

within data [49, 69, 71, 129, 163]. This does more than just present data and analysis

results in visual form; visualisation reveals the inherent structure of data and highlights

patterns and trends within it, harnessing the highly advanced perceptual ability of humans

[39, 66, 129, 151], using vision, the primary channel for input, to reduce cognitive load in data

analysis. [179] talks about the power in “seeing information”; graphical representation of

data is often more compelling and memorable than the textual equivalent [86], and provides

a powerful method for communicating data structure and content [83], and results of the

analysis to an audience.

Information visualisation provides overviews of what is often very large amounts of

complex, abstract data, mapping its semantic content to a spatial representation to allow

intuitive encoding of data attributes [39, 163], employing simple physical properties such as

colour, as illustrated in [74], shade, hue, saturation, density of data elements [49], and shape

and size of physical objects [110]. Relationships within data are more easily recognised,

leading to identification and further analysis of regions of interest (ROIs) within the data.
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1.1.2 Bioinformatics and biological data analysis

Digitally generated data often requires different methods for analysis than those used for

data obtained from traditional experiments performed at the laboratory bench. A good

understanding of the data being analysed and how results of analysis are to be used are

necessary in determining which tools or techniques are best suited for analysis, or to extend

existing or develop new tools to provide optimal analysis [110, 144, 158]. Bioinformatics

was born out of the need to provide specialised computational methods for digital biological

data analysis.

Bioinformatics involves multiple disciplines, comprising mainly biologists and computer

scientists, working together to develop optimal methods for extracting knowledge stored

within biological data. Different researchers with varying backgrounds bring multiple per-

spectives to data analysis, revealing more insight into data than a restricted set of research

fields would [105, 121].

1.1.3 Ontologies in data analysis

The Free On-line Dictionary of Computing1 (FOLDOC) defines an ontology as:

1. An explicit formal specification of how to represent the objects, concepts

and other entities that are assumed to exist in some area of interest and

the relationships that hold among them.

2. The hierarchical structuring of knowledge about things by subcategorising

them according to their essential (or at least relevant and/or cognitive)

qualities.

The multiple disciplines involved in bioinformatics increase the probability that different

terms will be used to describe the same concept, or the same or similar terms for differ-

ent concepts. Ontologies store semantic information in a knowledge domain, aiding data

exchange and knowledge transfer by providing a reference framework that promotes con-

sistency in data interpretation [19, 29, 67, 90, 93, 171]. Ontologies describe a knowledge

domain and the relationships that occur between and within elements belonging to this

domain [9]. [14] go on to define the role that ontologies play in data analysis — using

the knowledge ontologies contain to annotate data, aiding analysis by associating semantic

content with data, and easing comparison of different data sets and by different disciplines,

benefiting both manual and automated data analysis and IR.

This thesis looks at how research in information visualisation can be used to aid data

analysis in genome research, harnessing skills and knowledge that the different research

areas involved contribute to obtaining new knowledge in the field. Findings are applied to

the visual analysis of ontology data, to aid data interpretation and integration, illustrated

using sample data from the EMAP and XSPAN projects (refer § 1.2 and 1.3).
1FOLDOC can be accessed at: http://wombat.doc.ic.ac.uk/foldoc
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1.2 The Edinburgh Mouse Atlas Project

The Edinburgh Mouse Atlas Project, EMAP, stores information on the developmental stages

of the mouse using hierarchically structured, text indices mapped to reconstructed 3D mod-

els of mouse embryos. This provides a spatio-temporal framework that tracks normal de-

velopment of the embryos [13], for research into the genetic makeup of the mouse.

1.3 The Cross-Species Anatomy Network

Determination of the structure and function of newly discovered genes is aided by the com-

parison of gene expression data for corresponding components in different species [10, 137];

evolutionary conservation results in similarities in genes derived from equivalent components

in related organisms [9, 20]. The Cross-Species Anatomy Network, XSPAN, is developing

a system for integrating multiple data sets, to aid the determination of relationships across

different organisms starting with the anatomy ontologies for the model organisms mouse,

human, Drosophila, Zebrafish and C. elegans [32, 31], based on similarity in genes expressed

in cells, tissues and organs.

A detailed look at the EMAP and XSPAN projects can be found in chapter 5.

1.4 Structure of thesis

1.4.1 Identifying issues pertinent to visual data analysis

One of the main challenges in data analysis is obtaining overviews of data that aid users in

building effective mental models of data structure, an important component in understand-

ing and retrieval of the information contained within data and the relationships that occur

between data elements. What constitutes an effective overview however varies, depending

primarily on user information requirements — useful presentation of information that an-

swers the questions being asked by the user can only be obtained if these requirements are

effectively presented and correctly interpreted. User requirements can then be translated

first into more general tasks such as the need for exploratory navigation through data to

obtain a general overview of data structure, and then broken down further into, say, require-

ments for more directed search and query, with the ultimate aim being to retrieve specific

information from data.

Domain knowledge, user backgrounds and skills brought to analysis, and data type and

amount influence what types of visualisations will be most effective for analysis. It is difficult

to obtain a generic solution that will cater to all needs, and the designers of an analysis

tool or even its users will not always be able to determine the ideal amount of information

to feed into data overviews. It is difficult also to achieve a good balance between providing

enough information to allow users to obtain an overall appreciation of data structure, and

too much, resulting in visualisations that are cluttered or that lead to cognitive overload in
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users. Interactive abstraction that allows users to filter out data of lower relevance provides

a powerful method for customising visualisations to suit varying user needs. This may then

be extended to detailed analysis of ROIs, with the introduction of perceptual and other cues

that map to user needs and ability.

Chapter 2 reviews research in information processing in humans and the bearing this

has on performance of data analysis. This leads to a discussion on harnessing perception in

humans to obtain intuitive analysis, and an exploration of the different techniques available

for visual data analysis. The merits and limitations of a sample of data analysis tools

are examined, assessing also alternative solutions developed to overcome the limitations

identified. A comparison between two and three-dimensional (2D and 3D) visual data

analysis is then presented, and the chapter concludes with a brief discussion on existing

support for remote analysis using dedicated networks and the Internet. Chapter 3 continues

to look at graph visualisation and its contribution to visual data analysis. A sample of

graph visualisation tools is reviewed, with a focus on hierarchical (data) visualisation. The

chapter ends with a discussion on the limitations of tree graph visualisation.

A recurring theme is the ability of most tools to satisfy only a small sub-set of the large

number of information requirements identified in different fields, for different data types and

formats and for varying end uses. A choice has to be made between developing tools that

provide simple overviews at the expense of limiting detailed analysis, and applications built

to satisfy specific needs but that are difficult to extend outside a very small focus. Challenges

in effective capture of user requirements, especially where they span a large number of target

groups and disciplines, mean that most tools are likely to fall in the latter group, catering to

a small set of users. A danger here is that such tools may not adhere to common standards

for data exchange, further limiting reuse and the potential for combination of individual

tools to create workbenches with wider applicability.

1.4.2 Involving the user in developing a solution

Attempting to provide a general, overall solution for data analysis is not a practical option;

starting from a smaller sub-set of user information requirements and designing scalable,

modular tools should result in more (re)usable and potentially extensible solutions. This

project restricts initial analysis to independently created but inter-related data sets in a

biological domain. Challenges in analysis of this data are those typically encountered in

research and data analysis: data sets are often created independently, may be stored in

databases with different or even incompatible underlying schemas, data may vary in format

and accuracy, and employ different terminology for defining and annotating data elements

and relationships between them. That the data being studied is stored using ontologies

shows that an attempt is being made to reduce differences in data storage and presentation;

however even ontologies in a specific domain still contain marked differences in terminology.

Chapter 4 discusses the contribution ontologies make to research in bioinformatics, looking

5



Introduction

at how ontologies are used to improve data exchange and analysis. Tools developed for

analysis of bioinformatics data are reviewed, followed by a look at applications of bioinfor-

matics. Chapter 4 concludes with a brief summary of the ethical issues in bioinformatics

and especially genetics research.

Chapter 5 describes the data analysis issues this thesis seeks solutions to, performing

research in bioinformatics. General requirements for analysis include the need to provide

overviews that aid the determination of overall data structure, and further detailed analysis,

to:

1. identify (implicit and explicit) relationships in data and the structures these define

2. determine equivalence between elements across multiple data sets

3. trace continuous or temporal relationships in data.

The two projects EMAP and XSPAN, which make use of anatomy ontologies, provide a

practical domain in which to test the ideas explored, allowing an existing data set and

typical target users to be used to evaluate the options proposed for analysis. Challenges for

analysis in the two projects are similar to those typically encountered in the use of ontologies

in general, and in biological research that makes use of anatomy ontologies as a common

base from which to compare data in related fields. Solutions found to these requirements

may be extended to similar research in bioinformatics, and the results of analysis to wider

research in biology and other related fields.

The remainder of the thesis details the process followed to address the analysis require-

ments identified. Involving users in the determination of usable solutions for visual analysis

required a physical prototype that could be used to articulate design requirements and also

help to overcome the language barrier between the different disciplines involved. Chapter 6

details the design and development of an initial prototype using simple node-link, directed

acyclic graphs (DAGs) to provide overviews of the data sets under study. Extensions to

existing techniques that provide solutions to the problems inherent in the use of hierar-

chical graph visualisations are described, followed by a heuristic evaluation carried out to

determine usability of the initial prototype. Using data from the EMAP project to test

different options for analysis a number of issues in visual analysis were examined. General

difficulty capturing user requirements has been previously mentioned; this is complicated

further in this case because of the different disciplines involved in bioinformatics. Software

development, dominated by computer science (CS), involves design and development of

complete tools or modules; graphic design may play a role in the creation of visual aspects

of interfaces; both biologists and computer scientists would be involved, to varying degrees

and for different aspects of the actual process of data analysis, dependent on the skills each

possesses. Collaborative, continuous analysis is the norm; ensuring users are able to pick

up from previous work or that of others requires ability to place markers in data, providing

annotation that points to information of interest or changes made to underlying data, for

instance. Catering to the individual needs of different users also involves the determination
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of effective cues for visual querying and IR. Working with multiple data sets further requires

transparent mappings between the different sources of information, to hide differences in

terminology and underlying structures of the data, and aid users in identifying keywords

and formulating queries that are able to retrieve information contained in data.

Chapter 7 details the preparation for and process used to carry out a structured usability

evaluation of the visualisation prototypes developed, based on user information requirements

and information obtained from the heuristic evaluations previously performed. A discussion

of the results of the evaluation leads to suggestions for additional functionality for improved

data analysis. Chapter 8 describes changes to the prototypes, building on the techniques

developed to aid the identification and analysis of relationships in the anatomy ontologies.

1.4.3 Research findings

Chapter 9 describes a final evaluation of the applications built, reviewing first the issues

for analysis previously identified. It then goes on to examine further questions brought up

during the first set of user evaluations:

1. marked differences were found between navigation and search strategies based on user

backgrounds and domain knowledge. The need to identify cues and other analysis aids

that each target user group would make optimal use of was critical to the usability of

the final solution developed.

2. spatial awareness plays an important role in the use of data visualisations. How could

visualisations be built to harness different levels of spatial ability to extend cognition

and help users form effective mental models of data structure and an understanding

of relationships within the data?

3. arguments exist for restricting dimensionality of visualisations to two, to make opti-

mum use of the 2D displays available in the average working environment. However

despite inherent complexity in 3D it may provide more intuitive analysis than 2D

beyond simple requirements for space in which to view large, high-dimensional data

sets. How could visualisations be built to optimise both use in 2D and extensions to

higher dimensions?

This evaluation also measured the extent to which specific requirements for analysis (de-

tailed in chapter 5) had been met. Having confirmed in the first structured evaluation that

3D provides advantages for analysis of the data beyond the capabilities of 2D the second

structured evaluation went on to test performance of more complex tasks in 3D, to deter-

mine additional aids required for what is recognised to be more complex navigation and

exploration. Additional research also looked at the influence of spatial awareness on the

ability to navigate effectively through 3D space and perform intuitive data analysis and IR.

The thesis concludes with chapter 10, which reviews the application of information vi-

sualisation to the analysis of anatomy ontologies, to provide intuitive data exploration and
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improved ability to identify relationships within data. This thesis has found that novel

approaches to visualising information are necessary, to harness differences in users and data

especially in cross-disciplinary fields such as bioinformatics, if effective analysis is to be

obtained. Working with users to discover how best to address their information require-

ments it was found that a fine and constantly changing line is followed trying to identify

how much and which information contained within data should be extracted and fed into

the generation of visual data structures, and how supplementary text should be woven into

information spaces to aid interpretation of visual representations of data. Empowering users

with intuitive, customisable and extensible tools provides the base required to perform effec-

tive analysis, allowing semantically meaningful representations of the information content

of textual data to be built using physical objects that map to navigation and exploration

in the real world users are familiar with.

Finally, the discussion in § 9.6.1 on the limitations of the approach used leads to sug-

gestions for further work to provide improved support for visual analysis.
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Chapter 2

Data analysis and information

processing in humans

2.1 Information processing in humans

Limitations in humans for information processing mean that cognitive overload quickly

occurs in analysis of large amounts of complex data [165]. Solutions that make use of

graphical representations of especially complex data have been proven to aid analysis and

problem solving, augmenting memory and transferring cognitive effort required to more

intuitive perception [6, 66].

2.2 Data analysis

No one tool or technique is ideal for all aspects of data analysis; different tools work best for

different data sets, dependent on information required, the purpose for which information

obtained is to be used, the current stage of analysis, data types used to store information

and domain knowledge and analysis skills of users [108, 117, 143, 144]. Which tools are used

for data analysis influence strongly what information is retrieved and how it is interpreted

[144]; different tools and analysis methods will highlight alternative perspectives of data,

uncovering different aspects of information stored [78, 114, 171]. It is often necessary to use

multiple tools and/or techniques in concert [108], sometimes iteratively [49], to harness the

features of each to obtain optimal analysis and retrieve knowledge stored in data. Using

techniques or tools inappropriate for the analysis required may lead to misleading conclu-

sions, and result in non-valid hypotheses and theories. It is important to note that it is not

necessarily the information retrieved that results in incorrect decision-making — interpre-

tation of data in one knowledge domain or for a specific purpose may not necessarily apply

in other situations [171].

Ontologies provide support for the cognitive effort required for effective data analysis

and interpretation, by serving as semantic frameworks applicable to different knowledge
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domains. Following on from prior research and anecdotal evidence that illustrate the highly

advanced perceptual ability of humans, this thesis looks at using visualisation of ontologies

to aid understanding of interaction within complex, related, multi-dimensional data sets.

This chapter reviews data analysis in general and visual analysis in particular, and chapter 3

looks at graph visualisation. Chapter 4 concludes the literature review with a discussion of

techniques available for bioinformatics data analysis employing ontologies.

2.2.1 The process of data analysis

Data analysis can be broken down into four main parts:

1. data collection and storage
2. data pre-processing
3. exploratory and detailed analysis
4. presentation of analysis results.

Data collection and storage

How information is collected and stored has a significant effect on tools that can be used to

analyse it; differences in data format, accuracy and quality may restrict analysis to specific

techniques and tools, and will also determine how easily information stored is retrieved.

Annotating data using ontologies or controlled vocabularies aids the process of IR [9]; it

removes ambiguity inherent in heterogeneous data, and aids automated pre-processing and

analysis, and dissemination of data.

Data pre-processing

This includes data reduction, filtering out noise, or suppressing superfluous or non-relevant

data [2, 122, 124] to reduce complexity and prevent occlusion of useful information, and

reveal patterns and relationships within data [49, 74, 163]. Different methods for storing

data often result in variations in formatting, accuracy and annotation. Before performing

analysis it is often necessary to convert data to formats suitable for analysis tools being

used [122]. Meaningful comparison of (multiple) data sets may also require normalisation

of data [124].

Exploratory and detailed analysis

Exploratory analysis is often used to obtain a broad idea of information contained within a

data set and that may be extracted, to determine which methods and techniques are most

appropriate for more detailed analysis. Though not dependent on preconceptions about

data content or structure it is still useful to bring domain knowledge to bear in exploratory

data analysis [8], especially where specific knowledge or validation for hypotheses is sought.

Data mining employing visualisation is especially useful for exploratory analysis of large

data sets [71].
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Detailed analysis looks to retrieve information stored in data, highlighting relationships

that occur within data and flagging anomalies identified. Automated data analysis, which

is more efficient than humans for performing tedious, repetitive computation [2], may be

augmented with options for interactivity that harness perception in humans for analysis and

identification of patterns not recognised by automated algorithms.

Multiple tools and techniques are often used in concert [124]; different storage meth-

ods and formats, user data analysis skills and information requirements all play a part in

determining which techniques will provide intuitive analysis and IR. Scalability of tools,

support for interactive or automated, intelligent analysis, metaphors used in design, and

customisability are all important factors in choice of tools used for analysis [66]. Methods

used to analyse large data sets include data summarisation and reduction, or flattening.

Visualisation allows data to be laid out such that relationships within it are highlighted,

using among others, scatter plots and metaphors from real life that map complex data to

trees and information landscapes. Techniques commonly employed in complex data analysis

are discussed in § 2.3 and § 2.5.2, with a focus on visual analysis.

Presentation of analysis results

Written reports and summaries are traditionally used to present results of data analysis.

Visualisation provides a more intuitive method for presenting conclusions drawn from anal-

ysis, using alternative options to allow interpretation suitable to different target audiences

[124].

2.2.2 Collaborative work and incremental data analysis

Design of data analysis tools must take into account collaborative aspects of analysis, to

enable and foster user interaction [39]. Data analysis is very rarely performed in isolation;

a data set may be analysed simultaneously by multiple researchers, or individual users may

be one in a sometimes multiply-linked chain working on a different aspect of analysis of a

single data set.

Incremental, exploratory visualisation is useful in two main instances: where data is con-

stantly updated, and to make use of results of previous analysis. For the former, incremental

analysis allows temporal characteristics of data to be visualised, highlighting changes in data

structure with time. As new properties or characteristics of data are received classification

of objects may change, revealing new relationships and presenting alternative perspectives

of data.

Continuous or even independent analysis of the same data set by multiple researchers

benefits from previous analysis performed [66], preventing unnecessary repetition of iden-

tical processes and leading to savings in time and financial cost [122]. Markers may be

placed in data and analysis results to flag information of interest or to point to other data

repositories, annotation may provide additional information based on prior (domain) knowl-
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edge of different analysts, resulting in improved navigation and IR [39]. Support required

for collaborative work includes management of data conflicts due to simultaneous access to

data. Incremental analysis further requires support for data updates in real time.

2.3 Visual data analysis

Generating effective, intuitive visualisations for high-dimensional data remains a challenge

for data analysis: obtaining a useful overview of the large amounts of what is often complex,

abstract data, and providing options for navigation that prevent disorientation and aid ex-

ploratory analysis. Analysis therefore often focuses on only local data immediately relevant

to users’ information requirements, while relationships with other more distant data may

remain undiscovered [140, 152].

2.3.1 Information visualisation

An understanding of how humans process information is important in the creation of visual

representations of data, if they are to ease analysis [81, 151]. Information visualisation

brings together learning from multiple disciplines, including cognitive psychology, human-

computer interaction, computer graphics and art [129], to harness human perceptual ability

for effective, intuitive analysis. Visual data analysis systems are supported by database

management and multimedia systems, networking for remote analysis, and often make use

of interactivity and animation [108].

Improvements in technology have led to lower costs for larger amounts of computing

power, disk storage space, high resolution displays, advanced graphics cards and more so-

phisticated software for data visualisation and analysis. Tools incorporating novel techniques

are constantly being developed for different aspects of visual, computational data analysis

[163, 184]. More effective analysis is possible for increasingly large amounts of complex,

heterogeneous data, using tools that extend intuition and perception in humans.

Data is often stored as text. Though this may simplify transfer and exchange there is

a high cognitive load associated with analysis of large amounts of especially complex data

in textual format. It is difficult to obtain an overview of data structure, and relationships

within the data are not easily recognised. Information visualisation maps abstract data

to a spatial representation, to aid the formation of effective mental models of overall data

structure [71, 96, 129]. Users are able to see the structure of data, whereas text is only able

to describe data; mental models formed from text may be neither accurate nor complete [6].

Visualisation transfers the conscious cognitive effort required for complex data analysis to

the more intuitive perceptual system [108], which is able to recognise patterns and trends in

data more easily [78, 83, 151], leading to increased understanding of information contained

within data [83].

[163] stresses the importance of his “Visual Information-Seeking Mantra” for effective

data analysis and IR:
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“Overview first, zoom and filter, then details-on-demand.”

Visual (semantic) overviews of data should be generated that provide context to support

navigation and exploratory data analysis [66, 110], followed by more detailed analysis of

ROIs [160]. (Interactive) visualisation offers the opportunity to look at multiple aspects of

a data set in parallel, from different points of view.

However data overviews are only useful if they are able to capture the structure of an

entire data set, which is easily achieved for relatively small amounts of low-dimensional

data. For large, complex, multi-variate data sets, abstraction, dimensionality reduction

and/or summarisation may be necessary to obtain usable overviews that can be displayed

on the 2D surfaces commonly used for visual data analysis [117].

Further detail should be made available as users approach ROIs to perform more detailed

analysis [39, 117, 163], preferably within the context of the overview. Interactive visual

analysis allows perception to be used to build an understanding of data structure during

(exploratory) navigation, aiding the formation of mental models of overall data structure

[165]. Combined with intuitive encoding that employs simple physical properties such as

colour, saturation and shading, patterns and trends within data are revealed that may not

be recognised as easily in text.

2.3.2 Metaphors in visualisation

Visualisations that map directly to real life are useful for (scientific) visualisation of spatial

data. However this is not necessarily the case for the abstract data that is used in information

visualisation, as it does not map naturally to a spatial representation. Visual metaphors

effective for analysis that users recognise and understand can be used to encode non-spatial

data to provide intuitive analysis [63, 129]. Here too, the data types being analysed, the

analysis to be performed, and the purpose for which analysis is required are important

in determining metaphors most appropriate for visual analysis. User skill and domain

knowledge also play a role in the choice of metaphor(s) used [24, 117].

An added advantage in the use of visual metaphors is the ability to extend them or

apply magic effects to provide options for data analysis that would not be possible for the

equivalent objects in the real world [91]. Generating visualisations that provide intuitive

interaction with data and that lead to effective IR is more important than remaining faithful

to metaphors on which visualisations are based [66, 164]. Physical objects representing data

in visualisations may be rubber-banded, for instance, allowing more flexible manipulation of

data than would normally be possible [48]. Spatial metaphors may be extended to allow

users to fly over and through objects, and magic lenses may be used to reveal semantic detail

in data content.

The following sections describe metaphors commonly used to aid interaction with com-

plex computer systems and provide options for intuitive data analysis. See also [57], who

provide a compendium of data visualisations that illustrate some of the metaphors described
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here.

Spatial metaphors

A well-known example of a spatial mapping is the rooms metaphor, which maps the semantic

content of data to rooms in a building, to aid querying and IR. [39] illustrates this using

an architectural metaphor, relating the design of physical spaces to the varying needs of

individuals. Differences in type of work and variations in tasks performed as part of normal

work require custom design to ensure rooms are built that suit different needs and methods

for working, even within the same building (or context). This metaphor takes interaction

between different users into account, which exists despite differences in working practices;

individuals move between physical locations; any one room or building will only form a

portion of their (working and social) lives.

Geographical metaphors

The landscape metaphor is illustrated in [39], using peaks, valleys and shorelines in a

natural landscape to encode data. Areas of high relevance have a higher density of data

nodes, peaks and valleys represent rough ground, where data may be less reliable than that

found in smooth areas. Shorelines are used to represent less important data, and islands

contain outliers. Fog may be used to fade out distant data of lower immediate relevance.

Natural landmarks such as rivers and other user-defined boundaries such as borders may

be placed within visualisations to prevent or reduce disorientation during navigation and to

serve as markers for continuous analysis. [44] stress the influence of landmarks on intuitive-

ness of navigation, and the ability to form a good understanding of data structure.

Interactive visualisations may extend the landscape metaphor to allow users to fly over

data to obtain an overview of its structure, descending to the level of the visualisation to

immerse themselves in and examine ROIs in detail.

The cityscape metaphor uses a 3D visualisation to lay out hierarchically structured or

network data. [116] illustrate the metaphor using rectangular blocks similar to buildings

to represent data elements as shown in figure 2.1. The visualisation is laid out on a 2D

plane in 3D space, so that an overview of data structure is easily obtained from any angle.

Properties of data nodes are encoded using size, colour and position of blocks drawn.

Users are able to map navigation through urban areas to exploration of the information

space this metaphor creates, by reading maps, using landmarks such as familiar buildings

and road signs and recognition of boundaries between locations.

Organic metaphors

Organic metaphors, which are especially useful for visualising hierarchical and temporal

data, map growth and withering or dying away of parts of an organism to changes in data
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Figure 2.1. An overview of a cityscape is shown on the left-hand side, while the image on the right
zooms in to examine detail in an ROI.
(Images courtesy of [116])

with time. [77] describes the use of an anemone to visualise continuous change in interest

in data while browsing through a web site. Growth in length and diameter of tentacles is

proportional to observed interest in data. Figure 2.2 shows a series of snapshots of an applet

that uses the anemone metaphor to visualise dynamic update of use of a website.

Figure 2.2. [77] uses “organic information design” to visualise dynamic update of the use of a web
site, by mapping growth of a biological system, the anemone, to a constantly changing data set. The
brown lines show paths already traced, while the tentacles of the anemone, the pages in the site, are
shown in white, with usage mapped to size of each tentacle.
(Snapshots printed with permission from a run of the anemone applet at: http://acg.media.mit.
edu/people/fry/anemone/applet (last viewed Jul 2006).)

The gardening metaphor extends growing in plants, pruning and weeding to especially

hierarchical visualisation, to deal with the occlusion common to large data sets. Branches

may be pruned to suppress data of lower importance and improve navigation [127, 152], and

then re-grown to reveal hidden data. Flowers may bloom or fan out, and weeding may be

likened to filtering out non-relevant or superfluous data.

Trees provide an abstraction commonly used to represent hierarchical data in visual for-

mat. Trees are especially useful for progressively clustering data into composite nodes,

revealing more detail as users approach ROIs. This has a two-fold purpose: to aid navi-

gation by reducing the disorientation that occurs during exploration of dense information

spaces, and to provide a natural method for data classification, based on user-specified or

automatically derived criteria.
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Physical metaphors

Fish-eye views occur naturally in all aspects of life: local ROIs are given greater signifi-

cance than the equivalent in more distant areas. An example can be seen in the relationships

occurring within an organisation: interaction between employees decreases as one moves

from the members of a team to the larger department and the organisation as a whole,

depending also on relevance of others to a specific employee’s work. [80]. [82] also relates

the fish-eye concept to IR; semantically related items are more likely to be identified when

users are prompted with terms or concepts describing information of interest, even where

such items have large physical separation.

Fish-eye projections make use of a wide-angle lens to increase magnification as one

approaches the focus of the lens [159]. This provides what is known as a Focus+Context

(F+C) technique for detailed analysis of ROIs within the context of the overview.

Magic lenses which are based on the metaphor of a magnifying glass, transform the

area of a visualisation over which they are placed [170]. The metaphor is extended to

allow size and shape of lenses to be modified interactively to suit different requirements.

Multiple lenses can be combined to perform complex physical or semantic transformations

on data. Compound filters or queries can be created without the need to learn query syntax,

a benefit for users with limited programming ability or experience in complex querying

[140]. Lenses can also be used simultaneously in different areas of a visualisation to provide

multiple foci, allowing the comparison of ROIs to reveal relationships that exist between

them. Alternatively, multiple windows can be used to compare different perspectives of

the same ROI, analysing different attributes of data or changes to data with time, each

generated using variations in lens combinations.

Transformations to data may be temporarily applied, with ROIs reverting to their origi-

nal state when lenses are removed, useful in exploratory data analysis. Alternatively trans-

formations may be saved to an alternate view [170], and retrieved for use in other analysis

sessions. Modifications to data may be applied permanently, resulting in changes to the

underlying data and/or the visualisations generated. An advantage in magic lenses is that

transformations are locally applied, to data in ROIs, preserving the structure of the overview.

Lower requirements for resources for computing transformations have a positive effect on

system response. A marked disadvantage, however, is that data immediately surrounding

the focus and ROI is obscured by the lens.

Spring layouts are based on a system of springs between data elements, with forces of

attraction or repulsion based on (dis)similarity between data [89]. From a random layout of

nodes containing a large amount of energy the springs settle down at equilibrium to produce

a scatter plot that maps physical distance between nodes to semantic similarity. Clustering

of like data naturally occurs, based on criteria used to set forces between springs, illustrated
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in [74], who use a spring-based algorithm to lay out data in their Cluster Map.

The main advantage in spring layouts is that even if the process of layout optimisation

is interrupted before it comes to completion, an approximate layout is still obtained.

Composite Metaphors

In addition to stretching individual metaphors it is sometimes useful to combine multiple

metaphors so they complement each other, building richer representations of data than

individual metaphors are able to [24, 91]. A fish-eye view may be mapped onto a geographical

metaphor, to obtain the appearance of a raised surface on a 2D plane as for a globe stretched

out in 2D. [117], for example, map a hierarchical graph to a hemisphere with a moveable

focus, to obtain an F+C system that also harnesses the additional degrees of freedom for

navigation in 3D. [24] describe how a magic effect similar to the use of portals may be

combined with a cityscape to simulate use of an underground transportation system. They

also describe a night sky metaphor with portals leading to different points in space. In

contrast to the busy cityscape, this is a sparsely populated information space containing

widely separated objects, so that the ability to jump between distant locations is even more

important for intuitive navigation between data objects.

2.3.3 Navigation through data

Using visualisation to reveal the structure of especially complex data helps to combat the

disorientation that is often encountered navigating through large data sets. This allows

exploration of the information spaces obtained, during which process perception and intu-

ition are used to build an understanding of the structure of the visualisations, to retrieve

knowledge stored in the underlying data. Mapping paths through data helps to highlight

interaction between data elements, creating bookmarks, landmarks and/or history sessions

that serve as an aid in incremental or continuous analysis and provide quick access to pre-

viously discovered information [125, 24]. Markers also help to reduce disorientation by

providing recovery or orientation points in data, especially useful in exploratory analysis.

Multiple cameras and viewpoints, which may also serve as landmarks, also provide different

perspectives of information.

Clustering related data into composite nodes, and revealing more information as one

approaches ROIs, helps to focus on data of interest during exploration [127, 159]. Fading

away increasingly distant (and less important) data removes the distraction it poses, also

reducing the occlusion that leads to an increase in disorientation during navigation. Care

should be taken to ensure that visual cues are used that provide effective descriptions of

semantic detail hidden within data, so that users are able to retrieve information sought

[24].

[40] provide a good illustration of the effect of visual cues on navigation and exploration

through a data set: figure 2.3(a) shows a scatter plot laid out on a flat surface. The only
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cues available are depth with distance obtained using natural perspective. Figure 2.3(b)

adds shading to the scene, borders and supplementary text describing objects of interest,

to form an information landscape that creates a natural map through the data.

(a) A landscape that provides only depth and distance cues to aid data interpretation

(b) Borders, shading and supplementary textual detail provide a rich information landscape

Figure 2.3. Very little information can be obtained from the visualisation in figure 2.3(a) because
of the lack of visual cues or supporting text. It is however transformed by the addition of simple
cues: shading in greyscale, borders and supplementary text, in figure 2.3(b).
(Images reprinted with permission from [40])

2.3.4 Issues in visual data analysis

Poorly constructed visualisations may mislead rather than aid interpretation of data [49, 56];

although graphic design plays an important role in the generation of effective visualisations

a visually appealing image is not a substitute for effective encoding of information stored in

data [108]. An additional complication is ensuring that visualisations generated are able to

meet the different information and analysis needs of users who may have marked differences

in domain knowledge and data analysis skills [24].

A classic example of poor visualisation resulting in incorrect analysis is the plot of O-ring

failures with temperature that led to the crash of the space shuttle Challenger1 (last viewed

Jul 2006). The initial plot of O-rings with temperature excluded important contextual data,

so that conclusions drawn were erroneous; plotting the complete data set revealed a pattern

quite different from that in the original plot.

Overview versus detail

Visual overviews are an important aid in the recognition of the overall structure of a data

set. However, one of the most significant problems information visualisation suffers from

is poor scalability, often displaying an exponential increase in occlusion with data set size.
1See the Report of the Presidential Commission on the Space Shuttle Challenger Accident at: http:

//history.nasa.gov/rogersrep/genindex.htm (last viewed Jul 2006). See also Michael Friendly’s Gallery
of Data Visualization at: http://www.math.yorku.ca/SCS/Gallery
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This may render overviews of especially large data sets unusable and increases difficulty in

data analysis [163].

Methods commonly used to reduce occlusion include clustering of like data into com-

posite nodes, based on user-specified or automatically determined criteria for similarity, to

reduce the number of objects drawn to the display. Another solution is to magnify visuali-

sations generated to force elements apart, reducing occlusion due to overlap of data nodes

and labels. This is an advantage for analysis of ROIs in isolation, since more detail can

be seen. However because display size remains constant a large portion of the resultant

visualisation may run off the screen. It becomes necessary to translate the viewpoint to

move between ROIs, using scrolling and panning in 2D, and additionally, rotation in 3D.

The context of the overview is lost [80, 125], increasing difficulty in navigation and the

likelihood of disorientation occurring.

One way to regain context is to use a coupled window that retains the overview, while

studying ROIs in a separate window [69, 160]. However for small screens or displays it is

difficult to work with more than one window at a time without a large degree of overlap.

Further, there is additional cognitive effort required to map between the visualisations in

separate windows [82].

F+C techniques such as fish-eye views provide an alternative solution [98]: the ROI

is magnified and the overall visualisation redrawn in the same amount of space, with suc-

cessively lower levels of magnification as one moves away from the focus. Such techniques

however distort the layout [82, 165], and may destroy users’ mental models of data struc-

ture, leading to an increase in cognitive load during analysis. Using a magic (Cartesian)

lens provides magnification to ROIs without distorting the original visualisation; however

the area immediately surrounding the ROI is obscured [125, 165].

Analysis of regions of interest

Properties of and values of properties for individual data elements may vary widely especially

in large data sets. Large (spatial) distances between data nodes due to the criteria used for

layout also make it difficult to perform comparisons based on physical properties such as

size. [48] (see figure 2.4) employ interactive control over the visualisations they generate to

modify scaling in user-specified sub-sets of data, encoding differences in scale using colour.

Alternatively data outside ROIs may be suppressed using different techniques, with

user choice dependent on skill, information requirements and data structure, among others.

Applying different levels of transparency to data as described in [138], or progressive fading

out of data is commonly used to remove the distraction of data outside ROIs. Colour,

hue and saturation may also be used to encode data attributes, as illustrated in [98] and

figure 2.5, providing visual cues that aid data analysis.

Extraction of ROIs for analysis in isolation allows more distant data to be brought closer

to the user’s viewpoint (as illustrated in figure 2.6). This serves two functions: it removes the
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Figure 2.4. The visualisation system developed by [48] uses non-uniform scaling to highlight sub-
sets of interest, within the context of the overview. The diagram on the right rescales the heights
of the data elements for the sub-set highlighted in green; compare with the data set with uniform
scaling for all elements on the left.
(Image courtesy of [48])

Figure 2.5. Variation in colour and thickness of links between nodes is used to highlight paths
leading to ROIs in the graph on the right [98]. Without these additional cues in the graph on the
left it is difficult to determine where data of specific interest may lie.
(Images reprinted with permission from [98])

distraction of surrounding data of lower interest, and brings widely separated data elements

closer together. To maintain context [48] use skeletons to mark the original positions of

these data nodes. Other options include suppressing non-relevant data (see figure 2.7)) and

hiding it altogether. The latter however isolates ROIs, while the former allows some degree

of context to be maintained, while still minimising distraction of less important data and

significantly reducing occlusion.

Maintaining mental models of data structure

Reproducibility is an important requirement for visual analysis [49]. Graph layout should

remain consistent for multiple runs of the same algorithm if consistent mental models of data

structure are to be formed that aid understanding of data. Predictability of the structure

of visualisations generated is necessary for analysis to be repeated and theories validated

[99, 127]. Force-based graphs such as spring layouts (discussed in § 2.3.2) pose a problem,

as different results may be produced for each run of an algorithm, especially for cases where

the solution does not reach the global optimum [89].
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Figure 2.6. Extracting an ROI from the
overview for detailed analysis in isolation.
(Figures 2.6 and 2.7 courtesy of [48])

Figure 2.7. Suppressing data surround-
ing the sub-set selected by scaling down the
width of data elements. This simultaneously
highlights the sub-set of interest.

Managing complexity in visualisation

Although images can store a large amount of information there are limits beyond which

complexity of visualisations may render them difficult to interpret. It is also often neces-

sary to supplement visualisations with text labels or annotation [49, 86]. This helps data

interpretation and analysis, and confirms conclusions drawn from images, clarifying areas

that may not have intuitive interpretation.

Employing minimalism also helps to lower complexity, easing analysis in addition to re-

ducing resources required to generate visualisations [78, 97], making it easier also to identify

important points in data and those elements that do not follow a general pattern.

2.4 Browsing, searching and querying data

Research can involve extracting useful, previously unknown information from large data

sets. One method for achieving this is to browse through the data, to obtain some idea of

the information stored in it. A more direct approach is to query data for specific informa-

tion, especially useful for very large data sets, where disorientation and cognitive overload

commonly occur during navigation through the data [38].

A major limitation in querying, however, is learning the complex syntax required to

filter out non-relevant data and retrieve information required [3, 165]. Further, querying

data from multiple sources is beleaguered by a lack of integration in underlying schemas of

data stores [19, 84]. This often means the need to reformulate queries to suit different data

structures, in addition to determining appropriate search terms that suit terminology used

in data stored. Developing systems that can parse natural language reduces the need for

pure query syntax, and provides an IR aid for especially non-technical users.

Further, querying involves a knowledge of the structure of data and a fair idea of what

information might be stored within it [2, 3] — information that is easily revealed; complex

pattern-recognition algorithms are required to reveal information that is more deeply hid-
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den. Domain knowledge is important in determining search terms and keywords that will

retrieve information required from the myriad, heterogeneous data sources built on varying

schemas. IR in bioinformatics is, however, compounded by the fact that different research

fields often use different and sometimes conflicting terminology for recording and annotat-

ing data [84]. Ontologies may serve as a reference framework here, semantically encoding

data to reduce ambiguity, leading to improved searching and IR [19, 74], by providing both

general and domain-specific semantic knowledge [18]. Visualisations that are mapped to the

semantic structure of data provide cues to users in identifying regions most likely to contain

information required, and where focused search will be most effective [44]. The ability to

classify data based on user-specified criteria aids the location of areas that may contain data

of interest. Confidence in the ability to perform effective IR encourages further exploration;

coupled with good support for navigation, users are more likely to become immersed in data

and continue to obtain a good understanding of data structure.

Text is the simplest method for recording and describing data, and is quick and effective

for directed searching and IR using structured, sorted data sets. It is, however, limiting for

describing spatio-temporal data such as the anatomy ontologies and gene expression data

studied for this thesis. Using images to store the latter allows for a richer representation

of data, with a larger number of dimensions and options for encoding data properties.

Searching for information within images is, however, far more complex than for simple

text [13]; there is the need to provide spatial and sometimes temporal mappings to aid

interpretation of image data. One solution is to attach annotation to images to allow

textual searching to be performed.

A limitation in text searching is that it reveals information on only search hits, with

ranking (often based on automated criteria) as an added extra for some systems. This results

in what is described as “near blind” searching in [95], associated with a high cognitive load on

users. [66] also recognise the benefits in helping users understand how queries are interpreted

by a system. Visual representations of query results can be encoded to show (user-specified)

degree of relevance of an entire data set to search criteria, so that the distribution of results

can be seen both for data satisfying search criteria and for non-search hits. Colour, shade

and intensity, and shading in greyscale may be used to encode data properties, and physical

distance mapped to semantic similarity to provide intuitive ranking of query results. This

helps users to more easily reformulate queries, using visual cues that provide information

on areas where data that satisfies users’ requirements is likely to be found.

This can be extended to visualisation of the contents of a data set(s) and the whole

process of querying [125, 165]. In an evaluation that compared querying using a direct

manipulation interface (DMI) to form-fill and text-based systems [3] found that the DMI

resulted in an increase in efficiency and a significantly smaller number of errors. Users’

(subjective) comments revealed that the visual overview of the original data set in addition

to visualisation of the query process itself improved IR. Users were more willing to explore

the data set using the DMI system because they found errors were easily corrected or
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reversed. [162] also obtained similar results in a comparison of text-based to dynamic

querying, and with speed of querying significantly faster for the dynamic query interface.

Advances in technology and imaging now make it possible to perform pattern recognition

in images and other multimedia data. Visualisation can also be used to create richer and

more intuitive interfaces for the query process. Exact and range filters built into sliders

may be used for dynamic querying and pre-processing of data, to remove non-relevant data

(or noise) and improve ability to retrieve information of interest [125]. Range sliders also

provide limits for filtering and querying, preventing input errors and providing clues about

information stored in data. Multiple query sliders may be used in conjunction to formulate

complex queries, removing the requirement to learn (complex) query syntax. Immediate

feedback is obtained for requests made [3], so that it is easy to visualise the effects of

slight modifications in query criteria during the process of querying. Queries may be easily

modified using intermediate or final query results, or reversed altogether. This intuitive

method for IR encourages data exploration [163] and uses incremental learning to obtain a

rich understanding of data as it is analysed. Figure 2.19 provides a demonstration of the

use of dynamic query sliders in the City’O’Scope data analysis tool.

A useful extension to querying is to provide transparent access to and simplified refer-

encing of external, related data; this may be used to verify and enrich information retrieved

[185]. Additionally, formatting output so it can be input into other search and data analysis

applications widens the scope of analysis that can be performed.

A challenge in visual, dynamic querying, observed in [3], is visualising non-spatial data

such that it allows effective mental models of data structure to be built. Encoding of

relationships within data influences IR and the confidence with which users draw conclusions

about information content. A second issue, common to interactive visualisation, is obtaining

sufficient resources to support effective and timely system response [162].

2.5 Visualisation in the development of data analysis tools

Previous sections discussed the importance of perception in data analysis, with § 2.3.2

looking specifically at the use of metaphors for intuitive, visual analysis. This section

continues to examine different techniques built into visualisation tools, some of which are

based on or make use of the visual metaphors described.

General-purpose tools often employ a range of simple techniques to generate visual

overviews of data, with the ability to perform further analysis in ROIs. Such tools, though

often limiting for detailed analysis of complex data, still serve as a guide in the development

of more specialised tools [154]. Conversely, domain specific tools have limited applicabil-

ity to general data analysis [71], focusing instead on providing dedicated analysis and IR

for a restricted set of requirements. User needs will determine where general-purpose or

specialised visualisation tools, or both in concert, provide optimal analysis [4].

It should be noted that visualisation is important not only as an aid in analysis but
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also in the creation of interfaces for data analysis systems [122]. Providing visual front-ends

to databases, for instance, aids storage and management of data [71], and allows visual

querying to be used for data analysis and IR.

2.5.1 Importance of a modular approach to development

The choice of technique(s) employed for analysis of a data set will influence effectiveness

of analysis and reliability of information retrieved for drawing conclusions about data. [71]

discuss important considerations in choice of techniques or tools for data analysis:

� user domain knowledge and skill in data analysis
� data type(s) being visualised
� information desired, how it is to be used and what it is to be used for
� scalability of visualisation techniques available.

No matter how well designed, tools developed for a specific target or purpose may not meet

the analysis needs of users within a different field of work [39]. Further, working methods

are often modified to fit specific tasks and stages of work. The ability to customise tools

so that they can be moulded to fit individual users’ working methods and often changing

requirements improves usability [98].

Development of modular components and systems using an object-oriented approach is

ideal as it promotes reusability and extensibility [163, 167]. Powerful tools can be built

quickly by integrating different modules and components, allowing multiple analysis tech-

niques to be used in concert [154, 153]. Users are able to concentrate on building tools that

perform the analysis required instead of on design and development of their component

parts. Choices, however, have to be made between the development of generic components,

which are more flexible and reusable, and specialised components which are more efficient

at the expense of flexibility. Finally, where it does not limit improvements in analysis tech-

niques it is advisable to adhere to published standards to ensure portability and reusability

of components developed.

2.5.2 Existing techniques for data analysis

Data mining

Data mining makes use of search algorithms and pattern recognition to automate IR in

structured data sets. Providing visual interfaces to databases eases input, manipulation of

data stored and IR. Visualisation of the data mining process further harnesses perceptual

ability and augments creative analysis and insight in humans [71, 114, 117]. This is espe-

cially useful for analysis of unstructured data, where algorithms fail. Even for structured

data providing options for interactive analysis allows humans to identify patterns and/or

anomalies in data that automated algorithms might overlook [184].

Visualisation techniques used in data mining include scatter plots, cluster analysis,

geometric projection such as multi-dimensional scaling and principal component analysis
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(PCA), and intelligent data browsing.

2D and 3D scatter plots

Scatter plots lay out data by mapping semantic similarity to inter-object distance, as illus-

trated in [68] (see also figure 2.14), who use Sammon’s non-linear mapping (NLM) to perform

multi-dimensional scaling, mapping high-dimensional data to a 2D layout. Another method

for achieving dimensionality reduction is to use PCA [89], which maps dimensions or at-

tributes in data to factors, starting with the principal factor or most important attribute,

with each subsequent factor describing variability between properties of data elements. A

disadvantage associated with PCA is that it may result in a loss in data: attributes consid-

ered to have low importance contribute little or nothing to the resultant visualisation.

Scatter plots provide a natural method for semantic clustering, grouping elements based

on similarity between data attributes. Alternative perspectives of the same data set are ob-

tained by re-clustering data based on user-specified criteria, revealing different relationships

between data elements. Figure 2.8 illustrates clustering of related data in a 3D world gen-

erated using a system of forces of repulsion and attraction based on (dis)similarity between

data nodes. Colour, intensity, hue, saturation, shading in greyscale, shape and size of data

nodes can be used to encode data attributes, providing additional dimensions for describing

data above the two or three in which the data is laid out.

Figure 2.8. Narcissus uses forces between objects
to lay out data in 3D. When the system comes to
equilibrium a scatter plot is drawn in the virtual
world created. Two clusters of closely related ob-
jects can be seen on the right, with links between
objects representing defined relationships.
(Image reprinted with permission from [95])

Information murals

Information murals are a pixel-based visualisation technique developed to combat poor

scalability in 2D visualisation due to restrictions in display space. This technique generates

data overviews with minimal loss of information by using intensity in colour displays or

shading in greyscale to encode density of data mapped to a specific pixel location [110].

Hierarchical visualisation

Information or tree maps use a space-filling approach to visualise large, hierarchically

structured data sets in 2D [11, 112], to combat the poor utilisation of space common to
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hierarchical graphs. The display space is broken up into bounded, rectangular areas, with

the amount of space assigned to each node mapped to user-defined levels of significance

of data. Colour, intensity and shade can also be used to encode other attributes of data

in the space within a bounded rectangle. [112] visualise a directory structure containing

six directories and seventeen files using different visualisation techniques, to illustrate the

advantages tree maps provide. Three of those visualisations are shown in figure 2.9, com-

paring the effectiveness of a hierarchical index, a node-link graph and a nested tree graph

for displaying the structure and semantic content of (hierarchically structured) data.

(a) hierarchical index

(b) node-link graph

(c) nested tree map

Figure 2.9. Figure 2.9(a) presents the least intuitive visualisation, where a large cognitive effort is
required to infer data structure. Figure 2.9(b), though capturing data structure effectively, makes
poor use of space. The tree map in figure 2.9(c) provides a compact visualisation that employs
physical space as an extra dimension for encoding data attributes.
(Images reprinted courtesy of the University of Maryland Human-Computer Interaction Laboratory
(HCIL), from [112])

The hierarchical index in figure 2.9(a) provides the least intuitive visualisation — with

only 23 nodes and four levels of nesting it is already quite tall, and the data structure is not

easily inferred. The hierarchical structure of the data is easily discerned in the node-link

graph in figure 2.9(b). However despite the weighted tree that attempts to optimise layout

the graph still makes poor use of space. Neither of figures 2.9(a) and 2.9(b) is able to use

structure to indicate the size of the file or directory each node represents.

Figure 2.9(c) nests each file or directory within its containing directory, providing, like

the node-link graph, intuitive recognition of the data structure. The tree map has further

advantages over the other two visualisations in that it maps space assigned to each data
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node to its size. Its compact visualisation also makes more optimal use of space. Figure 2.10

presents an even more compact map that makes better use of space available for displaying

data, but with the attendant disadvantage of the loss of the visual cues provided by nesting

in figure 2.9(c).

Figure 2.10. This alternative to the tree map in figure 2.9(c) uses shading to encode properties of
data elements, but does not nest data. The resulting visualisation is more compact and makes more
efficient use of space, at the expense of the loss of the visual cues provided by nesting.
(Image reprinted courtesy of HCIL from [112])

A limitation of tree maps is that as nesting grows it becomes increasingly difficult to

visualise all levels of a hierarchy in the overview. It becomes necessary to use successive

visualisations to display multiple levels in the tree.

Information cubes provide a 3D extension to 2D tree maps that remove the need for

multiple visualisations to display complex nesting. The technique developed by [147] pro-

gressively nests sealed containers in enclosing outer containers, to visualise nesting in a

hierarchy. Information cubes take advantage of the larger amount of space available in 3D

to generate compact visualisations of large, complex data sets.

The outermost container is transparent, so that containers nested within it can be seen

along with the text labels that describe their contents. As one descends the tree the level

of transparency of containers and detail in annotation decreases, to reduce complexity in

the overview. Level of detail in ROIs, however, varies with the proximity of data to the

viewpoint, as users navigate through the data. Shape and size of containers, colour and

transparency are used to encode data attributes and the importance of data, based on user-

defined criteria. Clustering places semantically related data within the same container or

in close proximity. Rotation and translation are used to bring ROIs closer to the viewpoint

to aid detailed analysis.

Tree graphs provide a useful abstraction for representing the structure of hierarchical

data. Data is stored in nodes and leaves in the tree, and relationships in links between

nodes. Clustering is obtained by folding the tree at a node, especially useful for managing

occlusion, which causes significant problems in hierarchical graphs. [98], for instance, set a
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Figure 2.11. The information cube visualisation
technique developed by [147], showing nested,
labelled containers at successively deeper levels
in a hierarchy. The cubes use colour and size to
encode data properties.
(Colour image reprinted with permission from
Jun Rekimoto’s web page on the Sony Computer
Science Laboratories, Inc. web site at: http:
//www.csl.sony.co.jp/person/rekimoto/cube
(last viewed Jul 2006))

threshold below which a composite object is used to draw a group of nodes in a tree in the

Latour visualisation system shown in figure 2.12.

Figure 2.12. Interactivity in the visualisation system Latour allows users to collapse less important
data into composite nodes, providing more space in the overview for data of higher interest. [98] use
colour, saturation and thickness of links to map paths to ROIs.
(Image reprinted with permission from [98])

Mapping of paths through small, directed graphs is easily achieved. Disorientation,

however, commonly occurs during navigation through large or complex trees [99], especially

where a large amount of interlinking occurs and the tree structure approaches a network.

Displaying all possible paths through such data requires two-way links, in addition to the

encoding of multiple relationships between node pairs [62], with an attendant increase in

complexity and disorientation during navigation.

The main disadvantage associated with hierarchical graphs is poor scalability; a large

amount of occlusion occurs beyond a relatively small number of nodes. Methods commonly

used to manage occlusion include (physical and semantic) zoom. Geometric zoom, however,

comes with a loss in context, leading to disorientation especially in large data sets. Hyper-

bolic projections provide F+C, magnifying ROIs to reduce occlusion without eliminating

context, but result in a distortion of data structure.

Dendrograms and cladograms are tree diagrams used to visualise phylogenetic rela-

tionships in evolutionary data. The root of a dendrogram represents the common ancestor
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in a data set, while data nodes and leaves represent individual proteins, genes, organs or

organisms. Edges between nodes contain relationships in data [88].

Figure 2.13. A cladogram drawn using the web ser-
vice for the visualisation tool Phylodendron, to show
evolutionary divergence between seven mammals.
(Image created using Phylodendron’s web ser-
vice at: http://iubio.bio.indiana.edu/treeapp/
treeprint-form.html (last viewed Jul 2006), and a
sample data set from http://iubio.bio.indiana.
edu/treeapp/treeprint-sample2.html)

Dendrograms, which are only useful for visualisation of hierarchical data [89], are well suited

to multi-dimensional, evolutionary data, with its inherently hierarchical structure. Dendro-

grams lend themselves well to interactive, exploratory visualisation and data analysis, and

provide an intuitive method for classification by (hierarchically) clustering like data. [89]

provide a demonstration of the use of dendrograms for hierarchical clustering of gene ex-

pression data.

One limitation of dendrograms, however, and common to tree graphs, is poor visual-

isation of horizontal relationships — inter-object distances along the same level have no

meaning [68]; arbitrary ordering of nodes in space means that physical separation between

nodes may not map to semantic similarity. Figure 2.14 compares a scatter plot to the equiv-

alent dendrogram, illustrating differences in semantic meaning that may be inferred from

node layout in the two visualisations.

Figure 2.14. [68] use Sammon’s NLM to lay out a scatter plot that encodes gene expression data
using colour. Three distinct clusters are seen, with a close relationship between the gene expression
data in green and red, and the blue lying some distance away. Two isolated points in pink highlight
anomalies in the data. Although clustering occurs in the equivalent dendrogram, inter-object distance
and relative position of clusters do not map to (dis)similarity in the data. Information on ancestry
may however be derived from branching in the tree.
(Images reprinted with permission from [68])

Isomorphism also presents a problem in the use of dendrograms: misclassification of

similar data may occur when clustering algorithms used for automated classification fail,

resulting in semantically related data being assigned to different clusters [160, 88]. A simple
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solution to this is to provide interactivity that allows perception in humans to be used to

identify and correct errors in automated classification and clustering [89].

Another limitation of dendrograms and cladograms is their poor scalability [88]; few

applications that make use of hierarchical trees are able to support visualisation of more

than a few hundred to a thousand nodes and edges before severe occlusion renders the

overview unusable.

Cone trees are an interactive visualisation technique developed by [152] (see also [151]),

that takes advantage of the added dimension of depth in 3D to improve use of screen space

for the analysis of large, hierarchically structured data sets. Starting with the root node

at the top of the volume occupied, the cone tree visualisation successively draws sub-trees

with each parent node at the apex of a cone, and its children uniformly distributed along

the circumference of its base.

Depth cues in the 3D world are augmented with colour coding and lighting. [152] also

use light to throw shadows of the cone trees generated to the base of the structure, to provide

additional visual cues that aid understanding of the structure of the hierarchy formed and

clusters that occur within it. Natural perspective in 3D increases magnification of data

nodes in the visual structure with proximity to the viewpoint.

The 3D structure, however, suffers from the inherent problem of occlusion of more distant

data elements. Two methods are used to reduce this: cones drawn are semi-transparent,

so that objects lying behind them are still visible. The second solution uses cam trees,

a rotation of the cone tree visualisation that draws trees along the horizontal axis. Node

labels can be drawn for individual data elements with a significantly lower level of overlap

in cam trees than occurs for the vertical layout. Finally, the data structure may be rotated

to bring data of interest to the viewpoint.

Figure 2.15. A cone tree [152] is shown on the left, with its equivalent cam tree on the right. Both
visualisations show the additional visual cues provided by the shadows that are cast onto the base
from the light above each structure.
(Images reprinted with permission from [152]

Using 3D allows more data nodes to be displayed than for the equivalent 2D visualisation;

it is not possible to draw equivalent visualisations in 2D for the cone trees system that are

able to store the same amount of information at the same magnification and screen size.
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However, as is common to hierarchical visualisation, severe occlusion still occurs beyond a

relatively small number of nodes; the cone trees system is only able to display about 1000

nodes before usability of the overview is degraded by occlusion.

Unlike most visualisation techniques developed first for 2D and then extended to 3D, cone

trees were originally developed as a 3D visualisation technique. This eliminates distortion

and other visual defects that occur when projecting what are essentially 2D visualisations

into 3D space. [116], however, argue that (3D) cone trees present several problems for visu-

alisation, especially when projected onto a 2D display. They observe that the hierarchical

structure of the data is easily recognised when viewed from above, but from the side or

within the visualisation occlusion of more distant nodes obscures its overall structure. Loss

of context occurs when immersed within the data in order to analyse ROIs, or when moving

between different layers of the tree, resulting in an erosion of users’ mental models of the

data structure. Another problem observed, common to hierarchical graphs, is that physi-

cal distance between node pairs is not meaningful, so that it cannot be used to interpret

semantic distance between data elements.

Focus+Context Techniques

Perspective and hyperbolic projections or fish-eye views provide a wide field of view,

with maximum magnification at the focus, which falls away progressively with distance

[120, 159]. The projection makes use of the exponential increase in space in hyperbolic

layouts to (re)draw ROIs at higher magnification, reducing occlusion without sacrificing the

context of the overview.

This is especially useful for visual analysis of large data sets, where retaining context

helps to reduce disorientation during navigation. However, distortion in the visual struc-

tures generated and constantly changing focus in hyperbolic layouts may prevent users from

forming consistent mental models of data structure [127, 159], making it more difficult to

recognise relationships within data. One example of an application that makes use of a

perspective projection is the cone tree system developed by [152].

Perspective walls use natural perspective in 3D to provide an F+C system for visualising

linearly structured data [151]. Figure 2.16 shows the 3D wall formed by folding away

the context from the central section and focus of the data. The focus can be changed

interactively by dragging items to the centre of the wall; this results in relative relocation

of other data closer to or away from the viewpoint, with a respective increase or decrease

in magnification of objects lying on the wall.

Shading in greyscale or intensity for colour displays may be used to enhance the percep-

tion of depth, increasing the ability to recognise and understand relationships within data.

Perspective walls may be used as timelines, plotting changes in the properties of data from

one end of the wall (in time) to the other.
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Figure 2.16. [151] use a perspective wall to visualise the structure of a file system. Items of interest
can be taken off the wall and placed in front of the user, to allow examination in detail.
(Image reprinted with permission from [151])

Combined with a rubber metaphor that stretches the wall, the level of detail and conse-

quently occlusion, may be managed interactively [151].

Portals

[138] illustrate how portals can be used to provide intuitive navigation between widely

separated locations in a data set using Pad, a visualisation system that places data on an

infinite 2D surface. [140] use a similar system to aid comparison of widely separated data

elements, by providing a magnified view onto one ROI from another. [138] also extend the

metaphor to generate semantic filters that alter physical properties used to encode data, to

provide different perspectives of ROIs viewed through portal filters.

Parallel co-ordinates

In order to map experience in the real world to data analysis, graphical analysis is normally

limited to a maximum of three (physical) dimensions, with data drawn in space along

mutually orthogonal axes. This requires dimensionality reduction for high-dimensional data,

which often results in a loss of information. The parallel co-ordinates technique provides

a graphical method for exploratory visual analysis of multi-dimensional data without the

need for data reduction: it draws polygonal lines by joining points on a set of equidistant,

parallel axes lying on a 2D plane, each representing an attribute of the nodes in a data set

[69, 108, 109]. Physical limits to the number of dimensions available for describing data

attributes are removed.

Colour, thickness and transparency of lines between axes are used to highlight data of

interest. Clustering is obtained where high similarity occurs in values for data attributes, as

is seen in figure 2.17, and outliers are easily identified. The parallel co-ordinates technique

is also useful for analysing temporal data, where the parallel axes serve as a timeline.
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Figure 2.17. [107] demonstrate the use of
parallel coordinates for visualisation of multi-
dimensional data.
(Image reprinted with permission from [107])

Beyond a relatively small number of dimensions it becomes necessary to scroll to view

different attributes. It is also difficult to compare attributes on widely separated axes.

The latter problem may be resolved by rearranging axes to bring selected attributes closer

together, to ease comparison of data.

[69] extends the parallel co-ordinates technique to 3D (see figure 2.18), drawing the

parallel axes as 2D planes, with each polyline in an individual plane perpendicular to the

axes. The 3D visualisation provides more degrees of freedom to the user for examining

its structure: the visualisation may be rotated, allowing viewing from arbitrary angles, in

addition to the translation available in 2D. Facing the parallel axes at right angles results

in the view obtained for the equivalent structure drawn in 2D. Viewed from above a major

benefit of 3D can be seen: elimination of the crossing of lines that occurs in 2D. Each plane

representing a specific attribute contains a scatter plot; if data elements are arranged such

that physical distance maps to semantic similarity a layout of data nodes could be obtained

that provides additional visual cues for analysis.

Figure 2.18. [69] illustrates use of the par-
allel co-ordinates visualisation technique in
3D space to compare medical records.
(Image reprinted with permission from [69])

[26] combine multiple visualisation techniques to obtain the City’O’Scope2 (last viewed

Jul 2006) visual data analysis tool shown in figure 2.19. A set of parallel co-ordinates use

colour and thickness to highlight polylines representing data elements of interest, and clus-
2More information on City’O’Scope is available on the Macrofocus web site at: http://www.macrofocus.

com
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tering is obtained along each axis where a large number of elements display high similarity

in attributes. Dynamic query sliders are used to construct composite queries that filter out

data not satisfying search criteria. This is reflected in the corresponding dynamic scatter

plot where clustering also reveals similarity in data attributes, based on criteria used to lay

out data. The fourth component in the visualisation tool is a world map that highlights

cities meeting query criteria. A fish-eye view magnifies ROIs on the map and brings them

to the centre and focus.

Figure 2.19. City’O’Scope, described in [26], provides interactive visualisation of economic data for
a number of cities in the world using multiple visual analysis techniques in concert.
The snapshot, printed with permission from the application, shows use of a demonstration version
of City’O’Scope.

Virtual reality

Harnessing metaphors in real life to generate visualisations aids navigation in virtual worlds,

and provides intuitive data exploration and analysis. Walk-throughs may be supplemented

with enhanced metaphors that allow users to fly over or through data, jump through portals

and interactively modify physical attributes of data using magic wands while immersed in

the data. In-built support for navigation in virtual reality (VR) includes multiple viewpoints

or cameras and landmarks [160]; there are also the larger number of degrees of freedom

available in 3D for navigation. Optimal use of VR, however, requires additional support for

software and hardware that is not commonly available in the average working environment

using personal computers (PCs).
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2.5.3 Interactivity and animation

Giving users control over how data analysis is performed gives more confidence in results

obtained. Providing options for interactivity allows users to work more directly with data

so that a more intimate knowledge of data is obtained [48, 71]. Domain knowledge can

be brought to data analysis, helping to validate results of automated analysis and clarify

ambiguous or incomplete information retrieved. This is especially useful for irregularly

structured data, which automated algorithms deal poorly with [2, 72].

Visual, interactive analysis provides a spatial extension to limited human short term

memory, benefiting from perception which reduces cognitive load in analysis, and leading

to better understanding of data [39, 71]. Clustering, grouping or classification of data

based on user-specified criteria provide alternative perspectives [117] and reveal variation

in interaction within data [69]. Level of detail, both physical and semantic, may be varied

as users move closer to ROIs or draw away to obtain a wider view of data [165].

Complex queries [74] do not always retrieve information desired. In such cases inter-

activity combined with visualisation provides an advantage. The query process can be

visualised, and queries refined or extended based on intermediate or final results, to obtain

near-optimal or alternative solutions. Incremental querying, such as described in [152, 162],

can be used to reveal search hits as they are found, instead of waiting for all data satisfying

search criteria to be retrieved. This allows errors in query terms or anomalies in data to be

identified quickly, so that modifications to queries can be made during the search process,

increasing the probability that final results will contain information required [125].

Quick, simple identification of errors, usable system feedback and support for error re-

covery all have significant impact on the willingness of users to perform exploratory analysis.

The ability to return to previous states is also important, especially for navigation through

complex data, to re-orient users who get lost within data. The availability of history ses-

sions and the ability to place markers within data and save system state also contribute to

interactive, incremental or continuous visual data analysis [165].

The support required for interactive visualisations is naturally higher than that for

static visualisations [163]. Larger amounts of computational resources are required for

animation, to redraw visualisations in real time. It is sometimes necessary to sacrifice

high-end graphics and resolution for improved response, especially during navigation and

exploratory analysis [122]. Sudden jumps between ROIs or large changes in the structure

of visualisations in response to user actions may result in disorientation [98, 159], while

users perform the cognitive transition from one perspective of a visualisation to another.

However there is evidence that suggests that smooth animation as a layout is updated

may help users form good mental models of data structure [39, 48, 74, 151]; the cognitive

effort required to identify relationships among different elements is transferred to the more

intuitive perceptual system [152]. Browsing and navigation through data improves, users
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are able to move more easily between ROIs, progressively building an understanding of

interaction between different data elements and the overall structure of data [21].

However restrictions may be required to prevent users from distorting visual structures

to the extent that they are no longer meaningful, and mental models created of the data

structure are destroyed [39, 48, 96]. Limiting degrees of freedom for navigation available to

users, especially in 3D, also reduces the occurrence of disorientation.

Providing meaningful presentation of results that are understood by audiences with dif-

ferent skills and research backgrounds is another challenge faced in data analysis. Interactive

generation of visualisations may provide a useful option for presenting the results of analysis.

2.5.4 Limitations in visual analysis

Despite improvements in technology, restrictions in screen size and resolution, the graphics

capability of systems available both for generating and viewing visualisations, and comput-

ing power still remain significant limitations to effective visual data analysis [116]. The

scalability of techniques developed for visual analysis is also a problem; intuitiveness and

manageability of visualisations decrease significantly as data set size and dimensionality

increase.

2.6 2D vs 3D

Visual data analysis is increasingly being performed on PCs, with data drawn on 2D displays.

This naturally suggests that the ideal number of dimensions in which to present data would

be two. However, except for fairly small data sets (containing only a few hundred data

elements) occlusion in 2D visualisations often limits the usability of data overviews. An

extension to 3D provides extra space for holding data [96, 127], helping to reduce the

occlusion that occurs in the limited space available in 2D.

A significant advantage in 3D is the added spatial dimension that allows a transfer of the

cognitive effort required for data analysis to more intuitive spatial memory [51]. The extra

space available in 3D, due to depth, results in higher density of data, increasing the ability to

uncover information required and the effectiveness of analysis [151]. [152], for instance, found

that it was not possible to generate equivalent hierarchical structures in 2D using the same

amount of screen space as they achieved with their 3D cone trees visualisation technique. It

would be necessary to draw the 2D structure at significantly lower magnification, or require

scrolling to view the entire structure at the same magnification, with an attendant loss

of context (and increase in cognitive memory load). It may however be argued that the

need to rotate 3D structures to view distant data elements occluded by others closer to the

viewpoint is analogous to scrolling in 2D.

Objects that more closely approach equivalents in the real world may be used to generate

virtual worlds in 3D [69, 99], allowing use of prior knowledge in navigating through real life

to aid navigation through complex, interactive systems, and reduce the cognitive burden
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on users [59]. A larger number of degrees of freedom are available for navigation in 3D,

including rotation, which is especially useful for bringing more distant data elements closer

to the viewpoint. An added benefit is that users are able to immerse themselves into data,

forming an understanding of the structure of the information space and relationships within

data as they move through the visual structures.

Another advantage is that 3D projection provides natural perspective, increasing magni-

fication as objects approach the viewpoint, so that more detail is seen in ROIs without losing

the context of surrounding data [69]. This provides some of the benefits of the wide angle

lens used in hyperbolic layouts without the distortion that is an artefact of this technique,

and also depth cues, which aid visual analysis.

3D visualisation comes with its own problems, however, chief of which are disorientation

during navigation and occlusion of more distant elements [69, 163, 164]. Additionally, [51]

found that the larger number of degrees of freedom for exploration may hinder rather than

aid users in locating information, where higher density of data produced more clutter rather

than more information. [51] note however that their experiments used a fairly small data set,

and that comparison of significantly denser displays for different dimensions may produce

different results.

Reduction to 2.n dimensions (n between 0 and 5) makes use of the landscape metaphor,

eliminating disorientation due to complete immersion in 3D [39]. Users are able to remove

themselves to a plane above the visualisation, to fly over data and obtain an overview

that provides context for analysing ROIs. Fog and lighting may be used to enhance the

simulation of the (virtual) landscape, employing a geographical metaphor to aid navigation

and location of data of interest. Placing easily identifiable and recognisable markers and

multiple cameras or viewpoints in data helps to re-orient users who get lost, by providing

easily reachable landmarks [69]. [182] found that provision of landmarks as for wayfinding

in the real world aids navigation through especially large data sets, where it is difficult to

obtain an overview of data, preventing disorientation by helping users incrementally build

mental maps of overall information space. [99, 151] discuss additionally, the use of portals

or magic doors, history and undo facilities to help manage difficulty in navigation and

exploration in 3D.

Effective generation of visualisations within the limitations of software and hardware

available, that support smooth, controlled motion of users and objects within 3D worlds,

and that provide effective visual cues, is especially a challenge for desktop applications,

which make use of 2D for both user input and data display. Mapping a 3D representation

to 2D screens may result in some distortion [99], increasing the probability of disorientation

occurring and the potential for misinterpretation of data structure. More support for both

hardware and software is required for generating and visualising 3D computer graphics.

Fully immersive 3D systems with haptic feedback and stereoscopic displays may be used

to provide a better illusion of (3D) space, and provide additional physical and visual cues

that enhance exploration of and navigation through virtual worlds. This may help to make
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up for the peripheral vision unconsciously used in the real world to obtain contextual in-

formation, which is lost in the projection of 3D worlds onto desktop environments. Even

though advances in technology have significantly reduced the cost of resources required for

computer-based solutions while enabling improved analysis, the higher cost of hardware and

software required for effective generation and display of 3D worlds still restricts optimal use

of 3D for the average user [99]. Also, apart from the higher financial cost associated with

such systems, most analysis is performed using PCs in office environments, where such so-

lutions are not practical.

Several factors come into play when making a decision to use 2D or 3D for visualisation of

abstract data. 3D space provides advantages over 2D for large amounts of high-dimensional

data. However anecdotal evidence suggests that visual representation of data in 2D, using

less complex techniques for navigation and exploration of data, is easier for users to learn to

use on the 2D displays normally available in the workplace. The larger number of degrees of

freedom in 3D, though helping to move around objects to manage occlusion of more distant

data elements, also contribute to disorientation.

[66, 69, 91, 161] found that tools that do not match user ability and normal working

methods, or provide options that do not satisfy users’ information needs are unlikely to be

used; [6] found that poor mapping between tools and user ability may reduce performance

in analysis. [39, 44, 50] additionally discuss the importance of mapping semantic meaning

and the structure of data to visualisations generated, and to users’ specific and changing

information requirements and working environments. [6, 51], among others found that

effectiveness of 2D and 3D displays varies depending on the tasks being performed; [44]

also stress the importance of recognising differences in user ability and domain knowledge,

and experience in the use of computer-based tools, and the impact these have on ability

to make use of visual analysis tools. Research shows that varying degrees of spatial ability

or awareness in individuals influences their ability to navigate effectively through higher-

dimensional environments [6, 44], their understanding of visualisations and the information

they contain [181], as well as their general use of graphical user interfaces (GUIs).

Tools that provide very effective data analysis may still be rejected if they are difficult

to learn to use or have poor response. Design and development of tools that cater to the

individual needs of users with what may be wide variations in ability, domain knowledge and

backgrounds, is a challenge especially for interactive analysis. Structured evaluations of the

visualisation browsers developed for this project (see chapters 7 and 9) found that despite

greater difficulty navigating through the 3D information space, users on average preferred

the 3D to the 2D browser. Users recorded improved ability to approach data of interest

and easier interpretation of colour coding in 3D. 3D also enabled simultaneous analysis of

multiple data sets; space limitations in 2D meant the same could not be achieved using a

single 2D window. A factor that may have biased opinions on usability was the exponential

increase in delay in system response that occurred in the 2D browser with increase in data
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load for the first structured evaluation; differences in delay in the 3D system with data load

were negligible (refer § 7.2). However this would have been tempered by inherent complexity

in especially navigation in 3D browser, exhibited especially during the second evaluation as

more complex tasks were performed.

2.7 Analysing data over a network

Computer networks and the Internet ease data sharing and exchange, especially for users

in widely separated geographical locations, [90], due largely to a set of standards for data

transfer and presentation that are widely adhered to. With sufficient bandwidth and fast

networks it is possible to perform data analysis online, using software and storage facilities

in remote locations. This removes the need to download and store large data sets and

applications [45], which is especially useful where local resources are limited. Added bonuses

are the removal of the burden of data management from users and improved ability for

collaborative work among geographically dispersed users. Data updates can be obtained in

real time, allowing continuous, incremental analysis to be performed. Making tools available

online also eliminates the supply chain in the distribution process, cutting financial cost and

time, so that software releases and updates are available to users immediately they are ready

to be deployed.

However interfaces that can be developed for web applications are more restrictive than

those for equivalent standalone applications. The usability of interfaces for web-based appli-

cations still has a high impact on whether or not tools are used. An advantage in these tools

is that where they are properly designed, web applications allow users to take advantage

of prior knowledge in using web sites to learn how to use online tools quickly. However

differences in the look and feel of graphical components for web and standalone tools reduce

the transferability of learning between the two application types.

Other usability problems typical to web applications include long response times due to

large downloads and slow networks, and security issues that restrict use of applications [35].

Requiring users to download and install software to make use of web applications creates

additional problems, especially when they are non-standard.

2.8 Summary

This chapter examined the capability of humans for complex data analysis, looking at meth-

ods that can be harnessed to provide intuitive analysis. Metaphors commonly used to gen-

erate visualisations were reviewed, along with visual analysis techniques building on these

metaphors, to identify the merits and limitations associated with each.

The advantages provided by each of 2D and 3D were discussed, looking at additional fac-

tors that influence users in the choice and use of data analysis tools. The chapter concluded

with a look at the dissemination and use of data analysis tools over a network.
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Chapter 3 continues to examine graph visualisation, as an option for visual analysis of

the hierarchically structured ontology data being studied.
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Graph visualisation

Graphs provide a simple but effective method for visualising the structure and content of

data [49]; visualisation allows encoding of quantitative data so that it can be presented in

qualitative form, transferring cognitive effort required for data analysis to more intuitive

perception. One of the simplest implementations of graph visualisation is the node-link

graph commonly used to display relationships within data [5, 99], in which data elements are

represented by nodes, and relationships between nodes by edges or links. Colour, saturation,

shape and size of nodes and links may be used to encode different properties of data, and

map relevance or importance of data nodes [96].

The tree graph is a specialisation of the node-link graph that lays out data using a

hierarchical structure. A disproportionate increase in occlusion in node-link graphs with

data set size [128], however, results in difficulty distinguishing data nodes and navigating

through data. Abstraction that employs clustering of like data helps to manage complex-

ity and occlusion [74, 117], and uncovers relationships within data based on alternative

classification criteria. Hierarchical clustering also aids navigation, hiding more distant and

less immediately relevant data, and revealing greater semantic and physical detail as one

approaches data of interest.

3.1 Common applications of graph visualisation

Graph visualisation is widely applied to work in daily life. Example application areas include

the design of interfaces for file and document management systems, hypermedia systems,

organisational charts, web site maps and for browsing history lists on the web. Graph

visualisation is also useful for examining semantic maps and networks, drawing genetic

maps, entity relationship (ER), state transition (STDs) and data flow (DFDs) diagrams

[56].

Hierarchical graph visualisation is useful for mapping paths through data, with its ability

to fold away detail in more distant areas of a structure, revealing more information and

additional alternatives for navigation as users approach an ROI. Hypertext and hypermedia
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systems are good examples of data sets with a large amount of interlinking among data

nodes, often leading to disorientation during navigation. Figure 3.1 shows how a node-link

graph is used to map the structure of a web site, based on interlinking between documents.

Figure 3.2 shows alternative layouts for the defined navigation structure of the same site

(which does not necessarily map to the physical structure).

Figure 3.1. Hyperlinks between documents in a web site are displayed using a node-link graph
in Microsoft Frontpage®. Because links are uni-directional nodes may appear multiple times; to
reduce the occlusion this causes only one sub-tree per level can be expanded at a time, with this
path traced in black. The path from the node with the focus to its parent is highlighted in red.

Figure 3.2. The (top-down) layout is shown on the left for the graph that stores the defined
navigation structure for the web site in figure 3.1. Sub-trees collapsed to obtain a more compact
structure are marked with a closed stub on each composite node. The equivalent horizontal layout
is shown on the right, displaying the same number of nodes in a smaller amount of space than is
required for the vertical layout. Both graphs still make poor use of space in the display.

3.2 A review of existing graph visualisation tools

The following sections take a look at a sample of graph visualisation tools, both general-

purpose and specifically designed for bioinformatics data analysis, identifying the main

strengths and limitations of each.
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SpaceTree1

SpaceTree [139], developed using Java, extends the classic node-link graph using the zoom-

able interface of Jazz 2 and variable cameras to provide dynamic visualisation of hierarchical

data. Graphs generated are automatically modified to suppress data outside ROIs, providing

a larger amount of physical space in which to perform detailed analysis of data of interest.

Context is maintained by attaching visual and textual cues to composite nodes, to provide

information on the sub-trees they contain, as illustrated in figure 3.3(b). The path from

the node with the focus to the root is highlighted, to help provide context and a sense of

direction to users.

(a) Using the search function in SpaceTree to high-
light nodes containing the term brain.

(b) A search for membrane highlights the icons con-
taining the sub-tree where it can be found.

Figure 3.3. A demonstration version of SpaceTree, developed by [139], is used to visualise the EMAP
XML file representing Theiler Stage (TS) 12 of development of the mouse embryo, containing 199
anatomy components, each with sub-elements describing component properties. SpaceTree provides
detail for the region with the focus and for surrounding data, folding away other sub-trees and
reducing the need to scroll or pan through the graph.
(The version of SpaceTree used to visualise the data may be downloaded from: http://www.cs.
umd.edu/hcil/spacetree. Images printed with permission of HCIL.)

uDraw(Graph)3

Formerly known as daVinci Presenter [76], uDraw(Graph) provides an interface that visu-

alises relationships within data using hierarchical graphs. uDraw(Graph) is also designed to

work as a plug-in within other (data analysis) packages. Useful features in uDraw(Graph)

are support for incremental layout and interactive modification of the visualisations gen-

erated. Encoding of data attributes is obtained using shape, size and colour of nodes and

links. The uDraw(Graph) interface is developed using Tcl/Tk.
1See the SpaceTree web pages at HCIL: http://www.cs.umd.edu/hcil/spacetree
2Other applications of Jazz can be found at http://www.cs.umd.edu/hcil/piccolo/applications/

index.shtml\#jazz. See also Piccolo, which succeeded Jazz, at http://www.cs.umd.edu/hcil/piccolo
3See the uDraw(Graph) web site at: http://www.informatik.uni-bremen.de/uDrawGraph/en/
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HyperGraph4

HyperGraph is an interactive, Java-based application that makes use of a hyperbolic layout

in 2D to draw large trees. The hyperbolic layout has two main advantages: it is able

to visualise a much larger number of nodes than the equivalent Cartesian layout, and it

provides an F+C system that provides greater magnification to data in ROIs, as illustrated

in figure 3.4.

Figure 3.4. The two snapshots show navigation through a wiki: black nodes represent leaves in
the tree, those in blue may contain a collapsed sub-tree, and red nodes highlight errors in the data.
Significantly lower clutter is seen in the region surrounding the node with the focus, XML, encircled
in green. Even though this node lies in the same general area there are significant differences in the
layout of the tree, a problem common to hyperbolic layouts and which prevents a consistent mental
model of data structure from being formed.
(The sample data set used and images printed with permission from the HyperGraph web site at:
http://hypergraph.sourceforge.net/item562489632.html.)

VRMLgraph5

VRMLgraph uses a Java application to write the structure of 3D node-link graphs to VRML

(Virtual Reality Modelling Language) files (see figure 3.5). The main advantage in VRML-

graph is that the visualisations generated are able to take advantage of the additional degrees

of freedom available in 3D and in-built functionality for navigation in VRML browsers, to

aid exploration of and navigation through the data being analysed.

Walrus6

Walrus [106] is a visualisation tool developed using Java3D that draws very large directed

graphs in 3D hyperbolic space. Walrus is able to display comfortably hundreds of thousands

of nodes before occlusion becomes a problem. The hyperbolic layout, shown in figure 3.6,

also provides a changeable focus that allows analysis of ROIs within the context of the

overview.
4See the HyperGraph web site at: http://hypergraph.sourceforge.net
5See the VRMLgraph web site at: http://vrmlgraph.i-scream.org.uk
6See the Walrus visualization tool web site at: http://www.caida.org/tools/visualization/walrus
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Figure 3.5. A sample data set used to generate a 3D node-link graph using VRMLgraph

Figure 3.6. The Walrus application de-
scribed in [106] is used to visualise the di-
rectory structure of the folder that contains
its source files, displaying 12 attributes in
over 1100 nodes and links. The view dis-
played zooms in to the graph and highlights
three nodes, displaying their base names
and their (common) root.
(Image printed with permission using a
sample file and the Walrus application
downloaded from: http://www.caida.
org/tools/visualization/walrus)

Phylogenetic Tree Drawing Tools

Although the analysis for the research areas in EMAP and XSPAN are not looking at phy-

logeny, the hierarchical visualisation techniques used in drawing phylogenetic trees may still

be useful for generating overviews of the data sets being analysed. A large number of tools

for drawing phylogenetic trees exist, including PHYLIP (described in § 4.2), TreeView7,

TreeJuxtaposer, the ATV Viewer8 and BioLayout9. The main features of the last three

tools are summarised below.

TreeJuxtaposer, developed by [130] using Java and OpenGL with GL4Java10 bindings,

employs variation in colour, shading and saturation to encode ROIs in phylogenetic trees,

highlighting equivalence across multiple trees based on structural similarity between nodes.

TreeJuxtaposer maintains an overview containing all data elements rather than more com-

monly used data abstraction that minimises the number of data elements drawn to the

screen. A rubber sheet metaphor is used to provide F+C for ROIs, allowing users to stretch

regions in a tree to provide greater magnification, and/or drag less important data away
7See the TreeView web page at: http://taxonomy.zoology.gla.ac.uk/rod/treeview.html
8See the ATV web pages at: http://www.genetics.wustl.edu/eddy/atv
9See the BioLayout web pages at: http://cgg.ebi.ac.uk/services/biolayout

10See the OpenGL for Java web pages at: http://gl4java.sourceforge.net/
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from the focus.

A major advantage of TreeJuxtaposer is design for scalability: a single tree of about half

a million nodes may be visualised, while maintaining usable system response. Multiple trees

with smaller sizes may also be displayed simultaneously without sacrificing system response.

The ATV Viewer8, developed by [186] using Java, allows interactive editing of underly-

ing data, (re)drawing and analysis of phylogenetic trees. Options for editing layout of trees

include re-rooting, collapsing of sub-trees into parent nodes, and re-ordering of child nodes.

Variation in lengths of links may be used to encode data, or the tree may be arranged to

align all leaves, removing semantic meaning attached to links. Colour may also be used to

encode data properties, and functionality is provided for string searching on element names

and identifiers (IDs).

ATV Viewer may be run as a standalone application or as an applet. Snapshots of the

applet version of ATV Viewer are shown in figure 3.7, comparing the data set for the ras

full tree with the seed tree downloaded from the ATV Viewer web site.

(a) A search for the string human highlights labels
hits in the graph in red.

(b) Significant occlusion especially due to node la-
bels occurs for the larger data set.

Figure 3.7. Common to visualisation employing node-link graphs, ATV Viewer, developed by [186],
exhibits severe occlusion in parts of the graph on the right while other areas lie empty. The smaller
graph on the left makes better use of visual cues, allowing more intuitive analysis to be performed.
(Images printed with permission using sample data files and the ATV Viewer applet at: http:
//www.genetics.wustl.edu/eddy/atv (last viewed Jul 2006).)

BioLayout JAVA9, developed by [65], uses directed network graphs to visualise relation-

ships in biological data, with functionality provided for interactive modification of layout.

Classes may be created to describe different data types; allowing colour coding to be used

for data classification. Edges containing relationships between element pairs may also be

weighted and/or colour coded based on strength of relationships occurring. The visualisa-

tion system may direct searching for additional information on a node to the default web

46



Graph visualisation

browser on a user’s machine, using the name of the node as the search term in a user-

specifiable data source. Finally, changes made to a graph can be saved in a reloadable file.

Figure 3.8 illustrates the results of interactive modification of a graph plotted for metabolic

pathways in E. coli.

(a) Initial layout of biological data using a con-
nected network graph in BioLayout JAVA

(b) Result of interactive modification of the graph
in figure 3.8(a). Zoom is also used to reduce empty
space and provide greater magnification to ROIs.

Figure 3.8. BioLayout JAVA is used to visualise metabolic pathways in E. coli. Nodes assigned to
three user-defined classes are colour-coded. A sub-string search highlights 2 nodes in the graph and
(directed) links from search hits to related data.
(The sample data files and the BioLayout application can be obtained from the BioLayout web site
at: http://cgg.ebi.ac.uk/services/biolayout

3.3 Limitations in tree graph visualisation

A major limitation in tree graph visualisation is poor scalability: increasing occlusion with

data set size significantly reduces the usefulness of overviews [69, 159]. 2D graphs are gener-

ally only able to display a few hundred nodes before occlusion renders overviews unusable.

Hierarchical, node-link graphs do not make optimal use of screen space; the area surround-

ing the root of a tree lies empty while density of nodes increases toward the leaves [139].

Occlusion when it occurs results in data objects being hidden behind others, and crossing

of links obscures relationships between elements.

A number of solutions are available for combating occlusion in tree graphs. Pan and

zoom provide simple solutions to occlusion in ROIs, but result in a loss of the context

provided by the overview. Using coupled windows to provide an overview while detail is

examined in the main window helps to regain context. However this requires extra cognitive

effort mapping between the two visualisations. Data and dimensionality reduction suppress

less important data and/or attributes, or clusters like data into composite nodes, reducing

the number of objects drawn to the screen.

Another solution is to draw visualisations using the larger amount of space available in

3D. Distant elements in 3D space are however obscured by objects closer to the viewpoint;

as in 2D, this may lead to misinterpretation of data content [91], resulting in inaccurate
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mental models being formed of data structure. Further, zooming in to sub-structures in a

visualisation to analyse ROIs in detail sacrifices the context of the overview.

Walrus, developed by [106], may present a solution to space limitations in 2D, making use

of the exponential increase in space provided by the hyperbolic projection in 3D to draw

trees containing hundreds of thousands of nodes. [152] describe the Cone Trees system,

which also takes advantage of the larger amount of space in 3D to display large data sets.

Data structures in 3D can be rotated to move to elements occluded by other objects closer

to the viewpoint, an option which does not exist in 2D. Links that cross paths in 2D may

be placed in different, non-intersecting planes, so that their paths remain distinct in 3D.

3.4 Summary

This chapter continued the review of information visualisation systems, with a focus on

graph visualisation tools. A sample of tools and techniques developed to provide analysis of

large amounts of inter-related data was presented, comparing techniques used in different

applications to provide solutions to problems encountered in data analysis.

Chapter 4 looks at biological ontologies and tools developed to aid analysis of bioinfor-

matics data.
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Bioinformatics data analysis

The large amount of data generated from experiments includes associated information such

as annotation of results, experimental conditions, equipment used, identities of researchers,

and the results of processes performed on data obtained during experimentation. Challenges

in bioinformatics data management are further complicated by the sometimes seemingly

conflicting expert annotation based on domain knowledge, used to describe experiment

results and other data. Further, new biological data is received on a constant basis, so that

changes to existing knowledge occur with time; new experiments may invalidate previous

theories and hypotheses formulated [124, 149]. Support is required for timely update of data

stores so that such changes are identified and further analysis performed, modifying theories

and hypotheses as required. Poor integration between data sources however makes it difficult

to perform seamless data updates and ensure consistency between data sets [9, 29]. Different

terms used and/or different interpretation of terminology used to label and annotate data

further complicate integration of data from multiple sources.

4.1 Ontologies in bioinformatics

Bioinformatics research involves large amounts of heterogeneous data with varying levels of

accuracy and stored using different formats. Being a multi-disciplinary field, bioinformatics

data is further compounded by a significant number of methods and terms used to label

and/or annotate data, and consequently, in interpreting information [84]. This poses dif-

ficulty in cross-referencing and data integration [90, 167]; effective research requires data

analysis tools that are able to communicate with each other, and read and process data

from multiple sources [19]. Data reuse and persistence increase where a common language

is spoken; access to external data sources enriches existing data [124, 185], aiding the for-

mulation of new theories and/or validating existing ones [90]. Redundancy in information

may be removed, and conflicts resolved more easily.

Ontologies, which may serve as data dictionaries or controlled vocabularies, store se-

mantic information about terms particular to a knowledge domain [74] and the relation-
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ships between them. Ontologies provide a framework for expression of abstract ideas or

concepts, serving as a platform for common (understanding of) knowledge within a com-

munity. The semantic links formed between different data elements aid navigation through

and exploration of data [84].

Biological ontologies may serve as digital representations of organisms [13]; such struc-

tured vocabularies provide a standard reference framework that eases comparison of multiple

data sets [87, 105]. A sample of well-known biological ontologies, including the Gene On-

tology and the Foundational Model of Anatomy, are described in § 4.2.1.

Ontologies may be fairly general, making them more reusable and more widely applica-

ble, referred to as upper-level ontologies, two well-known examples of which are Cyc1 and

the Dublin Core2. Alternatively, specialised or domain-specific ontologies limit general use

but provide richer semantic information for a narrow field.

Upper-level ontologies, which define concepts at an abstract level, are useful for providing

mappings between more specialised ontologies belonging to related fields, or for serving as

a starting point for creating domain-specific ontologies. Using standardised ontologies for

data annotation helps to differentiate similar terms used to refer to dissimilar data, and

conversely, dissimilar terms used to describe identical or closely related data. The common

language provided by ontologies eases data exchange and analysis, especially in automated

systems [90], which do not have the support of humans who may bring domain knowledge

to bear in clarifying ambiguities in data. [14], however, recognise that reuse of ontologies

is very low, not only because a large proportion of existing ontologies are fairly domain-

specific, but because of inherent complexity and the lack of integration among the tools that

provide access to these ontologies, and among the ontologies themselves.

Using the same ontology to compare different data sets will highlight similarities and

differences between them. On the other hand, analysing a single data set using multiple on-

tologies reveals alternative perspectives, highlighting different relationships occurring within

the data. Different types of relationships may be defined between elements pairs in an ontol-

ogy, common examples being is-a and part-of. Ontologies that describe part-of relationships

between elements, for example, provide a natural method for data classification based on a

hierarchical structure, where sub-components form part-of relationships with their parents.

For completeness, all sub-components of a specified (parent or super) component should

together make up the whole component. It should be noted that alternative methods for

data classification may mean that a single component could be defined such that it forms

a part of more than one named structure. This results in a hierarchical structure with

directed links, allowing multiple paths to be followed from any such component to the root
1More information on the Cyc knowledge server can be found at: http://www.cyc.com/cyc/technology/

whatiscyc.
(Note that this and all other web addresses referred to in this chapter were last viewed in July 2006.)

2More information on the Dublin Core Metadata Initiative can be found at: http://www.dublincore.

org/about
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of the hierarchy. Graphical representations of such data sets may be used as navigation aids

in data exploration, revealing the structure of the ontologies thus formed and the different

relationships they contain. § 5.3.2 and § 5.3.4 contain a discussion on the use of visualisation

to present alternative structural representations for ontologies.)

4.1.1 Anatomy Ontologies

[85, 156] make a case for the use of the anatomies of individual organisms as a base for data

exchange and integration in biological research; because anatomy is a pillar of biology using

anatomy data to create ontologies should aid analysis of genomic and other biological data

for different organisms. This argument is supported by the quest for standardised anatomy

ontologies in biological, medical and pharmaceutical research [18], where differences in fields

of application result in even greater variation in accuracy and detail during collection, anno-

tation and storage of data [33, 94], even where the same anatomical components are being

referenced [136]. Automated search and query cannot be guaranteed to retrieve information

required; it is necessary to make use of domain knowledge to verify data analysis, decreasing

efficiency (and increasing the probability of error). Data exchange and retrieval also become

more difficult and time consuming, as they cannot be fully automated.

Mapping the physical components that make up the cells, tissues and organs in an

organism to standard ontologies eliminates or at least greatly reduces the problem of in-

consistency, and aids IR and data exchange, leading to more effective analysis. Anatomy

ontologies store terms that may be used for annotation of gene expression data, based on

anatomical components within which genes are expressed. Other biological concepts may

also be defined with reference to the anatomical components they are associated with, aiding

cross-referencing and analysis involving multiple data sources.

[94] define an anatomy ontology as “a structured vocabulary of anatomical entities in

which the terms have unique identities and relate to each other in meaningful ways”. The

aim here is to resolve inconsistency in the description of similar or identical concepts in

biological data, and decrease difficulty searching for information from different data sources

[14], especially for automated analysis.

A major aim in building ontologies and structured vocabularies is to ease data exchange

and integration. However because ontologies are often independently created and do not

always make reference to those already in existence, they solve at best a part of the bigger

problem. Furthermore, methods used to verify terms, often based on research domains

and expertise, naturally vary between projects. One solution currently in use to increase

integration is to provide mappings between elements that refer to related or identical terms

in different ontologies [156].

Another attempt to resolve this issue is the public-access Standards and Ontologies for
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Functional Genomics (SOFG) group’s Anatomy Entry List (SAEL) [136]3. The SAEL aims

to identify between 100 and 150 core elements, to form a controlled vocabulary that can be

used directly for annotation of gene expression data at a low level of detail, or point to other

more detailed ontologies as required. The initiative aims to improve integration and/or

cross-referencing of the large number of independently created ontologies and structured

vocabularies in existence, each of which is looking to solve what is a common problem in

data retrieval and analysis.

4.2 Tools and techniques for bioinformatics data analysis

Research fields working together in Bioinformatics can be broken up into three main areas:

Biology, Computer Science and other sciences. Different researchers will have different

information requirements [84], based on current field of work and domain knowledge or

expertise; it should be ensured that software developed for analysis of bioinformatics data

is usable by the researchers with varying backgrounds performing analysis from different

perspectives. It is important also to remember that there may be a significant number

of users without a background in CS and who may have limited skills for working with

complex computational data analysis and visualisation tools [13, 36, 45]. Further, most

tools are only used occasionally, for the specific aspect of analysis they are best suited for,

so that most users remain novices or only casual users for a large number of tools. Varying

data formats for both input and output and differences in accuracy, among others, further

increase difficulty transferring data and learning between systems [38].

It is important to develop simple, intuitive interfaces that use standardised or at least

similar methods for data input, processing and output, so that time and resources required

to set up and learn to use new tools are kept to a minimum [165]. This is even more

important for the use of online applications where short learning curves and low reliance on

external support are expected. Access to and use of non-standard systems, data formats

and sources should be transparent to users; the aim of bioinformatics is to provide a service

that harnesses technology to improve research in biology.

A large number of computational tools have been developed to aid biological data anal-

ysis, starting from the first Perl-driven programs working off Linux boxes [167] to current

sophisticated tools written in a host of languages and that employ complex algorithms,

providing a range of interfaces, from simple command-line interfaces (CLIs) or forms-based

front ends to high-end, customisable GUIs. Applications that provide advanced imaging and

visualisation for analysis of the complex, multi-dimensional data involved in bioinformatics

are also being developed.

Current bioinformatics tools largely provide simple graphical or forms-based interfaces

to databases, that also serve as pipes between different data sources and/or applications.
3See also the SOFG web site at: http://www.sofg.org
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Support is provided for data management, processing and intuitive analysis that highlights

relationships within data and facilitates the extraction of new information from data, to aid

the formulation of and/or confirmation or refinement of research hypotheses [2, 13].

A second significant development area looks at structural and functional analysis of

genome data, developing tools for performing gene sequence alignment and similarity and

homology mapping. The following sections describe a sample of tools developed for bioin-

formatics data analysis.

BLAST

The Basic Local Alignment Search Tool (BLAST) is used to compare newly discovered gene

and protein sequences with existing ones. Mapping areas of similarity, based on evolution,

aids the identification of gene structure and function [9]. A large number of implementations

of BLAST are available online, most of which use forms interfaces for data input.

Clustal

Clustal programs are used to perform alignment of multiple protein sequences. Phylogenetic

trees are often used to visualise evolutionary relationships discovered within the data. A

number of implementations of Clustal are available online4.

Ensembl Genome Browser

Ensembl5 is a joint project run by the European Bioinformatics Institute at the European

Molecular Biology Laboratory6 (EMBL-EBI) and the Wellcome Trust Sanger Institute7.

Ensembl comprises a set of public-access tools used to manage annotation for the genomes

it stores, providing support for data mining, structural and functional analysis of genes and

proteins, and gene sequence alignment and similarity searching.

BioMart is a data management and mining tool that forms part of the Ensembl suite,

with support for complex querying. Online use is available, employing a form embedded

in a web page, or offline use from a textual or graphical interface on a standalone version

developed using Java and Perl.

Phylogeny tree drawing tools

Dendrograms and cladograms are commonly used to generate the phylogenetic trees useful

for describing evolutionary relationships within biological data.
4Clustal sites include EMBL-EBI: http://www.ebi.ac.uk/clustalw

and the Institut Pasteur: http://bioweb.pasteur.fr/seqanal/interfaces/clustalw.html
5The Ensembl Genome Browser can be found at: http://www.ensembl.org
6The EBI web site can be found at: http://www.ebi.ac.uk
7The Sanger Institute web site can be found at: http://www.sanger.ac.uk
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Phylodendron8 is an interactive drawing tool built using Java, for drawing phylogenetic

trees, available both as a standalone package and for use from a web server. Figure 2.13

shows a tree diagram drawn using the web service on the Phylodendron web site.

PHYLIP9 is a collection of menu-based programs developed in C to aid the identification

of evolutionary relationships within data. Output may be visualised using the drawing

programs provided for generating phylogenetic trees, (an example of which is shown in

figure 4.1), some of which include options for interactive construction and modification of

tree layout.

A compendium of phylogeny tools can be found on the web site of the Felsenstein

laboratory at the University of Washington, Seattle, at: http://evolution.genetics.

washington.edu/phylip/software.html.

Figure 4.1. A phylogenetic tree drawn us-
ing the DrawTree application that forms part
of the PHYLIP suite, to show evolutionary
relationships between 14 mammals.
(Image obtained from and used with per-
mission of Joe Felsenstein, Departments of
Genome Sciences and Biology at the Univer-
sity of Washington.)

Space Explorer

Space Explorer was developed to combat the limitations of dendrograms for visualisation

of (large amounts of) gene expression and associated biological data. Space Explorer [89]

makes use of PCA to perform multi-dimensional scaling, visualising the results using a

spring layout. Clustering of like data is used with colour coding to show similarity in data

attributes, simultaneously highlighting outliers or anomalies. [89] found that laying out the

gene expression data they studied using coordinates in Euclidean space provided a better

indication of similarity within data than was obtained performing hierarchical clustering

using dendrograms.

Space Explorer uses VRML to describe the 3D world used to display the multi-variate

gene expression data studied. Shape and texture of objects drawn provide additional prop-

erties for encoding data. Using VRML allows analysis within web browsers, and also har-

nesses the visual and navigational cues available in VR worlds. Landmarks and viewpoints
8See Don Gilbert’s page at the Department of Biology, University of Indiana:

http://iubio.bio.indiana.edu/soft/molbio/java/apps/trees
9See the PHYLIP home page at the Departments of Genome Sciences and Biology, University of Wash-

ington, Seattle: http://evolution.genetics.washington.edu/phylip.html
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are combined with the higher number of degrees of freedom for navigation in 3D to provide

intuitive, exploratory data analysis. Using web browsers also simplifies linking of objects

in the 3D scene to external data sources, to retrieve additional information that enriches

analysis.

J-Express

J-Express Pro10 [60] is a Java-based application that employs multi-dimensionality reduction

for visual analysis of microarray data. J-Express also provides functionality for mapping

gene ontologies.

Pre-processing is used to filter out data not relevant to analysis being performed, and

data normalisation is performed in preparation for detailed analysis. Sessions are tracked

and can be retrieved to repeat or export results of previous analysis. Visualisation techniques

include PCA, with results of analysis presented on the 2D scatter plot shown in figure 4.2(a)).

Figure 4.2(b) shows visual analysis of data from the Gene Ontology (GO)11.

(a) (b)

Figure 4.2. The two snapshots illustrate some of the functionality provided by J-Express Pro,
developed by [60] for the analysis of biological data. The layout on the left shows the results of
multi-dimensional scaling using PCA. The second snapshot uses colour coding and clustering to de-
fine similarity within data in the scatter plot, and illustrates use of the Gene Graph tool for analysis
of terms in GO.
(Images reprinted with permission from the MolMine web site at: http://www.molmine.com/
frameset/frm_jexpress2.asp)

4.2.1 Bio-ontology databases and tools

Ontologies vary from detailed descriptions of the terms they define, built using formal

methods and structures, to simple data dictionaries, stored in a variety of formats and

with different degrees of accuracy. A number of online, open-access databases storing bio-

ontologies now exist, many of which make use of web services and forms-based interfaces for

data upload and retrieval, allowing a degree of data processing and analysis to be performed
10See the MolMine web site at: http://www.molmine.com/frameset/frm_jexpress2.asp
11The GO Consortium can be found at: http://www.geneontology.org
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online. The following sections look at some of the most widely referenced ontology databases

and a sample of tools dedicated to management of ontologies.

The Gene Ontology

The Gene Ontology11 (GO) is a public-access data source that stores information on genes

and gene products using a set of controlled vocabularies that describe gene function and

structure, and biological processes associated with gene products. GO was developed to

address difficulty referencing information from different data sources, due to underlying

differences in terminology used for annotating data. A common language is provided that

aids inter-referencing and integration of multiple data sources [9], using unique identifiers

for each element described.

Tools are provided for use with GO, for creation and management of ontologies and

for associating terms within GO with those found in other databases [93]. Online and

standalone browsers developed to support data upload and querying of the GO database

are described below.

AmiGO12 is a Java-based ontology browser developed by the Berkeley Drosophila Genome

Project. AmiGO uses a forms interface for online searching and browsing of GO terms and

relationships between terms. Information retrieved may be viewed using a collapsible, hier-

archical text index or a node-link graph, as shown in figure 4.3.

Figure 4.3. The graph on the right corresponds to the
indented text index above that shows information for one
hit for a search for the term endoderm in AmiGO.

12The Gene Ontology Software and Databases and the Berkeley Drosophila Genome Project at:
http://www.godatabase.org/dev
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COBrA13 is a Java-based anatomy ontology browser, developed as part of the XSPAN

project, for browsing, analysing and editing GO and OBO (Open Biomedical Ontologies)

ontologies. COBrA was developed to provide support for creating mappings between equiv-

alent concepts in independent ontologies. Additional functionality translates terms in GO

and OBO to Semantic Web14 languages such as the Web Ontology Language, OWL. COBrA

employs a collapsible, hierarchical index coupled with a text search field for browsing data

and for IR.

QuickGO15 is a forms-based, online browser developed at the EBI for querying GO.

The information retrieved is used for annotating data in the Universal Protein Resource

(UniProt) and Ensembl databases, as part of the GO Annotation16 (GOA) project.

The MGI GO Browser17 uses a forms interface to upload data to GO or retrieve GO

terms for annotation of gene expression data for the laboratory mouse, as part of the Mouse

Genome Informatics (MGI) project at the Jackson Laboratory.

DAG-Edit18 was developed for the management of GO ontologies. Plug-ins provided for

use with DAG-Edit include a graph viewer based on the Graphviz 19 library developed at

AT&T Research, to visualise ontologies using DAGs. OBO-Edit20, is being developed to

replace DAG-Edit, and is currently at the beta stage of development.

Open Biomedical Ontologies

OBO21, with links to GO, provides a compendium of biological and medical ontologies. The

OBO site provides links to related projects and other resources for searching and analysing

ontology data.

The Foundational Model of Anatomy

The Foundational Model of Anatomy22 (FMA) provides a knowledge base containing over

100,000 terms and more than 2 million relationships between components, that describes

the structure of the human anatomy. The FMA provides a framework that serves as a

reference point for bioinformatics and biomedical research [85]; to aid integration between

multiple data sources and views, and standardisation of terminology in use. Although
13See COBrA - An Ontology Browser for Anatomy at: http://www.xspan.org/cobra
14See the W3C Semantic Web pages at: http://www.w3.org/2001/sw
15The QuickGO GO Browser can be found at: http://www.ebi.ac.uk/ego
16See GOA @EBI at: http://www.ebi.ac.uk/GOA
17The Mouse Genome Informatics site can be found at: http://www.informatics.jax.org. Note that

EMAP has links to the Jackson MGI project.
18See http://www.geneontology.org/GO.sourceforge.links.shtml\#dag
19The Graphviz home page can be found at: http://www.graphviz.org
20See http://www.geneontology.org/GO.sourceforge.links.shtml\#obo
21See the Open Biomedical Ontologies web site at: http://obo.sourceforge.net
22See the FMA web site at: http://sig.biostr.washington.edu/projects/fm
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machine-based to enable automated searching and referencing, the FMA is presented such

that it is easily read and analysed by humans, using text IDs and descriptions to provide a

symbolic representation of the information it contains. Data is stored in a relational database

managed using the Protégé 3.023 ontology editor. [156] provide a detailed description of the

FMA.

The OpenGALEN Ontology of Human Anatomy

The OpenGALEN Ontology of Human Anatomy24 was built to provide a machine-based

source of information that promotes integration of the multiple data sources and applications

available for data analysis in clinical medicine. GALEN (the Generalised Architecture for

Languages, Encyclopaedias and Nomenclatures in Medicine), makes use of GRAIL (GALEN

Representation and Integration Language) to present knowledge in clinical medicine in the

GALEN Common Reference Model (CRM). This model recognises the importance of a

formal, controlled language that reduces misinterpretation of data while allowing informa-

tion to be presented from different perspectives. [146] describe the design of the GALEN

ontology.

TAMBIS

The Transparent Access to Multiple Bioinformatics Information Sources Project25 (TAM-

BIS) is included here for completeness — TAMBIS is no longer supported and the software is

not available for use. TAMBIS was developed to provide a central online resource for trans-

parent, visual querying of biological and bioinformatics data, using the TAMBIS Ontology

(TaO) to aid users in phrasing effective queries [90]. TaO was also used to parse informa-

tion and determine similarity in data retrieved from multiple sources. Applications such

as TAMBIS remove the burden of data sourcing and management from researchers, hiding

effort required to integrate the myriad data sources based on varying underlying schemas

and with differences in data annotation. Even though ability to formulate complex queries

using formal query syntax is still an advantage, support for natural language querying and

reprocessing of queries is a significant benefit to especially non-technical researchers.

Protégé

Protégé23, described in [135], is a leading Java-based application incorporating a set of tools

for managing ontologies and knowledge bases. Protégé has a wide user base, is supported on

a number of platforms, and is customisable and extensible. Protégé provides forms and an

alternative graph-based interface for manipulating ontologies. The latter has the advantage

of providing a visual representation of the relationships between elements, as illustrated in

figure 4.4.
23The Protégé Ontology Editor web site can be found at: http://protege.stanford.edu
24See the OpenGALEN web site at: http://www.opengalen.org/open/crm/crm-anatomy.html
25The repository for the TAMBIS Project can be found at: http://imgproj.cs.man.ac.uk/tambis
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Figure 4.4. The Graph Widget plug-in for the Protégé ontology editor is used to draw a simple
tree to show part-of relationships between nodes in a pseudo anatomy ontology. Element attributes
and relationships between elements are encoded using colour, shape and size.
(Snapshot printed with permission from a working version of Protégé 3.1.1).

A number of visualisation plug-ins have also been developed to aid data analysis in

Protégé, some of which are described in the following sub-sections.

Jambalaya26, which uses graph visualisation to reduce cognitive load during interaction

with ontologies [66], is a tool created by integrating Protégé with SHriMP, the Simple

Hierarchical Multi-Perspective visualisation technique. Data overviews are generated that

provide users with context during navigation, to manage the occlusion and disorientation

that occurs especially in exploration of large data sets. An advantage in Jambalaya is

design for customisability and extensibility. SHriMP, illustrated in figure 4.5, was designed

to support exploration of information spaces, and makes use of Piccolo’s continuous zoom

library [22], to provide a modified F+C layout for nested tree graphs.

SHriMP was developed using Java, and Piccolo’s continuous zoom library includes a

Java implementation. SHriMP obtains data abstraction by collapsing sub-trees into com-

posite nodes, reducing occlusion in graphs generated. Pan and (geometric) zoom are pro-

vided for navigation to and within ROIs, and hyperbolic and semantic zoom to allow users

to retain context during data exploration. Recording user paths through data provides his-

tory sessions that allow users to move back to previous views. Colour, shape and size of

nodes are used to encode data attributes. [171] provide a detailed description of the features

of SHriMP available in Jambalaya.

TGVizTab makes use of the TouchGraph27 library, developed in Java, to generate in-

teractive network graphs that use spring layouts to cluster like data [4]. Colour is used to
26More information can be found on Jambalaya and SHriMP from the CHISEL group’s web site at:

http://www.thechiselgroup.org
27See the TouchGraph home page at http://www.touchgraph.com
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(a) The default nested data view in SHriMP used to visu-
alise a software package.

(b) Vertical layout of the node-link graph
showing relationships between classes and
instances in the package in figure 4.5(a)

(c) Radial equivalent for the graph in fig-
ure 4.5(b)

Figure 4.5. A demonstration of some of the functionality provided in SHriMP, which is incorporated
into Protégé to form Jambalaya.
(Snapshots printed with permission from a demonstration version of SHriMP downloaded from the
CHISEL web site at: http://www.thechiselgroup.org/shrimp)

encode data, and geometric zoom is available for detailed analysis of ROIs. Complexity of

graphs can be controlled by successively collapsing children into parent nodes. Function-

ality is also provided for saving graphs and system state, for continuous and collaborative

analysis.

Figure 4.6 demonstrates the use of the TouchGraph library to visualise relationships

between documents linked to and within the FOLDOC reference pages.

OntoViz uses the Graphviz 19 library to visualise structured data using directed graphs

and networks. OntoViz makes use of the languages dot, lefty and neato to draw graphs.

Colour and shape of nodes is used to encode data attributes, and abstraction is obtained by

clustering like data together. Graphs may be drawn in 3D by making use of functionality

developed to write data structure to VRML files.
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Figure 4.6. TouchGraph is used to lay out
documents within and linked to the FOLDOC
web site using a network graph. Selecting Webo-
pedia highlights colour-coded (hyper)links from
the node to other sites, and clicking on the info
button attached to a node of interest brings up
detail on the selected document in the coupled
sub-window shown.
(Snapshot printed with permission from the
TouchGraph GoogleBrowser at: http://www.
touchgraph.com)

OntoRama

[64] describe the Java-based tool, OntoRama, shown in figure 4.7, that uses a node-link hy-

perbolic layout to browse ontologies, allowing the display of several times more data nodes

in the display than would be possible for the equivalent Cartesian layout. Multiple inher-

itance is visualised by cloning nodes, to reduce the crossing of links that might otherwise

occur; this results in a hierarchical structure even for data with a large amount of inter-

linking. OntoRama can also draw multiple trees simultaneously, to form a forest for related

but fairly disconnected data. A corresponding collapsible, hierarchical index provides an

alternative to visualisation using the hyperbolic layout. Users may zoom in to either data

representation to analyse ROIs in more detail. Finally, forms-based querying is augmented

with the ability to click directly on nodes in the graph to generate queries.

Figure 4.7. A demonstration version of OntoRama visualises the ontology for a communication
system using a hyperbolic layout. Cloned nodes are encoded in red; clicking on the focus draws a
broken line to its clone. Textual detail for the node of interest is printed to the lower section of the
window, and the corresponding entry is highlighted in the collapsible index.
(Snapshot printed with permission from a demonstration version of OntoRama, using a sample data
set downloaded from the original Ontorama web site.)
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4.3 Applications of bioinformatics

One of the most important contributions of bioinformatics to science is the support it

provides for data management, dissemination and analysis. The following sections look at

the contribution of bioinformatics to fields in or related to biology.

Genomics

Bioinformatics provides data storage, management and analysis of the large amounts of

complex data generated in genome research. Previous sections have looked at research

into development of intuitive data analysis tools for effective IR. Tools for structural and

functional analysis of gene expression data and alignment of gene sequences are constantly

being developed to retrieve knowledge stored in newly uncovered information.

Molecular biology and other life sciences

Bioinformatics tools are used to mine the large amounts of data generated in biology and

other related subjects, to retrieve the knowledge stored within the data. Bioinformatics

improves research in structural and molecular biology, by providing advanced computational

and imaging tools that simulate different biological structures.

The study of evolution contributes to knowledge about related organisms and their

development. Neural networks used in artificial intelligence (AI), modelled on biological

neurons, are used in machine learning, and genetic algorithms are used to uncover solutions

for optimisation problems.

Medicine and pharmaceutics

An organism’s genetic makeup defines its physiology and affects its development. Genes

and gene expression data are being studied to determine susceptibility of specific genes or

entire genetic make-up to disease [111], and level of resistance to drugs [131]. This may

lead to the development of preventative medicine and cures tailored to the specific needs of

individuals, based on analysis of their genetic make-up. Drugs may be developed to target

specific genes, resulting in more effective treatment of disease [105, 121].

Bioinformatics improves the analysis of complex biological data, helping to retrieve in-

formation that may be applied directly to research in the pharmaceutical industry. The

ability to map structure and function of gene expression data across organisms, using previ-

ously identified structures, results in more efficient research and experimentation. Curative

properties in elements are more quickly identified, and targeted experiments can be per-

formed that provide more effective drugs and treatment for disease and other physiological

conditions.

Researchers are increasingly relying on secondary data sources to confirm hypotheses

formulated, or to re-evaluate prior conclusions drawn. The use of ontologies aids the research
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required for development of new drugs; associating semantic content with the diverse terms

used to describe information aids understanding and eases retrieval of (new) knowledge

stored in data obtained from experimentation and other research activities [18].

Biotechnology and bioengineering

Research into micro-organisms is useful in industry, in the manufacture of food reliant on

bacteria for fermentation, and for managing waste. Research is also looking at the generation

of alternative sources of energy based on processes occurring in micro-organisms.

Agriculture

Advanced research is used to improve yield and resistance of crops and farm animals to

pests and disease.

4.4 Ethical issues in bioinformatics research

There are a large number of social and ethical issues involved in genetics research. Sourcing

and treatment of physical specimens raise questions about the right to experiment on espe-

cially embryos. The use of human specimens raises even more questions, especially where

subjects are used without their knowledge or consent [92].

Debate continues about potential risks from eating genetically modified crops and ani-

mals. Gene therapy, which may provide cures for or prevent conditions that currently have

limited effective treatment, is also a source of controversy, especially with the potential for

misuse and difficulty predicting long-term effects on subjects.

How information is obtained and used is also important. The ability to map the ge-

netic make-up of an individual and thus determine their susceptibility to disease and other

physiological conditions may lead to improved treatment of such conditions. However avail-

ability of this information to insurance companies and industry may lead to discrimination

and stigmatisation based on perceived ability to perform a role or susceptibility to various

medical and physiological conditions [7].

More information on ethical issues in bioinformatics is available from the Ethical, Legal,

and Social Implications (ELSI) Program at the United States National Human Genome

Research Institute web pages28.

4.5 Summary

This chapter examined the role anatomy ontologies play in biological research: aiding the

integration of multiple data sources and the retrieval of knowledge stored in data. A sample
28The ELSI web pages can be found at: http://www.genome.gov/PolicyEthics

and the Policy and Ethics pages at: http://www.genome.gov/10001618

63



Bioinformatics data analysis

of bioinformatics tools were examined, looking especially at the management of biological

ontologies.

The chapter concluded with a brief look at the fields in which results of research in

bioinformatics are applied and the ethical and social issues associated with bioinformatics

research.

The remaining chapters examine the problem domain this thesis explores, detailing the

development and evaluation of a visualisation solution for the information requirements

identified.
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Chapter 5

Challenges in the analysis of

anatomy ontologies

Chapter 4 gives an introduction to the challenges faced in research that requires cross-

referencing and integration of multiple, independently created data sets, and the use of

ontologies to help resolve these challenges. Cross-referencing ontologies however presents

a problem of its own: even though they aim to provide common reference frameworks de-

scribing data in knowledge domains, because ontologies are also often independently created,

especially where they cater to a narrow field of use, ontologies may provide only a limited

solution to the data integration required for effective research.

One requirement in the use of anatomy ontologies is the ability to map anatomical

components to the varying concepts and terminology employed in different biological data

sets. Knowledge and experience of domain experts play a significant role in determining

similarity within data, supplementing lexical analysis. Another requirement is the ability to

trace continuous or temporal relationships in data, across multiple data sets; research and

analysis in biology often require the use of data collected over periods of time.

Identifying relationships within data becomes more difficult as the amount of data being

analysed increases, largely due to difficulty obtaining a useful overview of data structure.

Where data is presented in textual format high cognitive (memory) load is associated with

analysis that attempts to obtain an understanding of the relationships that occur within the

data. Multiple relationships between data elements increase complexity of data structure;

analysis requires understanding of data structure and the existence and types of relation-

ships occurring within the data. This thesis looks at harnessing visualisation to provide

intuitive solutions to the analysis required, using advanced human perception to build an

understanding of data structure and aid the identification of relationships within individual

and that cross multiple data sets.

EMAP and XSPAN are research projects that make use of anatomy ontologies to per-

form genomic research. Data analysis and information requirements for the two projects

include those typical to similar research in bioinformatics: EMAP and XSPAN involve the
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identification of the different types of relationships that occur between anatomical compo-

nents, to aid understanding of the information contained within each ontology. Knowledge

obtained is mapped to analysis of related data, to be used, for example, in the inference

of structure and function of anatomical components in one organism based on similarity to

genes expressed in another related organism.

The EMAP and XSPAN projects provide sample anatomy ontologies and access to

researchers in genomics, to aid the development of intuitive, usable options for analysis,

working with typical users of the ontologies of interest. The following sections provide an

introduction to the two projects and detail their specific information requirements.

5.1 The Edinburgh Mouse Atlas Project

The mouse is a model organism for research on the genetic make-up of mammals [28, 29].

Data stored on the mouse genome, however, typical to biological data, is heterogeneous

and exists in large amounts. This includes data not directly relevant to analysis, such as

details of experimental conditions. Further, the data from different sources is stored using

a variety of formats and may use different language, increasing difficulty in data exchange

and analysis [54].

The Mouse Atlas Database has been developed to serve as a public-access framework

for studying gene expression data for the mouse [54]. The EMAP data comprises the 26

Theiler Stages of development of the mouse embryo, stored in ontologies and displayed

using hierarchical text indices [54] that describe part-of relationships between components.

(Stages 27 and 28, with information on newborn and post-natal development, in addition

to information on other stages of development, are stored in the Gene Expression Database

(GXD) at the Jackson Laboratory1). EMAP also stores reconstructed 3D models of the

mouse embryo mapped to the ontologies describing the different components that make up

the mouse anatomy at each stage of development [15]. Mapping gene expression data as

it is uncovered to corresponding components in the anatomy ontologies provides intuitive

representation of the spatio-temporal data the ontologies describe [17, 13]. The ontologies

in turn serve as annotation for the image data obtained from the models of the embryos,

allowing text searching to be performed where advanced imaging and pattern recognition

are not available, or in addition to results from image analysis. The snapshot in figure 5.1

shows one of the tools currently provided for analysis of the EMAP data.

The EMAP section browser comprises three main sections, including a collapsible, in-

dented text index that lists components in the anatomy ontology for each stage of devel-

opment of the mouse embryo. Simple text searching is available, with closest hit found

highlighted in the index and mapped to corresponding regions on 2D slices cut out of the
1Information on the GXD can be found at: http://www.informatics.jax.org/mgihome/GXD/aboutGXD.

shtml

(Note that this and all other web addresses referred to in this chapter were last viewed in July 2006.)
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Figure 5.1. A snapshot of the EMAP browser shows a 2D slice cut out of the 3D model (along the
red line) of the mouse embryo for TS14. Selecting the entry for the head mesenchyme in the text
index highlights the region that maps to the component on the 2D slice in blue. The text field at
the bottom of the browser allows simple text searching within the current ontology.

reconstructed 3D models of the embryos, the latter forming the other two sections of the

browser. Alternatively graphical querying may be performed: clicking directly on the image

to select an ROI on the 2D slice highlights the component it maps to in the text index.

Information on genes expressed in anatomical components of interest may be retrieved by

choosing the option to extend searching to the Edinburgh Mouse Atlas Gene Expression

(EMAGE) database and the GXD.

The browser shown in figure 5.1 may be used directly from the EMAP online repository2,

and a second browser with more advanced functionality for searching within EMAP or local

databases, shown in figure 5.2, may also be downloaded from the same location. Additional

resources for data analysis can also be found on the EMAP site3.

5.1.1 Structure of EMAP anatomy ontology

The ontology for each developmental stage defines all anatomical components that are visible

when the stage is entered and those that develop during the time span the stage covers.

The EMAP anatomy ontology is structured based on part-of relationships between nodes

[15]: all child or sub-components of a parent or super-component together form the complete

parent component [34]. Sub-components define non-overlapping regions of the component

they form a part of for the stage in which they are defined; this allows only one component

to be mapped to each region on the 2D and 3D models. Properties that hold true for any
2The web-based and downloadable EMAP browsers can be found at: http://genex.hgu.mrc.ac.uk/

Emage/database/emageIntro.html
3The EMAP web site can be found at: http://genex.hgu.mrc.ac.uk
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Figure 5.2. The results are shown for a search for the genes detected in three components in TS14.
Red shows regions on the 2D slice where gene expression is detected, cyan where is it confirmed not
to be detected, and grey for regions that have not been annotated. The text index also shows the
percentage of each component for which gene expression is detected. Manual annotation is denoted
using upper case lettering, and is displayed when the relevant component has the focus, as shown.
Expression inferred from annotation uses black text for components along the path to the root from
a component for which a specified gene is expressed.

component are propagated up the tree; these properties will also hold true for all ancestors

of the component. Taking the heart as an example, if a gene geneA is expressed in the

left ventricle, geneA will also be expressed in the heart. However geneA will not necessarily

be expressed in the right ventricle, which is also a sub-part of the heart. Correspondingly,

attributes not defined for any part of a component are also undefined for all its component

parts. A second gene geneB, expressed in the arterial system, say, but not in the heart, will

not be expressed in any of the component parts of the heart.

Figure 5.3 displays the ontology for TS04 using an indented text index and a graphical

representation of its structure. Any non-leaf node may be collapsed, in which case it can

be regarded as a composite node made up of its component parts. Node B represents the

component embryo in TS08, with sub-parts D and E representing the components compacted

morula and the inner cell mass respectively. C represents the extraembryonic component,

F cavities and their linings, and so on.

Figure 5.3 shows only one of what could be several different visual representations of

the relationships between components. Recognising that alternative anatomical structures

could be derived based on other relationships identified between components, the concept of

grouping (discussed in § 5.3.2 and § 5.3.4) has been developed [34]. Grouping allows explicit

definition of implicit structures, by creating additional links between components that make

up the structure(s) in question.

The forelimb and the hindlimb in TS26 of the mouse, for instance, both contain sub-

components which are defined as skin. Alternative structuring of this data set could create

68



Challenges in the analysis of anatomy ontologies

TS04 (A)

f
f

ffembryo (B)
compacted morula (D)

inner cell mass (E)
extraembryonic component (C)

cavities and their linings (F)
blastocoelic cavity (J)f

second polar body (G)
trophectoderm (H)

mural trophectoderm (K)
polar trophectoderm (L)ff

zona pellucida (I)f
ff
f

?>=<89:;A

{{wwwwwwwww

''OOOOOOOOOOOOO

?>=<89:;B

��		
		
		

��5
55

55
5

?>=<89:;C

{{wwwwwwwww

��		
		
		

��5
55

55
5

##HH
HH

HH
HH

HH

?>=<89:;D ?>=<89:;E ?>=<89:;F

��

?>=<89:;G ?>=<89:;H

��		
		
		

��5
55

55
5
?>=<89:;I

?>=<89:;J ?>=<89:;K ?>=<89:;L

Figure 5.3. A node-link graph is used to reveal the hierarchical structure of the EMAP anatomy
ontology for TS04 in the text index on the left, providing intuitive recognition of the part-of rela-
tionships between components.

a single (super) component skin which would link to all the parts of the skin in the mouse

which currently form a part of other components. This would result in a modification of

the default structure of the ontology, to reflect these new relationships.

5.1.2 Access and interoperability

The EMAP data is stored in an object-oriented (OO) database, ObjectStore�4. XML (the

eXtensible Mark-up Language), providing a useful format for storing the hierarchically struc-

tured data, is one of the main options for presenting (the textual) ontology data. In addition

to promoting data exchange XML has the advantage of being able to attach semantic content

to the ontology data being studied.

Development of a large number of the EMAP tools using Java reduces problems with

cross-platform compatibility and allows stand-alone use or online access from the EMAP

web site. Providing web access to the data analysis tools developed for the EMAP project

makes them easily and widely available, with the only restrictions being suitable hardware

and network resources. [15] provide a description of the tools available on or for download

from the EMAP web site).

5.2 The Cross-Species Anatomy Network

Evolutionary conservation in organisms results in similarity in coding regions of genes (for

equivalent components). The XSPAN project5 maps gene expression data uncovered during

the course of research to already identified structures in model organisms. These mappings

may be extended to aid the identification of new genes, tissues and organs in related or even

more distant species, to infer their structure and function. Information obtained may be

used in genomics research, to study disease and other physiological conditions in humans,

and in drug research and pharmacology. XSPAN is currently analysing relationships between

five organisms using pre-existing anatomy ontologies:
4See the ObjectStore web site at: http://www.objectstore.net
5See the XSPAN web site at: http://www.xspan.org
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� Mouse, using data from EMAP. Recognised as a model organism for the study of

development in mammals, conditions identified in the mouse may be mapped to cor-

responding anatomical components and genes expressed in the human [85] and other

mammals.

� Human, using the Atlas and Database of Human Developmental Anatomy6 at Edin-

burgh University’s School of Biomedical Sciences.

� Zebrafish, using data from the Zebrafish Server at the Cardiovascular Research Cen-

ter at the Massachusetts General Hospital7

� Drosophila, using FlyBase stored at the Indiana Genomics Initiative8.

� C. elegans, using data from the WormBase Consortium9.

Mappings that typically occur include equivalence based on function. The heart in each

organism, for example, performs the same function, even if it has differences in component

parts in different organisms. Common lineage, identifying the anatomical structures from

which a specified component is descended, also serves as a point from which equivalence

may be determined. This traces the paths that components follow across multiple stages of

development, to differentiate between identical names that refer to different components and

those that evolve from equivalent structures in an organism (see § 5.3.3). Common cell type

may also be used to determine equivalence between components. The XSPAN web site10

explains the different methods used to create mappings between components in distinct

organisms. Figure 5.4 shows three types of equivalence identified between components in

the mouse and Drosophila.

Homology (common lineage):
Mouse epidermis and

Drosophila cuticle are both
ectoderm derivatives and

bounding epithelia

Cell Type: Mouse
and Drosophila

eyes both have
photoreceptors

Analogy: Mouse and
Drosophila limbs both
have a common function

Figure 5.4. Identification of similarity in anatomical components in the mouse and Drosophila
(Image used with permission from: http://www.xspan.org/technical/expert_mapping.html)

Difficulty analysing data from multiple sources has been previously discussed, the most

important including data storage using incompatible data types and database schemas [19].
6See Humat at: http://www.ana.ed.ac.uk/anatomy/database/humat
7See the Zebrafish Server at: http://zebrafish.mgh.harvard.edu
8See FlyBase at: http://flybase.bio.indiana.edu
9See the WormBase Consortium at: http://www.wormbase.org

10Information on expert mappings in XSPAN can be found at: http://www.xspan.org/technical/

expert_mapping.html
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Specific difficulty in comparison between ontologies includes different methods for describing

equivalence or other relationships between elements [31], and varying definitions for the same

or similar terms [155]. However, research has shown the potential for improved analysis of

data stored using (standardised) ontologies. XSPAN makes use of anatomy ontologies to

provide a reference framework that aids the determination of equivalence across components

in multiple organisms, based on similarity in gene expression and cell type, or expert opinion.

Mappings may also use lexical analysis to match components, based on component names.

This should help to resolve poor interoperability between different data sources [15], common

to biological and other scientific data. The research on data integration in the XSPAN

project is also related to work being done by the SOFG, with the creation of the SAEL

[136] (refer also § 4.1.1).

5.2.1 Access and interoperability

The different sources of data for the anatomy ontologies of each of the model organisms are

fed into a common data warehouse built using IBM’s DB2�11, from which queries may be

formulated to retrieve similarity between components across different organisms. Equiva-

lence determined between components across different ontologies may then be mapped to

gene expression in corresponding data sources such as the GXD. Figure 5.5 shows how the

XSPAN data warehouse is used to integrate the multiple data stores used in the research

project and communicate with the end user, to improve translation of terms between the

model anatomy ontologies, and aid identification of equivalent components in the different

organisms being studied.

Figure 5.5. Data from model anatomy ontologies and the GXD is fed into the XSPAN data
warehouse, the interface to the query system and the web-based tools used to record information on
equivalence between components, based on domain knowledge and current research.
(Image used with permission from: http://www.xspan.org/overview/index.html)

11The IBM DB2 web pages can be found at: http://www-306.ibm.com/software/data/db2
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To increase accessibility and promote interoperability web-based analysis tools provide

an interface to the ontology data. XML improves data exchange, allowing automated data

analysis. Natural language processing is also being used to aid analysis of terms found in the

different ontologies. Figure 5.6 shows the structure of the XSPAN prototype, illustrating

data flow through the system.

Figure 5.6. Structure of the XSPAN prototype, illustrating data flow
(Image used with permission from: http://www.xspan.org/overview/details.html)

5.3 Data analysis requirements for EMAP and XSPAN

5.3.1 Recognition of data structure

Although the indented text index provided in the EMAP section browser gives some indi-

cation of the hierarchical structure of the ontology data it is difficult to obtain an overview

of any but the very small data sets, as figure 5.7 illustrates.

Relationships between especially widely separated elements are also difficult to recognise.

This can be seen for even the relatively small dataset for TS04 — with only three levels of

nesting relationships among data elements are not easily recognised using the text index.

Mapping the structure of the data to a hierarchical visualisation as in figure 5.3 would

provide an overview that highlights relationships in the data. The advantages a graphical

representation would provide for TS26 are obvious; much deeper nesting of data combined

with the large number of elements in TS26 makes it even more difficult to determine the

structure of the data set.

5.3.2 Alternative structuring of data

The predominant relationship found between components in the anatomy ontologies under

study is part-of, such that each set of sub-components forms a complete super component.

It is however recognised that alternative classification of data may result in relationships

other than those defined in the default structures presented. As an example, [33] describe

how a group node could be created to represent the complete structure skeleton in the
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Figure 5.7. The indented text index that forms part of the EMAP section browser is used to
display the anatomy ontologies for TS04 and TS26. The structure of TS04 is easily discerned as all
12 components fit comfortably in the text area on the left. It is more difficult to obtain a good mental
model of the structure of TS26; with all nodes expanded a large amount of scrolling is required to
view all 1749 components it contains, as the relatively small scroll button shows.

mouse embryo, composed of the individual sub-components that each represent a part of

the skeleton, but which, in these ontologies, form part-of relationships with other named

structures. Further, deriving relationships based on criteria other than structure, using

function, for instance, provides additional options for structuring the ontologies [34].

Graphical support is required for grouping components based on user-specified criteria,

to reveal alternative structures such as described in figures 5.8 and 5.10. § 5.3.4 provides

more detail on the impact of grouping on the default structure of each ontology.

5.3.3 Tracing lineage within data

Lineage across stages of development traces a component from the point where it first ap-

pears till it develops into another component or ceases to exist. The EMAP browsers cur-

rently trace lineage using a sequential arrangement of up to 28 text boxes along a horizontal

plane, each representing a stage of development, and containing the list of components that

occur within that stage (see figure 5.9). Beyond a very small number of stages scrolling

is required to navigate through the data; a visualisation that presents an overview of all

data would provide a more intuitive method for mapping the paths desired, and reduce the

cognitive (memory) load associated with the current method for browsing the data.

5.3.4 Representation of complex relationships

Individual stages of development in the mouse comprise a list of unique components, each of

which forms a part-of relationship with its parent. All sub-components of a node together

form a complete (super) component. The default structure of the ontologies being studied
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Figure 5.8. The 2D browser developed as part of this project is used to visualise TS20. The
component skeleton appears three times: the two instances that form sub-parts of embryo and
embryo.tail are highlighted. In order to group all components that make up the skeleton a group
node could be created with part-of links to the sub-parts of each distinct skeleton node and to their
parent components.
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stg m-2
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B

stg m-1

A
B
C - -

stage m

component

..- -

stg m+1

A
C

stg m+2

A
B
C
D

current stageancestors descendants-�

Figure 5.9. The box diagram illustrates the method currently used to trace lineage in EMAP. A
large amount of scrolling is required for components that span more than a few stages of development,
resulting in a large cognitive memory load.

restricts inheritance in the tree to a single parent, so that only one path can be drawn from a

component to the root. Alternative structuring of data to form groups may however result

in multiple parentage for data components and, thus, multiple paths to the root [15], as

illustrated in figure 5.10.

Different classification methods may mean that a component K may be seen to form part-

of a structure A, based on classification 1, and a part of structure Y, based on classification

2. The tree becomes a DAG, and propagation of component attributes up the tree (as

discussed in § 5.1.1) no longer holds for all paths to the root. However non-existence of an

attribute anywhere in a component still propagates downwards, provided all descendants

follow only one path to reach the component queried.

The coronary artery, for instance, forms a part of the arterial system. However the

coronary artery could be seen to form a part of the heart. If the gene geneB expressed in

the arterial system is also found to be expressed in the coronary artery, then even though

geneB is not expressed in the heart, geneB would still be expressed in the coronary artery

(which is now seen to form a part of the heart).
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Figure 5.10. A group node 1234 is added to the tree representing the ontology, with links to two
parents 42 and 45, and a child, 47. The default path to the root from 47 is traced in yellow.
Cloning the group node on the right maintains a pure tree and the three paths 47 now traces to
the root are highlighted. For a large tree cloning components would contribute to the problem of
occlusion common to hierarchical graphs. Additional visual cues would also be required to ensure
cloned nodes are not overlooked, so that data structure is properly interpreted.

Persistence of components across stages may result in repeated entries when all stages

of development are merged to form the abstract organism. Unique IDs however differentiate

components with the same (fully qualified or simple) name in individual stages of devel-

opment and in the abstract organism, allowing independent use of the different data sets.

Figure 5.11(a) highlights the components second polar body and zona pellucida, which first

appear in TS01, where they form two of four sub-components of the root. The two compo-

nents persist through to TS04 (see figure 5.11(c)), where they form sub-components of the

extraembryonic component. Figure 5.11(b) shows where the compacted morula first appears

in TS03, also as a sub-component of the root. Like the two components previously identified

it persists through to TS04 where it becomes a sub-component of embryo. The graphical

representation of the abstract mouse shown in figure 5.12 therefore has two copies of each

of these nodes, one set as sub-components of the root, and the other as sub-components of

the extraembryonic component and the embryo as applicable.

5.3.5 Visual, dynamic querying

The EMAP section browsers provide simple text searching, mapping the first hit found in

the component index to corresponding regions on 2D slices of the 3D models of embryos

(refer § 5.1 and figure 5.1). Repeating a query cycles through the component list, succes-

sively returning the next match found. The method of searching is, however, fairly tedious,

especially for a frequently occurring substring.

An alternative to searching in the EMAP browsers is to browse through a drop-down

list displaying fully qualified names for each component. However except for very short lists

this may place a large cognitive load on users.

Ability to retrieve all data satisfying search criteria in a single request would provide

simpler and more intuitive searching, especially where comparison within search results
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Figure 5.11. The snapshots at the top highlight three components where they first appear, in TS01
and TS03, during the development of the mouse embryo. The bottom figure shows the last stage in
which they occur; the components identified are no longer sub-components of the root, but lie on
the next level in the tree.

Figure 5.12. The first three levels of the graph for the abstract mouse, which contains all instances
of components occurring during the individual stages of development of the embryo. Each component
highlighted occurs twice, at different levels in the tree, corresponding to positions relative to the root
in the distinct stages of development identified in figure 5.11.
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is required. Options for visual, dynamic querying as discussed in § 2.4 would provide

additional perceptual cues to aid the formulation of effective queries. Visual querying is

also able to provide users with cues both on search hits and on data not meeting search

criteria, useful where extension or modification of queries is required. Allowing users to

search from a component, using data attributes to provide search criteria, helps identify

effective keywords and search terms.

The EMAP browsers currently provide the option to extend searching for corresponding

gene expression data to the EMAGE database and the GXD. Further options that extend

querying to other (previously verified) data sources would remove the burden of locating

reliable sources from the user. Functionality that manages integration between different

data sources would also allow simultaneous querying of multiple data sets, further enriching

information retrieved. Aids for natural language querying and transparent reformatting of

queries to suit underlying database schemas would be beneficial to both expert and non-

technical users. Additionally customisability that allows complex queries to be performed

using formal syntax would provide advanced IR and give expert users more confidence in

information retrieved.

5.3.6 Multiple, simultaneous analysis of ontologies

In order to trace lineage across multiple stages of development in a single organism, or com-

pare components across organisms for equivalence, it is necessary to perform simultaneous

analysis of multiple ontologies. [32] illustrates how lineage in one species can be inferred

from previously determined lineage in another species, based on spatial or other mappings

between equivalent components in the ontologies to which each component of interest be-

longs. Figure 5.13 shows how graphical support for analysis of multiple data sets could be

used to highlight relationships that occur within and between data. Similar structures could

be used to infer lineage, by using (physical) mappings to represent the lineage relationships.

Figure 5.13. Component C forms a part-of the root component A in Species 1, and is itself
composed of two parts E and F. The root of Species 1, A, maps to the root T of Species 2, and
component C maps to V. Based on similarity in structure between the two data sets it may be
inferred that the component parts of C, E and F, map to W and Y respectively, in Species 2.

77



Challenges in the analysis of anatomy ontologies

5.4 Graphical analysis of bio-ontologies

Ontologies will normally be hierarchically structured, so that they lend themselves well to

graph visualisation. This simple visualisation method provides intuitive navigation and ex-

ploration that highlights relationships within and across data sets. Visualising the anatomy

ontologies under study using hierarchical graphs should help to reveal the relationships that

occur between different components within individual and between different, but related

organisms.

5.4.1 Assessment of existing graphical analysis techniques

§ 2.5.1 discusses the importance of modular development of components and tools, to allow

extension and customisation that satisfies individual user preferences and analysis require-

ments. [47], among others, have found however that very few tools are built so that they

can be easily integrated with other systems. It is even more difficult to incorporate multiple,

independently developed tools into a single system, to allow the varying functionality and

techniques each provides to be used in concert for analysis and IR. Further, tools are often

built to suit a specific set of requirements, so that they are not very effective for analysis

that does not map directly to the problems they are intended to solve.

This section reviews the tools examined in chapters 3 and 4, to determine which could

be used without modification for the analysis required, and to identify existing functionality

which may be extended to satisfy better the data analysis requirements identified. (Although

the following sections group tools by the type of visual analysis provided, it should be noted

that some of these tools fall into more than one of the categories named. What is seen to be

the strongest feature of each tool is used as the main classification criterion in such cases.)

Hierarchical graph visualisation

A number of phylogenetic tree drawing tools were examined, including the PHYLIP suite,

Phylodendron and ATV Viewer. The main attraction of these tools is the hierarchical graph

visualisation they provide, which could be used for simple but effective visual analysis of

the ontology data being studied. However a major limitation in the applications examined

is poor scalability, being able to draw only a few hundred nodes before occlusion begins to

degrade usability. The data sets of interest in EMAP and XSPAN range from less than 10

nodes to almost 2000 in a single stage of development, to over 3500 in a single, abstract

organism, so that this poses a significant problem. A contributory factor to low scalability

is the large amount of wasted screen space inherent in tree graph visualisation. This is

illustrated for ATV Viewer : although over 500 nodes can be drawn at once, occlusion

makes it difficult to visualise more than a relatively small number of nodes, while portions

of the display remain empty (see figure 3.7). ATV Viewer, however, provides functionality

for redrawing sub-trees at maximum magnification, resolving occlusion for ROIs, but with
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the loss of surrounding context; no visual cues are available to indicate position in and

relevance of an ROI to the rest of the tree.

Although able to visualise a very large number of nodes (in multiple trees) effectively,

TreeJuxtaposer still suffers from occlusion typical of tree graphs, with the main source of

clutter being node labels; high density of data in the 2D graphs used in TreeJuxtaposer may

reduce users’ ability to identify data of interest. To counter this, labels that would occlude

previously drawn data may be suppressed, while labels for data of interest are highlighted

by varying the colour used to draw them.

Another hierarchical visualisation tool assessed was SpaceTree. User requirements in

[139] for focus on detail in ROIs, however, restrict visualisation for trees with deep nesting

such as the ontology data being studied. Only a few levels in a tree are displayed on the

screen at a time, making it difficult to obtain a complete overview of the structure of very

large data sets or deep trees (refer figure 3.3, where only a relatively small subset of the 199

nodes in the data set are displayed). Another limitation is that sub-trees other than those

of immediate interest are collapsed; although this allows detailed analysis of ROIs it is not

possible to compare especially widely separated elements in the tree.

uDraw(Graph), on the other hand, provides complete overviews of data sets in addition

to abstraction that collapses sub-trees into composite nodes, or fades away less important

data, to deal with complexity in the overview. uDraw(Graph) is able to load multiple data

sets simultaneously, a requirement for tracing lineage and for determination of equivalence

across ontologies. However each data set is loaded in a different window, so that it is

necessary to map between multiple screens, placing a large cognitive load on users and

preventing truly simultaneous analysis of multiple data sets.

Tools provided for management of GO and other similar ontologies generally provide

very simple graph visualisation, with limited functionality for analysis and interactive mod-

ification of layout.

The visualisation plug-ins provided for use with Protégé present fairly sophisticated

functionality for visual interaction with ontologies. Piccolo’s continuous zoom that provides

F+C in Jambalaya is useful for reducing the disorientation that occurs during navigation

and exploration of data. Functionality for encoding data attributes, different options for

data layout and the ability to save analysis sessions for future or continued use all help to

reduce complexity in data analysis. It should be possible to extend Jambalaya to provide

intuitive graphical support for creation of groups in 2D (as described in § 5.3.2).

OntoViz makes use of non-standard programming languages for drawing graphs. The

scope of this project and a preference for any new tools developed to be easily integrated

with existing tools in EMAP and XSPAN mean that OntoViz may not be a good choice for

developing further functionality for visual analysis.
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Scatter plots and network graphs

Maintaining a stable mental model of data structure is important if relationships inherent

in data are to be recognised intuitively. A disadvantage in TouchGraph is one inherent

to spring layouts: multiple runs of the algorithm may produce different layouts. Coupled

with the constantly changing structure of the visualisation during navigation it is difficult

to develop and maintain a stable mental model of data structure.

BioLayout provides a stable layout, and graphical support for classification of data that

would be especially useful in creating groups. Occlusion due to a large amount of interlinking

between nodes and overlap of nodes in areas of high density may, however, prevent different

relationships from being properly distinguished.

J-Express makes use of scatter plots based on PCA for data visualisation. The research

done to this point has however found that hierarchical graph visualisation probably presents

an optimal solution for visual analysis of the anatomy ontologies under study. Further,

having developed into a commercial tool, modification and use of J-Express are naturally

restricted.

2D hyperbolic layouts

The use of 2D hyperbolic layouts in OntoRama and HyperGraph allow the display of much

larger data sets and with far less occlusion in ROIs than would occur in equivalent Cartesian

layouts. OntoRama also maps data in a hierarchical text index to the graphical display, and

could thus provide a familiar interface for current users of the EMAP browsers. However

the constantly changing layout of data during navigation and the distortion that is a residue

of hyperbolic layouts prevent the formation of a stable mental model of data structure in

the two applications.

3D and VRML

A limitation in the 2D tools analysed is the occlusion that occurs beyond a fairly low

threshold. Effective abstraction of data can be used to provide useful analysis of individual

data sets. It would however not be possible to visualise multiple ontologies simultaneously

in any of the 2D visualisation applications reviewed such that the analysis and comparison

of individual data elements and their attributes could be obtained as required. A solution

to this problem may be to use 3D, with the larger amount of space it contains, for multiple,

simultaneous visualisation of the anatomy ontologies being studied.

Tools examined that make use of VR and VRML, such as VRMLgraph, are able to take

advantage of built-in aids for navigation and exploration in VR browsers, and the larger

number of degrees of freedom for navigation available in 3D. VRMLgraph would be useful

for generating tree structures in 3D, but requires additional functionality to obtain the

interactive analysis required for this project.
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Use of VRML also requires the installation of dedicated viewers or plug-ins within web

browsers, an extra burden for users, especially where low-end systems are in use. Further,

to take full advantage of the benefits of virtual worlds additional hardware and software

that provide haptic feedback and stereoscopic vision and sound are often required. This is

however not normally possible for the desktop computing available in typical users’ normal

working environments.

Cone trees provide an alternative solution with the compact visualisation they provide.

However the structure of the trees generated would result in crossing of links if used to visu-

alise relationships crossing data sets, making it difficult to recognise relationships identified.

The main advantage in Walrus is the ability to visualise hundreds of thousands of nodes

in the 3D hyperbolic layout before occlusion becomes a problem. However Walrus was

developed as a standalone application, and it cannot be incorporated into other tools to

enable use in conjunction with other modules. Also, an additional layer is required to

convert input to the non-standard LibSea file format it uses. Once loaded, graphs generated

in Walrus cannot be modified; one requirement for analysis is however the dynamic creation

of links between data elements to represent new relationships discovered, in addition to

other requirements for interactive extension to or modification of graphs. The ability to

load only one graph at a time also means that it is not possible to compare multiple data

sets in Walrus, a requirement for mapping relationships crossing the anatomy ontologies

being studied.

5.5 Proposal for a solution for data analysis

The range of tools evaluated provide different functionality that satisfy some of the require-

ments for analysis detailed in § 5.3. The simple abstraction offered by node-link graphs

should provide a useful method for visualising the anatomy ontologies being studied. How-

ever limitations in space in 2D mean that functionality is required that can generate data

overviews while minimising occlusion in the graph.

SpaceTree provides very useful functionality for analysis of ROIs, but would require

modification of the interpretation of the ontology data being studied in order to make

optimal use of the cues provided for encoding hidden data. Jambalaya provides visualisations

with functionality that most closely approach requirements for the presentation of overviews

of individual anatomy ontologies. Encoding of data attributes using size, shape and colour

of data nodes should be useful for describing data attributes. Additional graphical support

is however still required for creation of groups of nodes based on user-specified criteria, to

reveal alternative structuring of data sub-sets without destroying the default hierarchical

structure of the data.

The compact visualisations provided by treemaps provide a potential solution to the

space limitations encountered in the use of node-link graphs. [11] demonstrate use of the

technique for visual analysis of GO data, with functionality for dynamic querying that is able
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to link to and retrieve information from external data sources, providing a potential solution

to the analysis required for individual data sets. However the simultaneous visualisation

and comparison of multiple ontologies required for this project cannot be satisfied using this

technique, as the layout does not make it possible to compare relationships among distinct

data elements directly, especially across multiple data sets.

Support for visualisation and analysis of multiple ontologies is required that highlights

relationships both within individual data sets and equivalence across ontologies. Ability to

map paths of interest within single and lineage across multiple hierarchies, tracing persis-

tence of a component through different stages of development is also necessary. Hyperbolic

layouts were considered as an option for the display of the large amounts of data involved.

However the distortion of such layouts and constant change in data structure associated with

the F+C technique that is an important element in analysis of ROIs mean that hyperbolic

visualisation may not provide an optimal solution.

The larger amount of space available in 3D provides an alternative solution for the

occlusion that occurs due to limited space in 2D. However 3D visualisation comes with

problems of its own. Objects closer to the viewpoint still occlude more distant elements; it

is necessary to rotate visualisations or move around objects to view others hidden behind

them. Disorientation during navigation commonly occurs, especially when users become

immersed in local areas of the virtual world created and the context of the overview is

lost. Typical solutions to these problems include the provision of landmarks and multiple

cameras or viewpoints that serve as reference positions. History sessions also allow users to

return to previous locations or views. Reduction to 2.n dimensions, (n between 0 and 5)

lowers immersion in data and allows users to fly over what approaches the landscape that

[39] describes, to regain the context of the overview.

No single tool was identified that would be able to provide the support required for visual

analysis of multiple ontologies, to trace lineage within an organism or map equivalence in

different organisms. Another important consideration is the need to provide extensions that

can be easily integrated into the EMAP browsers in current use. Ability to provide online

use would also be an advantage, as it removes the burden of installation of new tools and

data management from the user. Update of tools is also simplified as a single, central point

can be provided for distribution of extensions and updates.

Restrictions in time and scope of this project mean that it would not be practical to first

learn how to customise and extend an existing tool and then develop a second tool to provide

what would be novel functionality to satisfy the additional requirements of this project. It

was therefore decided to develop an independent tool that builds on existing functionality

for visualisation of individual ontologies in 2D, incorporating different techniques identified

in the tools examined that provide useful options for analysis. A decision was made to limit

visual analysis to 2D for single data sets, as techniques available for abstraction and analysis

of ROIs should work reasonably well for the data set sizes involved (up to 2000 elements
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for a development stage in the mouse, for instance, and just over 3500 for the abstract

mouse). Anecdotal evidence, supported by research, also suggests that 2D visualisation

may be better suited (than 3D) to the 2D display surfaces that are used in the typical

target user’s normal working environment, in addition to providing a more familiar and less

complex interface for presenting information to users [39, 78].

Development of a single tool incorporating multiple analysis techniques would also pro-

vide the opportunity to evaluate existing techniques for visual analysis. Following this a

3D visualisation system would be developed incorporating novel functionality to resolve

outstanding issues in visual analysis of the anatomy ontologies, to provide intuitive identi-

fication of relationships across multiple data sets.

5.6 Summary

Ontologies serve as knowledge bases; use may involve simply searching within a single on-

tology to identify relationships between elements it describes, or the retrieval of specific

information. Different ontologies may describe related information, in which case analysis

may look at determining mappings between individual elements in each ontology, to retrieve

similarity within what are often independently created knowledge sources, to enrich existing

information and/or retrieve new information.

Myriad data analysis solutions exist, most of which focus on specific fields and/or types

of data (refer chapters 2 and 3). This thesis looks at the comparison of ontologies, to retrieve

similarity in related data sets. Focusing on a specific research area or data sub-set limits

the scope of research and analysis so that intuitive analysis solutions may be developed for

user information requirements in the field.

This chapter identified typical requirements for analysis and information retrieval in

research that involves the use of anatomy ontologies. These start with the need for overviews

of data that aid users in constructing effective mental models of data structure, followed

by the ability to determine relationships within individual data sets and that span multiple

ontologies. An important requirement is to provide intuitive methods for analysis that

minimise the cognitive load on users; research in information visualisation and anecdotal

evidence point to the advantages in harnessing highly advanced perceptual ability in humans

in order to improve the process of data analysis and lead to results that more closely match

user requirements. A review of existing analysis tools and techniques (with a focus on visual

analysis) in this and previous chapters determined where current solutions may provide the

analysis required, and where they are unable to satisfy user requirements fully.

In order to be able to evaluate different analysis solutions with typical target users it

was necessary to build a prototype implementing existing and developing novel techniques

for data analysis and IR. Chapter 6 details design of the two prototypes built to assess the

alternative data analysis solutions proposed, and to examine how these solutions could be
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extended to provide analysis of other similar data sets.
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Chapter 6

Developing solutions employing

visual analysis

The research done to this stage looked at data analysis and different techniques developed to

provide intuitive options for analysis. This thesis focuses on harnessing advanced perception

in humans to reduce cognitive load in especially complex data analysis; chapters 2 and 3

discuss the advantages in visualisation of information, namely, increased ability to obtain an

overview of data structure and identify patterns and relationships in data. Existing solutions

were not identified that would be able to satisfy fully, the specific information requirements

of the user group studied (refer § 5.3). The main limitation of current bioinformatics and

other data analysis tools is the focus on a relatively small sub-set of data, normally to

prevent cognitive overload in analysis or because of the large amount of computing and

other resources required to support processing and analysis of large data sets. The analysis

required for this project, however, involves comparison of multiple data sets, employing de-

tailed analysis of ROIs and overviews of data structure that highlight relationships spanning

ontologies.

This chapter describes the development of an application incorporating existing analysis

techniques, starting first with simpler 2D analysis, to allow evaluation of these options

when used in concert. This is followed by the design of alternative, novel options for visual

analysis, to provide solutions for user information requirements that cannot be fully satisfied

by existing methods. This involves an extension to the third dimension to make use of the

larger amount of (virtual) space available for holding data. An analysis of user information

requirements and prior experience with other visualisation systems fed into the system

design, using ontology data in EMAP to test the options developed for analysis. Other

design considerations included the ability to integrate new tools with systems currently

available for analysis of similarly structured data, in order to increase the learnability of new

analysis techniques developed. Designing for extensibility, to allow analysis and comparison

of other similarly structured ontologies, was also an important factor in developing and

assessing the new techniques developed for visual analysis.
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To ensure the new solutions proposed would map to the requirements of target users and

that they would provide usable and improved analysis options, an empirical, user-centred

cycle was used to guide development of the prototypes built to evaluate the different op-

tions for analysis. A difficulty was obtaining a sufficient number of target users so that the

conclusions drawn from the evaluations performed could be validated based on statistically

significant results. The alternative, reliance on expert review of analysis techniques devel-

oped, however, has the potential of being biased by personal opinion or misunderstanding

or incomplete understanding of users’ information requirements or work environments. Fur-

ther, results of research may not map to use of technology in the workplace; testing new

ideas with actual users is important to minimise such differences. Figure 6.1 shows the cycle

used to guide research, development and evaluation, seeking improved options for analysis.

requirements - initial design - initial
prototype

-1 heuristic
evaluation

�

revised design
?

revised prototype
+ additional functionality

?
6

2

structured
evaluation

?

revised design
?

-

6
3

revised system employing
novel analysis techniques

?

Figure 6.1. Empirical, user-centred cycle followed in development and assessment of novel ap-
proaches to visual analysis

6.1 Choice of programming language

Development with an aim to augment research with minimal disruption to users had a

significant influence on the choice of development environments and languages considered

for building a new visual analysis system. EMAP tools currently available for analysis of

the ontology data are built mostly using Java, largely to provide cross-platform access to

resources, and web access and use where practicable. These considerations played a large

role in choosing to develop the analysis solutions for this project using Java.

6.2 Data types and storage methods

An important requirement of the visual analysis application to be developed was the ability

to input data in different formats and from different sources and also output data in forms

that promote exchange and reuse. The following sections describe the different methods

used to store, and options available for exporting the EMAP data.
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6.2.1 Database

The Common Object Request Broker Architecture, CORBA, acts as a server, providing a

layer between the EMAP and EMAGE databases and a large number of the tools used for

data analysis. Java Servlets are also used to provide a cross-platform interface between the

gene expression data and EMAP tools. Using Servlets also has the advantage of allowing

easy dissemination on the Web, increasing access to data and analysis tools.

6.2.2 XML

Previous sections (refer § 2.2.1 and § 2.4) have discussed the importance of data access

and exchange using standardised formats and a common language. XML, with its self-

describing syntax, is a good choice for storage of regularly structured data [185]. Being

both human and machine-readable using XML to store and export data eases both manual

and automated analysis. Figure 6.2 shows an extract from the XML file used to describe

TS11 for the mouse embryo.

6.2.3 Image

Each anatomical component stored in the text indices is mapped to a corresponding area on

a 2D slice and 3D region cut out of reconstructed models of the mouse embryos, as described

in § 5.1. This provides a spatial representation that aids analysis of the textual data. The

EMAP site also provides a pictorial index1 showing a snapshot of the mouse embryo at a

specific point during each stage of development, each linked to a description of development

during that stage and a plain text index (also using indentation to reveal data structure)

that lists component names and EMAP IDs.

6.3 Structure of application

6.3.1 Designing for modularity and extensibility

To promote (re)usability and extensibility a major feature of the application design was sep-

aration of functionality for generating the visualisations from data fed into the application.

This was to allow visualisations to be generated independent of data source and format.

A layer between these two parts of the application would be used to identify data source,

type and/or format, parse the input as required, and generate visualisations based on data

content.

6.3.2 The data access layer

For each data type and/or format used to store the anatomy ontology data it is necessary

to write a Loader that will read the input based on file structure and content, build objects
1See: http://genex.hgu.mrc.ac.uk/Databases/Anatomy/Diagrams (last viewed Jul 2006)
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<?xml version="1.0" standalone="yes" ?>
<HGU_MRC_Edinburgh>
<date>7/8/2001</date>
<species>mouse</species>
<anatomy><stage name="TS11"></stage>
<component name="embryo" id="147">
<printName>embryo</printName>
<abbreviation></abbreviation>
<childrenId>169</childrenId>

...
<childrenId>163</childrenId>
<startEmbryoStage>04</startEmbryoStage>
<stopEmbryoStage>26</stopEmbryoStage>
<parentId>0</parentId>
<component name="cavities and their linings" id="148">

...
</component>
<component name="yolk sac" id="202">
<printName>extraembryonic component.yolk sac</printName>
<abbreviation></abbreviation>
<childrenId>204</childrenId>
<childrenId>203</childrenId>
<startEmbryoStage>10</startEmbryoStage>
<stopEmbryoStage>12</stopEmbryoStage>
<parentId>176</parentId>
<component name="endoderm" id="203">

...
<component name="mesoderm" id="204">
<printName>extraembryonic component.yolk sac.mesoderm</printName>
<abbreviation></abbreviation>
<childrenId>205</childrenId>
<childrenId>206</childrenId>
<startEmbryoStage>10</startEmbryoStage>
<stopEmbryoStage>11</stopEmbryoStage>
<parentId>202</parentId>
<component name="blood island" id="205">

...
<parentId>204</parentId>
</component>

</component>
</component>

</component>
</anatomy>
</HGU_MRC_Edinburgh>

Figure 6.2. Extract from the EMAP XML file describing TS11 of development of the mouse embryo.
The full listing for TS11.xml can be found on the EMAP web site at http://genex.hgu.mrc.ac.
uk/Databases/Anatomy/XML/TS11.xml (last viewed Jul 2006).
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O-Store

CORBA

visualisation
software

(a) Data storage and access in working
EMAP browsers, using CORBA

visualisation
software

data access
layer

XML
formatted

data source

other data
formatting
or source

relational
database

(b) Proposal for changes to data access for visualisation
browsers being developed

Figure 6.3. The working EMAP browsers read data from an OO database using CORBA and
display the anatomy ontologies using indented text indices. The proposal for a solution to the
limitations of the current browsers focuses on separation of the data from the visual analysis solution,
to promote reusability and ease extension of the application developed.

to store each AnatomyComponent described, and generate an ontology tree. The Loader

serves as the data access layer between the visualisations generated and the input data source

and/or format, and is important to ensure extensibility and reusability of the application

developed. Each loader class or method must:

1. determine the ontology type being loaded — current examples are:

� a DevelopmentStage in an organism

� an AbstractOrganism containing all components that occur in all stages of de-

velopment of an organism.

2. parse the data and retrieve and store detail for each AnatomyComponent.

3. build an AnatomyOntology object as a tree, from a root and extending to its leaves,

using Relationship objects to store the links between components. (Note that a De-

velopmentStage or an AbstractOrganism is a specialisation of an AnatomyOntology.

The application developed may be extended by writing classes to specify additional

properties of other ontology types identified.)

Figure 6.4 shows data flow into the application and through the parser to create Anatomy-

Ontology objects.

data format1 data format2 ... data formatn

Loader

6

6

AnatomyComponentn Relationshipn

66

AnatomyOntology

6

Figure 6.4. Input data flow for the visualisation browsers
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6.3.3 The visualisation layer

Each AnatomyOntology created is used to generate and display an AnatomyTree2D or

AnatomyTree3D as required, which is then displayed in the corresponding 2D- or 3DTree-

Browser, as illustrated in figure 6.5.

Parser

6

AnatomyComponentn Relationshipn

66

AnatomyOntology

6

6 6

AnatomyTree2Dn AnatomyTree3Dn

2DTreeBrowser 3DTreeBrowser

Figure 6.5. Structure of the visualisation layer

Both the 2D and 3D visualisations use rooted, node-link graphs to provide an overview

of each ontology, with functionality implemented for detailed data analysis as discussed in

§ 6.5.4, § 6.7.5 and § 6.7.6. Figure 6.6 shows the overview for TS11, generated from the

XML file for which an extract is shown in figure 6.2.

Figure 6.6. Graphical overview of the anatomy ontology for TS11 in 2D, using a rooted DAG with
a horizontal orientation

6.4 Practical considerations in layout of node-link graphs

The merits and limitations of node-link graphs have been discussed in detail in chapter 3.

Existing literature contains evaluations of different algorithms used to lay out data to make

optimal use of screen space, descriptions of experiments performed to assess different tech-
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niques and their applicability to different data types, information requirements of users and

eventual end uses of analysis results [56, 83, 98, 99, 159, 173, 176]. Important considerations

that increase the usability of node-link graphs include:

� minimisation of crossing of links between nodes

� balance between breadth and depth of trees that optimises navigation through data

� optimisation of layout that minimises occlusion as one approaches the leaves

� use of complementary colours, choice of colour range — variations in hue, saturation

and contrast, or alternatively, shading in greyscale.

DAGs, which are a specialisation of node-link graphs, are useful for mapping paths between

data, and help the user to return to specific locations in a visualisation. The acyclic paths

help to reduce the disorientation which commonly occurs during navigation and exploration

of especially large, complex data sets.

6.5 The 2D browser

6.5.1 Design of visualisation graphs

The application developed uses circles in 2D space to represent each component in an Anato-

myOntology, linked by edges that hold the part-of Relationships that are the default in

each ontology. The first layout implemented drew rooted DAGs with a vertical orientation,

as for TS11 in figure 6.7.

Figure 6.7. The vertical layout for the DAG representing TS11; compare with the corresponding
horizontal layout in figure 6.6.

A very obvious problem here is occlusion due to node labels, as occurs for the top-down

layout for the cone trees of [152]. Switching to a horizontal layout as for cam trees results

in an increase in usability. Figure 6.6 shows the horizontal orientation for TS11; node labels

for this layout of the graph are easily read, and the occlusion that occurs for the vertical

layout is almost completely eliminated.

Another option considered was a hyperbolic layout, to improve use of space in the graph

and visual analysis in areas with high density of data. This was, however, not implemented
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because the distortion and constant change in structure associated with hyperbolic layouts

would make it difficult to maintain a stable mental model of the structure of the data under

study.

A radial layout was implemented at a later stage, to improve use of screen space. This

was also to provide an interface familiar to a large portion of target users; the heuristic

evaluation described in § 6.5.3 revealed strong support for the use of radial graphs, which

are commonly used in visualisation of genomic data. Figure 6.8 shows the corresponding

radial layout for the ontology data in figures 6.6 and 6.7.

Figure 6.8. Radial layout for TS11, showing the first four levels in the DAG

Merits of a relative layout

Two of the layouts described in [69] for the data classification tool, SimVis, are a uniform

layout that distributes space equally among sub-trees, and a relative layout that distributes

space to sub-trees dependent on the number of nodes they cluster. [69] found that the

relative layout provided a better picture of clustering in the tree. This finding supports the

views of users during the heuristic evaluation carried out: the initial layout of the DAG

distributed space to nodes to obtain a uniform layout. This, however, made poor use of

space available for drawing (especially large) non-uniform trees, as figure 6.9(a) shows.

Suggestions made by target users were to draw the graph to provide equal spacing

to leaves, and lay out parent nodes successively up the graph toward the root. Irregular

distribution of nodes in each graph, however, makes this a non-ideal solution. An improved

layout, shown in figure 6.9(b), distributes space for drawing nodes in the layer immediately

below the root, where the greatest bias occurs in node distribution, based on number of

immediate children. Beyond this level, the layout returns to uniform distribution of space

to sub-trees.
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(a) Uniform distribution of nodes in the DAG
drawn for TS16

(b) A relative layout weighted by number of
children each sub-component of the root has.

Figure 6.9. Weighting space to draw sub-trees based on node distribution results in significantly
better use of screen space. Data structure is also easier to discern in the relative layout.

Using abstraction to manage occlusion

The structure of the data lends itself well to abstraction, which is useful for managing the

occlusion that occurs beyond a fairly small threshold. Only the first three levels in the

ontology (including the root) are drawn when the graph is first displayed (see figures 6.10

and 6.11). This provides enough information to especially domain experts to begin analysis

of the ontology of interest. The number of levels displayed in the tree may be varied

interactively to reveal further information in each DAG as required.

Figure 6.10. Compare the layout here for TS11 to that in figure 6.6, which shows all nodes in the
graph. TS11 is a fairly small graph, containing only 61 nodes; for much larger graphs, such as for
TS26 which contains 1749 nodes, shown in figure 6.11, abstraction has a significant impact on ease
of especially interactive analysis.

6.5.2 Browser design

The Java application developed for visual analysis in 2D is shown in figure 6.12. The browser

can display up to a maximum of ten internal frames simultaneously, each containing a single

instance of the DAG drawn for the ontology of interest. The limit is imposed to manage

memory required for the Java application to draw each graph, which increases with the

number of nodes drawn to the screen, to maintain usability for interaction with the graphs.

An application menu provides access to all functions implemented. To increase usability
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(a) The top three levels of TS26 (b) The top five levels of TS26

(c) The complete overview of TS26, spanning 13 levels. Below the 5th
level occlusion becomes so severe as to render most labels undecipherable.

Figure 6.11. Abstraction used to improve usability of the overview graph drawn for TS26, which
contains 1749 nodes.

for experienced use, shortcuts typically employed for accessing similar functions in GUIs are

provided. A toolbar (whose structure is shown in figure 6.13) also provides quick access to

the nine functions most likely to be used.

Four context (popup) menus are provided that match the application menu, but with

functions grouped based on whether they apply to a single node, a selection of nodes, the

entire graph, or a link between a node pair. § 6.5.4 details functionality available, and the

structure of each menu can be found in Appendix B.

6.5.3 Heuristic evaluation of the initial prototype for the 2D browser

After a basic prototype had been developed as described in § 6.5.1 and § 6.5.2 (further

information on functionality implemented follows in § 6.5.4), a heuristic evaluation was

carried out to ensure that the application developed provided support for analysis as required

by target users. The evaluation served a dual purpose: to ensure that design of the new

tool would provide improved analysis of the ontology data being studied, and to prepare for

a structured evaluation of the visualisation browsers being developed.
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Figure 6.12. The visualisation application developed to hold the individual graphs drawn in 2D to
represent anatomy ontologies.

� Open file / Load ontology
� Close file / Unload ontology (with current focus)
� Close all files / Unload all ontologies

� Search
� Zoom
� Switch graph layout

� Save system state to file
� Print image
� Help

Figure 6.13. Functions available from the toolbar in the 2D browser
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Target user group

The evaluation involved researchers working at the Human Genetics Unit (HGU) of Ed-

inburgh’s Medical Research Council (MRC), on some aspect of EMAP and/or involved to

some extent with XSPAN. The user group comprised biologists and computer scientists.

Procedure

The evaluation involved a demonstration of the functionality implemented for the 2D browser

for interaction with and manipulation of the graphs drawn to represent the individual

anatomy ontologies under study.

The (target) users were invited to comment on aspects of the system found to be useful

for the analysis required, and functions that were unlikely to be used or would not make

useful contributions to the research being done. Suggestions for improvements to the layout

of the graphs and the functionality provided for analysis were also made.

Results

A major challenge in visualisation of especially large amounts of complex data is occlusion;

an acute problem also encountered in the DAGs drawn for the system developed. Comments

from users during the heuristic evaluation provided suggestions for alternative layouts, such

as the radial layout commonly used to display phylogenetic and other trees in biology, to

help overcome the occlusion that occurs. Further suggestions were to provide additional

options for encoding data attributes such as changes to shapes of elements. Suggestions

for improving the display of supplementary textual detail were also made. § 6.5.4 details

options developed for analysis in 2D, highlighting suggestions made during the evaluation

that led to changes and/or improvements in the prototype.

6.5.4 Options provided for analysis in 2D

Encoding of data attributes

The main method used for encoding data attributes is colour. The default colour of each

node in 2D is black, with grey for links between nodes. Table 6.1 shows the colour coding

used to distinguish attributes of different elements and graph structure.

Textual Detail

Print names (fully qualified name or path to root) were found to have the highest semantic

meaning, especially to those users with prior domain knowledge (see also Table 7.1 and

§ 9.4.6). However, because print names grow successively longer as one approaches the

leaves, labels default to (the shorter) component names for nodes. Labels may, however,

be set to any of a node’s properties, and the value for the node property currently set to

display will be written to the graph provided the option to display labels is switched on.
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Table 6.1. Data encoding in the 2D browser

Colour Code Data Attribute

black fill default node colour
light grey line default link colour
magenta ring collapsed node/hidden sub-tree
red fill/line highlighted node/link
red ring node with current focus/currently selected nodes
pale grey outline, no fill ghosted node
green ring search hit
orange ring/line node/link along path drawn toward root
yellow ring/line node/link along path drawn toward leaves
brown ring node selected to form part of a new group
reddish-brown ring parent node of a group node
yellowish-brown ring child node of a group node

Complete detail for a node may be brought up by double-clicking on it, listing, where they

are defined: (simple) name, print name, IDs of parent and child nodes, abbreviations or

synonyms, the stage in which a component first appears, start stage, and that beyond which

it ceases to exist, or develops into another component, the stop stage. Figure 6.14 brings

up textual detail for the component branchial arch in TS12.

Figure 6.14. Component detail brought up
for the node embryo.branchial arch in the
graphical representation for TS12, using a
custom dialog.

Hiding labels helps to manage the occlusion that occurs at a fairly low threshold, mainly

due to node labels, and is especially useful where there is high density of nodes (compare

figures 6.15(a) and 6.15(b)). In this case only nodes and links are drawn, and the label for

the object with the focus is revealed as the mouse is moved over the graph.

Textual detail for links displays the default part-of relationship between nodes using the

print names for the node pair of interest. The relationship between the nodes embryo, one

of the two sub-parts of the root in TS12, and its sub-component branchial arch is therefore

represented as embryo.branchial arch ’part-of ’ embryo.

Highlighting and ghosting out data

Nodes of interest may be highlighted using a red fill, while ghosting may be used to suppress

data of lower importance. Figure 6.15(a) illustrates a region in a graph with very high

occlusion, both due to labels and overlapping nodes, in which a node of interest has been
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highlighted. In figure 6.15(b) labels in the graph have been hidden, resulting in a significant

reduction in occlusion; the node is now easily identified as the inner ear. The label for this

node is popped up when it receives the focus (achieved by holding the mouse over the node),

also signified by the red ring drawn round the node.

(a) ROI in a DAG with a high level of oc-
clusion that prevents nodes from being dis-
tinguished, and renders most labels illegi-
ble.

(b) One solution to occlusion — hiding la-
bels in the graph. This pops up the label
for each node as it receives the focus.

(c) Nodes surrounding the node of interest
ghosted out in addition to hiding labels, to
reduce occlusion in the ROI.

Figure 6.15. Ghosting out of nodes and hiding of labels to reduce occlusion in a graph, to allow
focus on a single node of interest.

Ghosting initially only faded out the actual node, redrawing ghosted nodes with a pale

grey outline, and so was not very effective. However combined with hiding node labels as

shown in figure 6.15(c) it provided a degree of reduction of occlusion.

Selection of ROIs

There are two methods available for multiple selection of nodes: drawing a rectangular area

to enclose all data of interest, and/or depressing the Control-Key while clicking on individual

nodes. The latter, though more tedious, allows non-adjacent nodes to be selected. It should

be noted, however, that if a region of interest is redrawn in a separate window this will

only include nodes within the rectangular area drawn to the screen; redrawing non-adjacent

and/or isolated nodes without the context of surrounding data reduces ability to understand

relationships between the nodes of interest.

Selection of multiple nodes allows the same function(s) to be performed simultaneously

on all data of interest, as figure 6.16 illustrates.

Expansion & collapsing of sub-trees

One method for obtaining abstraction of data is to fold away or hide sub-trees. This reduces

complexity in the graph and also occlusion for areas with high density of nodes (and labels),
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Figure 6.16. Selection of data of interest in the graph for TS11, allowing simultaneous editing of
data properties for all nodes in ROI

providing more screen space for drawing data of interest.

A node whose sub-tree has been hidden is encircled by a bold magenta ring. Collapsed

or pruned trees may be (re)expanded as required to reveal hidden data.

Zoom

The 2D browser provides four implementations of zoom. The first option allows users

to redraw the rectangular selection area in a DAG in a separate, coupled window. This

magnifies the ROI by redrawing nodes and links in a larger physical area, as illustrated

in figure 6.17. The main disadvantage associated with this is the loss of the overview

and hence, surrounding context. For small to average size monitors the sub-window, the

ZoomPane, may overlap the main window, increasing difficulty in mapping between the

detail window and the overview. For sufficiently large monitors this may be resolved by

placing the windows next to each other, simplifying mapping between the two views.

The ZoomPane provides a limited set of functions for editing properties of nodes it

contains, and changes made to nodes in the sub-window are reflected in the main window

when the former is closed. § B.3 details the structure of the two context/popup menus

provided for accessing functions in the ZoomPane.

A second option for zoom is to redraw only a sub-tree of interest in a separate window,

providing both a physical and a semantic zoom, but again removing the context of the

overview. Retaining context while examining detail was, however, seen by users to be an

important requirement for effective analysis.

Two existing solutions to the loss of context, which results from drawing only a sub-set

of data, involve the use of a hyperbolic or a magic lens. A hyperbolic layout would, however,

result in constant distortion of the visualisation, with the danger that it might prevent a
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Figure 6.17. Nodes lying in the rectangular area drawn in the main window are redrawn in a
coupled ZoomPane. The actual nodes are drawn at the same magnification, but the larger amount
of space available means increased space between node pairs, eliminating or at least reducing overlap
of nodes and labels.

stable mental model of data structure from being formed. A magic lens, making use of a

uniform zoom, would exclude the distortion that is an artefact of hyperbolic layouts. How-

ever because it superimposes the virtual canvas containing the ROI at higher magnification

on the main drawing area, it obscures data immediately surrounding the ROI, and so does

not meet the requirements of the target user group.

A solution was finally developed that makes use of a hybrid between a hyperbolic layout

and a magic lens, using a method similar to the zoom used in the SHriMP visualisation

application [172]. The implementation developed for this project, however, zooms into

a single sub-tree instead of magnifying individual nodes as is done in [172]. Figure 6.18

illustrates how sub-trees below the level containing a node of interest are folded away,

allowing the sub-tree with the focus to be redrawn with a uniform zoom and using maximum

screen space. Minimal rearrangement of the graph helps to maintain users’ mental models of

data structure, and also removes the extra cognitive load required for mapping between the

coupled visualisations when the sub-tree of interest is drawn in a separate window. Further,

context of surrounding data is maintained to a large degree.

The implementation is similar to that used in [139] who make use of a continuous zoom

to provide smooth redrawing of the visual structure, constraining data drawn to the screen

to the number of levels in sub-trees that can be drawn without limiting readability of text.

User requirements for this project however differ from those in [139] in that ability to view

the structure of a sub-tree of interest is considered to be more important than immediate

availability of textual detail in less important ROIs. After obtaining the overview of the
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larger sub-structure, additional functionality is provided for greater magnification and/or

highlighting of the smaller ROI for those cases where users require further detail.

The last option is a geometric zoom which magnifies the entire tree in the main window,

illustrated in figure 6.19(b). Magnification of the entire DAG was not implemented initially

because the virtual canvas required to draw the magnified graph is larger than the physical

space it is drawn in, so that it becomes necessary to scroll through the graph to navigate to

ROIs. The context of the overview is lost, with the potential for an increase in disorientation

during navigation. An advantage in this option, however, is that nodes are pushed further

apart, reducing occlusion and increasing readability and hence, usability for ROIs. Users

during the heuristic evaluation were of the opinion that the increase in usability, especially

for regions of high density, would compensate for the loss of the overview.

Searching/querying

A custom dialog is used to perform sub-string searches on any of the properties defined for

component nodes. Textual results are displayed in the search dialog, recording the number

of hits and listing, for each match, component ID and print name. This is supported

by graphical results that highlight corresponding matches in the DAG using a green ring

round each node that satisfies search criteria, illustrated in figure 6.20. This makes it

easier to recognise the distribution of search results and especially aids the identification of

relationships between those objects with a large physical separation. Individual hits may be

selected from within the search results, by double-clicking on entries for nodes of interest.

This is especially useful for locating individual nodes where there is high density of nodes

and/or a large number of hits.

Searching defaults to only visible nodes in the frame with the current focus, the only

option initially made available. Users, however, found this restricting: options are now

available for searching on all nodes in the current ontology, in which case a warning is

displayed if any search hits are hidden. Alternatively searching may be confined to a sub-

tree of interest or to nodes lying within a selection area drawn to the screen. A search may

also be started from the node with the focus, in which case the search term defaults to the

(value of the) component name of the node selected, and property to search on is set to

component name.

The system currently searches only within the ontology with the focus. In response to

suggestions made during the heuristic evaluation, extension of the system will look at trans-

parent translation of queries, to retrieve additional, supporting information from previously

verified, relevant data sources.

Tracing (lineage) paths within an ontology

Visualising the anatomy ontologies under study provides an intuitive method for determin-

ing component parts of a node and identifying the (lineage) paths they follow in a DAG.
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(a) The overview for TS16 at default magnification, highlighting the visceral organ and all
nodes that make up its sub-tree.

(b) The sub-tree for the node visceral organ (highlighted with a red ring) is expanded using
maximum screen space, providing both a semantic and a physical zoom of its sub-tree.

Figure 6.18. Comparing fig 6.18(a) to fig 6.18(b) it is immediately obvious that magnification of
the sub-tree of interest significantly increases the ability to analyse the ROI. The context of the
overview is maintained, while the component parts of the node of interest are more clearly revealed,
providing a semantic zoom that complements the physical zoom obtained in fig 6.18(b).
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(a) A rectangular area is drawn in red to enclose the node of interest, the inner ear. (This
is the same region shown in figure 6.15).

(b) Physical magnification of the ROI in TS16, to reduce occlusion in the graph

Figure 6.19. The region surrounding the node of interest, the inner ear (highlighted in red), is
shown at maximum magnification - 6 times the default canvas size. There is a significant decrease
in occlusion for the densely populated area shown at default size in figure 6.19(a).
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Figure 6.20. Data nodes in the graph satisfying search criteria are highlighted in green, and
corresponding textual results are listed in the search dialog. The arrow points to the search hit
selected from within the dialog.

Tracing paths in a graph toward the root successively reveals the components for which

a specified component forms a part, highlighting nodes and links along a unique path (in

orange), for a specified number of levels. Conversely, paths toward the leaves of a tree may

be traced, successively highlighting all sub-components of a node and the links between

them (in yellow). Figure 6.21 shows paths traced through TS11 from three components.

Supplementary textual detail describing all nodes lying along a path may be brought up as

required.

Creating alternative sub-structures

The need for grouping of nodes has been previously discussed (refer § 5.3.2 and § 5.3.4).

The visualisation browser developed provides graphical support for creating groups, using

a custom dialog to input values for properties of the group node to be created. Initial

implementation allowed users to select nodes to form part of a group from a list. Users

during the heuristic evaluation requested additional options that would allow clicking in the

graph to select nodes or the ability to enter IDs directly in the dialog provided.

Two issues associated with the creation of groups is the crossing of links that may occur,

as in figure 6.22, and a potential increase in occlusion due to the additional nodes and links

drawn.

Resetting graph to default state

Physical editing of a node, a selection of nodes or an entire graph may be reset to the default

state. Note that this does not remove annotation to nodes or links.
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Figure 6.21. Three paths are traced within a single ontology, two highlighting the ancestors of the
nodes amniotic cavity and head mesenchyme (in orange), and the third successively highlighting the
components which form part of the node neural ectoderm (in yellow).

Figure 6.22. The horizontal layout is shown for a group created in TS11. The graph is no longer
a true tree but a DAG, and some nodes now trace multiple paths to the root.
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6.5.5 Limitations in the 2D browser

Two main challenges recognised in the 2D browser are occlusion largely due to poor use

of screen space, typical of tree graphs, and exponential increase in system response time

with data load. The following sections describe in more detail specific problems for which

solutions were required in order to develop a usable system that also provides novel, intuitive

visual analysis solutions for researchers.

Occlusion in DAGs

Beyond a threshold of about 200 nodes in a DAG occlusion begins to degrade visual analysis.

The main problem is due to overlapping labels, and in areas of especially high density,

overlapping nodes that make it difficult to distinguish individual components as occurs in

figure 6.19(a). This is a problem common to node-links graphs, and is largely due to poor

use of screen space (§ 6.5.1 contains a discussion on the use of different layouts to optimise

use of screen space).

Simultaneous visual analysis of multiple trees

One requirement for the research being performed is the ability to compare multiple data

sets simultaneously. This is to provide more intuitive methods for tracing lineage (refer

§ 5.3.3), and also to determine equivalence in components across ontologies. The information

retrieved can then be used to infer structure and function of newly discovered genes in

different organisms, by mapping to existing knowledge about gene expression data in other

(related) organisms.

[130], among others, recognise that current hierarchical visualisation solutions are geared

toward navigating through data, with limited support for comparing different data sets.

Their solution to this problem was to develop the TreeJuxtaposer application, to aid biolo-

gists in the identification of equivalent elements across phylogenetic trees. This problem was

confirmed by attempts to make use of traditional node-link graphs to perform the analysis

required; a major challenge encountered is the limited screen space that makes comparison

of multiple ontologies in 2D a non-viable option.

A number of options have been explored, seeking solutions to the problem of occlusion

that occurs in the 2D browser. These include focus on ROIs in isolation, and highlighting

selected data while suppressing surrounding data of lower interest. These solutions are

however limited to analysis of sub-sets in a single ontology, still leaving unresolved the more

complex problem of simultaneous visual analysis of multiple ontologies.

6.6 Visualisation in 3D? Resolving limitations in 2D

Extending the 2D visualisations to make use of the third dimension resolves the problem

of insufficient space for displaying data, taking advantage of the larger amount of space
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available in 3D. [151] found that the increased density of data in 3D visualisations, resulting

from the storage of a larger number of objects using the same amount of screen space,

enables more knowledge to be retrieved. [69] also observed that increased data density in

3D not only makes more optimal use of space but also leads to the formation of structures

that provide cues that help to uncover useful knowledge stored in data. Further, additional

cues provided by natural perspective in 3D prevent the increase in cognitive load that would

normally occur with increase in data size [150].

The merits and limitations of 3D have been discussed in § 2.6; the decision to use 3D

as a solution to the problems encountered in the 2D visualisations balanced the need for

more space in which to display data against recognised difficulty in the use of 3D for visual,

interactive analysis of complex data. Development of a 3D browser would allow multiple

trees to be drawn, each representing a single ontology, using the same amount of (physical)

screen space, but within a larger virtual space, allowing simultaneous comparison of multiple

data sets.

It was decided to continue to use the relatively simple 2D layouts to generate overviews of

individual ontologies, with the additional functionality developed for detailed visual analysis

of ROIs. However for comparison of multiple anatomy ontologies the visualisation system

would be extended to make use of the extra space provided by the third dimension, to allow

the larger amount of data to be displayed in a single window. The extra space in 3D was

expected to lead to improved analysis of the ontology data, by providing intuitive tracing of

lineage across multiple stages of development in an organism, identification of equivalence

in components across ontologies and in the grouping or classification of data elements to

reveal alternative structures for presenting the data. Natural perspective in 3D would also

provide some of the benefits of a wide angle lens without the distortion associated with a

hyperbolic layout. Navigation through and exploration of the larger data sets were also

expected to improve with the larger number of degrees of freedom available for use in 3D

worlds.

6.7 The 3D browser

6.7.1 Choice of programming language

Arguments for building the new visual analysis system using Java were presented in § 6.1.

For the same reasons: to provide an interface similar to those for existing EMAP tools, to

develop an application that is cross-platform compatible, and to increase accessibility for

both standalone and possibly, web use, Java3D seemed the best choice for development of

the extension to the 2D browser described.
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6.7.2 Design of visualisation graphs

Bearing in mind difficulty associated with the use of 3D visualisations, especially in envi-

ronments geared toward the use of 2D displays, simplicity was an important factor in the

design of the 3D graphs. Building on learning from the 2D browser this application contin-

ues to draw node-link graphs to represent the anatomy ontologies being studied, with each

graph lying in a 2D plane. (3D) spheres are used to represent components, and 2D lines

link component pairs through their centres.

The 3D browser develops an alternative to existing visualisation solutions, building a

visual representation of the data that lays out multiple graphs in equidistant, parallel planes

arranged along the horizontal axis, employing a layout similar to the use of 3D parallel co-

ordinates and the Cube system described in [69]. The root node of each graph lies on a

common plane parallel to the horizontal axis, and graphs grow downwards, with fixed sepa-

ration between levels in each graph. The layout allows identification of distinct, individual

anatomies, while still providing intuitive analysis and comparison of multiple data sets, as

figure 6.23 shows. Users are able to control the degree to which they become immersed in

the data, navigating through the data objects drawn or moving the camera above or below

the data sets as in figure 6.24, to obtain an overview of all data and relationships between

different ontologies.

Figure 6.23. Six DAGS are loaded into the 3D window. DAGs lie in independent 2D planes arranged
in parallel along the horizontal axis. Natural 3D perspective can be seen to increase magnification
as data elements approach the viewpoint.

Figure 6.24 shows how the space between DAGs can be used to draw links between

components in different ontologies, using colour to encode different types of relationships

between node pairs. Relationships that cross data sets are easily identified as they stand

out from the individual DAGs drawn.
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Figure 6.24. Moving the viewpoint away from the centre provides an overview of the DAGs drawn
that highlights relationships between node pairs across different data sets. Colour coding is used to
differentiate types of relationships occurring between nodes.

6.7.3 Browser design

All objects in the 3D universe are drawn to a single window allowing direct comparison

between elements across data sets. As for the 2D browser a maximum of ten individual

trees may be loaded at once. Memory management for the 3D browser is even more critical

than for the 2D; implementation of a scenegraph that allows the interaction required for

objects drawn in the 3D world prevents reuse of elements in the scene. Memory required

to draw graphs therefore increases significantly with number of elements (nodes and labels)

drawn to the screen.

Built-in functionality for navigation in the Java3D world includes zoom, rotation and

translation or panning, all available using a three-button mouse. Alternatively the keyboard

may be used for navigation. Tables B.6.1 and B.6.2 detail actions associated with Mouse-

Behavior and KeyNavigatorBehavior Java3D objects and that are available for use in the

3D browser developed.

As for the 2D browser an application menu is provided, with shortcuts for functions

expected to be called frequently. No context menus are available in the 3D browser because

the right mouse button which is normally used to bring up popup menus is required for

navigation in the 3D world. (The option to use the right mouse button with a function key

was considered; however this results in an extra level of complexity and was therefore not

used in the final implementation of the browser.) A toolbar is available, with functions as

shown in figure 6.25.

Zoom makes use of in-built functionality in Java3D that moves in to the view, and combined

with 3D perspective magnifies objects as they approach the viewpoint. The zoom button

(found on the toolbar on the 2D browser) is replaced with a call to the dialog used to set

colour codes for properties of elements drawn in the window. Only a vertical orientation of
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� Open file(s) / Load ontology(ies)
� Close file / Unload ontology (with current focus)
� Close all files / Unload all ontologies

� Search
� Set colour (data attribute) codes
� Draw mappings between node pairs

� Save system state to file
� Print image
� Help

Figure 6.25. Functions available from the toolbar in the 3D browser

the graph is available for the 3D browser; the toolbar function in 2D for switching between

different layouts is replaced by a call that brings up the custom dialog used to draw (external)

links between components in different trees. Finally, the 3D browser allows multiple files to

be loaded with a single call to Open. Appendix B details the structure of the application

menus and the toolbar for both browsers.

6.7.4 Encoding of data properties

As in the 2D browser, colour is used to encode data attributes. To differentiate between

individual data sets the application cycles through ten pre-set options for colouring nodes in

each DAG. The colour assigned to each tree may however be reset as desired. Part-of links

between nodes have a default encoding of grey. A legend, shown in figure 6.26, is provided

that shows (editable) colour codes for all relationship types.

Figure 6.26. Editable legend displaying default values for colours used to encode attributes of
objects in the scene

To maintain uniformity with the 2D browser the node(s) with the focus is/are highlighted

in red. Search hits are coloured green and collapsed nodes filled with magenta (the 2D

browser uses a ring for encoding search hits and collapsed or hidden sub-trees).
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6.7.5 Overcoming limitations to analysis in 2D

Simultaneous visualisation of multiple ontologies

Because limited space in 2D prevents loading more than a single data set in a frame, simul-

taneous analysis of multiple graphs in the 2D browser results in significant cognitive memory

load; users must map between elements lying in different, often overlapping frames. The

additional dimension in 3D provides extra space so that it is possible to load multiple data

sets in a single window, limited only by the memory required to draw objects to the scene;

figure 6.23 shows six DAGs drawn in the 3D window. The following sections illustrate how

the 3D browser simplifies tracing lineage in an organism and identification of similarity in

function and structure of components in different organisms.

Tracing lineage during development of an organism

Lineage for a component identifies the stage of development in which the component first

appears, and maps its persistence through subsequent stages till it ceases to exist or develops

into another component. Figure 5.9 and § 5.3.3 describe functionality available for tracing

lineage in EMAP, a method which places a large cognitive burden on users. A major

requirement for the visualisation solutions being developed is to provide graphical support

that eases tracing of lineage during development of an organism.

A first attempt to provide graphical support for drawing lineage paths required users

to identify successive node pairs through which a path would be traced in order to draw

links between each pair, across the space between individual DAGs. Figure 6.27 shows links

drawn across DAGs to trace lineage, identifying persistence of component across stages, or

components and/or their parts a specified component evolves into.

Figure 6.27. Colour-coded links drawn across the space between individual DAGS, to map lineage
across successive stages of development.
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The solution developed is similar to an initial prototype built by [91] while developing

a visualisation system for comparing the results of different methods for classifying taxo-

nomic data, to capture tasks performed by users. [91] draw hierarchical node-link graphs

that encode similarity between elements using shape and colour of nodes, combining fading

of objects of lower interest and highlighting of ROIs to aid analysis. Paths may also be

traced through nodes in hierarchies drawn in sequence in a 2D plane, to highlight changes

in classification of data. The prototypes drawn use very small graphs (two or three levels

with less than ten objects drawn at each node); [91] recognise the limitations that 2D places

on the amount of data that can be drawn to a display. The prototype is not developed fur-

ther because user evaluations found an alternative using a set-based visualisation technique

provided more effective representations of target users’ mental models of data and analysis.

Mapping equivalence across multiple ontologies

Identifying components with similar characteristics is important in determining structure

and function of newly discovered gene expression data. The custom dialog shown in fig-

ure 6.28 is used to record relationships between components that are not explicitly defined

in the ontologies, but are identified based on expert opinion or evidence obtained from anal-

ysis of gene expression or other relevant data. The information recorded may then be used

to draw links between components as in figure 6.30.

Figure 6.28. Custom dialog used to record different types of equivalence (relationships) between
component pairs, to allow physical links to be drawn between DAGs in the 3D browser.

Grouping of data

The 2D browser provides graphical support for creating groups. However the additional

links required to create the new groups may lead to increased occlusion or result in crossing

of links in the 2D graph, as occurs in figure 6.22. An advantage obtained creating groups

in 3D is that the group node created can be placed in a plane parallel to that holding the

DAG it belongs to, simultaneously highlighting the group and eliminating the crossing of

links that occurs in 2D, illustrated in figure 6.29.
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Figure 6.29. Grouping in 3D, shown on the right, is able to take advantage of the extra dimension
to remove the group node to a plane parallel to that holding the tree it belongs to. This highlights
the group created and removes the crossing of links that occurs for the equivalent 2D graph in the
snapshot on the left.

6.7.6 Further options for analysis in 3D

Textual Detail

Double-clicking on any node in the graph or selecting a node(s) and choosing the appropriate

item from the View menu brings up textual detail as for the 2D browser (refer figure 6.14).

To minimise resources required to draw objects additional textual detail is not available for

part-of links between nodes in the same ontology. Supplementary text describing (user-

created) links across ontologies may however be displayed, as illustrated in figure 6.30.

Information displayed includes component name and ID, and the types of relationships that

occur between each node pair.

Highlighting nodes

The node or link with the focus is highlighted in red, as is each in a selection of nodes

and/or links. In the same way as is done for the 2D browser, functions called are applied

to all selected nodes and/or links as applicable.

Expansion & collapsing of sub-trees

Sub-trees may be collapsed into parent nodes, as in the 2D browser. Collapsed nodes are

highlighted using a magenta fill, and hidden sub-trees may be revealed as required.
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Figure 6.30. Types of relationships between node pairs are encoded using colour. Textual detail
for a selected link (highlighted in red) describes the relationship between the two nodes it links.

Zoom

The 3D window makes use of in-built navigation options for zoom in Java3D (using the

middle mouse button or the keyboard).

Searching/querying

Searching may be performed on any of the properties defined for nodes for all nodes drawn

to the 3D window, with no options for restrictions on searching within data sub-sets. Fig-

ure 6.31 shows search hits highlighted in green.

6.7.7 Limitations in the 3D browser

The main limitation in the 3D browser is initial difficulty in navigation. The lack of a

history function also means that users are not able to return to previous locations visited

or move back to an earlier state. There is, however, in-built functionality that allows users

to return to the default viewpoint — the centre of the universe, providing some measure of

recovery if users become lost in the 3D world.
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Figure 6.31. Nodes that match search criteria are highlighted in green in the 3D window

6.8 Related work in the field

Similar visual results to those developed for displaying relationships across data sets in the

3D browser [53, 52] (refer also § 6.7.5, and figures 6.27 and 6.30) have since been developed,

illustrated in [102] and [103], using the same concept as that developed for this thesis:

layering node-link graphs in parallel planes in 3D space, and drawing links between nodes

across the space between graphs. [102] however build their visualisation as a 3D extension to

the algorithm developed by [174] for drawing di-graphs, to visualise hierarchical data such

as networks, DFDs and class structures in programming. They argue that improvements in

resources for computing that provide better support for 3D visualisation can be harnessed to

develop applications that make use of 3D to decrease complexity and increase understanding

in data analysis. [102] split the data set used to generate a single 2D graph randomly to

obtain two di-graphs lying on two separate walls. Figure 6.32 compares a 2D di-graph with

the equivalent extension to 3D.

The comparison between the graphs drawn in 2D and 3D support findings in this thesis

that show the advantages in the extra dimension (in 3D) for analysis of relationships in

data; [102] redraw the different structures that make up the original 2D visualisation and

highlight relationships within the data with greater clarity using the 3D representation of

the same graph.
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Figure 6.32. Layered di-graphs in 3D
space that provide an extension to the tech-
nique described in [174] for drawing di-
graphs. The 3D graph shows a reduction
in edge crossings from 180 in the 2D graph
to 24 in the 3D.
Images reprinted with permission from
[102]

Previous work has been done in the comparison of (independently created) ontologies,

to determine overlap in knowledge stored in ontologies in related domains and aid data

exchange and communication. Similarity may be determined based on lexical analysis —

similarity in terminology used for naming concepts, and/or on structure — the relationships

among data elements in each ontology. Limitations in these approaches include differences

in interpretation of terms used, especially where different fields are involved in ontology

creation and use; harnessing domain knowledge of experts is often required to ensure correct

interpretation of terminology used to describe concepts.

One of the most well-known ontology alignment tools is the PROMPT 2 plug-in in

Protégé, which uses regular and indented lists to display ontologies being analysed. Chi-

maera3 is another ontology editor that merges ontologies based on mappings identified

between elements that describe data in similar or overlapping domains. Chimaera makes

use of a forms interface for comparison of ontologies.

Though the forms of presentation in text-based systems such as PROMPT and Chi-

maera do not necessarily detract from analysis neither of these is able to present a complete

overview of data structure. The advantage in a visual system such as that presented in this

thesis is the ability to display (the structure of) a data set in its entirety in a single view,

in addition to the more detailed analysis available in selected ROIs in both text-based and

visual analysis systems.

Most text-based systems are limited to comparison of only two data sets at a time;

among other considerations, cognitive load associated with textual analysis would increase

difficulty tracing and tracking mappings across several data sets. Visualisation on the other

hand allows easier identification of relationships within single data sets and those that cross

multiple data sets; the visual system developed in this thesis allows different relationships to

be viewed and compared more easily across multiple ontologies. This allows users to browse

the data more easily to retrieve information, complementing (keyword-based) searching, the
2Information on PROMPT can be found at: http://protege.stanford.edu/plugins/prompt/prompt.

html (last viewed Jul 2006)
3Information on Chimaera can be found at: http://www.ksl.stanford.edu/software/chimaera (last

viewed Jul 2006)
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latter of which requires domain knowledge.

6.9 Summary

This thesis has found that limitations to current data analysis are largely due to speciali-

sation resulting in a restricted set of functions in individual data analysis and visualisation

applications. Limited scope for integration between applications further increases difficulty

exchanging data between tools, necessary for continuous or incremental analysis employing

functionality provided by alternative tools.

This chapter described the development of a 2D visualisation application for anatomy

ontology data, to provide analysis of individual data sets using first an overview, followed

by the ability to analyse ROIs in detail, as suggested in the “information-seeking mantra”

in [163]. The 2D browser provides a set of functions that may be used in concert to satisfy

some of the information requirements of the test target user group (refer § 5.3), based on

learning from tools developed to meet similar requirements.

The browser was also used as the basis for an evaluation of existing methods for visual

data analysis; a heuristic evaluation was performed to determine if the solutions developed

provide additional benefits to target users. Information obtained was fed into further devel-

opment of the 2D prototype, and a second browser was built with a limited set of functions

for visual analysis in 3D. This led to the preparation for a structured evaluation, to measure

usability of the tools developed and compare options available for analysis in 2D and 3D.

Further feedback was also required on the alternative options being developed to deliver

improved visual analysis, to provide additional information that would lead to resolution of

outstanding analysis problems. Chapter 7 details the usability evaluation performed for the

visualisation browsers and analyses results obtained.

117



Chapter 7

Structured usability evaluation of

visualisation prototypes

This chapter starts with a description of the preparation for the first structured usability

evaluation performed for the prototypes developed. The actual evaluation process and re-

sults obtained are then presented, followed by a discussion of the findings. The chapter

concludes with suggestions for changes and/or enhancements to functionality already im-

plemented and for novel functionality for visual data analysis, based on research done within

the scope of this project, user requirements and an assessment of functionality available for

analysis in existing tools.

7.1 Preparation for usability evaluation

The aim of this evaluation was to obtain measures of user satisfaction with and effectiveness

of the tools developed for the analysis required. The information obtained was used to

determine the usability and utility of the applications developed; if a new tool was to be

adopted by the target researchers it would have to provide advantages over applications in

current use. This meant providing not only novel functionality with improved methods for

data analysis, but also the ability to integrate new tools with existing ones, allowing at the

least data exchange with applications already in common use.

Other issues the evaluation studied were the usability of the interfaces created and

similarity to tools currently in use, to obtain a measure of learnability. Intuitiveness of

navigation through the data especially for the 3D prototype, system response, and error

handling were also evaluated.
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7.1.1 Test hypotheses

Two sets of hypotheses were used to guide the evaluation process:

Null hypotheses

H0A Textual analysis of especially large, complex data sets is as effective as visual analysis.

H0B Visualisation in 3D provides no significant advantages for analysis over 2D.

Alternate hypotheses

H1A Visual analysis of especially large, complex data sets provides significant advantages

over textual analysis.

H1B Visualisation in 3D provides advantages for analysis over 2D that justify the larger

amount of support required (for development and use).

7.1.2 Preparation of evaluation documents

Task scenarios

A set of scenarios was developed to simulate target users performing tasks in their nor-

mal working environments. Successful completion of these tasks required (relevant) domain

knowledge and an understanding of how functionality in the prototypes developed matches

user needs. (Successful) completion criteria (SCC) were recorded and maximum time re-

quired to carry out each sub-task (MTC) estimated, to provide benchmarks for assessing

users’ responses.

A walk-through of the scenarios was performed by three evaluators, to ensure that they

captured typical user tasks and allowed users to explore fully functionality provided in the

visualisation prototypes. The evaluation team comprised a typical target user working at

the MRC on the EMAP project, and two members of the XSPAN team.

Following this a trial run was performed, recording time to carry out individual tasks in

addition to user reactions, to confirm that the tasks detailed could be successfully carried

out.

Figure 7.1 shows an extract from the task sheet for the 2D browser (the complete task

sheet can be found in § C.2).

The walk-through confirmed that the overviews provided (of the anatomy ontologies) did

improve analysis. It also highlighted further functionality required to increase intuitiveness

in analysis, to ensure that useful results would be obtained during the evaluation process.

Changes were made where functionality as implemented would have a negative effect on

usability and increase difficulty carrying out further evaluation, prior to performing the

structured evaluation this chapter goes on to describe. Other functions were modified as

required at later stages in the project. Table 7.1 details improvements suggested and those

changes made prior to carrying out the structured evaluation.
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TASK DESCRIPTION TASK DETAIL SOLUTIONS

1. Load Theiler Stage (TS) 11
in the browser.

REQ: 2D anatomy browser, Quick Guide
SCC: Visualisation of TS11 displayed in
browser
MTC: 10s

N/A

2. Identify the anatomy com-
ponent chorion and list the
components which are ’part-
of’ chorion (immediate children
of), as well as the Theiler
Stages through which they per-
sist.

REQ: 2D anatomy browser, Quick Guide
SCC: Expansion of the DAG to show at
least the component chorion. Compo-
nents that are ’part-of’ the chorion may
be identified by tracing down the tree. An
alternative is to bring up the component
detail for chorion which lists child IDs.
MTC: 60s

ID: 188 ectoderm
Stgs 11-12
ID: 189 mesoderm
Stgs 11-11

Figure 7.1. Extract from the task scenario sheet for the 2D browser for the structured user evalu-
ation. The two columns highlighted in red detail completion criteria and MTC for each task. The
complete task sheet can be found in § C.2.

Table 7.1. Proposals for changes to visualisation browsers prior to structured evaluation

Original implementation Suggestion(s) for improvement Implemented

Occlusion due to node labels:
occurs even where occlusion of
nodes is very low to none,
especially for the TD layout

Hiding of labels (already implemented)
√

Interactive repositioning of nodes/labels X

Drawing labels at a (user-defined) angle to
horizontal plane

X

Default labelling of nodes: set
to component name

Change to print name (full path to root) to
aid differentiation between nodes with
identical component names, e.g., TS12 has
four nodes with component name
mesenchyme. (Note that this solution
increases the problem of occlusion due to
node labels.)

√

(implemented
in some cases)

Component detail: component
IDs only provided in some cases

Provision of print names in addition to
component IDs, as otherwise required to
look up names to identify nodes

√

partially
implemented)

Search Ability to highlight search hits in graphs from
within search dialog

√

Creation of groups: group
nodes could only be selected
from list held in dialog

Ability to click to select group nodes in the
DAG of interest

√

Ability to enter component IDs directly X

History/Undo function: not
available

Undo function encourages exploration, espe-
cially for 3D where navigation sometimes pro-
duces unexpected, undesirable results

X

Storage of user sessions: not
available

Provides history function
√
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Questionnaires

Two custom questionnaires were created: a pre-evaluation questionnaire to collect demo-

graphic information about users, and a post-evaluation questionnaire to record users’ opin-

ions about usability of the visualisation browsers. These were then reviewed by a Human-

Computer Interaction (HCI) expert who is also a member of the XSPAN team. This was

to ensure that the questionnaires would elicit useful information on usability of the proto-

types, and ascertain that the functionality required was provided, and through an intuitive

interface.

Initial suggestions for changes were on the wording, style and format, to make the

questionnaires less terse. The layout of the responses also required editing, to provide

optimum feedback. Modifications were made using the Questionnaire for User Interface

Satisfaction (QUIS) [166] as a base. Each question was then examined and further changes

were made to eliminate ambiguity in wording, bearing in mind that the two main user

groups, with different research backgrounds, may interpret data and terms used in different

ways.

The final structure of the pre-evaluation questionnaire provided options for users to

choose from to provide information on gender, educational background and current field of

work. Questions also addressed computer hardware and software normally used for work,

experience with data analysis and visualisation applications, and prior use of the working

EMAP section browsers.

The first part of the post-evaluation questionnaire gathered information on users’ previ-

ous experience with computers. The main section presented closed questions with bi-polar

answers on a Likert scale from 1-9, and the option N/A (not applicable) as required, covering

the following topics:

� overall reaction to the system

� visualisation of data and suitability of the screen

� terminology used and system feedback

� learnability

� capability of the system.

The questionnaire ended by inviting users to comment on aspects of the application or

the evaluation they felt had not been sufficiently addressed. A copy of the pre- and post-

evaluation questionnaires can be found in appendix C.

A final suggestion was to make use of the SUS (System Usability Scale) questionnaire

[27], to determine overall user opinion of usability using the well-tested questionnaire.
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Other evaluation documents

To conform to ethical regulations in the evaluation process a user instruction sheet and

consent form was also prepared (a copy of which can be found in § C.1).

7.1.3 Pilot test and expert review of evaluation procedure

A pilot test was carried out with an independent HCI expert with a specialisation in vi-

sualisation (a research student at the School of Maths and Computer Sciences, MACS, at

Heriot-Watt University, HWU). The test was used to assess the design of the evaluation

procedure, to ensure that the evaluation would elicit information from target users that

would allow effective analysis and retrieve information on usability of the tools developed.

A second aim of the pilot was to ensure that usability requirements had been built into the

evaluation procedure.

Using an HCI expert for the pilot test also provided additional feedback on the structure

and wording of the questionnaires. Main suggestions were for further changes to wording

to remove ambiguity, and for improvements to the layout that would better distinguish

different sections of the questionnaires and improve readability. An important problem

in the post-evaluation questionnaire was also identified: a few questions required users to

comment on functions not explicitly tested by the task scenarios. This posed the danger that

users would report how they expected the system to work and not actual system response

and functionality. The scenarios were edited to correct this.

A final review of the evaluation procedure was carried out based on the results of the

pilot test, editing the evaluation documents as required. (Copies of all evaluation documents

can be found in appendix C).

A timer and logger were then built into the visualisation browsers, to record each function

called during the evaluation process. This was to supplement manual records of user actions

to complete goals. An example of a typical log can be found in § E.6.

7.2 Assessment of variation in system response in 2D

A recognised and significant limitation of the 2D browser was the large increase in system

response time with number of data nodes (and hence links and labels) drawn to the screen.

To assess the severity of the problem two sets of tests were run late morning to early

afternoon on separate days to minimise the influence of system and network load. The 2D

application was run in each of Microsoft Windows XP®, remote access of a Unix® terminal

using Exceed® and directly in Linux®. Three computers were used to perform the tests:

� a PC running Windows XP with a P4 (Pentium 4), 2.2GHz processor, 256MB RAM

(random access memory) and a 40GB hard drive
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� remote access of a Linux® box with a P3, 933MHz processor, 256MB RAM and a

20GB hard drive

� direct run from a Linux terminal, running on a PC with a P4, 1.7GHz processor,

256MB RAM and a 20GB drive.

Monitor sizes were all 17in, with resolutions of 1024 * 768 pixels.

A single data set was loaded and unloaded, to ensure that all resources required to run

the application were available and that all (global) application variables had been initialised

before running each set of tests. The time lag in seconds to redraw the DAG for each of TS04

(11 nodes), TS11 (60), TS12 (198), TS18 (740) and TS26 (1748) from start-up showing only

the top three levels to display all nodes was then recorded for six instances, disregarding the

first load for each data set. The test results are summarised in figure 7.2. System response

times for TS01 to TS11 are negligible, increasing slightly for TS12 with 198 nodes. Beyond

this threshold there is significant increase in response time, with a corresponding negative

impact on ease of interaction.

Figure 7.2. The two plots on the left show exponential increase in system response time with number
of nodes drawn to the screen for MS Windows and Exceed. On the right a direct comparison between
the two systems highlights significantly poorer response for Exceed.

The plots show even poorer response when running the program in Exceed. The differ-

ence in response is not just due to the faster system used in Windows; there is a noticeable

decrease in program execution speed when running Java Swing programs using a remote

terminal. (Results when running the program directly in Linux are similar to those in

Windows and are not plotted separately).

Figure 7.3 shows the experiment repeated after the evaluation was carried out, when

methods for laying out the data had been improved, averaged over the same remote system

and a second Linux box also accessed remotely, with double the RAM and running on an

AMD Athlon® processor at 2.4GHz speed. The experiment was also repeated in Windows,

using a Pentium 4, 1.7GHz processor and 256MB RAM. Execution speed in Windows im-

proved significantly, recording a maximum of 3s to redraw TS26, compared to a maximum

of 8s for the faster system in the first experiment. There is however no improvement in

Exceed for the same system. The faster remote system does record shorter system response

times so that the overall average for Exceed is lower. However, times recorded are still

significantly longer than for the system with lower resources in Windows.
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Figure 7.3. After improving the algorithm for laying out the graphs system response in Windows
improved significantly; there was however little improvement in remote execution of the program.

An explanation for poor response and improvements for rendering of graphics in Java

Swing applications during remote access are detailed in the 2001 reports by Sun Microsys-

tems: Java 2 Platform, Standard Edition v 1.4 Performance and Scalability Guide1 and

High Performance Graphics: Graphics Performance Improvements in the Java� 2 SDK,

version 1.4 2. The applications started development in Java 1.4 then were continued in Java

1.5. However, to allow the browsers to be used on older systems features in Java 1.5 not

backwards-compatible with 1.4 were not used.

These results pose a significant problem; humans use short-term and working memory

to process perceptual input and solve problems [166]. Significant delays in system response

lead to a decay in the information held in memory, requiring larger effort to perform tasks

while users rehash plans to goal completion. This often leads to annoyance and an increase

in the probability and frequency of errors occurring [16], especially for interactive systems

such as the visualisation browsers under test. Even more significant than long response

times is large variation in response; users develop an expectation of system response based

on experience [166], so that variations in response may have a more detrimental effect on user

productivity and satisfaction than long but uniform response times. The problems posed

by the delays in system response with data load were reflected in answers to questions

on the effects of variation in system response and from user reactions recorded during the

evaluations. § 10.4.2 suggests options for improving drawing performance and interactivity.

Adaptability of humans means that workarounds for such problems will be sought [16],

often employing shortcuts to goal completion and minimising interaction with systems. This

has the associated disadvantage in a reduction in willingness to explore system functionality

[165]. Providing feedback on system progress especially for long waits keeps users informed

and reassured, decreasing frustration [166], and giving the opportunity to perform other

task-related activities while waiting on system response. It would also be useful to provide

options for undo and other error management as applicable, and/or the ability to terminate

such processes where this would not result in system faults or data corruption, and without
1See http://java.sun.com/j2se/1.4/performance.guide.html (last viewed Jul 2006)
2See http://java.sun.com/products/java-media/2D/perf_graphics.pdf (last viewed Jul 2006)
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having to shut down the application.

7.3 Implementation of evaluation procedure

7.3.1 User backgrounds

Educational backgrounds and current field of work

The evaluation was carried out with ten users from the two main target user groups: re-

searchers in biology and bioinformatics — the primary target, and in computer and other

sciences working in bioinformatics (secondary targets). There was a degree of overlap in

user backgrounds; for the purposes of this evaluation users were categorised into one of

the two distinct groups, with the decision made weighted by educational background and

current and former fields of work.

Biologists were expected to have a wide range of skill in computing, from basic to fairly

advanced with some knowledge of programming. Computer scientists on the other hand were

expected to have very little to general knowledge of biology, being concerned mostly with

the development of tools for the analysis and presentation of biological or bioinformatics

data.

Six users were researchers at the MRC, and four were MACS research students. Nine

out of the ten users were at the time of the evaluation doing research in or working in

a field related to bioinformatics; the last user was an HCI expert in MACS. Seven users

were classified as biologists, five of whom have degrees in biology or bioinformatics and

are currently working in these fields. One has an undergraduate degree in biology but

a postgraduate in computer science and is working in bioinformatics, and the last has a

degree in engineering and is working in bio-engineering. The other three users were classed

as computer scientists: two have degrees in computer science and are doing research in this

field, one with application to bioinformatics. The last user has an undergraduate degree in

chemistry, a postgraduate in computer science and is currently doing a PhD in computer

science. Figure 7.4 summarises users’ backgrounds.

Figure 7.4. User backgrounds, recording education and current work
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Age and gender

Five out of the ten users were female. Five were aged between 20 and 29, three between

30 and 39 and 2 were over 39 years old. Neither age nor gender appeared to have a sig-

nificant impact on user ability, judging from observations made during the evaluations and

user responses to the post-evaluation questionnaires. Users’ research backgrounds were ob-

served to have a more significant impact on interaction with the prototypes, especially when

searching for specific information, and in user reactions to the implementation and labelling

of functions.

Experience in computing

Figure 7.5 compares users’ backgrounds with general familiarity with computers and com-

puter systems.

Figure 7.5. Computing skill and educational background of each user

Users were also asked to record their experience with input and output devices, storage

media and basic microcomputer applications (refer § C.3.1 and figure D.1.1). All users made

regular use of at least the commonest input devices, including the mouse and keyboard,

and half the user group had additionally made use of touch screens and track balls. File

management systems, text editors, word processors, electronic spreadsheets and graphics

systems recorded regular use for most participants.

Range of specifications for users’ computers

Each evaluation was carried out in the user’s normal working environment (offices or research

labs at the MRC or MACS); the visualisation browsers were therefore tested on a variety

of systems. Operating systems (O/S) normally used range from Microsoft Windows® (NT,

XP, 2000) to Apple Mac® (OS X, 9) to Unix (Linux, Irix®). Some users work on only one

O/S, others work with Windows and/or Mac and Unix. Distribution of computing resources

during the evaluation is shown below. All computers were resident on a network.
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Users O/S CPU Memory Disk space Monitor

4 RedHat Linux 8.0 P4 1.7GHz 256MB 40MB 17in, 1024*768

5 Windows 2000 P4 2.0GHz 1GB 80MB 19in, 2560*1024

1 Unix PII 300MHz unknown unknown 19in, 1280*960

Internet use

Both online and standalone use are envisaged for the visualisation prototypes; it was there-

fore necessary to verify Internet connections available to users and use of web browsers (see

figures 7.6 and 7.7).

(a)

(b) (c)

Figure 7.6. Chart 7.6(a) shows the number of participants using each of the network types avail-
able. Charts 7.6(b) and 7.6(c) show the distribution of users with access to the different Internet
connections and speeds in common use.

Figure 7.7. The chart at the top shows the dif-
ferent web browsers used (note that some users
make use of more than one browser). The bot-
tom chart shows the proportion of users, out of
the total using each type of browser, using the
most recent version of the corresponding browser
at the time of the evaluation.

127



Structured usability evaluation of visualisation prototypes

Experience using EMAP browsers

Figure 7.8 records length and frequency of use of the EMAP browsers. Three out of ten

participants had never made use of the EMAP browsers prior to the evaluation. Use varied

for all other users from occasional to regular, daily use.

Figure 7.8. The chart shows three users with
no experience of the EMAP browsers while two
use the browsers daily. All other users make oc-
casional use of the browsers, for lengths of time
from less than one month to over a year.

7.3.2 Evaluation procedure

The purpose of the evaluation and the methods for collecting user data were explained

to each user, prior to presenting them with the instruction sheet and consent form (refer

§ C.1). The pre-evaluation questionnaire was then administered, to collect user background

information. A brief demonstration of the functionality available for analysis using the

visualisation browsers was then made, and users were given the opportunity to explore the

prototypes before performing the tasks required. Users performed all tasks in the same

order. It was noted that this had the potential of biasing (apparent) ease of use of the 3D

browsers. However additional functionality in 3D that could not be implemented due to the

space restrictions of 2D meant that carrying out tasks logically followed this order.

Because the help files had not been completed when the evaluation was carried out verbal

responses were provided to user questions, without prompting users on specific actions to

perform. Confirmation of actions required to complete a (sub-)task were, however, given

where specifically requested. Understanding of results of users’ actions were confirmed or

corrected as required, if this was sought. For cases where users had significantly exceeded

MTC and did not appear to be able to complete a task, for cases where usability problems

had already been identified but had not been corrected prior to the evaluation, users were

prompted with suggestions for completing the sub-task presenting a problem, and all such

instances recorded.

The timer/logger built into the browsers was used to record functions called (from the

menus or toolbars), attaching a time stamp to each. To confirm completion of a task users

were required to click on the timer on the bottom, left-hand corner of each browser. Flow

diagrams were used to record users’ paths to complete each goal, supplemented by records

of users’ (physical) reactions, comments and errors made, requests for help and responses
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to users’ questions.

After completing the tasks required users filled in the post-evaluation questionnaire,

followed by the SUS. A short, oral debriefing session was used to elicit any other comments

users had, and to discuss especially those functions users had difficulty with. Participants

were then thanked for their time and, for those who wished to receive further information

on the development of the prototypes, confirmed that this would be made available in due

course.

Three exceptions to the evaluation procedure are detailed below:

1. An oversight meant the user with ID 01 did not complete the SUS questionnaire.

Having a small sample size, however, it was still useful to retain this user’s results.

2. Availability of users 04 and 05 resulted in the two users performing the evaluation to-

gether. They, however, filled in the questionnaires independently. Interaction between

the two users during the evaluation meant that they needed to refer to the evaluator

less often for help, as they conferred with or prompted each other when unsure how

to proceed or an error was made. Since this is normal practice in learning how to

use a new application, and again, because of the small sample size, these results were

not discarded. Additional analysis of the two users’ results did not reveal significant

differences from those of other users. Figure 7.9 compares task completion times for

users 04 and 05 to the mean for all users. As for plots for SUS scores and overall

satisfaction ratings (refer figures 7.10 and 7.11), differences in results are not found to

be significant.

Figure 7.9. Task completion times for users with IDs 04 and 05 does not vary significantly from
mean task completion time (for all users).

3. User 07 did not receive a demonstration of the prototype prior to performing the tasks.

This oversight was recognised during the evaluation: the user was having difficulty

determining functionality required to complete the tasks required, and task completion

times were significantly longer than had been observed with previous users. The

evaluation was suspended and the user given a brief demonstration of the functionality

available. (Relative) task completion times did reduce significantly after this; it should

however be noted that comments made by the user indicated that learning as the

evaluation progressed also contributed to this.
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7.4 Analysis of evaluation results

The small test user population means that statistical analyses may not provide reliable

indications of usability of the applications developed. Testing with users from a wider group

may have increased statistical reliability but with the much larger danger of reporting results

not completely representative of the target user group. Statistical analysis of the data was

therefore restricted to simple calculation of means within a 95% confidence interval (CI), and

maxima and minima of result sets. Qualitative feedback, to support the quantitative data

recorded, was obtained from user responses to the pre- and post-evaluation questionnaires

and from observation of users recorded during each evaluation.

7.4.1 SUS Scores

The SUS scores obtained, shown in the plot in figure 7.10, show eight out of the nine users

who filled in the questionnaire with a score above the middle mark (50). The highest score

obtained was 90 (out of 100) and the lowest was 37.5. The 95% confidence interval for the

mean, 62.5, has lower and upper boundaries of 51.5 and 73.5 respectively.

Figure 7.10. SUS score for each user. Note
the user with ID 01 has no SUS score. The
average for the SUS is therefore recorded over
nine users, shown by the broken line.

7.4.2 General satisfaction ratings

Figure 7.11 compares overall user satisfaction for the 2D and 3D browsers, calculated by

finding the mean rating on the Likert scale from 1–9 for questions in sections 3 to 7 in the

post-evaluation questionnaire (refer § C.3.2). (Note that questions with a response N/A

were disregarded in calculating each mean.)

The overall satisfaction ratings for individual users show eight out of ten users with mean

rankings for both browsers above the central mark 5, with five of those values lying above

the mean for the entire sample. One user ranked the 3D browser above the central mark and

the 2D below, and the last ranked both below the central mark. Half of the users ranked

the 3D browser higher than the 2D. Mean rankings for the 3D browser were higher than

for the 2D, both over the whole user population and by user group, as figure 7.12 shows.

Results also show biologists, the main target, on average rated higher usability for both

browsers; the two lowest individual means were CS researchers. There is also a relatively

large variation in results of CS users, which may be due to the very small number of users

falling in this group.
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Figure 7.11. Overall user satisfaction rankings
for each of the visualisation browsers; overall the
3D browser was found to be more usable than
the 2D.

Figure 7.12. The broken lines show both
groups on average found the 3D browser more
usable than the 2D, with biologists generally
recording higher usability than CS researchers.

Charts detailing mean ranking for each item in the post-evaluation questionnaire can

be found in § D.2.1 and D.2.2, and values for overall mean rankings are as below:

Overall means

2D: 5.67 [95% CI: 5.09–6.25]

3D: 5.85 [95% CI: 5.30–6.40]

Biology only

2D: 5.94 [95% CI: 5.42–6.55]

3D: 5.99 [95% CI: 5.35–6.42]

CS only

2D: 5.03 [95% CI: 2.25–7.80]

3D: 5.50 [95% CI: 2.68–8.32]

The following items recorded rankings in the top ten for both browsers (not necessarily in

this order):

� quietness of system (as a measure of how busy system was)
� consistency of terms used
� good relation of terms to users’ normal work
� consistency in system messages
� eased ability to determine lineage using the visualisations
� advantages provided by the visualisations over the text (for analysis)
� time taken to perform tasks
� improvement in data analysis over EMAP browsers (for tasks performed).

For the 2D browser alone the following were also ranked in the top ten:

� hiding of sub-trees to reduce occlusion
� reliability of the system.

The following also fell in the top ten items for the 3D browser:

� advantage provided over the use of text boxes for tracing lineage
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� options for zoom that aid reduction of occlusion.

Items with the ten lowest rankings for both browsers include:

� large variation in system speed (recording the lowest ranking for all items for both

browsers)
� occlusion of data
� average time to perform tasks
� (in)flexibility of system
� ease of navigation through data
� level of system support for error recovery
� frustration using system
� rigidity of system.

Additionally, the 2D browser recorded poor rankings for the following items:

� ease reading text on screen
� ghosting of nodes
� occlusion of data especially in the layout with a vertical orientation.

Other items with low rankings for the 3D browser were:

� ability to identify errors and sources of errors
� difficulty of system
� good balance between catering for needs of experienced and inexperienced users.

7.4.3 Assessment of the 2D browser

Overall user reactions

A breakdown of the satisfaction ratings into the five sub-groupings examined by the post-

evaluation questionnaire (refer § 7.1.2) shows a mean of 4.78 for Overall reactions to the

system. A more detailed analysis of the different aspects of usability studied, in the follow-

ing four sections, identifies functionality that provided useful contributions to data analysis,

some of which recorded improvements over methods already available for analysis. Function-

ality that was not found to be very useful was also pointed out. Analysis of user comments

provided additional information that was used for further design and development of im-

proved functionality for analysis.

Means for each category for which usability was measured are as below:

Overall reactions to the system: 4.78 [95% CI: 4.23–5.32]
Data Visualisation & Screen: 5.86 [95% CI: 5.38–6.34]
Terminology & System Information: 5.93 [95% CI: 5.11–6.75]
Learning: 5.67 [95% CI: 5.05–6.28]
System Capabilities: 5.92 [95% CI: 4.78–7.05]
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Data visualisation and screen

The mean ranking for all items in this group was 5.86, with more than half the items

ranked above the mean. (High) occlusion recorded the lowest ranking, with a mean of 3.00.

Users also recorded difficulty reading text on the screen and navigating through the data.

Comparing the three layouts, the vertical or top-down (TD) had the highest mean ranking

for ease of use at 6.60, while the horizontal or left-right (LR) had a mean of 6.50. The radial

layout scored lowest, at 5.00. Occlusion was ranked below the central mark: 4.7 for LR, 4.5

for the radial and 4.4 for the TD, confirming occlusion to be a significant problem. Users

ranked ease of locating information required at 5.11.

Compared to the text indices usability of the visualisations was ranked as high (7.38),

with data structure (6.71), understanding of data (6.86), search and query (6.57) and tracing

user paths and lineage (7.43) all above the overall mean for this sub-grouping. Creation of

groups was ranked at 6.14.

Hiding of labels and sub-trees recorded relatively high rankings (6.78 and 7.10 respec-

tively) for their contribution to the reduction of occlusion. Zoom had a mean ranking of 6.5,

and switching between layouts, 5.6. Ghosting was found not to be very useful for reducing

occlusion, with a ranking of only 4.38; functionality for ghosting was not well developed at

this stage so that this was to be expected (see figure 6.15(c)).

Terminology & system information

Relation of terminology to users’ normal work recorded the highest mean ranking at 7.57,

use of terms and consistency of system messages followed with scores of 7.20 each. The

lowest rankings for this sub-grouping were for the level of system support for error recovery

(4.00), and for users’ ability to identify errors and their sources (4.56).

Learning

(Relative) time required to carry out tasks recorded the lowest ranking at 3.80. Amount

of time users felt they required to learn how to use the system however recorded a mean

ranking of 7.1, indicating the system would take on average a very short time to learn to

use. The longest time estimated to learn to use the system was one month, the shortest one

day, and the average fell between one and two weeks.

Relation of terminology to users’ normal work was ranked at 6.50, communication from

the computer just above the mid-point at 5.11, and all other functions recorded rankings

around the mean (5.67) for this sub-grouping.

System capabilities

This sub-grouping recorded overall a mean ranking of 6.57. (Low) system noise was ranked

at 8.29. Compared to the EMAP section browsers this system recorded a ranking of 7.00

for ability to provide simplified data analysis. Reliability of the system was seen to be
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fairly high, with a mean ranking of 7.00. Variations in system speed however recorded an

average ranking of 2.86, the lowest for the evaluation. Users also judged system speed on

average to be low, at 4.30. Balancing well the needs of both experienced and inexperienced

users was ranked at 4.78. Ability to correct mistakes recorded an average 5.56, and level of

functionality provided by the system was ranked at 6.70.

7.4.4 Assessment of the 3D browser

Trends for rankings for the 3D browser follow those for the 2D, although actual rankings

were on average higher than for the same items in 2D. Looking at Overall user reactions,

which recorded an overall mean of 5.10, here, as for the 2D, users ranked the system being

frustrating and being rigid lowest. The 3D browser also received poor ratings for being

difficult, but was ranked higher than the 2D for providing adequate power to users. Finding

the system stimulating again received the highest mean ranking of 5.22 for the 3D browser.

Rankings for Data visualisation and screen were in general much higher than for the

2D browser, with an overall mean of 6.19. Only two items fell below the central mark -

navigation through the data and occlusion, at 4.20 and 4.30 respectively. More than half the

items in this sub-group lay above the mean of 6.19. Improved ability to trace lineage was

ranked highest at 7.29, followed by advantages of the system for analysis over the textual

indices, at 7.25.

Trends for Terminology & system information, Learning and System capabilities were

also very similar to those for the 2D browser, but again with higher actual values. Means

for each category for which usability was measured are as below:

Overall reactions to the system: 5.10 [95% CI: 4.40–5.80]
Data Visualisation & Screen: 6.19 [95% CI: 5.66–6.71]
Terminology & System Information: 5.97 [95% CI: 5.19–6.75]
Learning: 5.73 [95% CI: 5.13–6.32]
System Capabilities: 6.20 [95% CI: 5.22–7.17]

7.4.5 Task completion times

Figures 7.13 and 7.14 show mean time to completion for each task in each of the 2D and 3D

browsers respectively, compared to the MTC for each task. Learning was exhibited by users

performing repeated tasks in 3D in shorter times than expected. A significant example is

for grouping of nodes — tasks T8-2D (task 8, 2D browser) and T3-3D (refer figure 7.16);

users also found grouping in 3D to be more intuitive than for the 2D browser.

Figure 7.15 compares completion times for each user for each task to MTC, which shows

times for most users for tasks T2-2D, T3-2D, T7-2D, T1-3D and T2-3D to be very high

compared to MTC. Analysis of the flow diagrams for each evaluation and comments made

during the course of the evaluation provide clues that may explain these results. Most of the

problems identified were found to be due to difficulty identifying functionality required to

carry out tasks, mainly due to function labels whose meaning was not immediately obvious.
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Figure 7.13. Mean completion time for each task
for the 2D browser, compared to MTC

Figure 7.14. Mean completion time for each
task for the 3D browser, compared to MTC

Additional textual information provided to describe objects in the scene did not always

contain enough information to allow users to draw conclusions about data with confidence.

Another problem was restrictions to data input that made editing of the graph structures

tedious.

Figure 7.15. Individual task completion times for both browsers, compared to MTC

User task completion times exceeding MTC

T2-2D: determining lineage within a stage of development T2-2D required users

to identify a specific component and bring up textual detail for the components derived

directly from it. Three users took significantly longer than MTC to complete this task, with

the worst case being almost 4 times longer than expected. However this occurred for the

case noted previously where the user had not had sufficient preparation for the evaluation

(refer § 7.3.2), which might explain the anomaly.

The next longest completion time occurred because the user’s understanding of the

function for determining lineage did not map to the system implementation, highlighting a

problem with ambiguity in terms used to describe lineage, and also noted in other instances

and for other users. The next result, also significantly large, was due to implementation for

the display of sub-trees when expanded in the default window. Users mostly expected the

number of levels drawn to be increased automatically on expansion of a sub-tree; however

the original implementation hides all nodes beyond the current limit for levels drawn to the

screen, even for sub-trees expanded beyond this point.

135



Structured usability evaluation of visualisation prototypes

T3-2D: retrieving additional information on data objects Users were required to

determine if a specified set of previously identified nodes had synonyms. The simplest

method for completing this task is to display textual detail for each component. Comple-

tion times for all users for this task were greater than MTC. This highlighted a problem

with presentation of textual information on components: the (component detail) dialog

boxes originally listed only component properties with non-empty values. Users therefore

had difficulty determining whether values existed for component properties but were not

available, or if these values were null, or the attributes in question were defined for the data

nodes. Users varied between searching further for the information required and/or asking

whether values for attributes existed or could be retrieved using alternative functionality.

T7-2D: search for and highlight component(s) of interest The optimal solution to

this task is to perform a search on the component name. One user took almost four times

the MTC. Expecting search results to be non-volatile, the search dialog was closed before

recording the results, repainting the graph and clearing out search hits, so that the task had

to be repeated.

Two other users recorded more than double the MTC. Both users first made an unsuc-

cessful attempt to identify the components by visually scanning the graph before attempting

a text search to highlight the components required.

T1-3D: loading multiple ontologies into 3D browser T1-3D required four ontologies

to be loaded into the 3D window. One user took four times the MTC to complete this task

and a second user took almost double the MTC. Each of these users loaded the data sets

individually even though the open file dialog in 3D allows multiple selection; this highlights a

problem with making users aware of the functionality available (the 2D browser only allows

single selection because graphs are loaded in separate frames). It should be noted that the

longest time recorded was also due to the user examining each graph after loading; this user

spent a significant amount of time exploring the visualisations generated and functionality

available, taking longer on average than most users to perform most tasks, but with the

second highest mean ranking for usability.

T2-3D: loading and unloading ontologies One user overlooked this task, but all others

took significantly longer to perform the task than was expected mainly because of differ-

ences in implementation in the two browsers. Users expected context (popup) menus to

be provided as for the 2D browser. However because all three mouse buttons are used for

navigation in 3D, popup menus are not available.

A second problem was difficulty selecting the graph to be unloaded. It was not imme-

diately obvious that selecting the root node was necessary to select a tree. Further, some

users recorded difficulty selecting the nodes representing roots of some graphs.

A third factor was that the last tree loaded could not be seen from the default viewpoint;
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users were required to zoom, translate or rotate the visualisation to bring this graph into the

viewing area. Unfamiliarity with the navigation controls contributed to an increase in task

completion time. Also, most users expected the stages to be (re)ordered by stage number

and were therefore not sure whether the load had been successful or not, especially because

the new graph loaded was not immediately visible.

The largest task completion time was 8.6 times that of the MTC. This anomaly was

due mostly to an unexplained increase in system response time and poor O/S response that

might have been due to a network slowdown.

User task completion times significantly lower than MTC

T6-2D: locating a specified component and determining lineage T6-2D was ex-

pected to have a large completion time; it was necessary to identify a specified component

and its sub-parts, and retrieve additional detail on each. The task was complicated by high

occlusion in the ROI at default zoom. Users however performed this task significantly faster

than expected by making use of functionality for zooming into ROIs.

T8-2D and T3-3D: creating groups T8-2D and T3-3D, involving the creation of new

groups were expected to have large completion times, especially because the functionality

available for editing the graph structures was not very well developed. Learnability of the

system was demonstrated by an average decrease of 56.54% in task completion times when

this exercise was repeated for the 3D browser, compared to the expected 21% decrease (see

figure 7.16). Users also found it easier to identify nodes of interest in the 3D browser using

the visual structures, allowing more intuitive creation of groups.

Figure 7.16. The broken lines across the graph rep-
resent MTC for each of tasks T8-2D and T3-3D, cre-
ating groups in 2D and 3D respectively. All users took
less than the MTC when the task was repeated in
3D, with most users taking significantly shorter than
MTC. The difference between MTC and actual com-
pletion times was smaller for the 2D browser, which
had two users exceeding MTC.

T9-2D and T10-2D: working with a large data set in 2D Tasks T9-2D and T10-2D

required analysis using TS26 which contains 1748 components (almost 30 and 10 times more

than TS11 and TS12 respectively). Drawing all nodes, links and labels to the screen resulted

in poor system response (see also figures 7.2 and 7.3). However all users completed T10-2D

in less than half the MTC. Learning may have contributed to this: both tasks required

searching for a specific component, then carrying out a task based on the properties of

the component of interest. The only significant contribution to delay completing these two

tasks, from user observation, was system response time.
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7.5 Discussion of evaluation findings

The results provided information that could be used to answer the questions posed at the

start of the evaluation, but also brought up several others that needed to be resolved in

order to determine what would be usable methods for the analysis required.

Users found overall that the visual overviews of the ontology data aided determination

of data structure, improving searching for data of interest and IR. Quantitative results were

supported by user comments during the evaluation and recorded on the post-evaluation

questionnaire, indicating advantages of the visual system over text-based data analysis.

Despite limited functionality for analysis in 3D and greater difficulty recorded in navigation,

the 3D browser was rated higher on average for usability than the 2D; the 3D visualisations

were described as more intuitive. The results are tempered, however, by the poor system

response exhibited in the 2D browser during analysis of the larger data sets. Users also

found the system fairly easy to learn, quickly identifying functionality required to carry out

tasks.

Restrictions in space in 2D mean that the 2D browser cannot satisfy requirements for

simultaneous analysis of multiple data sets (refer § 5.3); occlusion limits the amount of data

that can be displayed effectively. Only one data set is drawn in each 2D frame, allowing

(detailed) analysis of individual data sets in isolation. The main advantage in the extension

to 3D is the additional dimension that provides more space in which to contain and display

data, regardless of screen size, and bounded only by resources required to build objects in

the scene. Using 3D makes it possible to perform simultaneous, visual analysis of multiple

data sets, to retrieve relationships across different ontologies. Data encoding in the 3D

browser was also found to be more effective, making it easier to interpret data attributes

based on colour of nodes and links than in the 2D browser.

Significant increase in system response time with data load in the 2D browser constrained

the amount of data that could be drawn to the screen before interactivity became severely

limited. Data load had little effect on system response for the 3D browser; this factor may

have contributed to the higher usability rankings for 3D recorded during the evaluation.

Domain knowledge had significant influence on methods used for searching: biologists,

with prior information on data content, quickly formed effective mental models of data

structure that allowed intuitive use of the visualisations for locating data of interest. CS

users on the other hand were more dependent on the search dialog to locate nodes of interest,

performing what was in essence blind searching. These results are similar to those in [44],

who found that ability in interactive visualisation systems is dependent on interpretation of

data — the semantic models users form of data structure. [181] additionally observed that

users with high spatial awareness are able to navigate more effectively through visual struc-

tures, resulting in more intuitive analysis and IR. 3D may be used to provide an information

space that harnesses perceptual ability in humans to improve analysis; careful design that
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takes into account user backgrounds, knowledge and ability, mapped to design principles in

Human Factors and HCI should enable useful abstraction of especially large, complex data

sets [151], making it easier to become immersed in data, encouraging exploration and leading

to a better understanding of data structure. Research also supports evaluation findings that

the provision of additional cues, both graphical and textual, serve as an aid [39], especially

for users with little domain knowledge and who are more likely to encounter disorientation

while navigating through data, especially where they exhibit low spatial awareness [44].

The evaluation results provided justification for further development, especially for the

3D browser; the findings support research into spatial awareness and perception that record

increased ability of humans when performing visual data analysis. Development to improve

navigability in especially the 3D window is important to encourage data exploration, and

to provide greater support for locating and identifying data of interest and relationships

within data. [39] and [161] stress the importance of support for navigation through data,

in addition to development that matches user ability and work environments, to obtain

effective analysis.

Chapter 8 details improvements to the visualisation browsers as a result of the usability

evaluation described in this chapter, then presents design for new functionality, based on

further research into the effects of human perception and spatial awareness on the ability

to perform detailed analysis of especially large and/or complex data sets.
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Visual solutions for data analysis

The usability evaluation described in chapter 7 provided confirmation that the visualisation

browsers implement functionality that aids analysis of the anatomy ontology data under

study. There are, however, recognised limitations of the graphs used to visualise the data;

this chapter details changes and additions to functionality suggested by an analysis of the

evaluation findings. This leads to further development of the techniques described in chap-

ter 6 to satisfy more completely the requirements for data analysis and IR.

8.1 Changes to prototypes based on evaluation results

8.1.1 Graph attributes and layout

Data encoding

The DAGs currently use a single shape of fixed size to represent each data type. Even

though it is acknowledged that variation in shape and size of data objects would provide

more options for encoding data attributes only a limited set of options are made available.

An important design consideration was to use simple visual representations of the data to

minimise complexity and clutter in the graphs generated.

Contrary to all other users who found colour coding more effective in the 3D browser

one user who was colour-blind recorded difficulty distinguishing between some data elements

because of the colour combinations used. Added complexity due to depth aggravated this

problem during use of the 3D browser. Options for interactive modification or encoding of

data attributes using size and/or shape are being considered to help resolve this problem.

Current options provide an editable legend (in 3D) detailing colour used to encode data

properties (refer figure 6.26).

Expansion of nodes

The number of levels displayed in the 2D graphs can be interactively modified using a range

slider, from the minimum (of up to three) displayed when the data set is first loaded, to
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the maximum for each graph. Expanding any node in the graph continued to hide nodes

in its sub-tree beyond the current number of levels set to display. Users, however, expected

expansion of a sub-tree to increase the number of levels in the graph automatically, if this

was required to display the entire sub-tree of interest. Graph layout was modified to match

user expectation: expanding a node now alerts users and increases the number of levels in

the graph if necessary.

Ghosting

The original implementation (see figure 6.15) only faded out nodes when set to ghost out.

This function now also hides labels and links into or out of ghosted nodes, resulting in more

effective reduction in occlusion.

(a) The ROI drawn in figure 6.19(a), ex-
hibiting a large amount of occlusion

(b) Objects surrounding a node of interest
ghosted out to reduce occlusion in the ROI

Figure 8.1. Improved implementation for ghosting out of nodes; this now hides labels and links
into and out of nodes, in addition to drawing only the outline of ghosted nodes. The node of interest,
the inner ear is easily identified in figure 8.1(b).

Mapping between windows

The ZoomPane Mapping between the main window and the (modal) sub-window that

magnifies data sub-sets was improved by providing access to functions for editing nodes

extracted to the sub-window. Figures 6.17 and 8.3 show the two context menus used to edit

objects in the ZoomPane.

2D and 3D browsers Though base functionality implemented in the 2D and 3D browsers

is the same they are run as separate applications. Users suggested linking the two browsers,

to allow isolated analysis of a sub-set (from 3D to 2D) or to widen the scope of data analysis

(from 2D to 3D). The browsers now provide the option to switch directly between the two

views, maintaining the system state and graph structures already drawn to the screen, so

that continuous analysis can be performed from the alternative perspectives.

8.1.2 Supplementary textual detail

Component detail

The component detail dialog originally displayed only data attributes with non-empty val-

ues; users however had difficulty distinguishing between attributes not defined for an object
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and those with empty values. The dialog now lists all properties defined for each object

type, returning None or Not Available for attributes with null or empty values.

To enable annotation of data, user comments may now be attached to specified com-

ponents or user-created mappings between components. Comments may be saved with all

other ontology data to a system state (XML) file (a sample of which can be found in § A.3).

Data labels

Labelling of nodes in the graph alternates between displaying labels on the canvas and

popping up the label for each node as it receives the focus. Suggestions were made to pop

up labels even when node labels are displayed in the graph; some users felt this would help

to distinguish labels in areas with high occlusion, where they may be rendered illegible, or

for cases where labels run off the edge of the window.

Some users commented that hiding of all labels was not very useful as this made it

difficult to tell what the data represented. There are now two options for hiding labels —

ALL labels may still be hidden, or only selected labels are hidden. The latter is useful for

reducing occlusion in an ROI, while still providing enough information to easily identify

data nodes. Hidden labels are still popped up for the component with the focus.

Glossary

A glossary of terms was suggested to aid both computer scientists and biologists in verifying

the meanings of terms or functions. The help files which can be accessed from either browser

now provide brief descriptions of all functions implemented.

8.1.3 Editing data structure

Creation of Groups

Most users had difficulty locating the Create Groups function, which was initially placed

in the View menu. A Grouping sub-menu is now available from the Edit menu to map to

users’ semantic interpretation of this function; users expected to edit/create a group, not

simply view one. Functionality for editing and removing previously created groups has also

been implemented, accessible from this sub-menu.

Creation of a group node now requires users to set a primary parent; so that a print

name (fully qualified name) can be determined, necessary to map a (default) path to the

root of a graph. This allows automated retrieval and tracing of lineage through a single

ontology or across multiple data sets.

Existing nodes in the graph may be selected to form part of a group by entering node

IDs directly in the grouping dialog shown in figure 8.2, the preferred method for users with

a good knowledge of data content. The scrollable list available for selecting components to

form a group has been replaced by a drop-down list. Users had difficulty switching between
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multiple selection in the graph and the list; the latter required depressing the Control-key

to retain previous selections (following convention for multiple selection in lists for standard

GUIs), while this was not necessary in the graph. Although the drop-down list allows only

single item selection it does provide independent selection of nodes in the graph.

Figure 8.2. A custom dialog being used to edit
an existing group node. In edit mode the compo-
nent name and ID can no longer be changed (and
have been greyed out). Fields whose labels are
highlighted must be filled.

Users also requested more direct feedback (in the form of a list) on components selected

to form part of a group; highlighting in the DAG is not always easy to discern. Currently

this is provided by the list of node IDs in the grouping dialog.

In order to be able to work with only data of interest the need to suppress all nodes

outside groups, or view groups on their own was recognised. User-created groups may now

be redrawn in the ZoomPane shown in figure 8.3, allowing analysis in isolation.

Figure 8.3. Viewing the nodes that make up the user-created group shown in figure 6.29 in isolation
in a 2D window. One of the pop-up menus available for editing the data is displayed.

8.1.4 Search options

Widening search

To provide a larger number of options for IR the search dialog now provides the option to

widen search results on component name or print name to include matches for synonyms

and/or abbreviations. Additional matches are highlighted in the search dialog and encoded

in the graph using deep cyan.
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Figure 8.4. Additions to options for retrieving results in search dialog

Retrieving user comments

The option to search within user comments attached to nodes or to retrieve all nodes that

have been annotated has been implemented.

8.1.5 Navigation and exploration

Undo/history functions

To encourage exploration especially in the 3D browser where disorientation easily occurs, it

would be useful to be able to undo undesirable effects of actions. There is no history function

currently implemented for either browser, but the 2D browser provides the option to reset a

selection of nodes or a complete graph, removing all formatting applied to nodes and links.

The 3D browser makes use of in-built functionality in Java3D to allow the viewpoint to be

reset to the centre of the universe if users become lost in the 3D space.

The ability to save user sessions has been implemented, writing out a description of

each graph to a reloadable XML file (see § A.3). This allows incremental analysis to use

previously created markers employing annotation of nodes and user-created links, to aid

users in data exploration. A snapshot of the current view may also be saved to a JPEG

image.

8.2 Additional suggestions for changes to browsers

The following sub-sections discuss important suggestions for changes which have not yet been

fully implemented. These include those suggestions which cannot be implemented effectively

because of limitations in technology available or that would not provide advantages over

solutions already available.
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Overview map

Because the overview is lost in the 2D browser when the graph is zoomed beyond the

default (100%), an overview map would help to maintain a sense of location within the data

structure. This would be even more useful in 3D where disorientation easily occurs while

navigating through the data structure.

The ZoomPane could be used to hold such an overview. However being smaller than

the main window, displaying all nodes in any but the smallest data sets would result in

severe occlusion; folding away nodes to obtain data abstraction would defeat the purpose

of the overview. Alternative methods for abstraction are required to provide a solution to

this problem.

Re-ordering of nodes and graphs

Graphs were originally ordered by their load time in the 3D window. For tempo-spatial data

such as the EMAP ontologies this may make it difficult for users to locate data of interest:

user expectation was that graphs would be (re)ordered if required, to provide a timeline

through the data. Alternatively, the ability to reposition graphs interactively would give

users more control over visual structures in the 3D window, increase confidence in analysis

results and result in visualisations that more closely match users’ mental models of data

structure. Interactive repositioning of nodes (in both 2D and 3D) was also suggested as an

option that might be useful in reducing occlusion.

These suggestions however present two new problems: links drawn between graphs in 3D

would have to be broken before re-ordering the graphs. A second more significant problem is

that independent reordering of structures in the 3D window is compounded by challenges in

navigation; it is difficult to regain an overall structure that still allows simple identification

and mapping of relationships between data sets.

It should be noted that for multiple loads of data sets, trees are ordered by treeID before

being drawn to the window, allowing a timeline to be obtained for data belonging to a single

organism. Further, nodes in each sub-tree and level in a tree are now ordered by component

ID, to ensure consistent layout of graphs (for related data sets).

Navigation controls

A final request was for the provision of on-screen navigation controls for the 3D browser,

as a potential option for more intuitive navigation than (the default) using only the mouse

and keyboard. This would however require a significant amount of design and development

and is only being considered as an extension to the current browsers.
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8.3 Solutions for open analysis issues

The 2D browser builds on proven methods for visual analysis, using node-link graphs to

provide a spatial representation of the hierarchically structured biological ontology data.

The graphs provide overviews of the text indices that aid analysis by helping users construct

useful mental models of data structure; increased ability to perform analysis was confirmed

by the usability evaluation performed (refer § 7.4 and § 7.5). To fully satisfy requirements

for data analysis and IR additional functionality was required for intuitive identification of

data of interest and relationships between data sets. This project developed a solution that

layers the individual ontology graphs in independent 2D planes in 3D space (as described

in § 6.7), reserving the third dimension for holding relationships that cross data sets (refer

figures 6.27 and 6.30). The visual structures that result allow both analysis of individual

trees in isolation and comparison between multiple data sets.

Simply being able to draw relationships using the extra space provided by 3D is not in

itself enough to satisfy data analysis requirements; it is necessary also to be able to retrieve

different types of equivalence between data element pairs across multiple data sets. Spatial

and perceptual cues are required that improve the ability to identify locations in which

relationships of interest may be found, and also what types of relationships are stored in the

data. The rest of this section describes improvements to the browsers, based on a review of

users’ information requirements. Further research into the influence of human perceptual

and cognitive ability on data analysis also fed into the development of the solutions to the

limitations of current visual analysis.

8.3.1 Querying with a direct-manipulation interface

Marked differences in search strategies were identified for users, based mainly on background

and domain knowledge (refer § 7.5); identifying cues for querying the data sets most effec-

tive for each of the two main target user groups is necessary to maximise the potential of

spatial analysis. Commonly used visual cues include (semantically meaningful) landmarks;

[150, 181] note usefulness of landmarks for navigation through data. Interactive generation

of such markers would allow the browsers to incorporate domain knowledge of different

users in building structures for continuous, incremental analysis, aiding the identification

and retrieval of data of interest. Placing markers in data structures helps to reduce disori-

entation, providing maps that increase ability to navigate effectively through data [44, 181].

Supporting textual detail is also important in confirming results of visual analysis; spatial

representation of data is not as effective in isolation [51].

Different types of equivalence have been identified for the EMAP and XSPAN data (refer

§ 5.2 and figure 5.4), describing among others, mappings based on similarity between cell

and tissue types, homology (common lineage for components in different organisms), and

analogy (components in different organisms with similar function). A graphical interface has

been created that simplifies formulation of simple AND and OR queries to retrieve defined
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relationship types. The dialog allows creation of new mappings between any node pair drawn

in the 3D browser, and loading of existing mappings from a text or XML file (file structure

is described in § A.2). Directional mappings are stored for each node pair, creating a lookup

table that searches for mappings based on component IDs. (Note that mappings between

component pairs belonging to different ontologies, though contained in Relationship objects

are stored and handled separately from the part-of Relationships between components in

the AnatomyOntology used to draw each graph).

Figure 8.5 shows mappings drawn in the space between three ontologies, using the custom

dialog described. The query retrieves mappings stored that match the three types selected

in the dialog. Search results may be restricted by selecting (text descriptions of) mappings

(defined for each graph loaded) in the second dialog and moving them to the main query

dialog (otherwise all mappings stored that meet search criteria will be drawn). § 8.3.2

describes options provided for visual presentation of search results.

8.3.2 Mapping equivalence across multiple ontologies

The simple query interface described provides improved retrieval and display of relationships

between component pairs. The default, illustrated in figure 8.5, draws colour-coded links

between node pairs visible in the browser that satisfy search criteria.

Figure 8.5. The dialog shown at the bottom of the window is used to build AND and OR queries
that retrieve defined relationships across different data sets. Colour-coded links are then drawn
between node pairs that satisfy search criteria. A sub-window of the mappings dialog is shown,
listing mappings defined for nodes in each graph.
One link is highlighted (in red) by clicking in the graph. Additional textual detail may be displayed
by double-clicking on any link or choosing the appropriate item from the View menu.
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To satisfy requests for alternatives to drawing physical links between nodes users may

now choose to draw a (colour-coded) wireframe round each node for which a valid mapping

is found, as illustrated in figure 8.6. Limiting the number of new objects drawn to the screen

removes distractions and allows greater focus on ROIs, especially useful for cases where a

large number of mappings are stored. This also has the added advantage of preventing

potential crossing of links drawn between trees. Functionality is also provided that allows

uni- or bi-directional links into or out of a single node of interest to be drawn. To retrieve

textual detail on each mapping identified the link of interest or either of its end nodes may

be selected and the appropriate option chosen from the View menu.

Figure 8.6. An alternative to links between nodes highlights each component for which a relation-
ship is defined that satisfies search criteria using colour-coded wireframes. The snapshot shows the
results of a query identical to that for figure 8.5, but suppresses links between nodes, replacing them
with the wireframes shown.

8.3.3 Tracing lineage within and across ontologies

§ 6.7.5 demonstrates the first attempt at a spatial representation of lineage during develop-

ment of a single organism; this method required users to identify components in successive

ontologies through which a lineage trace was to be drawn. Further development was neces-

sary to retrieve lineage automatically: this is now achieved by transparent searching through

all ontologies loaded in the 3D window, to retrieve print or fully qualified names matching

that of a component of interest for temporal data such as the developmental stages in an

organism. The system then builds a LineagePath by sorting matches based on time of

occurrence of each component. A polyline is drawn through the component list, tracing

lineage for the component of interest through the ontologies displayed, as figure 8.7 illus-

trates. The list of components through which a LineagePath is traced can be brought up

by double-clicking on any section of the path drawn.
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Figure 8.7. The viewpoint is moved above the visual structure to provide an overview of the lineage
paths drawn through successive nodes for the five anatomy ontologies loaded in the 3D window. A
single trace is highlighted and the IDs of the nodes through which it passes are displayed in a custom
dialog.

8.4 Assessment of visualisation solutions

The advantages in a visual overview for developing effective mental models of data structure

have been previously discussed. This thesis looks at using node-link graphs to provide

overviews of the hierarchically structured ontologies studied. A limitation of this approach

is the poor use of space inherent in hierarchical graph visualisation. This contributes to

increasing occlusion with data set size, resulting in a reduction in usability of the overviews

generated. Data abstraction that hides or fades out data of lower relevance is used to

manage the occlusion that occurs, followed by different options for detailed analysis of ROIs,

described in detail for the 2D browser in § 6.5.4. An extension to 3D provides additional

space for drawing data, presenting further options for resolving limited analysis due to space

restrictions in 2D (refer §6.7.5 and §6.7.6).

Research and anecdotal evidence both point to increased perceptual (over cognitive)

ability in humans for especially complex data analysis. There are, however, significant vari-

ations in human spatial awareness and ability, with an influence on ease of use of especially

3D visualisations, where disorientation during navigation and exploration often occurs. Peo-

ple with high spatial ability quickly identify solutions to problems presented in visual form,

easily constructing effective mental maps of data structure that improve ability to decode

and retrieve information. Placing markers in data provides cues for orienting users, helping

to create maps of data that can be used to build an understanding of its structure. This is

achieved in the visualisations generated primarily by using colour to encode data attributes.

Annotation in data may be used to point users to ROIs, and provide suggestions for deter-

mining relationships within the data and links to external sources with more information,

as suggested in [15].
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A (second) major usability evaluation of the visualisation browsers was required to

assess the potential for improved analysis after the changes made to the browsers. This

was to confirm whether solutions had been developed to meet the requirements identified

for analysis of the anatomy ontology data being studied, and that could be extended to

analysis of other similar data. This evaluation would also look at identifying visual cues

that would help to provide intuitive and effective analysis and IR for each target user group.

Chapter 9 presents a final evaluation of the browsers, to measure usability of the solutions

provided for data analysis. The evaluation was also used to provide answers to outstanding

issues for the (visual) analysis required.
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Chapter 9

Final evaluation of visual analysis

solutions

9.1 Major questions addressed

Evaluations of the visualisation prototypes developed were carried out to determine if any

advantages for analysis and IR are provided by the graphical representations of the ontologies

over the text indices used in the EMAP browsers. The evaluations were also used to elicit

suggestions for methods that would improve analysis currently available using the working

EMAP browsers. A number of factors were expected to influence users’ responses, including

independent factors such as prior use of visual and other types of analysis tools. The

metaphors on which the visual structures generated for the prototypes were built and cues

available for analysis were also expected to affect usability of the visualisations. It was also

important to assess reusability of the browsers; whether it would be possible to extend the

functionality provided to analysis of other ontology data.

The analysis of the first set of evaluation results raised a number of issues on the ca-

pability of humans for especially complex data analysis, and the influence of perception on

effectiveness of analysis. The following points look at specific questions this second struc-

tured evaluation was to address, in addition to assessing overall usability of the prototypes

developed.

9.1.1 Perceptual cues provided

1. The first (structured) evaluation identified distinct differences in search strategies based

on background and domain knowledge.

Biologists (with domain knowledge) made better use of the visual structures - appearing

to obtain quickly a good understanding of data structure and easily identifying

paths to follow to locate specific components. Good support for navigation through
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the data would be especially beneficial for data querying and IR for this target

population.

Computer scientists (with little to no prior knowledge of data content) were more

reliant on the search dialog, performing what can be described as blind searching.

Ability to highlight and locate search matches from within the dialog should be

especially useful for this target group. Colour or shape encoding of results based on

search criteria and/or relevance of results should also aid IR.

What kinds of (visual) cues could be provided to users that would increase intuitiveness

in querying and improve IR? How useful would these cues be to each of the two main (and

fairly distinct) target user groups? Would these cues also be useful to other users (falling

outside main target) — how can the visualisation browsers be extended for more general

use? Semantic searching, on synonyms and abbreviations for instance, would serve as

an IR aid for all users. Employed with some form of encoding (such as colour or shape)

that differentiates search hits from potential matches, this would also allow incremental

searching, ranking results based on degree of match, useful for retrieving similarity in

data especially for empty result sets.

2. Are cues currently provided in the browser useful for IR? Are users able to recognise

and correctly interpret these cues? Which of these are useful for which aspects of data

analysis? Do those visual cues provided ease identification of (potential) data of interest?

Or do they only confirm users’ understanding of data? Is it possible to quantify usefulness

of perceptual cues provided?

3. Are visual cues alone able to provide useful analysis, especially when searching for specific

data, or is (supplementary) textual detail required for correct interpretation of results?

How much and what kind of textual information is required for effective use of the

visualisations?

4. How meaningful are attributes of the physical objects, such as shape and colour, to users?

Are users able to interpret data encoding intuitively and correctly?

Simplicity in encoding was chosen over a large number of options for differentiating data

attributes. Does this detract from usability of the visualisations, or do the restricted set

of options result in less complex structures that are easier to understand, improving data

interpretation? Does the small number of options for encoding limit or improve analysis

of ROIs within the context of the overview?

5. How easily are users able to locate specified components based on paths to root alone?

How does this compare with locating nodes using the search dialog?

6. Do users remember nodes visited during visual exploration of the data structure? Does

ability to locate data of interest increase with repeated searching using the visual struc-

tures alone? Are users able to identify and/or place markers in the data that aid location

of ROIs and provide the potential for continuous, incremental analysis? What would

serve as effective markers to the distinct user groups? Are users able to build a stable
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and correct mental model of data structure during exploration and navigation through

the data?

7. Does spatial awareness influence ability to navigate through and explore visual represen-

tations of data? How does this map to utility of inherently complex 3D visualisations?

8. How well are users able to remember visual structures analysed? Are users able to

recall location of objects relative to others? Does spatial awareness map to recall and

understanding of semantic content (of data)?

9.1.2 Comparison of the browsers

1. Would it be possible to use 2D alone for the analysis required? What advantages does

the 2D browser provide over the 3D?

2. Apart from providing more space in which to display data, what advantages does the 3D

browser provide over the 2D?

3. How does functionality provided for detailed analysis of ROIs compensate for high occlu-

sion in the overview? Are the data overviews still useful where occlusion is a significant

problem, in isolation and also when compared to use of the text indices?

9.1.3 Additional hypothesis

A final hypothesis was to be tested during this evaluation, in addition to the two presented

in § 7.1.1 for the first structured evaluation:

H0C Spatial awareness/ability has no significant influence on use of the visualisation

browsers.

H1C Ease of navigation and exploration through especially the 3D browser will map to

spatial awareness/ability, with an influence on effectiveness of data analysis and IR.

9.2 Evaluation design

9.2.1 Preparation of evaluation documents

The documents used for this evaluation were based on those for the first structured eval-

uation (refer § 7.1.2 and appendix C). The user instruction sheet and consent form was

modified to reflect differences in the procedure (see § E.1). The background questionnaire

administered to users at the start of the evaluation (refer § C.3.1) was not edited. Ques-

tions 16 and 17 on the use of the EMAP browsers were, however, added (as part 9) to the

post-evaluation questionnaire (see § E.4), to capture changes in use between the two evalua-

tions. The post-evaluation questionnaire, though derived from the first used, has significant

differences in parts 4, 6 and 7, with more detailed and focused questions to provide answers

for the issues raised in § 9.1.

The task scenario sheets (see § E.3) comprise three main sections, comparing similar

tasks performed using the EMAP text indices (shown in figure 5.1), and the 2D and the 3D
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browsers developed as part of this project. Additionally, functionality specifically imple-

mented to provide solutions for data analysis and IR requirements for EMAP and XSPAN

in each of the visualisation browsers was tested.

Exercise sheets for simple tests of spatial ability/awareness (refer § E.5) were also pre-

pared, the first to test spatial memory, based on the visualisations examined during the

evaluation. The last two exercises required users to answer questions based on rotation or

orientation of visual structures. It should be noted that the spatial ability exercises are very

simple, using sample tests typically employed in psychometric evaluations).

9.2.2 Test run of evaluation procedure

A test run through the task scenarios was performed, to ensure that users would be able

to carry out the tasks and evaluate the new functionality implemented. Modifications were

made to wording and structure of the task sheets and the post-evaluation questionnaire

based on the results of the run, to improve their presentation.

9.3 Implementation of evaluation procedure

9.3.1 User backgrounds

Five users took part in this evaluation: two from MACS and three from the MRC. Four

users were classed as biologists, and the last as CS. Two were female and three male, and

all users were between 25 and 35 years old. Four out of the five users took part in the

first structured evaluation, and the last took part in heuristic evaluations prior to the first

structured evaluation.

It should be noted that the user IDs used to report the results of this evaluation do not

correspond to those in the first structured evaluation. Because of the restricted number of

users beyond reporting some of the results with an indication of research backgrounds no

comparison is made between users based on background.

Experience using EMAP browsers

Figure 9.1 illustrates use of the working EMAP browsers for the participants. One user had

never made use of the browsers, but all others had used the browsers for over a year, from

occasional to daily use.

9.3.2 Evaluation procedure

This followed a similar procedure to that for the previous structured evaluation (refer

§ 7.3.2). The evaluation process started with a brief explanation of the reasons for car-

rying out the evaluation, after which each user filled out the consent and instruction form.

Only users who had not taken part in the previous structured evaluation filled in the pre-

evaluation questionnaire.
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Figure 9.1. Frequency and length of use of the working EMAP browsers

A brief overview of the visualisation browsers was given, and users were provided with a

quick guide - a single sheet summarising functionality available for analysis using the visu-

alisation browsers (see § E.2). Users then carried out the tasks for the 2D and 3D browsers,

recording time to complete each task in seconds using a stop-watch. The visualisation

browsers additionally automatically logged and time-stamped functions called.

The exercise testing spatial memory (see exercise 1 in § E.5) was then performed: users

were asked to draw their understanding and/or recollection of the structure of the visuali-

sations in 2D and 3D showing the group created.

This was followed by the post-evaluation questionnaire and the SUS. The last two exer-

cises measuring spatial awareness (refer § E.5) were then performed. The purpose of these

exercises were explained to users: to obtain some measure of their general approach to visual

analysis. Users were instructed to skip questions they were unable to answer, and the time

to complete each of the two tests was recorded.

A short debrief allowed users to provide any additional feedback and/or obtain more

detailed answers to questions asked during the evaluation. Users were then thanked for

their participation.

9.4 Analysis of results

Because this is an even smaller group than was used for the previous evaluations the only

statistical test performed is the calculation of means within a 95% CI for the SUS and the

post-evaluation questionnaires. To allow comparison in one direction all responses to items

in the post-evaluation questionnaire were (re)ordered to place all negative poles on the left

with a value 1, and positive on the right with a value 9. Comparison between the text

indices and the visualisations placed preference for the indices on the left, at 1 and the

visualisations on the right at 9. Comparison between 2D and 3D placed 2D on the left and

3D on the right. The original response sheets were not edited but graphs were drawn to

reflect this order.

Conclusions about usability of the browsers in general and usefulness of functions imple-

mented are largely based on user (re)actions recorded during the evaluation and comments

made during and at the end of the evaluation process, supported by the quantitative infor-
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mation obtained. It is acknowledged that the results are focused on a very small number

of (potential) users; a larger number of participants would allow more statistically signifi-

cant conclusions to be drawn about general usability of the visualisation browsers. However

due to restrictions in availability of typical target users, the domain experts and other re-

searchers who work with the bioinformatics data being studied, this analysis will reflect

those observations made, to allow a restricted set of conclusions to be drawn that could lead

to more focused research on issues of interest brought up as a result of the evaluation.

It should be noted that the spatial ability exercises administered are not sufficient in

themselves to provide a complete assessment of users’ spatial ability or awareness. The

results obtained are only compared with user satisfaction with the visualisations generated

and ease of use recorded for the visualisation browsers, to see if there is any correlation

between performance in the exercises and use of the visualisation browsers. This information

is only expected to provide an indication of spatial ability and awareness; results obtained

should point to areas in which further research into spatial ability should focus, in order to

obtain more concrete conclusions.

9.4.1 Task completion times

Task times recorded for the main evaluation were disregarded; task completion times for the

interactive visualisations are dependent on system response, which may vary significantly

with computing resources. With only five users performing the evaluation on three different

platforms with large variation in specifications the influence of system response on task

completion time was significant. Details on specifications of computers used to carry out

the evaluation can be found in § F.1.

Task completion times for the spatial ability exercises were, however, combined with the

scores obtained to measure performance.

9.4.2 SUS Scores

The SUS scores are shown in figure 9.2, with a mean score of 65.25, within a 95% CI of

44.04 and 86.52. The highest score recorded was 82.5 and the lowest 37.5.

Figure 9.2. SUS scores for participants, with a mean of 65.25.
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9.4.3 General satisfaction ratings

Measuring on a Likert scale from 1–9, and disregarding items that were scored as N/A, the

overall mean for rankings measuring usability and satisfaction with the browsers was 6.37,

with limits for the 95% CI at 5.35 and 7.40. Figure 9.3 shows overall mean satisfaction

rating for each user: three lie above the mean and two below. All values fall above the

mid-point 5.

Figure 9.3. Overall mean satisfaction rating for each user for the visualisation browsers

Rankings for items measuring overall reactions to the system (part 3 in the post-evaluation

questionnaire in § E.4) recorded a mean of 5.417 (with 95% CI between 3.37 and 7.47).

The item with the highest ranking is the system providing adequate power to users (7.5),

followed by being stimulating (6.5). The item ranked the lowest was for the system being

frustrating (3).

Overall means for each of the aspects of usability tested are given below:
Data Visualisation & Screen: 6.64 [95% CI: 5.71–7.57]
Terminology & System Information: 6.60 [95% CI: 5.25–7.95]
Learning: 6.15 [95% CI: 5.13-7.17]
System Capabilities: 6.41 [95% CI: 3.94–8.88]

Graphs detailing results for individual items on the questionnaire can be found in ap-

pendix F. The following sections provide more detail that may be used to answer the

questions posed in § 9.1.

9.4.4 Assessment of the 2D browser

Overall mean ranking for ability to use the 2D browser was 6.81, with a 95% CI between

5.57 and 8.04. Figure 9.4 lists the eight items used to measure usability of each of the

visualisation browsers, and shows mean ranking for each item for the 2D browser.

Understanding of data structure was ranked highest at 8.20, followed by system response

at 8.00; this evaluation of the 2D browser worked with only relatively small data sets

containing up to 200 nodes (compare with the previous evaluation — refer § 7.4.3 and § 7.5

— where very poor response hampered usability working with data sets containing almost

2000 nodes). Navigation through the data was also ranked relatively high at 7.2. Usefulness

of visual cues for querying recorded the lowest score of 5.25.
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1. Navigation through data
2. Location of specific information required
3. Understanding of data structure
4. Understanding of data encoding
5. Querying data for information required
6. Understanding of visual query results
7. Usefulness of visual cues provided for querying
8. System response

Figure 9.4. User rankings for ability to make use of 2D browser, focusing on the eight attributes
listed. The broken line shows the mean for all items.

9.4.5 Assessment of the 3D browser

Figure 9.5 illustrates participants’ ability to make use of the 3D browser, based on the items

listed in figure 9.4. Overall mean ranking for the 3D browser was 5.71, with 95% CI between

4.41 and 7.02. Larger variation is recorded in user responses than for the 2D browser.

Figure 9.5. User rankings for ability to make use of 3D browser, based on the list in figure 9.4

As for the 2D browser, understanding of data structure and system response scored the

two highest rankings at 8.00 and 6.80 respectively. One item fell below the mid-point

— navigation through the data, at 3.80. Querying of data for information required and

usefulness of visual cues for querying both fell on the mid-point (the two lowest rankings

for the 2D browser).

9.4.6 Comparison between the 2D and 3D browsers

Although there were acknowledged advantages in the 3D browser the 2D scored higher

overall rankings for learning and actual ability to use (refer § 9.4.4 and§ 9.4.5). The main

reason for this, from user observation and comments made, is labelling of data; due to

memory limitations in Java3D (discussed in § 9.6.1) only component IDs are used to label

nodes in 3D. This results in a higher cognitive burden on users as more effort is required to

remember which ID represents a specific node — one user commented that not thinking in

numbers made the labels difficult to relate to. The visual structures are unable to provide

enough information on their own to determine with certainty which anatomical components

specific nodes represent; a second step was often required to retrieve further textual detail

(using the component detail dialog).
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User tasks required locating specific nodes visually so that inherent complexity in 3D

navigation was also a significant factor in assessing usability. For two users poor system

response due to limited computing resources made navigation in the 3D browsers especially

difficult, further reducing usability.

Figure 9.6 compares mean rankings for ability to make use of the two visualisation

browsers based on the items listed in figure 9.4, detailing also, user backgrounds.

Figure 9.6. Comparison of ability to use 2D and 3D browsers, based on the items listed in figure 9.4.
The chart also indicates each user’s background.
(Note that order of users on the categorical axis does not follow order of user IDs in other figures.)

The main challenges in 2D are restrictions in space and the poor use of screen real estate

common to hierarchical graphs, limiting the amount of data that can be displayed effectively

in each 2D window. There are, however, distinct advantages in 2D, made apparent in this

evaluation; the simpler representation of data structures makes the 2D graphs useful for

analysis of individual data sets. Ability to trace paths easily within the data was found to

be especially useful in locating specific nodes. Measuring actual ability to make use of each

browser users recorded higher ability to recognise functionality available in 2D and make

use of it for the analysis required.

However the approach used is not able to provide solutions for all user requirements

using 2D alone. The extra space available in 3D is necessary to visualise multiple data

sets simultaneously, to allow direct comparison between data and provide graphical support

for the identification and display of relationships that cross data sets. This is confirmed

with a direct comparison between the 2D and 3D browsers, which shows a leaning towards

preference for use of the 3D browser, illustrated in figure 9.7: the mean, represented by the

broken line, lies at 5.60, with 95% CI between 4.62 and 6.58. (Numbering for items on the

vertical axis correspond to those in the post-evaluation questionnaire which can be found

in § E.4, described also in table 9.1).

Obvious advantages in 3D include tracing of lineage across stages of development (refer

figures 8.7 and 9.9), which recorded the highest mark at 8.4. Users also indicated a preference

for grouping in 3D — the next highest score was 7.3, for usefulness for highlighting groups,

and support for creating and displaying groups had a mean of 6.8. (A graphical comparison

of the display of a user-created group in the two visualisation browsers can be found in
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Figure 9.7. Comparison of the 2D to the 3D browser shows a preference for the 3D; the mean
shown by the broken line is 5.60, measured along the Likert scale from 1–9. (Items used to compare
the browsers are listed in table 9.1.)

Table 9.1. List of items used to compare 2D and 3D browsers

Item Rank

4.9 Ease following ordering of components 3.6
4.15 Intuitiveness of navigation through the data structures 5.4
4.27 Usefulness for tracing lineage 8.4
4.29 Usefulness for highlighting groups 7.3
6.8 Ease of learning of the functions available 3.4
6.30 Querying 4.8
7.9 Navigation through visual structures 4.8
7.10 Data analysis 5.2
7.11 Ability of visualisations to provide an overview of data structure 6.6
7.12 Usefulness of visual structures for analysis 4.4
7.13 Locating data of interest 4.0
7.14 Identifying relationships in data 7.2
7.15 Support for creating and displaying groups 6.8
7.16 Functionality for tracing lineage 7.2

figure 6.29).

Users found ordering of components easier to follow in 2D, with a ranking of 3.6, again

explained by the provision of more meaningful labels. The 2D browser was also found to

be more intuitive when it came to learning how to use functions at 3.8. Locating data of

interest was the next item found more useful in 2D, with a mean ranking of 4.

9.4.7 Comparison of the visualisation browsers to the EMAP indices

Figures 9.8 and 9.9 compare use of the EMAP text indices to the visualisation browsers.

The chart indicates higher usability of the visual structures for the tasks carried out, with

a mean of 6.73 within a 95% CI of 5.87 and 7.58.

All users found the visualisations easier to use than the text indices for tracing lineage,

giving it the highest score possible of 9. Grouping of data was the next highest with a mean

score of 8.4, followed by ease of use of the data structure with a mean of 8. User comments

recorded in the post-evaluation questionnaire also recommend the visualisation browsers as

a solution to requirements for graphical support for grouping in EMAP. The only item for

which the text indices were found easier to use was search and query, with a mean of 4.4.
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Item Rank

4.3 Use of data structure 8.0
4.4 Understanding of data 5.8
4.5 Search and query 4.4
4.6 Tracing lineage 9.0
4.7 Grouping of data 8.4
4.14 Intuitiveness of navigation 6.2
4.26 Determination of lineage 7.8
6.28 Intuitiveness of querying 6.6
6.29 Usefulness of querying 6.0
7.6 Ease of use 5.4
7.7 Simplified data analysis 7.3
7.8 Intuitiveness 6.0

Figure 9.8. Comparison of the EMAP text indices to the visualisation browsers shows higher
usability of the visualisations for the analysis required. (Numbering for items on the vertical axis
correspond to those in the post-evaluation questionnaire which can be found in § E.4, described also
in the table on the right.)

Figure 9.9. The image shows the steps required to carry out T3-2D and T2-3D on the Task Scenario
Sheets, to determine the stages through which the component neural ectoderm.future brain persists.
Multiple stages must be searched in the text indices to solve this problem. The same applies for the
2D browser, but this has the advantage that supplementary textual detail will reveal this information
once the first instance of the component is found. The 3D browser provides the most intuitive and
informative solution to this problem, by providing a physical trace showing lineage across multiple
stages.
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9.4.8 Spatial ability exercises

Exercise 1

The first exercise asked participants to use a simple drawing to show their understanding

and/or recollection of creating a group in 2D and viewing the same group in 3D. This was

used to test memorability of the visual structures, and also determine if users recognised

any advantages in display of groups in 3D. Figures 9.10, 9.11 and 9.12 show a sample of

the results obtained.

Figure 9.10. The 2D structure on the left, drawn using the default LR layout, contains a label,
indicating the importance of labels in the graph. The 3D representation on the right however makes
no use of labels, highlighting the difficulty users had in interpreting labels in 3D. The 3D structure
is drawn using the TD layout, the only option available in 3D.

Figure 9.11. The 2D structure on the left shows the crossing of nodes that occurs when the group
is created. The drawing on the right shows the advantage in removing the group created to a plane
parallel to that holding the DAG. The impression of perspective can also be seen in the 3D structure.

Figure 9.12. The 3D structure, using a broken line to show continuity in the visualisation. The
smaller section on the right also uses a broken line to show the links drawn to the group node from
the main DAG.
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Exercises 2 & 3

Exercise 2 tested spatial orientation of objects, and exercise 3 required users to determine

the next in a sequence that transformed, rotated and/or translated objects based on a logical

pattern. (Instructions for all three exercises can be found in § E.5.)

Three users answered all questions correctly and two answered one out of nine incorrectly

in exercise 2. One user answered all questions correctly in exercise 3, three answered 1 and

the last user 3 questions incorrectly. Time to complete each exercise varied from more than

2 to almost 6 minutes. The results obtained are presented with a description of the results

of the memory exercise in table 9.2.

Table 9.2. Results for the spatial awareness / ability exercises. Scores are recorded as percentage
of number of correct questions out of the total posed, and completion time is shown in minutes.

Memory exercise Exercise 2 Exercise 3

ID 2D 3D
Score
(%)

Time
(min)

Score
(%)

Time
(min)

01 detailed representation of
DAG in 2D showing group
and highlighting crossing
of links that resulted

vertical layout illustrating
effect of perspective
projection; group drawn
extending out from main
graph

100 2:19 87.5 2:17

02 distinct DAGS drawn using
vertical layout; groups
drawn separately using
broken lines to show links
to group node

drawn as for 2D but with
broken line showing
continuity between DAGs;
group drawn as for 2D

100 5:51 87.5 3:56

03 horizontal layout drawn,
labelling provided but
group not shown

vertical layout drawn
without labels, no group
shown (user was not able
to view group in 3D)

88.9 3:25 100 5:00

04 graph drawn with
horizontal orientation,
using broken lines to show
connections between group

-
(user was not able to view
group in 3D)

100 4:02 87.5 4:35

05 - - 88.9 2:19 62.5 2:33

(user unable to draw visual structures from memory)

9.5 Discussion of evaluation findings

9.5.1 Understanding of data structure

Users generally recorded obtaining a good understanding of data structure using the visuali-

sation browsers, confirming findings in research of one of the main advantages in visualising

data. This was reinforced by high usability recorded for tracing lineage (refer figure 8.7)

and creation and display of groups using the visual structures (refer figure 6.29); the visu-

alisations provided a clear advantage in graphical support for both options.

The tasks carried out mostly required users to search through the text indices and
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the visual structures to locate specific nodes. Good support for what is also inherently

simpler navigation in 2D aided visual exploration of the data, allowing intuitive formation of

mental models of data structure; users commented on usefulness of functionality that allows

highlighting of paths in a single tree in the 2D browser. Semantically meaningful labels in

2D also served as a navigation aid; users were better able to remember paths previously

followed, allowing data of interest in related data sets to be located quickly and easily.

Navigation through the data structures in the 3D browsers however recorded low rankings

— inherent difficulty in navigation in 3D coupled with labels with low semantic relationship

to users’ understanding of data (for those users with domain knowledge) increased difficulty

completing tasks involving (visual) search and query.

Practice is required to be able to navigate effectively in 3D space using a three-button

mouse as was done for this evaluation, and users were generally observed to improve their

control over navigation as the evaluation proceeded, where the resources available did not

hamper system response. Stronger perceptual cues are, however, still required to improve

ability to locate data of interest.

9.5.2 Search and query

Users found searching for specific information difficult in the visualisation browsers. The

search dialog obscures a large portion of the window, sometimes hiding search hits high-

lighted in the graph, so that users lost the supporting visual information. Moving the dialog

away in order to see the visual query results meant losing the corresponding text listing com-

ponent IDs and print names for search hits. Further, very long print names meant most

users widened the search dialog to read results without having to scroll, covering even more

of the visual structures.

One difference between text searching in 2D and 3D is that each search in 2D is performed

(independently) only for the graph with the current focus; it is necessary to open a separate

search window for each graph. In 3D, however, searching is on all visible nodes in the

window. Search hits are only labelled by component ID and print name; also providing tree

labels would aid location of hits in the graphs in 3D.

Visual search in the 3D window is further complicated because the node labels showing

component IDs are not easily translated into meaningful symbols for users; it is necessary

to look up the component names that match the IDs displayed. This underscores the

importance of supporting semantically meaningful information for effective data analysis

and IR. This may have contributed to users indicating a preference for search and query

using the text indices, and the low scores recorded for querying the data and locating specific

information in the visualisation browsers.

Nodes in trees are ordered by component ID, to provide uniformity in layout for each

data set and across related data sets. Because users did not find use of the component IDs

164



Final evaluation of visual analysis solutions

intuitive this ordering, which should be obvious in 3D, was not recognised, nor was it found

to be more useful than labelling using component names as the default in 2D. Providing

the additional option for ordering by component name should improve location of data of

interest.

The role that intuitive navigation plays in successful searching was made apparent by

the difficulty users had locating specific information in the 3D browser. The ability to

jump directly to a node of interest in 3D would be useful especially where high density

of data occurs; most users asked if this option existed. A solution which would remove

the disorientation, that sudden changes in location in virtual worlds often leads to, would

be gradual animation that also allows users to explore data structure as they follow paths

through data to arrive at specific objects of interest. This would also provide the equivalent

of tracing paths through single graphs in 2D.

9.5.3 Managing occlusion

The user evaluations, performed for the prototypes developed, confirmed the advantage in

a visual overview of the anatomy ontologies under study. However, occlusion presents a

problem visualising data sets containing nodes beyond a fairly low threshold, as discussed

in the design of the visualisation browsers in chapter 6; a recognised problem in the use of

hierarchical graphs is poor scalability.

Options for managing occlusion focus mainly on data abstraction, displaying only a user-

specified number of levels in the graph and ghosting out data (in 2D), folding away sub-trees

with lower interest in both browsers and highlighting data of higher importance. Additional

options include extraction of ROIs to sub-windows for analysis in isolation. Figure 9.13

shows mean rankings for usefulness of each of the options listed for managing occlusion in

the 2D and 3D browsers at 8.16, with 95% CI between 7.44 and 8.86.

2D
4.16 Hiding labels (7.33)
4.17 Ghosting data (6.99)
4.18 Hiding sub-trees (8.80)
4.19 Zoom (7.99)
4.20 Switching between layouts (6.02)

3D

4.21 Hiding sub-trees (8.65)
4.22 Zoom (8.76)

Figure 9.13. Measurements of usefulness of options provided for detailed analysis of ROIs. Means
are given over all users for each item.

Even though users found that the options provided were useful for analysis in ROIs,

this was not reflected in use of the overview where significant occlusion occurred; this item

(4.12 in the post-evaluation questionnaire) was ranked at 5.2, within a 95% CI of 2.52 and
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7.91. A solution being considered to this problem is to collapse sub-trees in areas of very

high density into composite nodes, to obtain an effect similar to that shown in figure 2.12

and described in [98]. Functionality implemented for analysis of ROIs may then be used to

retrieve detail for each composite node.

9.5.4 Perceptual cues

One of the main issues this evaluation sought to address was the identification of effective

perceptual cues for especially search and query, to provide intuitive IR. Visual cues provided

include highlighting hits in the graphs during text-based searches, with the option to expand

searching to synonyms and abbreviations used to describe nodes. The latter is especially

useful for instances where search result lists are empty.

Markers may also be placed in the data by attaching comments to nodes and links;

this, however, provides only additional textual information, without a visual component. A

text-based search may, however, be used to highlight all nodes that have been annotated.

Providing the option to place the equivalent of a physical flag along or on data objects may

aid returning to specific objects.

Visual cues and encoding provided in the visualisation browsers were difficult to recognise

or make use of in isolation; supporting, semantically meaningful textual information played

a large role in confirming results of visual searching. This was especially apparent in 3D

where users required a large amount of effort to locate specific nodes; the labels displaying

only component IDs did not appear to satisfy users even where they matched those listed

in the search dialog. This meant users often went on to retrieve more detailed textual

information to confirm search results. Among user suggestions for a solution to this problem

were to pop up the component name for the node with the focus, a solution that was being

considered prior to the evaluation. This would require lower user effort to display component

names and take up less screen space than the component detail dialog. It would also

provide a significant advantage during exploratory navigation as additional information on

nodes would be uncovered as users move through the information space, without increasing

complexity and occlusion.

Not all users immediately recognised highlighting of search hits (in green); as discussed

in § 9.5.2 this may have been because the graphs were often partially obscured by the search

dialog. Once its significance was understood, however, confidence in visual search results

appeared to improve, with users locating nodes required more quickly. Encoding results

using a change in shape or size as well as colour may help to provide stronger perceptual

cues, especially for areas with high density of data. The option to fade out non-search hits,

suggested in the previous evaluation, would also help to identify potential nodes of interest

by lowering the distraction of other objects in the scene.

One user only took advantage of the option to reset colouring of nodes and links in the 3D
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browser, changing the default colour for two DAGs loaded into the window to provide greater

contrast between them. The colour codes were also changed for a set of mappings, to provide

greater contrast between the links drawn and the background. Variation in colour coding

of nodes in a single graph may provide useful options to users for visually annotating data,

creating markers that highlight relationships in the data and aid IR. This should also help

to resolve the problems revealed in the first structured evaluation that reduced usability for

a colour-blind user, where specific colour combinations prevented correct decoding of data

attributes and increased difficulty recognising objects highlighted in the graphs.

9.5.5 Spatial awareness/ability

Results from the spatial memory tests showed, for the four users who completed it, a fairly

good understanding of data structure. One user displayed very good recollection of the

structures in both layouts, showing a large amount of detail and clearly distinguishing dis-

play of the group created in 2D and 3D. It can be concluded with a good degree of certainty,

also confirmed by user comments and responses to the post-evaluation questionnaire, that

the visualisations allow users to obtain a good understanding of data structure.

The main difference in results for the additional spatial ability tests was time to complete

each exercise. The participant with the most detailed and accurate representation of the

visual structures also recorded the shortest times for both exercises, the highest score for

the SUS and the second highest mean rating for satisfaction with the visualisation browsers.

Although, following the trend for all other users, this user had difficulty managing navigation

in the 3D browser, this was observed to improve as the evaluation progressed. This user’s

responses to the post-evaluation questionnaire recorded a preference for the 3D browser,

finding it more intuitive even for navigation, for providing a good overview of data structure,

and aiding the identification of relationships within the data.

The user with the longest overall times for completing the exercises provided a fairly

detailed drawing of data structure but showed little distinction between the layout in the

two views. Although difficulty was recorded for navigation in the visual structures this

user still found the visualisations to be more intuitive than the text indices. Navigation

in 2D was, however, found to be much easier than in 3D; this user found tracing of paths

through the 2D graphs fairly easy, recording that it aided location of data in 2D. In a direct

comparison between the two views this user, however, recorded more intuitive navigation

and easier recognition of relationships using the 3D browser.

The user who recorded the second longest completion times for both exercises was ob-

served to handle navigation in the 3D browser most easily, obtaining good (over)views

of the data structure. This user recorded increasing confidence in navigation in 3D with

time. However, navigation in 2D was recorded to be more intuitive, and identification of

relationships in the data was also found easier in 2D. Following the general trend the 3D

visualisations were found to provide a better overview of data structure. Having unloaded
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all data sets before making the switch to the 3D browser this user was unable to observe

the group created in 3D, so that a comparison could not be made between understanding of

the visual structures in the two browsers. This user recorded the highest overall satisfaction

rating and the third highest SUS score.

The user with the lowest SUS score and mean satisfaction rating recorded the third

longest overall times for completing both exercises. Although the structures drawn did not

show a large amount of detail this was the only user who labelled nodes to indicate relevance

of labels in 2D. User comments indicated the 3D representation was not labelled as the

labels for this browser were not found to be very useful. Responses to the post-evaluation

questionnaire recorded finding the text indices, used with the (pictorial) 2D slices of the

embryos, providing easier understanding of data. Navigation through the data in the text

indices was preferred to the visualisations, and also, navigation in 3D was found to be more

difficult and less intuitive than in 2D. Location of data based on path to root in 2D was

found to be easy. The 3D visualisations were, however, found to provide a better overview

of data structure than the 2D. It should be noted that this was one of the two users who

experienced very poor system response using the 3D browser, and also was unable to view

the group created in 3D.

One user answered two more questions incorrectly than did all other users and was

unable to recall the structures obtained for the group created. However, this user recorded

the second shortest times for completing the exercises and relatively high scores for the SUS

and overall mean satisfaction with the visualisation browsers. This user made extensive

use of visual scanning, reorienting DAGs in the 3D browser to more closely approach and

examine nodes of interest. The component detail dialog was however repeatedly displayed

to confirm identity of nodes in 3D, indicating again difficulty relating to the labels displaying

only component IDs. Navigation through the visual structures was found to be difficult;

however they were still found to be more intuitive than the text indices, with 2D recorded

as being more intuitive than 3D. This user found it easier to locate data of interest in 2D,

but found identification of relationships within the data using the 3D browser to be easier.

This was the only user who found the 2D visualisations to provide as good an overview of

data structure as the 3D.

The first user described performed all three spatial ability exercises exceptionally well,

and this was found to correspond to overall satisfaction recorded for use of the visualisation

browsers developed. Ability shown in use of the browsers also increased with time for

this user. However one other user who did not perform as well in the spatial exercises

showed more intuitive performance in navigation, but recorded lower satisfaction using the

3D browser. The user with the lowest performance made the most extensive use of visual

searching through the data. Outside the two extremes the results are mixed - difficulty in

mapping text search results to the visualisations in especially 3D hindered location of nodes,

with a significant effect on usability recorded for searching. Further testing and research are
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required to provide stronger indications of spatial ability, and determine exactly how strong

the correlation is between spatial ability and use of especially the 3D browser.

9.6 Review of visualisation browsers

The visualisation browsers develop novel techniques that provide solutions to the specific

data analysis requirements identified, employing an interactive visual data analysis solution.

The aim is to provide intuitive methods that allow users to become immersed in and explore

individual or multiple data sets simultaneously, to increase understanding of data structure

and aid identification of relationships in data.

This and previous evaluations have been used to examine usability of the application

developed and to ensure that functionality implemented provides solutions that meet users’

information requirements. The information obtained from the evaluations was used to iden-

tify further modifications required to functionality developed for analysis. Major changes

necessary, described in the following sub-sections, are improvements to functionality for

searching through the data and support for navigation in 3D.

2D browser

Options for searching within the graph with the focus work effectively for the data set of

interest. It is often necessary, however, to extend searching to retrieve information in other

related data sets; additional options are required to widen search to include all data sets

loaded in the browser, and also retrieve relevant information from additional (specified)

data sets not loaded in the window. The option to collapse/hide the search dialog without

clearing visual results would also help users to identify search hits in the graphs more easily.

3D browser

As for the 2D browser, options for searching on additional data sets not loaded in the

window are necessary. To aid location of specific nodes the result list should also provide

information on the tree to which each hit belongs.

Options for animation are being considered to aid users in mapping paths to nodes of

interest; especially where there is high density of data, locating specific nodes is hampered

further by inherently complex navigation in 3D.

Functionality for creating, editing and displaying links across trees needs to be made

more intuitive; labels on the mappings sub-menu require editing to clarify their functions.

Options for querying the data also need to be extended to allow greater distinction between

the different types of mappings that exist.
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9.6.1 Limitations of approach

Reasons for the choice of visualisation techniques to build on and programming language

for development were discussed in § 5.5 and 6.1 respectively, looking at the advantages

each of these provides for analysis of the anatomy ontology data being studied. Limitations

associated with each option are discussed in the following sub-sections.

Hierarchical graphs

Although node-link graphs provide an intuitive visualisation option for hierarchically struc-

tured data, they suffer from poor scalability, making sub-optimal use of screen space for

laying out data. This was managed by providing specialised functionality for detailed anal-

ysis of ROIs, both in isolation and within the context of the overview, the latter being the

preferred option. Further investigation of perceptual cues is required to identify additional

options to improve intuition in analysis of ROIs.

Performance in Java

Three main reasons contributed to the choice of Java for development: to provide a similar

interface to current tools in EMAP and to provide cross-platform and potentially, web access

to the visualisation solutions developed. Java’s cross-platform compatibility unfortunately

comes with a cost in performance due to the extra overhead incurred in the interpretation

of the Java bytecode into native machine code, manifested in the 2D prototype by the large

increase in system response time observed as data load increases. This is compounded by a

significant decrease in program execution speed for remote execution in X-Windows, when

compared to MS Windows; enhancements for Swing in Windows have the reverse effect in

X-Windows. § 10.4.2 discusses potential solutions for improved system response.

Memory management vs interactivity in Java3D

Requirements for interactive analysis include the ability to select objects of interest in each

graph, to allow further information to be retrieved and/or apply encoding to data objects

based on the values of attributes. Especially where a large number of similarly structured

objects are being built in a Java3D scene, reuse of geometry is the ideal option, to minimise

resources required to create objects. However, this limits options for interactivity, allowing

objects to be picked based only on their bounds. Density in data in the larger graphs,

however, means that bounds of nodes and links often overlap, rendering picking inaccurate.

The solution to this is to create independent geometry for each object so that picking is

able to use more highly defined geometry, with a significant increase in accuracy in selection

of objects of interest, but with a corresponding increase in especially memory required to

draw data objects. The Java Virtual Machine (JVM) therefore quickly runs out of memory

for multiple loading and unloading of especially the larger data sets.
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Rotation of the visual structures in 3D also results in rotation of labels away from the

viewpoint; it is necessary to orient labels so that they always face the viewer and can be

read. This is achieved using the Java3D OrientedShape3D object, built from geometries

obtained from individual Text3D objects created for each node label. Memory required to

build each of these objects increases with the number of nodes drawn to the 3D window. To

manage memory use labels drawn for a single tree are set to a limit between 200 and 300,

starting from the root, so that nodes in lower levels in large trees are not labelled. Textual

detail for all nodes and user-created links may still be brought up by double-clicking on

objects of interest.

Further, limited support for the development of as well as development using Java3D

may result in limited functionality in applications built, and that might not have support in

the future. Also, not being part of the standard JRE, users must install Java3D as well as

any non-standard Java3D extensions in order to make use of applications developed using

these libraries, an added burden for users.

9.7 Summary

This chapter presented a set of questions that analysed the information requirements of

target users, looking at issues that require resolution in order to provide intuitive solutions

for the challenges that occur in analysis of ontologies in biology, with a focus on anatomy

ontologies.

A final, structured evaluation was carried out with a small number of target users, to

obtain information required to resolve these issues, and also examine usability of the func-

tionality provided for analysis. An examination of the evaluation results provided further

information on usability and utility of the applications developed, identifying functionality

that needs to be developed further to satisfy users’ information requirements more fully. A

review of the questions posed at the beginning of the chapter found that more focused re-

search is necessary to identify additional cues for visual analysis that harness more effectively

human perceptual and spatial ability for intuitive analysis.

The chapter concluded with a summary of the modifications required to functionality

provided in the visualisation browsers, then addressed limitations of the approach used to

develop the visual analysis solution. The next chapter summarises the work done in this

project, discussing the main findings in this thesis and the contribution it makes to research.

The thesis concludes with directions for additional research that could lead to further options

and improvements for visual analysis.
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Conclusions

10.1 Review of thesis

This thesis reviews research in information visualisation, examining methods available for

visual data analysis. The aim of this project was to develop visual solutions for analysis

of (hierarchically structured) anatomy ontology data that reveal similarity between compo-

nents in different data sets, with the potential to extend solutions developed to analysis of

other similarly structured data.

A large number of techniques exist for generating visualisations, varying between broad

solutions that provide general analysis of different types of data and specialised applications

providing detailed analysis restricted to specific data types and/or formats, often applicable

to only a small number of fields. The aim of each of these applications is to harness human

spatial and perceptual ability and reduce cognitive load in data analysis, helping users to

form effective mental models of data structure that aid the retrieval of information stored

within data.

Challenges for effective visual analysis include the generation of visualisations that are

not just aesthetically appealing, but that are able to highlight patterns and relationships

within data and provide effective IR. This requires a good understanding of typical users’

backgrounds and domain knowledge, familiarity with data analysis tools, and, more difficult

to obtain, measures of users’ perceptual ability and spatial awareness.

Chapter 2 reviews previous research and current work in information visualisation, lead-

ing to chapter 3 which focuses on graph visualisation, the preferred solution for the analysis

of the hierarchically structured ontologies. Chapter 4 continues to look at the analysis of

bioinformatics data, with a focus on anatomy ontologies and previous research into the

analysis of data in the cross-disciplinary field.

10.1.1 Identification of problem area

For practical reasons this thesis restricts evaluation of solutions developed to analysis of a

sub-set of the data that contributes to research in bioinformatics, to allow usable options

172



Conclusions

for analysis to be developed that could then be extended to wider areas of application.

Chapter 5 describes user information requirements typical to research that makes use of

anatomy ontologies, identifying gaps in existing data analysis solutions. Areas for which

improved solutions for analysis are required include:

� the identification of equivalence and other relationships defined between data elements

� automated retrieval and display of temporal relationships across multiple data sets.

� the need for graphical support for the creation of alternative (user-defined) relation-

ships and structures within the data sets of interest

Partial solutions at best were found (in existing tools) for the analysis required (refer § 5.4.1);

the project therefore continued to develop alternatives to satisfy the requirements identified.

10.1.2 Development of a visual analysis solution

An interactive visual solution was developed that presents first an overview of the data sets

being analysed, to reveal data structure and allow users to obtain an understanding of the

information each data set contains. Chapter 6 describes the visualisation browsers created,

building first on existing methods, to allow an assessment of techniques currently available

for graphical analysis. The chapter then describes techniques implemented for detailed

analysis of ROIs in 2D (refer § 6.5.4), and identification and visualisation of relationships

across multiple data sets, employing an extension to 3D (refer § 6.7.5).

An assessment of the solutions developed provided a measure of the advantages gained

analysing data in visual form over presentation in text; a series of heuristic evaluations and

the structured usability evaluation detailed in chapter 7 provided information on the advan-

tages users perceived in visual analysis. The most important of these are enhanced ability

to obtain an overview of data structure and more intuitive identification of relationships be-

tween data elements. The number of participants in the structured evaluation is too small

to draw conclusions based on (strong) statistical significance; however qualitative informa-

tion obtained from user observation during the evaluation confirmed trends in responses

to post-evaluation questionnaires that suggest that visual analysis does provide advantages

over textual analysis of the data. This conclusion is also supported by research in the field

that shows improved capability for analysis that harnesses advanced human perception.

Analysis of the evaluation results also brought up a number of questions on spatial

awareness in humans and identification of techniques and/or cues that harness perception

and spatial ability for intuitive analysis. Visual solutions for the specific analysis required

were developed further, based on the information obtained from the (heuristic and struc-

tured) user evaluations performed. More focused research into human perception and the

influence of spatial ability and awareness on perceived usability of visualisation applications

was performed, looking for additional insight into the development of effective, usable visual

analysis techniques.

Chapter 8 summarises changes made to the prototypes and further work on the tech-
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niques developed, to increase intuitiveness in the analysis solutions to more fully satisfy user

requirements. Chapter 9 presents the questions and other issues in visual analysis brought

up during the course of this project, that were to guide a final evaluation, assessing the

benefits of visual analysis, advantages of each of 2D and 3D for generating visualisations,

and the influence of human spatial ability on visual data analysis. Analysis of the evaluation

results provided information for answering some of the questions raised, and point to further

research directions that may provide stronger conclusions on what remain open questions

in human spatial and perceptual ability and their influence on visual analysis.

10.2 Main findings

This thesis studies information visualisation, to determine its applicability to complex data

analysis and its ability to improve analysis. It provides confirmation that visual overviews

improve understanding of data structure [163, 179], providing a powerful alternative to

traditional textual analysis. Contrary to research on the influence of spatial awareness

on (perceived) usability and analysis capability, user backgrounds and domain knowledge

were found to have the most significant influence on strategies used for querying data and

locating information of interest, with no noticeable influence due to gender, especially in

the absence of or failure to identify (visual) markers provided to manage disorientation and

aid exploratory navigation.

It was also discovered that despite improved ability to obtain an understanding of data

structure and retrieve information of interest using visual representations of data the ab-

sence of supporting and semantically meaningful textual information significantly degraded

confidence in results of analysis. The need for perceptual cues that users recognise and

understand is critical in the development of intuitive visual analysis solutions. Identifying

cues that are semantically meaningful to the different target users with varying research

backgrounds common to cross-disciplinary fields such as bioinformatics is a challenge that

requires detailed study of the interaction between humans and computer-based systems as

well as a good understanding of the unique information requirements of the different re-

search fields that contribute knowledge to analysis of data such as the anatomy ontologies

this thesis studies.

Closely working with the target population for which solutions to data analysis were

being sought highlighted issues that limit current solutions for visual analysis: wide variation

in human perceptual and spatial ability and methods used for querying and IR limit the

reusability of solutions developed; a choice has to be made between building general tools

that provide only simple analysis and specialised methods for focused data analysis solutions.

This thesis starts by looking at a general solution but leans toward the latter; it, however,

employs modular development that should aid extension of the solutions developed for wider

analysis.
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10.2.1 Contribution to research

As part of the research performed for this thesis two visualisation prototypes were built,

first to evaluate the potential of existing solutions for the specific analysis required for this

project and to provide a tool which allows multiple techniques to be used in concert for

visual data analysis. Based on learning from heuristic evaluations performed with a sample

from the target population and a review of user requirements further functionality was

implemented, focusing on the development of techniques for detailed analysis of ROIs and

management of occlusion in individual data sets.

Functionality was then developed to aid the identification and display of relationships

across multiple, related data sets. A novel contribution to existing techniques for visual

analysis of hierarchical data is described in § 6.7.2; the simple node-link graphs drawn in 2D

planes to provide overviews of individual data sets are layered in parallel along the horizontal

axis in 3D space, allowing simultaneous display of different ontologies. The space between

DAGs is used to hold the relationships that cross multiple data sets, employing colour-coded

links drawn between node pairs. This provides a method for visualising temporal relation-

ships in the data such as lineage during stages of development in a specified organism. Other

types of relationships such as equivalence between corresponding components in different

organisms may likewise be drawn between node pairs across DAGs.

This is extended in § 8.3.2, which describes an alternative to encoding relationships using

links between nodes pairs: colour-coded wireframes drawn round each node to denote those

with (user-defined) relationships with other nodes. This serves two purposes: it reduces

occlusion in the 3D window, and more importantly, allows relationships to be displayed

even where only one of a pair of related nodes is drawn to the screen.

Graphical support is also provided for the creation of alternative sub-structures in ex-

isting data sets. The default part-of relationships in the ontology data are used to link

nodes in each graph; there are however other relationships that may be defined between

components in each ontology, as [34, 14] describe. The third dimension allows group nodes

to be drawn in planes parallel to a DAG, and used as the focus for the sub-set of nodes in a

tree that together form a sub-structure with alternative relationships as defined by expert

opinion and/or supporting literature.

Figures 6.29, 8.5, 8.6 and 8.7 provide illustrations of the visual analysis solutions devel-

oped to meet the user requirements described in § 5.3.

10.3 Conclusions

Three hypotheses were formulated during the course of this project, to guide the research

being done and evaluation of the options developed for visual analysis. These were to

examine the following:

1. any advantages visual analysis may provide over text-based analysis
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2. whether visualisation in 3D provides advantages over 2D

3. the influence of spatial awareness or ability on visual analysis.

A number of factors influence the effectiveness of visual data analysis solutions. To be able

to draw valid conclusions in the field within the limitations of this thesis, a decision was

made to restrict the area of application. Analysis of anatomy ontology data in the EMAP

and XSPAN projects provided a preliminary research area on which to focus, from which

to extend results obtained to research in other biological ontologies and wider fields of ap-

plication. A limited group of target users was available for evaluation of the work done, so

that the hypotheses formulated cannot be rejected or accepted based on statistical signif-

icance. However, the research done and qualitative and quantitative information obtained

during the heuristic and structured evaluations performed allow conclusions to be drawn

that answer the research questions posed.

Extensive research was done into current methods available for analysis of especially hi-

erarchically structured data, evaluating options for constructing overviews of data structure

followed by detailed analysis of ROIs. Evidence in the literature points to the advantages

obtained when visualisations are generated that harness highly developed perception in hu-

mans, mapping data structure to visual representations that aid users in building effective

mental models of the information contained within data. Fairly strong evidence was also

obtained from evaluations performed during the course of this project that supports signifi-

cant advantage in visual analysis of the structured data this thesis examines. It is necessary

to stress the importance of identifying and incorporating into visualisation solutions ef-

fective cues that are recognised and correctly interpreted by users who may have varying

backgrounds, domain knowledge, and computing and other ability. Providing intuitive sup-

port for detailed analysis of ROIs contributes significantly to effective retrieval of knowledge

contained within data and user satisfaction.

Each of 2D and 3D provides advantages for analysis over the other; this thesis has done a

large amount of research on the advantages of visual analysis in different dimensions, includ-

ing the partial dimensions between 2D and 3D. The main advantage in 2D is that it provides

a simple interface that maps to the 2D canvases used in normal working life. Further, the

current state of computing uses largely 2D for input and output; projection of visualisations

created in higher dimensions onto 2D surfaces will be subject to some degree of distortion

that relies on human perception to reconstruct the illusion of or projection back into higher

dimensions correctly. However there are space limitations in 2D — research in information

visualisation looks at techniques for overcoming these restrictions that quickly become ap-

parent analysing large data sets, especially where a significant number of relationships exist

within the data. Limitations in space in 2D present a problem for the approach used in this

thesis to develop solutions to challenges identified in the analysis of the ontologies. For this

case 3D clearly provides advantages that are not available in 2D, especially for simultaneous

analysis of multiple data sets, justifying the extension of the 2D prototype to 3D. Evaluation

results in chapters 7 and 9 indicate user preference for 3D, despite difficulty inherent in 3D
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navigation, reported in literature in the field and experienced in the use of the prototypes

developed. Further work is required to provide greater support for navigation in the 3D

visualisation browser.

Research into the influence of human spatial ability on (perceived) usability of spatial

analysis solutions and willingness and ability to explore information spaces deal mostly with

gender and age differences. Although the focus of the evaluations performed was not on

these two attributes the two factors were examined as part of the evaluation procedure.

Neither of the two structured evaluations performed found either age or gender to have a

significant influence on usability or user interaction with the 3D visualisations. It should

be noted however that all users were aged between 20 and 40, while literature in the field

normally evaluates spatial ability across a much wider age range. Gender was fairly evenly

balanced in both evaluations. Domain knowledge was found to have the largest influence

on users’ search strategies and level of interaction with the visual structures.

Only simple tests of spatial ability were performed for the second evaluation, and fairly

small variation was found between users for the exercises performed. Coupled with the

small number of users not enough information was obtained to allow strong conclusions to

be drawn on the influence of spatial ability or awareness on use of the visualisation browsers.

Additional tests and more focused research are required to draw conclusions on the third

research hypothesis.

10.4 Future work

10.4.1 Extending visual analysis solutions developed

Relationships between elements in ontologies generally describe a hierarchical structure,

tending toward a DAG or a network as the number of relationships between data elements

increases. The visualisations developed for this thesis use hierarchical node-link graphs

to describe the structure of the anatomy ontologies studied, allowing users to trace paths

between data elements that encode the relationships occurring between node pairs. The

structures drawn may be fairly easily extended to analysis of ontologies other than those

tested, by mapping the hierarchical structure of such data sets to the DAGs generated by the

prototypes developed. Options for encoding properties of data nodes and the relationships

defined between node pairs may be adapted or extended to aid identification of data at-

tributes. Graphical support for displaying sub-structures describing additional relationships

within data and the ability to draw links between elements across multiple data sets allow

interactive editing of default visual structures where necessary, to provide more effective

encoding of complex relationships in data.

A limitation of the current implementation is that it reads specific properties for each

data node, requiring an element name and ID and additional, optional properties such as

synonyms and abbreviations for data elements (§ 6.5.4 lists properties defined for data el-
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ements in the test ontologies). The ability to store and display alternative properties that

may be defined in other ontologies is necessary — the option to include such information

is currently only possible as additional annotation of objects in each graph. More flexible

methods for modifying attributes required to draw objects in the visualisations would sim-

plify writing the additional data Loaders required to extend the options currently available

for generating visualisations of ontologies (refer § 6.3 and figures 6.3 and 6.4).

Other options for further development to address specific problems encountered in use

of the browsers have been discussed in § 9.5 and § 9.6. A final option to explore is testing

alternatives for navigation in the 3D browser using on-screen controls and joy-sticks, to

determine if either option or both used in concert would provide users with better control

over navigation in the 3D window.

10.4.2 Potential solutions to performance limitations in Java

§ 9.6.1 summarises limitations in the approach used, including the performance problems

associated with interactive Java applications. An alternative solution could (re)develop

the visualisations browsers using OpenGL (with C/C++), to take advantage of advanced

3D modelling capabilities, hardware acceleration and the larger user base and support for

OpenGL. OpenGL for Java bindings1 (also known as GL4Java bindings) could then be

used to provide an interface that takes advantage of the benefits of Java — cross-platform

compatibility and dissemination on the web.

An alternative would be to rewrite the Java code to make use of the newly developed

Java� Bindings for OpenGL®, JOGL2. This would enable calls to be made directly from

Java to the native OpenGL libraries, to make use of more effective hardware support for

rendering graphics while still making full use of the Swing libraries, and without the overhead

associated with calls between C/C++ and Java.

10.4.3 Study of factors with subjective influence on visual analysis

Finally, further research into variation in human spatial ability/awareness and the influence

it has on spatial analysis would provide more information on the development of cues that

would increase intuitiveness of the analysis options provided. This would involve a wider

range of standard tests for spatial ability and a much larger test group, to explore further

human spatial ability and how this can be harnessed for intuitive information visualisation.

The influence of domain knowledge on the use of the visual structures generated and dif-

ferences in preference for 2D and 3D also present interesting directions in which to perform

further research.

1See OpenGL� for Java�: http://gl4java.sourceforge.net
2See the JOGL Project at: https://jogl.dev.java.net
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Sample input files

A.1 DTD for EMAP anatomy ontologies

<!ELEMENT HGU_MRC_Edinburgh (species, anatomy*)>
<!ELEMENT anatomy (stage, component*)>
<!ELEMENT component (parentId,lineageparent*,lineagechildren*,

synonym*,abbreviation?,deletedflag?,printName?,component*)>

<!ELEMENT species (#PCDATA)>
<!ELEMENT printName (#PCDATA)>
<!ELEMENT lineageparent (#PCDATA)>
<!ELEMENT lineagechildren (#PCDATA)>
<!ELEMENT synonym (#PCDATA)>
<!ELEMENT abbreviation (#PCDATA)>
<!ELEMENT deletedflag (#PCDATA)>
<!ELEMENT parentId (#PCDATA)>

<!ATTLIST component
name CDATA #REQUIRED
id CDATA #REQUIRED>

<!ATTLIST stage
name CDATA #REQUIRED>
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A.2 DTD for user session XML files

<!ELEMENT AnatomyTreeLoaderFile (DevelopmentStage*, AbstractOrganism*,
mapping*)>

<!ELEMENT DevelopmentStage (StageType, Specie, EntryDate, RootID,
LevelsToDraw, GraphOrientation, LabelProperty, component*)>

<!ELEMENT AbstractOrganism (Specie, EntryDate, RootID,
LevelsToDraw, GraphOrientation, LabelProperty, component*)>

<!ELEMENT component (printName,abbreviation,synonym*,primaryParentID,
parentID+,childID*,startStage,stopStage,componentType,relationship*,
comment*,treeLevel,modes,component*)>

<!ELEMENT mapping (relationship+,comment*)>

<!ELEMENT StageType (#PCDATA)>
<!ELEMENT Specie (#PCDATA)>
<!ELEMENT EntryDate (#PCDATA)>
<!ELEMENT RootID (#PCDATA)>
<!ELEMENT LevelsToDraw (#PCDATA)>
<!ELEMENT GraphOrientation (#PCDATA)>
<!ELEMENT LabelProperty (#PCDATA)>

<!ELEMENT printName (#PCDATA)>
<!ELEMENT abbreviation (#PCDATA)*>
<!ELEMENT synonym (#PCDATA)>
<!ELEMENT primaryParentID (#PCDATA)>
<!ELEMENT parentID (#PCDATA)>
<!ELEMENT childID (#PCDATA)>
<!ELEMENT startStage (#PCDATA)>
<!ELEMENT stopStage (#PCDATA)>
<!ELEMENT componentType (#PCDATA)>
<!ELEMENT relationship (#PCDATA)>
<!ELEMENT comment (#PCDATA)>
<!ELEMENT treeLevel (#PCDATA)>
<!ELEMENT modes EMPTY>

(cont’d on next page)
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(user session XML DTD — cont’d from previous page)

<!ATTLIST DevelopmentStage name CDATA #REQUIRED>
<!ATTLIST AbstractOrganism name CDATA #REQUIRED>
<!ATTLIST component name CDATA #REQUIRED id CDATA #REQUIRED>
<!ATTLIST modes m0 CDATA #REQUIRED

m1 CDATA #REQUIRED
m2 CDATA #REQUIRED
m3 CDATA #REQUIRED
m4 CDATA #REQUIRED
m5 CDATA #REQUIRED
m6 CDATA #REQUIRED
m7 CDATA #REQUIRED
m8 CDATA #REQUIRED
m9 CDATA #REQUIRED>

<!ATTLIST mapping
componentName CDATA #REQUIRED
componentID CDATA #REQUIRED>

<!ATTLIST relationship
id CDATA #IMPLIED
componentName CDATA #IMPLIED
componentID CDATA #IMPLIED>

<!ATTLIST comment
date CDATA #REQUIRED
time CDATA #REQUIRED>
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A.3 Reloadable session file for TS11

This file includes a user-created group and user comments for two nodes, and was saved

from the graph in figure 6.22.

<?xml version="1.0" encoding="UTF-8"?>
<AnatomyTreeLoaderFile>

<DevelopmentStage name="TS11">
<StageType>Theiler Stage</StageType>
<Specie>mouse</Specie>
<EntryDate>7/8/2001</EntryDate>
<RootID>0</RootID>
<LevelsToDraw>7</LevelsToDraw>
<GraphOrientation>10</GraphOrientation>
<LabelProperty>20</LabelProperty>
<component name="mesoderm" id="189">

...
<component name="GroupNode" id="1234">
<printName>embryo.ectoderm.embryo.ectoderm.neural ectoderm.GroupNode

</printName>
<abbreviation/>
<primaryParentID>151</primaryParentID>
<parentID>151</parentID>
<parentID>150</parentID>
<parentID>170</parentID>
<parentID>165</parentID>
<childID>158</childID>
<childID>156</childID>
<childID>153</childID>
<childID>173</childID>
<startStage>11</startStage>
<stopStage>13</stopStage>
<componentType>32</componentType>
<relationship id="165">’part-of’</relationship>
<relationship id="151">’part-of’</relationship>
<relationship id="150">’part-of’</relationship>
<relationship id="170">’part-of’</relationship>
<treeLevel>4</treeLevel>
<modes m9="0" m8="0" m7="0" m6="0" m5="0" m4="1" ...m1="0" m0="0"/>

</component>
...
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...
<component name="ectoderm" id="188">
<printName>extraembryonic component.chorion.ectoderm</printName>
<abbreviation/>
<primaryParentID>187</primaryParentID>
<parentID>187</parentID>
<startStage>11</startStage>
<stopStage>12</stopStage>
<componentType>30</componentType>
<relationship id="187">’part-of’</relationship>
<comment date="18-Feb-2006" time="15h52m22">ASD: annotated node</comment>
<treeLevel>2</treeLevel>
<modes m9="0" m8="0" m7="0" m6="0" m5="0" m4="1" ...m1="0" m0="0"/>

</component>
...

<component name="endoderm" id="190">
<printName>extraembryonic component.endoderm</printName>
<abbreviation/>
<primaryParentID>176</primaryParentID>
<parentID>176</parentID>
<childID>191</childID>

...
<componentType>30</componentType>
<relationship id="176">’part-of’</relationship>
<treeLevel>1</treeLevel>
<modes m9="0" m8="0" m7="0" m6="0" m5="0" m4="1" ...m1="0" m0="0"/>

</component>
<component name="Root - TS11" id="0">
<printName>Root - TS11</printName>
<abbreviation/>
<primaryParentID>-1</primaryParentID>
<parentID>-1</parentID>
<childID>147</childID>
<childID>176</childID>
<startStage>-1</startStage>
<stopStage>-1</stopStage>
<componentType>30</componentType>
<treeLevel>-1</treeLevel>
<modes m9="0" m8="0" m7="0" m6="0" m5="0" m4="0" ...m1="0" m0="0"/>

</component>
</DevelopmentStage>

</AnatomyTreeLoaderFile>
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Appendix B

Design documents

B.1 Application menu for 2D browser
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Edit menu
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View menu
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B.2 Popup menus for 2D browser

Graph popup menu

Print graph
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Selection popup menu
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Zoom into selection
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Group node popup menu

Note that the popup menu brought up for group node is more restricted than that for a

node.
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B.3 Zoom pane popup menus
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B.4 Application menu for 3D browser

File menu
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View menu
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B.5 Toolbars for 2D and 3D browsers

Toolbar for 2D browser

Help
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Switch graph layout

Zoom

Search

Close all

Close

Load

-

-

-

-

-

-

-

-

-Toolbar — 2D

Toolbar for 3D browser

Help

Print

Save system state

Draw mappings

Set colour codes

Search

Close all

Close

Load

-

-

-

-

-

-

-

-

-Toolbar — 3D

193



B.6 Navigation aids for the 3D browser

B.6.1 Actions associated with MouseBehaviors

Mouse action System response

hold and drag left mouse button rotation round central axis

hold and drag right mouse button translation along plane in which mouse is moved

hold and drag middle mouse button zoom in and out of 3D scene

B.6.2 Actions associated with KeyNavigatorBehaviors

Keyboard action System response
System response with Alt-
Key depressed

left/right arrow key rotation round viewpoint central axis in di-
rection of arrow (note that actual objects
in scene will move in opposite direction)

translation along plane in direc-
tion of arrow

page up/down rotation round viewpoint central axis up-
wards or downwards respectively

translation upwards or down-
wards respectively

up/down arrow key zoom in and out of 3D scene respectively N/A

’=’ key return to default viewpoint at centre of
universe

N/A
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Evaluation documents
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C.1 User instruction sheet

Instructions for User Evaluation User ID:

Thank you for agreeing to participate in the evaluation of the two anatomy browsers.
All data obtained in the evaluation is confidential.
Although it would be helpful to allow us to get back to you with any additional questions we
may have, you are welcome to omit your name and contact details if you would prefer the data
to remain anonymous.
You can withdraw from the evaluation and request that your data be destroyed at any stage.
All data storage will comply with the appropriate Data Protection regulations.
At the end of the evaluation process we will provide all users with feedback on the results unless
requested otherwise.

Please fill in the user questionnaire provided.
This provides us with extremely useful background information on users, their work and the
technologies they use.

Once you have finished filling out the questionnaire you will be provided with Task Scenario
Sheets. Please use these with the help of the printout of the Quick Guide to complete the
tasks detailed. Where required write out responses to questions asked on the Task Scenario
sheets.
More detailed help is provided from the Help Menu in each browser, and you may ask the
evaluator for clarifications where necessary, and as much assistance as necessary will be given
provided doing so does not bias the results of the evaluation.
The evaluator will make notes on the path(s) you take to your solution for each task. A talk-
through of the process you follow to achieve each goal would be appreciated as it provides
more information on your understanding of how the systems work.

Once you have completed the tasks you will be provided with two further questionnaires to
gather your impressions on the functionality of the system. You are welcome at this stage to
provide any further information on the system that you feel has not been addressed sufficiently
in the questionnaires.

If you agree to us contacting you for any additional information, please tick here: �

If you would like to receive feedback at the end of the analysis, please tick here: �

If you understand and accept the above, please sign below.

Signature:

Name: . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Date: . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
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C.2 Task scenario sheets

Key
REQ Information / equipment required to carry out task

SCC Successful completion criteria

MTC Maximum time to complete task

2D Browser

TASK DESCRIPTION TASK DETAIL SOLUTIONS
1 Load Theiler Stage (TS) 11 in the

browser
REQ: 2D anatomy browser, Quick Guide
SCC: Visualisation of TS11 displayed in
browser
MTC: 10s

N/A

2 Identify the anatomy component
chorion and list the components
which are ’part-of’ chorion (im-
mediate children of), as well as
the Theiler Stages through which
they persist.

REQ: 2D anatomy browser, Quick Guide
SCC: Expansion of the DAG to show at
least the component chorion. Compo-
nents that are ’part-of’ the chorion may
be identified by tracing down the tree. An
alternative is to bring up the component
detail for chorion and list its children.
MTC: 60s

ID: 188 ectoderm
Stgs 11-12
ID: 189 mesoderm
Stgs 11-11

3 Determine if any of the compo-
nents identified in step 2 above
have synonyms used to refer to
them, and if so, what they are.

REQ: 2D anatomy browser, Quick Guide
SCC: List of synonyms for each compo-
nent obtained by bringing up component
detail for the components. An alternative
is to highlight the components required
and switch label property to ”component
synonym”.
MTC: 15s

None
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TASK DESCRIPTION TASK DETAIL SOLUTIONS
4 Identify the component amnion

(print name - extraembryonic
component.amnion) and display
its complete sub-tree, while sup-
pressing all others. Determine the
depth of its sub-tree and identify
the stages through which its leaf
nodes persist.

REQ: 2D anatomy browser, Quick Guide
SCC: Display of sub-tree in a separate win-
dow, or in isolation in the main window.
Component detail of leaf nodes to retrieve
Embryo Start and Stop Stages.
MTC: 30s

Depth - 1
Leaf nodes:
ID: 181 mesoderm
Stgs 11-11
ID: 180 ectoderm
Stgs 11-12

5 Load TS12 in the browser. Us-
ing the top-down or left-right lay-
out of the DAG highlight the com-
ponent branchial arch and de-
termine how many components
make up the branchial arch (im-
mediate children of).

REQ: 2D anatomy browser, Quick Guide
SCC: Visualisation of TS12 displayed in
browser using either the top-down or left-
right layout. Correct number of compo-
nents that are ’part-of’ the branchial arch
identified. (This may require search, ex-
pansion of sub-tree and/or bringing up
component detail.) MTC: 55s

1 component -
(1st arch)

6 Switch the layout to radial and
highlight the component gut.
Identify the number of compo-
nents derived from the gut (im-
mediate children of), and list
their print names and the Theiler
Stages through which they per-
sist.

REQ: 2D anatomy browser, Quick Guide
SCC: Visualisation of TS12 displayed in
browser using the radial layout. Correct
number of components that are ’part-of’
the gut, their print names and the Theiler
Stages through which they persist. (This
may require search, expansion of sub-tree
and/or bringing up component detail.)
MTC: 250s

3 components:
ID: 360
embryo.organ
system.visceral or-
gan.alimentary
sys-
tem.gut.hindgut
diverticulum
Stgs: 12 - 20
ID: 357
embryo.organ
system.visceral
organ.alimentary
system.gut.foregut
diverticulum
Stgs: 12 - 13
ID: 364
embryo.organ
system.visceral
organ.alimentary
system.gut.midgut
Stgs: 12 - 23
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TASK DESCRIPTION TASK DETAIL SOLUTIONS
7 Highlight all components that

contain the term ectoderm as part
of their print name.

REQ: 2D anatomy browser, Quick Guide
SCC: Visualisation of TS12 displayed in
browser. All components satisfying query
highlighted using any method (easiest op-
tion uses search dialog).
MTC: 20s

N/A

8 Create a group node with the
following properties:
Name: GroupNode
Print Name: PrintName
ID: 1234
Embryo Start Stage: 9
Embryo Stop Stage: 13
Parents:
ID: 391 extraembryonic com-
ponent.trophectoderm.polar
trophectoderm
ID: 394 extraembryonic compo-
nent.trophectoderm
ID: 384 extraembryonic compo-
nent.chorion
ID: 270 embryo.mesenchyme
ID: 390 extraembryonic compo-
nent.endoderm.visceral endoderm
Children IDs:
ID: 395 extraembryonic com-
ponent.trophectoderm.polar
trophectoderm.ectoplacental
cone
ID: 286 embryo.mesenchyme.-
trunk mesenchyme.mesenchyme
derived from neural crest
ID: 288 embryo.mesenchyme.-
trunk mesenchyme.paraxial
mesenchyme.somite
ID: 276 embryo.mesenchyme.-
head mesenchyme.paraxial
mesenchyme.somite

Hide nodes or collapse sub-
trees, and/or ghost out nodes as
necessary to minimise crossing
of links and occlusion of nodes.
Save a copy of the canvas to file
that shows the grouping of the
data.

REQ: 2D anatomy browser, Quick Guide
SCC: Group drawn on DAG, JPEG file cap-
turing contents of canvas
MTC: 330s

N/A
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TASK DESCRIPTION TASK DETAIL SOLUTIONS
9 Close all windows currently open

and load TS26.
Switch to radial view and display
all nodes in the DAG. Identify
the component respiratory tract
and trace its ancestors toward the
root and list all their component
names.

REQ: 2D anatomy browser, Quick Guide
SCC: Display of TS26 in radial view. High-
lighting of respiratory tract and physical
tracing of its lineage and correct identifi-
cation of component names of ancestors.
MTC: 300s

from the root:
embryo
organ system
visceral organ
respiratory system

10 Switch to the top-down lay-
out and determine the number
of components that contain the
term dorsal in their component
name.

REQ: 2D anatomy browser, Quick Guide
SCC: Display of DAG using top-down lay-
out. Identification of correct number of
components satisfying query - search dia-
log gives count and list.
MTC: 300s

number of compo-
nents: 17
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3D Browser

TASK DESCRIPTION TASK DETAIL
1 Load TS02, TS05, TS11 and TS14 in the

browser.
REQ: 3D anatomy browser, Quick Guide
SCC: Display of the 4 Stages in the browser
MTC: 20s

2 Remove TS05 from the window and load TS08. REQ: 3D anatomy browser, Quick Guide
SCC: Removal of the DAG representing TS05
and loading of TS08
MTC: 15s

3 Zoom into TS11 and create a group node with
the following properties:
Name: GroupNode
Print Name: PrintName
ID: 1234
Embryo Start Stage: 9
Embryo Stop Stage: 13
Parent IDs:
(ID: 168) embryo.notochordal plate
ID: 167 embryo.mesoderm
ID: 151 embryo.ectoderm.neural ectoderm
ID: 150 embryo.ectoderm
Children IDs: (ID: 173) embryo.organ sys-
tem.cardiovascular
system.heart.cardiogenic plate
ID: 172 embryo.organ system.cardiovascular
system.heart
ID: 155 embryo.ectoderm.neural ectoderm.-
future spinal cord
ID: 153 embryo.ectoderm.neural ectoderm.-
future brain.neural fold
ID: 152 embryo.ectoderm.neural ectoderm.-
future brain

REQ: 3D anatomy browser, Quick Guide
SCC: Display of the group
MTC: 260s

4 Determine the number of components contain-
ing the term extraembryonic in the component
name

REQ: 3D anatomy browser, Quick Guide
SCC: Correct number of components identified
(4). Easiest solution is to use the search dialog
MTC: 27s

5 Create a successive series of links between
nodes (and across stages):
TS02: (ID: 6) two-cell stage ->
TS08: (ID: 73) extraembryonic component.-
trophectoderm ->
TS11: (ID: 150) embryo.ectoderm ->
TS14: (ID: 702) embryo.limb.forelimb bud

REQ: 3D anatomy browser, Quick Guide
SCC: Display of cross-stage links
MTC: 169s
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C.3 Questionnaires

C.3.1 Pre-evaluation questionnaire

Survey of Users (Please tick the appropriate options) User ID:

Name: . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Date: . . . . . . . . . . . . . .
Email address: . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

1. Please indicate your age:
<20 years � 20-29 years � 30-39 years � > 39 years �

2. Which are the best descriptions of your qualifications: (if more than one,
indicate all)

Undergraduate MSc PhD

Computing � � �

Biology � � �

Genetics � � �

Bioinformatics � � �

Other (please specify) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

3. Which is the best description of your current area of work or research?
Computing/IT � Biology � Bioinformatics � Other � Please specify: . . . . . . . . .

4. Please indicate any previous research or work areas:
Computing/IT � Biology � Bioinformatics � Other � Please specify: . . . . . . . . .

5. Please indicate what type of computer(s) you use at work:
(if more than one, indicate all)

Hardware IBM Compatible PC � Macintosh � UNIX Box � Other/

Don’t know �

Processor Speed . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Hard Disc size . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Operating System Windows 2000/ME � Mac OS X � Unix � Please specify:

Windows NT � Mac OS 9.x � Linux � . . . . . . . . . . . . .

Windows 98 � Mac OS 8.x � � . . . . . . . . . . . . .

Windows 95 � Mac OS 7.x � �

Windows 3.x �

Don’t know �
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6. Please indicate what web browser and version you use for work:
(if more than one, indicate all)

Browser Internet Explorer � Netscape � Mozilla � Other � (Please specify:)

Latest � Latest � Latest � Latest � . . . . . . . . . . . . . . .

please specify Older � Older � Older � Older � . . . . . . . . . . . . . . .

7. Please indicate what type of connection you use for work:
(if more than one, indicate most used)

Type LAN � ADSL � ISDN � Phone modem � Don’t know �
Network Academic � NHS � Commercial � Other � Don’t know �

Speed 1Gb � 100 Base T � 10 Base T � Other � Don’t know �

8. Please indicate the level of your skill in the use of computers:
General computing None Low High

� 1 2 3 4 5

Skill in use of data
analysis tools

None Low High

� 1 2 3 4 5

Skill in use of
visualisation tools

None Low High

� 1 2 3 4 5

9. Please indicate which of the options below you use computers for:
(if more than one, indicate all)

Word
processing

Data
Processing

Data
Analysis

Data
visualisation

Program-
ming

Other
Please
specify

� � � � � � . . . . . . .

10. Please indicate the types of data analysis tools you use, if any:
(if more than one, indicate all)

Graphical Textual Other Please specify

� � � . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

11.Please indicate which of the options below apply best to your use of data analysis
tools:

Complexity of data
analysis performed

None Very Low High

� 1 2 3 4 5

Frequency of use of
data analysis tools

No use Very Low High

� 1 2 3 4 5

Usefulness of data
analysis tools

Not useful Very Low High

� 1 2 3 4 5
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12.Please list the 3 data analysis tools you use most often, in decreasing order of
preference:
1.

2.

3.

13.Please indicate whether or not you make use of data visualisation tools for your
work:

Yes No

� �

14.Please indicate, if applicable, which of the options below apply best to your use
of visualisation tools:

Complexity of
visualisations generated

None Very Low High

� 1 2 3 4 5

Frequency of use of data
visualisation tools

No use Very Low High

� 1 2 3 4 5

Usefulness of data
visualisation tools

Not useful Very Low High

� 1 2 3 4 5

15.Please list the 3 data visualisation tools you use most often, in decreasing order
of preference:
1.

2.

3.

16.How frequently do you use the currently working EMAP (Mouse Atlas) browsers?
Never Occasionally Monthly Weekly Daily

� � � � �

17.For how long have you been using the EMAP (Mouse Atlas) browsers?
< 1 mth 1-3 mths 3-6 mths 6 mths-1yr > 1 yr N/A

� � � � �
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18.Please list in decreasing order of usefulness, your 5 most preferred features of the
EMAP (Mouse Atlas) browsers:
1.

2.

3.

4.

5.

19. Please list in decreasing order of usefulness, up to 5 features you wish to see
added to the current EMAP (Mouse Atlas) browsers, or extended:
1.

2.

3.

4.

5.

20.Please add any further comments or information that may be helpful:

Thank you for your help in completing the questionnaire.
I can be contacted at: ceead@macs.hw.ac.uk
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C.3.2 Post-evaluation questionnaire

Usability Evaluation Questionnairea

Identification number: . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Age: . . . . . . . . .

Sex: � Female � Male

Part 1: Type of System being Rated

1.1 Did you feel you had sufficient time to familiarise yourself with the new system?

Yes �

No �

1.2 On average, how much time would you spend per week on this system?

Less than 1 hour �

1 to less than 4 hours �

4 to less than 10 hours �

Over 10 hours �

Part 2: Past Experience

2.1 Of the following devices, software, and systems, check those that you have personally
used and are familiar with.

Keyboard � Electronic mail �

Numeric key pad � Graphics software �

Mouse � Computer games �

Light pen � Colour monitor �

Touch screen � Time-share system �

Track ball � Workstation �

Joy stick � Personal computer �

Text editor � Floppy drive �

Word processor � Hard drive �

File manager � Compact disk drive �

Electronic spreadsheet �

cont’d on next page

aCopyright©1988, 1989, 1991 Human-Computer Interaction Laboratory, University of Maryland. All
rights reserved. The original (Shneiderman) Usability Evaluation questionnaire has been adapted to suit
this evaluation.
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Part 3: Overall reactions to the system

3.1 Terrible Wonderful

1 2 3 4 5 6 7 8 9 N/A

3.2 Frustrating Satisfying

1 2 3 4 5 6 7 8 9 N/A

3.3 Dull Stimulating

1 2 3 4 5 6 7 8 9 N/A

3.4 Difficult Easy

1 2 3 4 5 6 7 8 9 N/A

3.5 Inadequate
power

Adequate
power

1 2 3 4 5 6 7 8 9 N/A

3.6 Rigid Flexible

1 2 3 4 5 6 7 8 9 N/A

cont’d on next page
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Part 4: Data Visualisation & Screen

4.1 How representative are the visualisations generated of your mental model of the
data structure?

Not at all Very much so

1 2 3 4 5 6 7 8 9 N/A

4.2 Do you find that the visualisations of the data provide an advantage over the
textual indices in current use?

Not at all Very much

1 2 3 4 5 6 7 8 9 N/A

For each of the options 4.3-4.7, compare the ease of use of the visualisations gener-
ated to the textual indices in current use:

4.3 Data structure

Visualisations more
difficult to use

Visualisations easier
to use

1 2 3 4 5 6 7 8 9 N/A

4.4 Understanding of data

Visualisations more
difficult to use

Visualisations easier
to use

1 2 3 4 5 6 7 8 9 N/A

4.5 Search and query

Visualisations more
difficult to use

Visualisations easier
to use

1 2 3 4 5 6 7 8 9 N/A

4.6 Tracing lineage

Visualisations more
difficult to use

Visualisations easier
to use

1 2 3 4 5 6 7 8 9 N/A

4.7 Grouping of data

Visualisations more
difficult to use

Visualisations easier
to use

1 2 3 4 5 6 7 8 9 N/A

4.8 How easy was it to read text on the computer screen?

Hard to read Easy to read

1 2 3 4 5 6 7 8 9 N/A

4.9 How easy was it to navigate through the data structure?

Difficult Intuitive

1 2 3 4 5 6 7 8 9 N/A

4.10 How would you rate occlusion of data in the visualisations generated?

High clutter Low clutter

1 2 3 4 5 6 7 8 9 N/A

cont’d on next page
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Please rate the use of the Left-Right layout of the data

4.11 Difficult to use Intuitive

1 2 3 4 5 6 7 8 9 N/A

4.12 High clutter Low clutter

1 2 3 4 5 6 7 8 9 N/A

Please rate the use of the Top-Down layout of the data

4.13 Difficult to use Intuitive

1 2 3 4 5 6 7 8 9 N/A

4.14 High clutter Low clutter

1 2 3 4 5 6 7 8 9 N/A

Please rate the use of the Radial layout of the data

4.15 Difficult to use Intuitive

1 2 3 4 5 6 7 8 9 N/A

4.16 High clutter Low clutter

1 2 3 4 5 6 7 8 9 N/A

Please show the level of usefulness of each of the options available (4.17-4.21) for
the reduction of occlusion

4.17 Hiding of labels

Unuseful Useful

1 2 3 4 5 6 7 8 9 N/A

4.18 Ghosting of nodes

Unuseful Useful

1 2 3 4 5 6 7 8 9 N/A

4.19 Hiding of sub-trees

Unuseful Useful

1 2 3 4 5 6 7 8 9 N/A

4.20 Zoom

Unuseful Useful

1 2 3 4 5 6 7 8 9 N/A

4.21 Switching between layouts

Unuseful Useful

1 2 3 4 5 6 7 8 9 N/A

4.22 Location of information required

Difficult to find Easy to find

1 2 3 4 5 6 7 8 9 N/A

cont’d on next page

209



4.23 Performance of search and query operations

Difficult Easy

1 2 3 4 5 6 7 8 9 N/A

4.24 Interpretation of search and query results

Difficult Easy

1 2 3 4 5 6 7 8 9 N/A

4.25 Does the visualisation of the data ease determination of lineage, compared to
the system currently in place for determining lineage?

No difference More intuitive

1 2 3 4 5 6 7 8 9 N/A

4.26 How well does the method provided for grouping of data highlight user-specified
data groups?

Poorly highlighted Well highlighted

1 2 3 4 5 6 7 8 9 N/A

cont’d on next page
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Part 5: Terminology and System Information

5.1 Use of terms throughout system

Inconsistent Consistent

1 2 3 4 5 6 7 8 9 N/A

5.2 Does the terminology relate well to the work you are doing?

Unrelated Well related

1 2 3 4 5 6 7 8 9 N/A

5.3 Messages which appear on screen

Inconsistent Consistent

1 2 3 4 5 6 7 8 9 N/A

5.4 Messages which appear on screen

Confusing Clear

1 2 3 4 5 6 7 8 9 N/A

5.5 Does the computer keep you informed about what it is doing?

Never Always

1 2 3 4 5 6 7 8 9 N/A

5.6 Error messages

Unhelpful Helpful

1 2 3 4 5 6 7 8 9 N/A

5.7 System feedback

Unhelpful Helpful

1 2 3 4 5 6 7 8 9 N/A

5.8 Ability to identify errors and sources of errors

Difficult Easy

1 2 3 4 5 6 7 8 9 N/A

5.9 System help/support

Not useful Useful

1 2 3 4 5 6 7 8 9 N/A

5.10 Level of system support for error recovery

Low High

1 2 3 4 5 6 7 8 9 N/A

cont’d on next page
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Part 6: Learning

6.1 Understanding of terms used throughout system

Difficult Easy

1 2 3 4 5 6 7 8 9 N/A

6.2 Does the terminology relate well to the work you are doing?

Discouraging Encouraging

1 2 3 4 5 6 7 8 9 N/A

6.3 Understanding of messages which appear on screen

Difficult Easy

1 2 3 4 5 6 7 8 9 N/A

6.4 Usefulness of messages which appear on screen

Never Always

1 2 3 4 5 6 7 8 9 N/A

6.5 Error messages

Confusing Clear

1 2 3 4 5 6 7 8 9 N/A

6.6 Does the computer keep you informed about what it is doing?

Confusing Clear

1 2 3 4 5 6 7 8 9 N/A

6.7 Ease of learning of the functions available

Difficult Easy

1 2 3 4 5 6 7 8 9 N/A

6.8 Actual ability to make use of the system

Difficult Easy

1 2 3 4 5 6 7 8 9 N/A

6.9 How would you rate the time you required, on average, to perform tasks?

Very long Very short

1 2 3 4 5 6 7 8 9 N/A

6.10 How long do you feel you would require to reach a working level of proficiency?

> 1 year 1 year 6 mths 1 mth 2 weeks 1 day

cont’d on next page
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Part 7: System Capabilities

7.1 System speed, on average

Too slow Fast enough

1 2 3 4 5 6 7 8 9 N/A

7.2 Variations in system speed

Large Small

1 2 3 4 5 6 7 8 9 N/A

7.3 How reliable is the system?

Very unreliable Very reliable

1 2 3 4 5 6 7 8 9 N/A

7.4 System tends to be

Noisy Quiet

1 2 3 4 5 6 7 8 9 N/A

7.5 Correcting your mistakes

Difficult Easy

1 2 3 4 5 6 7 8 9 N/A

7.6 Are the needs of both experienced and inexperienced users taken into account?

Never Always

1 2 3 4 5 6 7 8 9 N/A

7.7 How would you rate the level of functionality offered by the system?

Poor Very good

1 2 3 4 5 6 7 8 9 N/A

Compared to the current working browsers how would you rate this system:

7.8

Difficult to use Easy to use

1 2 3 4 5 6 7 8 9 N/A

7.9

Difficult data
analysis

Simplified data
analysis

1 2 3 4 5 6 7 8 9 N/A

7.10

Unintuitive Intuitive

1 2 3 4 5 6 7 8 9 N/A

cont’d on next page
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Part 8: Users’ Comments

Please write any comments you have in the space below.
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Appendix D

Evaluation results

D.1 Pre-evaluation questionnaire

D.1.1 Use of input/output devices
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D.2 Post-evaluation questionnaire

D.2.1 Mean rankings over all users for each item for 2D browser
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D.2.2 Mean rankings over all users for each item for 3D browser
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D.3 Task completion times

D.3.1 Mean task completion times

D.3.2 Task completion times for each user
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Appendix E

Documents for final evaluation
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E.1 User Instruction Sheet

Instructions for User Evaluation User ID:

Thank you for agreeing to participate in this second evaluation of the two anatomy
browsers.
All data obtained in the evaluation is confidential.
Although it would be helpful to allow us to get back to you with any additional questions
we may have, you are welcome to omit your name and contact details if you would prefer
the data to remain anonymous.
You can withdraw from the evaluation and request that your data be destroyed at any
stage.
All data storage will comply with the appropriate Data Protection regulations.
At the end of the evaluation process all users will be provided with feedback on the results
unless otherwise requested.

You will be given a brief overview of the browsers after completing this form. You will
then be provided with a set of Task Scenario Sheets. Please use these with the help of
the printout of the Quick Guide to complete the tasks detailed. Where required write out
responses to questions asked on the Task Scenario sheets.
More detailed help is provided from the Help Menu in each browser. You may ask the
evaluator for clarification where necessary, and as much assistance as necessary will be
given provided doing so does not bias the results of the evaluation.
The evaluator will make notes on the path(s) you take to your solution for each task. A
talk-through of the process you follow to achieve each goal would be appreciated as it
provides more information on your understanding of how the systems work.

Once you have completed the tasks you will be provided with a brief exercise on visual
information analysis, followed by two questionnaires to gather your impressions on the
functionality of the system. You are welcome at this stage to provide any further informa-
tion on the system that you feel has not been addressed sufficiently in the questionnaires.

If you agree to being contacted for any additional information, please tick here: �
If you would like to receive feedback at the end of the analysis, please tick here: �

If you understand and accept the above, please sign below.

Signature:

Name: . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Date: . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
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E.2 Quick guide to visualisation browsers

Menu options

File, Edit, View and Help menus on the menu bar (2D and 3D)

Node, Link, Selection and Graph popup menus in 2D only (additional popup for secondary win-

dow - zoom pane). Options on the popup menu correspond to those on the menu bar, but apply

only to the set of nodes they describe.

Toolbar options

Options in both browsers are for Open/Load ontologies, Close (All) , Search, Save State and

Help.

The 2D browser also provides buttons for Zoom and Switch Graph Layout,

and the 3D Set Node/Link Colour and a link to the Create/Draw Mappings dialog.

Creating groups

A group node can be created based on user-defined criteria, using a custom dialog. Links are then

drawn from the group node to other nodes that form a part of this group, distinguishing between

child and parent nodes. Once created a group may be edited or removed from the graph.

Tracing lineage

Lineage paths within a single ontology in 2D trace successive component parts of a node. Lineage

for a single node across multiple ontologies, describing evolution with time, may be automatically

retrieved and drawn using links across trees in the 3D browser.

Options for editing graph structure

These include Collapse/expand sub-trees, Ghost/highlight nodes and Annotate nodes and

mappings for both 2D and 3D. For 2D only there is additionally Set number of levels to draw

and Set label property/hide labels.

Supplementary textual detail may be displayed for selected node(s) and/or link(s), and a selection

of nodes may also be extracted to a sub-window for analysis in isolation.

Creating / drawing mappings

Available only in 3D this provides a dialog for creating mappings between any node pair loaded in

the window, and allows previously created mappings to be loaded into the browser. The dialog also

provides simple graphical querying to retrieve and draw specified mappings to the 3D window.

Saving to file

Options include saving a (reloadable) system state (XML) file describing graph structure and phys-

ical attributes of nodes, and in 3D only, mappings between nodes.

The graph with the focus in 2D or the current view in 3D may also be saved to a JPEG image.
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E.3 Task scenario sheets

Text Indices

TASK DESCRIPTION TASK DETAIL SOLUTIONS

1 Display the text index for
Theiler Stage (TS) 10.

REQ: working EMAP browser
SCC: Text index, (2D slice and
3D model) for TS10 displayed
in web browser.
MTC: 34s

N/A

2 Locate the component visceral
endoderm and determine its
print name (fully qualified name
or path to root).

REQ: working EMAP browser
SCC: entry in index identified as
required, correct trace to root
MTC: 100s

extraembryonic
component.endoderm.visceral
endoderm

3 Identify also the component vis-
ceral endoderm in TS11 and
TS12. Name all other com-
ponents in each stage that
along with the visceral endo-
derm form their complete par-
ent component. Based on the
information retrieved can you
determine if this is the same
component persisting through
the three stages?
What is the latest stage in
which the visceral endoderm
may be found?

REQ: working EMAP browser
SCC: identification of the vis-
ceral endoderm in TS11 and
TS12.
MTC: 120s/30s

For all three stages - parent
component: extraembryonic
component.endoderm; other
sub-parts: parietal endoderm.
intermediate endoderm
additionally found in TS10 and
TS11.
GUESS TS13 because this
stage does not contain the
component extraembryonic
component.visceral endoderm
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2D Browser

TASK DESCRIPTION TASK DETAIL SOLUTIONS

1 Load Theiler Stages (TS) 10,
11 and 12 in the 2D browser.

REQ: 2D anatomy browser, Help files
SCC: Graphs of TS10, 11 and 12 displayed
in browser.

N/A

2 Identify the anatomy compo-
nent amniotic cavity in TS10
and determine its print name
(fully qualified name).
Use the visual structures to de-
termine if the components with
the same name in TS11 and
TS12 trace the same path to
the root.
Do you have enough informa-
tion to tell whether or not the
three nodes refer to the same
structure in each stage of de-
velopment?

REQ: 2D anatomy browser, Help files
SCC: correct identification of node repre-
senting the amniotic cavity. Manual trace
to determine print names of components
in other stages.

extraembryonic
compo-
nent.cavities.amniotic
cavity. Identical
print name (paths)
for TS11 and 12.

3 During which of the three
stages TS10, 11 and 12, do the
components future brain and
future spinal cord develop, and
to which stage do they persist?
Of which component do they
form sub-parts?

REQ: 2D anatomy browser, Help files
SCC: text search or visual scan to identify
components.

TS11 - from em-
bryo.ectoderm.neural
ectoderm

4 Which part of the endoderm
is also referred to as the hy-
poblast?
Create a group in TS11 that
brings together all the compo-
nents that make up the endo-
derm.

REQ: 2D anatomy browser, Help files
SCC: search on synonyms or identify from
graph by switching label property to syn-
onym.
creation of group as required.

hypoblast is a
synonym for
primitive endoderm
Group should
include components
with IDs: 160, 161,
162, 190, 191, 192,
194, 203. 160, 190
should be set as
parents.
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3D Browser

TASK DESCRIPTION TASK DETAIL SOLUTIONS

1 Switch to the 3D browser (and
(re)load the current structures drawn
for TS10, 11 and 12). Load also
TS13 and TS14.

REQ: 3D anatomy browser, Help
files
SCC: Graphs of TS10-14 dis-
played in browser.

N/A

2 Trace lineage paths from the compo-
nents amniotic cavity in TS10 and
future brain in TS11 respectively.
Does the trace drawn in the 3D
browser for the future brain confirm
your conclusion for Task 3 for the 2D
browser?
Capture the current view in the 3D
browser to an image file.

REQ: 3D anatomy browser, Help
files
SCC: lineage traces as required.

3 Unload all stages currently drawn to
the 3D window.
Carnegie Stage 08 (CS08) is the
equivalent stage in the development
of the human embryo for TS11
in the mouse embryo. Determine
the sub-parts of the component em-
bryo.ectoderm in each of CS08 and
TS11, and create and draw ho-
mology (lineage) mappings between
each corresponding node pair.
Take a snapshot of the system state
at this point.

REQ: 3D anatomy browser, Help
files
SCC: correct identification of
nodes.
correct creation of mappings and
links drawn to represent them.

Derivatives in TS11: sur-
face ectoderm and neural
ectoderm
Derivatives in CS08: neu-
ral ectoderm and non-
neural ectoderm
(one) mapping only be-
tween components with
identical print names.

4 Unload all stages currently drawn to
the 3D window.
Load the equivalent stages CS14 and
TS17. Identify the two parts of
the limb in each stage and create
and draw cell type mappings between
them.
Load the file mappings.xml contain-
ing previously determined mappings.
Using the GUI provided query the
data set to retrieve and draw, alter-
nately, ALL mappings stored in the
system and only mappings for anal-
ogy (function) and tissue type.

REQ: 3D anatomy browser, Help
files
SCC: correct creation of map-
pings, and links drawn to repre-
sent them.
successful querying
saving system to state.

Sub-parts of limb for
TS17:
ID: 2100 - hindlimb bud
and
ID: 2096 - forelimb bud
Sub-parts of limb for
CS14:
ID: 3193 - upper limb bud
and
ID: 3190 - lower limb bud

5 Switch back to the 2D layout and
capture the graph in the topmost
frame to an image file.

REQ: 2D & 3D anatomy
browsers, Help files
SCC: switch to 2D browser and
saving graph to JPEG image.

N/A
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E.4 Post-evaluation questionnaire

Usability Evaluation Questionnairea

Identification number: . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Age: . . . . . . . . .

Sex: � Female � Male

Part 1: Type of System being Rated

1.1 Did you feel you had sufficient time to familiarise yourself with the new system?

Yes �

No �

1.2 On average, how much time would you spend per week on this system?

Less than 1 hour �

1 to less than 4 hours �

4 to less than 10 hours �

Over 10 hours �

Part 2: Past Experience

2.1 Of the following devices, software, and systems, check those that you have personally
used and are familiar with.

Keyboard � Electronic mail �

Numeric key pad � Graphics software �

Mouse � Computer games �

Light pen � Colour monitor �

Touch screen � Time-share system �

Track ball � Workstation �

Joy stick � Personal computer �

Text editor � Floppy drive �

Word processor � Hard drive �

File manager � Compact disk drive �

Electronic spreadsheet �

cont’d on next page

aCopyright©1988, 1989, 1991 Human-Computer Interaction Laboratory, University of Maryland. All
rights reserved. The original (Shneiderman) Usability Evaluation questionnaire has been adapted to suit
this evaluation.

226



For sections 3-7 of the questionnaire please circle the numbers (on the scale from 1-9) which most

appropriately reflect your impressions about using this computer system. Not Applicable = N/A.

There is room on the last page for your written comments. (You may also make comments specific

to any question in the margin to its right.)

Part 3: Overall reactions to the system

3.1 Terrible Wonderful

1 2 3 4 5 6 7 8 9 N/A

3.2 Frustrating Satisfying

1 2 3 4 5 6 7 8 9 N/A

3.3 Dull Stimulating

1 2 3 4 5 6 7 8 9 N/A

3.4 Difficult Easy

1 2 3 4 5 6 7 8 9 N/A

3.5 Inadequate
power

Adequate
power

1 2 3 4 5 6 7 8 9 N/A

3.6 Rigid Flexible

1 2 3 4 5 6 7 8 9 N/A

cont’d on next page

227



Part 4: Data Visualisation & Screen

4.1 How representative are the visualisations generated of your mental model of the
data structure?

Not at all Very much so

1 2 3 4 5 6 7 8 9 N/A

4.2 Do you find that the visualisations of the data provide an advantage over the
textual indices in the EMAP browsers?

Not at all Very much so

1 2 3 4 5 6 7 8 9 N/A

For each of the options 4.3-4.7, compare ease of use of the visualisations generated
to the EMAP text indices:

4.3 Data structure

Text indices easier
to use

Visualisations easier
to use

1 2 3 4 5 6 7 8 9 N/A

4.4 Understanding of data

Text indices easier
to use

Visualisations easier
to use

1 2 3 4 5 6 7 8 9 N/A

4.5 Search and query

Text indices easier
to use

Visualisations easier
to use

1 2 3 4 5 6 7 8 9 N/A

4.6 Tracing lineage

Text indices easier
to use

Visualisations easier
to use

1 2 3 4 5 6 7 8 9 N/A

4.7 Grouping of data

Text indices easier
to use

Visualisations easier
to use

1 2 3 4 5 6 7 8 9 N/A

4.8 How useful was ordering of components in the graphs?

Aided location of
components

Did not aid location
of components

1 2 3 4 5 6 7 8 9 N/A

4.9 Was ordering of components easier to follow in 2D or 3D?

2D ordering more
useful

3D ordering more
useful

1 2 3 4 5 6 7 8 9 N/A

cont’d on next page
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4.10 Are the visualisations able to provide a good overview of data structure?

Useful Not useful

1 2 3 4 5 6 7 8 9 N/A

4.11 Do the visualisations reflect your understanding of data structure?

Map to semantic
content

Do not map to
semantic content

1 2 3 4 5 6 7 8 9 N/A

4.12 Does functionality provided for detailed analysis of regions of interest overcome
difficulty posed by occlusion in the overview?

Improved analysis No improvement in
analysis

1 2 3 4 5 6 7 8 9 N/A

4.13 How easy was it to navigate through the visual structures?

Difficult Intuitive

1 2 3 4 5 6 7 8 9 N/A

4.14 How intuitive is navigation using the text indices, compared to the visual struc-
tures?

Text indices more
intuitive

Visual structures
more intuitive

1 2 3 4 5 6 7 8 9 N/A

4.15 Compare intuitiveness of navigation through the data structures in 2D and 3D.

2D more intuitive 3D more intuitive

1 2 3 4 5 6 7 8 9 N/A

For questions 4.16-4.20 please indicate the level of usefulness of each of the options
available in 2D for the reduction of occlusion (or the option N/A for those functions
not used.)

4.16 Hiding of labels

Useful Not useful

1 2 3 4 5 6 7 8 9 N/A

4.17 Ghosting of data

Useful Not useful

1 2 3 4 5 6 7 8 9 N/A

4.18 Hiding of sub-trees

Useful Not useful

1 2 3 4 5 6 7 8 9 N/A

4.19 Zoom

Useful Not useful

1 2 3 4 5 6 7 8 9 N/A

4.20 Switching between layouts

Useful Not useful

1 2 3 4 5 6 7 8 9 N/A

cont’d on next page
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For questions 4.21-4.22 please indicate the level of usefulness of each of the options
available in 3D for the reduction of occlusion ( or the option N/A for those functions
not used.)

4.21 Hiding of sub-trees

Useful Not useful

1 2 3 4 5 6 7 8 9 N/A

4.22 Zoom

Useful Not useful

1 2 3 4 5 6 7 8 9 N/A

4.23 How easy was it to locate information required?

Difficult to find Easy to find

1 2 3 4 5 6 7 8 9 N/A

4.24 How easy was it to perform search and query operations?

Difficult Easy

1 2 3 4 5 6 7 8 9 N/A

4.25 How intuitive is interpretation of search and query results?

Difficult Easy

1 2 3 4 5 6 7 8 9 N/A

4.26 Do the visualisations ease determination of lineage, compared to the system
currently in place?

Less intuitive More intuitive

1 2 3 4 5 6 7 8 9 N/A

4.27 How useful is the 2D browser for tracing lineage, compared to the 3D?

3D more intuitive 2D more intuitive

1 2 3 4 5 6 7 8 9 N/A

4.28 How well does the graphical support provided for grouping of data highlight
user-specified data groups?

Poorly highlighted Well highlighted

1 2 3 4 5 6 7 8 9 N/A

4.29 How useful is grouping in the 2D browser compared to the 3D?

2D layout well
highlighted

3D layout well
highlighted

1 2 3 4 5 6 7 8 9 N/A

cont’d on next page
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Part 5: Terminology & System Information

5.1 Use of terms throughout system

Inconsistent Consistent

1 2 3 4 5 6 7 8 9 N/A

5.2 Does the terminology relate well to the work you are doing?

Unrelated Well related

1 2 3 4 5 6 7 8 9 N/A

5.3 Messages which appear on screen

Inconsistent Consistent

1 2 3 4 5 6 7 8 9 N/A

5.4 Messages which appear on screen

Confusing Clear

1 2 3 4 5 6 7 8 9 N/A

5.5 Does the computer keep you informed about what it is doing?

Never Always

1 2 3 4 5 6 7 8 9 N/A

5.6 Error messages

Unhelpful Helpful

1 2 3 4 5 6 7 8 9 N/A

5.7 System feedback

Unhelpful Helpful

1 2 3 4 5 6 7 8 9 N/A

5.8 Ability to identify errors and sources of errors

Difficult Easy

1 2 3 4 5 6 7 8 9 N/A

5.9 System help/support

Not useful Useful

1 2 3 4 5 6 7 8 9 N/A

5.10 Level of system support for error recovery

Low High

1 2 3 4 5 6 7 8 9 N/A

cont’d on next page
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Part 6: Learning

6.1 Understanding of terms used throughout system

Difficult Easy

1 2 3 4 5 6 7 8 9 N/A

6.2 Understanding of messages which appear on screen

Ambiguous Unambiguous

1 2 3 4 5 6 7 8 9 N/A

6.3 Usefulness of messages which appear on screen

Never Always

1 2 3 4 5 6 7 8 9 N/A

6.4 Error messages

Confusing Clear

1 2 3 4 5 6 7 8 9 N/A

6.5 Does the computer keep you informed about what it is doing?

Confusing Clear

1 2 3 4 5 6 7 8 9 N/A

6.6 Ease of learning of the functions available in the visualisation browsers

Difficult Easy

1 2 3 4 5 6 7 8 9 N/A

6.7 Usefulness of functionality provided for querying data

Useful Not useful

1 2 3 4 5 6 7 8 9 N/A

6.8 Compare ease of learning of the functions available in 2D and 3D

2D more intuitive 3D more intuitive

1 2 3 4 5 6 7 8 9 N/A

Please rate actual ability to make use of the 2D browser (6.9-6.15).

6.9 Navigation through data

Difficult Easy

1 2 3 4 5 6 7 8 9 N/A

6.10 Location of specific information required

Difficult Easy

1 2 3 4 5 6 7 8 9 N/A

6.11 Understanding of data structure

Difficult Easy

1 2 3 4 5 6 7 8 9 N/A

cont’d on next page
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6.12 Understanding of data encoding

Intuitive Non-intuitive

1 2 3 4 5 6 7 8 9 N/A

6.13 Querying data for information required

Intuitive Non-intuitive

1 2 3 4 5 6 7 8 9 N/A

6.14 Understanding of visual query results

Intuitive Non-intuitive

1 2 3 4 5 6 7 8 9 N/A

6.15 Usefulness of visual cues provided for querying

Intuitive Non-intuitive

1 2 3 4 5 6 7 8 9 N/A

Please rate actual ability to make use of the 3D browser (6.16-6.22).

6.16 Navigation through the data

Difficult Easy

1 2 3 4 5 6 7 8 9 N/A

6.17 Location of specific information required

Difficult Easy

1 2 3 4 5 6 7 8 9 N/A

6.18 Understanding of data structure

Difficult Easy

1 2 3 4 5 6 7 8 9 N/A

6.19 Understanding of data encoding

Intuitive Non-intuitive

1 2 3 4 5 6 7 8 9 N/A

6.20 Querying data for information required

Intuitive Non-intuitive

1 2 3 4 5 6 7 8 9 N/A

6.21 Understanding of visual query results

Intuitive Non-intuitive

1 2 3 4 5 6 7 8 9 N/A

6.22 Usefulness of visual cues provided for querying

Intuitive Non-intuitive

1 2 3 4 5 6 7 8 9 N/A

cont’d on next page
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6.23 How useful are textual query results in isolation in either browser?

Useful Not useful

1 2 3 4 5 6 7 8 9 N/A

6.24 How easy is it to understand textual query results?

Difficult Easy

1 2 3 4 5 6 7 8 9 N/A

6.25 How useful are visual query results in isolation?

Useful Not useful

1 2 3 4 5 6 7 8 9 N/A

6.26 How easy is it to locate specific components by tracking location based on path
to the root in each graph?

Difficult Easy

1 2 3 4 5 6 7 8 9 N/A

6.27 How easy is it to locate specific components using the search dialog?

Difficult Easy

1 2 3 4 5 6 7 8 9 N/A

6.28 Compare querying using the EMAP text indices to use of the visualisations.

Text indices more
intuitive

Visual structures
more intuitive

1 2 3 4 5 6 7 8 9 N/A

6.29 Compare functionality for querying in the text indices to that provided for the
visualisations.

Text indices more
useful

Visual structures
more useful

1 2 3 4 5 6 7 8 9 N/A

6.30 Compare querying using the 2D browser to the 3D.

2D browser more
intuitive

3D browser more
intuitive

1 2 3 4 5 6 7 8 9 N/A

6.31 How would you rate the time you required, on average, to perform tasks?

Very long Very short

1 2 3 4 5 6 7 8 9 N/A

6.32 How long do you feel you would require to reach a working level of proficiency?

> 1 year 1 year 6 mths 1 mth 2 weeks 1 day

cont’d on next page
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Part 7: System Capabilities

7.1 System speed, on average

Too slow Fast enough

1 2 3 4 5 6 7 8 9 N/A

7.2 Variations in system speed

Large Small

1 2 3 4 5 6 7 8 9 N/A

7.3 Correcting your mistakes

Difficult Easy

1 2 3 4 5 6 7 8 9 N/A

7.4 Are the needs of both experienced and inexperienced users taken into account?

Never Always

1 2 3 4 5 6 7 8 9 N/A

7.5 How would you rate the level of functionality offered by the system?

Poor Very good

1 2 3 4 5 6 7 8 9 N/A

Compared to the current working browsers how would you rate this system:

7.6

Difficult to use Easy to use

1 2 3 4 5 6 7 8 9 N/A

7.7

Difficult data
analysis

Simplified data
analysis

1 2 3 4 5 6 7 8 9 N/A

7.8

Unintuitive Intuitive

1 2 3 4 5 6 7 8 9 N/A

cont’d on next page
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For questions 7.9-7.16 compare use of the 2D browser to the 3D. (Choose the middle
point to indicate no preference/advantage of one system over the other.)

7.9 Navigation through visual structures

2D more intuitive 3D more intuitive

1 2 3 4 5 6 7 8 9

7.10 Data analysis

More difficult in 2D More difficult in 3D

1 2 3 4 5 6 7 8 9

7.11 Ability of visualisations to provide an overview of data structure

2D more useful 3D more useful

1 2 3 4 5 6 7 8 9

7.12 Usefulness of visual structures for analysis

2D more intuitive 3D more intuitive

1 2 3 4 5 6 7 8 9

7.13 Locating data of interest

2D more effective 3D more effective

1 2 3 4 5 6 7 8 9

7.14 Identifying relationships in data

2D more intuitive 3D more intuitive

1 2 3 4 5 6 7 8 9

7.15 Support for creating and displaying groups

2D more effective 3D more effective

1 2 3 4 5 6 7 8 9

7.16 Functionality for tracing lineage

2D more intuitive 3D more intuitive

1 2 3 4 5 6 7 8 9

7.17 Rate system response in the 2D browser

Good response Poor response

1 2 3 4 5 6 7 8 9 N/A

7.18 Rate system response in the 3D browser

Good response Poor response

1 2 3 4 5 6 7 8 9 N/A

cont’d on next page

236



Part 8: Functionality

Please list, in decreasing order of usefulness, cues you identified in the browsers that improve
data analysis and information retrieval, indicating what you used them for.

1.

2.

3.

4.

5.

Part 9: Use of EMAP browsers

9.1 How frequently do you use the currently working EMAP (Mouse Atlas) browsers?

Never Occasionally Monthly Weekly Daily

9.2 For how long have you been using the EMAP browsers?

< 1 mth 1-3 mths 3-6 mths 6 mths-1yr > 1 yr N/A

cont’d on next page
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Part 10: Users’ Comments

Please write any comments you have in the space below.
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E.5 Spatial ability/awareness exercises

Exercise 1

Please sketch, for each of the 2D and 3D browsers, your understand-
ing/recollection of the visual structure for which you created a group.
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Exercise 2a

1. Choose, for each of the shapes 1-5 the corresponding shape from the options
A-Y.

2. Choose the two identical shapes out of the five shown.

aSample exercises Copyright©Psychometric Success - available at:
http://www.psychometric-success.com/Aptitude\%20Tests\%207.htm
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3. Which of the options on the right is opposite the figure X on the cube
shown on the left?

4. Which of the figures in the group on the right is a rotation of the one
on the left?

5. Which of the options below can be folded to obtain the cube shown?
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Exercise 3a

Choose from the options on the right the next in the sequence on the left-hand side.

1.
a b c d e

2.
a b c d e

3.
a b c d e

4.
a b c d e

5.
a b c d e

6.
a b c d e

7.
a b c d e

8.
a b c d e

aSample exercises Copyright©SHL Group plc,1998 - available at:
http://www.shldirect.com/phasei/helpsection-phaseI/Helpon-16.asp?ID=

EBEE26F9306A4A82B5EC8C6283DBBD1
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E.6 Sample log recording use of browsers

Entry time - 08:54:46

Open - 08:54:50

Open - 08:54:55

Open - 08:55:00 08:55:03

Set Max Levels - 08:55:18

TS10 - 08:55:20

max node count: 42 - 08:55:20 08:55:20

Search - 08:55:22 08:55:58

Set Max Levels - 08:56:14

TS11 - 08:56:16

max node count: 61 - 08:56:16

08:56:16

Set Max Levels - 08:56:28

TS12 - 08:56:30

max node count: 199 - 08:56:30 08:56:30

TS12 - 08:56:36

max node count: 199 - 08:56:36 08:57:04

Search - 08:57:21

Search - 08:57:32 08:57:51

Show Selection Detail - 08:58:09 08:58:24

TS12 - 08:58:49

max node count: 199 - 08:58:49 08:58:55

Search - 08:59:16 08:59:41

Group Nodes - 09:00:09 09:00:38

Switch to 3D - 09:01:04

Open - 09:01:20 09:01:43

Search - 09:02:13

Auto Lineage - 09:02:46 09:03:00

Auto Lineage - 09:03:32 09:04:31

Close All - 09:04:49

Open - 09:05:15

Open - 09:05:22

Search - 09:05:46 09:06:07

Draw Selected Mappings - 09:07:34 09:07:48

Save State - 09:09:16 09:09:25

Close All - 09:09:39

Open - 09:09:49

Open - 09:09:59 09:10:27

Search - 09:10:43 09:13:55

Load Mappings - 09:14:11 09:14:21

Draw All Mappings - 09:14:51

Draw All Mappings - 09:15:17

Save Image - 09:15:42

Switch to 2D - 09:16:13

Exit time - 09:16:21
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Appendix F

Results for final evaluation

F.1 Range of specifications for users’ computers

O/S CPU Memory Hard drive Monitor

Windows XP P4 1.7GHz 256MB 20Gb 768 * 1024

Windows XP P4 2GHz

AT/AT Compatible

1GB 80Gb 1280 * 1024

Linux Redhat P4 CPU 2.40GHz 1GB 80Gb 768 * 1024
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F.2 Post-evaluation questionnaire

F.2.1 Mean usability satisfaction rankings

245



References

[1] F. Achard, G. Vaysseix, and E. Barillot, “XML, bioinformatics and data integration,” Bioin-

formatics. Oxford University Press, 2001, vol. 17, no. 2, pp. 115–125.

[2] P. Adriaans and D. Zantinge, Data mining. Addison-Wesley, 1996, (176 pps).

[3] C. Ahlberg, C. Williamson, and B. Shneiderman, “Dynamic queries for information explo-

ration: an implementation and evaluation,” in CHI ’92: Proceedings of the SIGCHI confer-

ence on Human Factors in Computing Systems, P. Bauersfeld, J. Bennett, and G. Lynch, Eds.

ACM Press, 1992, pp. 619–626.

[4] H. Alani, “TGVizTab: An ontology visualisation extension for Protégé,” in Visualizing Infor-
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