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Abstract 

In visualising multidimensional data, it is well known that 
different types of data require different types of algorithms to 
process them. Data sets might he distinguished according to 
volume, variable types and distribution, and each of these 
characteristics imposes constraints upon the choice of applicable 
algorithms for their visualisation. Previous work has shown that a 
hybrid algorithmic approach can be successful in addressing the 
impact of data volume on the feasibility of multidimensional 
scaling (MDS). This suggests that hybrid combinations of 
appropriate algorithms might also successfully address other 
characteristics of data. This paper presents a system and 
framework in which a user can easily explore hybrid algorithms 
and the data flowing through them. Visual programming and a 
novel algorithmic architecture let the user semi-automatically 
define data flows and the co-ordination of multiple views. 

CR Categories: 1.5.3 [Pattern recognition]: Clustering - 
Algorithms; E.l [Data Structures]: Graphs and networks; D.1.7 
[Programming Techniques]: Visual Programming; 1.3.6 
[Computer Graphics]: Methodology and Techniques - Interaction 
techniques; 

Keywords: Data-flow, visual programming, multidimensional 
scaling, multiple views, hybrid algorithms, complexity 

1 Introduction 

There is a multitude of algorithms available for clustering and 
laying out abstract data. The different algorithmic approaches 
seem to be tailored to specific types of data. Some algorithms 
perform well with data sets of low cardinality and dimensionality, 
such as the basic spring model [Eades 19841. Other algorithms 
work best with high cardinality data, an example of which is the 
self-organising map or SOM [Kohonen el al. 20001. In training, a 
substantial training set allows the SOM to reveal complex non- 
linear structure in a very large body of data. 
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Other features of the data set also affect the applicability of 
algorithms, such as data distribution. For example, K-means 
clustering [MacQueen 19671 is most effective when the data is 
distributed in spherical Gaussian clusters [Bradley and Fayyad 
19981. 

In a working environment, corporate memory and project-specific 
databases tend to start off small and gradually evolve into large 
information repositories. While it would be feasible to visualise 
the inter-object relationships with a force-dirccted layout 
algorithm in the infancy of such a database, it would become less 
and less effective as the database matures and demands a more 
computationally feasible solution. Previous work has shown that 
hybrid algorithmic approaches to visualisation scale up to 
relatively high-volume data sets, even though some of the 
constituent algorithms would be too costly on their own if applied 
to the entire set [Morrison et al. 20021. This would suggest that 
when applied to a growing database, algorithmic steps could be 
bypassed in the repository's infancy and incorporated as it 
approaches maturity Or, in the case that volume fluctuates, the 
hybrid algorithm could fluctuate and adapt with it. 

We present an implemented system and framework called HIVE 
(Hybrid Information Visualisation Environment) that utilises 
direct manipulation to allow users to interactively create and 
explore hybrid MDS algorithms. Figure 1 shows screen-shots of 
the system. Visual programming and a novel algorithmic 
architecture are proposed as a means to let the user semi- 
automatically co-ordinate multiple views and define data flows. 

This paper is organised into seven sections. Section two describes 
related work including the data-flow model and visual 
programming. Section three illustrates the hybrid algorithmic 
framework, upon which the system is built. Section four describes 
the HIVE architecture and implementation. Early experience of 
using HIVE is discussed in section five. Finally, sections six and 
seven present future work and conclusions respectively. 

2 Related work 

The HIVE system permits users to easily create and experiment 
with hybrid algorithms for generating visualisations of their data. 
This process is a visual one in that algorithms and visualisations 
are represented by visual components that afford direct 
manipulation. The following sub-sections describe topics in the 
literature that have influenced HIVE'S development. 
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Figure 1. Two screen-shots of the HIVE interface. The image on the left illustrates interconnected components that import, 
transform and render multidimensional data. The algorithmic components collectively represent the O(N& hybrid MDS 
algorithm of [Morrison et al. 20021. Thick lines that link modules represent data-flows while thin ones, connecting scatterplots 
and other visualisations, represent the connections between interlinked interactive views. The image on the right shows the same 
scatterplots enlarged and supplemented with a fisheye table component. The data consists of 5000 points sampled from a 3D ' S '  
shaped distribution 

2.1 Visual programming 

At around the time when scientific visualisation was being 
established, the concept of visual programming was also 
becoming prominent [Haeberli 1988; Upson et al. 19891. 
Conventional programming languages, whether high level or low 
level, tend to be built around a vocabulary where the 'words' 
consist of primitives (characters). Visual programming languages 
are at a higher level of abstraction than conventional languages. 
Haeberli [I9881 states that a visual programming environment is 
any system that has adopted a graphical 2D notation for the 
creation of programs. The visual primitives that make up the 
vocabulary of these programs are essentially representations of 
well-defined aggregates and the (direct) manipulation of these 
aggregates means that complex programs can be produced more 
easily than with conventional languages. This is because the 
abstraction allows a greater degree of code or function reuse and 
the workings of the programs themselves are more readily 
understood and communicated due to their visual and spatial 
properties. It can also he argued that if the manipulation of the 
visual constructs is flexible enough-for example, the user may 
wish to place them arbitrarily on the display surface-then this 
allows greater freedom for externalising the plans and thoughts of 
the user [Hendry and Harper 19991. 

Using visual programming for constructing InfoVis algorithms 
reinforces our commitment to and interest in graphical interaction 
in computing. With regard to the means-end relationship, the 
means are a visual process and the end result i s  a tool that 
produces the visual information originally sought afler- 
visualisations are useful for producing other visualisations. 

2.2 Data-flow model 

Before visual programming was available in scientific 
visualisation tools, the functional components of the tools were 
hidden from the users and they had no control of the flow of data 
between them. The stream of data from input through calculation 
functions to mapping, filtering and rendering graphics and their 

control was pre-set and the scientists and engineers had to make 
do as hest as they could for their tasks. In the words of Haeberli, 
"Instead of the user driving an applicalion, the user is often 
driven and constrained by the application. " 

Visual programming addressed a number of these problems, 
moving away from these monolithic and static applications and 
providing integrated environments where a user without 
programming expertise could customise his or her applications. 
Visual programming in the application design cycle takes the 
form of a dat t i f low architecture. In this architecture, users are 
presented with a library of modules-application components- 
with specific functions. The users can select which modules will 
be useful in their application and draw, via direct manipulation of 
graphical representations, a block diagram and create connections 
between modules for the data to flow through. This quick and 
easy process meant that scientists and engineers could concentrate 
on the problems being studied instead of dealing with the 
overhead of re-coding and configuring monolithic applications. 

2.3 Multiple-view co-ordination 

Multiple view cwordination allows two or more related views of 
data to run concurrently, with views evolving as data flows into 
them from some common ancestor in the data flow graph, or as 
the user interacts with one of them. A well-known example of 
this is brushing and linking [Becker and Cleveland 19871. By co- 
ordinating multiple views so that changes made in one view are 
reflected in other views, interaction can he said to flow between 
them. This lets the user focus an specific parts of the data set, and 
see them within the context of other views. 

In evaluating their snap-together visualisation system, North and 
Shneiderman have found that this enhances user-performance in 
data analysis tasks [North and Shneiderman 20001. Co-ordination 
of activity across multiple views gives the user greater control 
over the visual representations of the data. This ultimately 
nurtures discovery. In [Buja and Swayne 19961 it is described as 
linking " ... a graphical q u e ~  to a graphical response", and in 
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[Eick and Wills 19951 it is stated that it gives users the impression 
that they are touching the data. 

HIVE takes advantage of the data-flow model and visual 
programming. To create a hybrid algorithm, a user drags 
components from the system's tool bar into the drawing region 
(see figure 1) and then interconnects them by dragging links 
between ports on the components. Not only is the data-flow set up 
in this manner, but the view co-ordination can also be defined this 
way. Afier connecting visualisation tools such as scatterplots to 
the output ports of algorithmic components, 'Select' ports can he 
linked between view components to establish 'brush and link' 
functionality. 

Hybrid algorithms can exhibit a lower run-time than spring 
models run upon the whole data set, as discussed in [Morrison et 
al. 20031, hut they also lend themselves to the production of 
intermediate visualisations. The benefits of this hybrid approach 
are two-fold: efficiency is enhanced and intermediate views 
provide more insight into the data. For example, the hybrid 
algorithm depicted in Figure I (left) uses a spring model of a 
sample ofthe full data set, to gain an initial small-scale 2D layout. 
In the left frame of Figure 1, the sample and the remainder have 
both been fed into spring models, to allow for comparison. The 
two layouts have been positioned by the user on the right hand 
side of the frame. The sample layout is also fed into another 
module, which interpolates the remainder of the set to produce a 
third and final scatterplot, shown in the middle of the frame. In 
the right hand frame in the figure, the fisheye table shows the 
layout points sorted on the y dimension. If we then use brushing 
to select a range of rows in the table, we highlight the 
corresponding points in the scatterplot and reveal more of the 
structure of the data. 

3 Hybrid algorithmic architecture 

HIVE has been inspired by some of the existing data-flow and 
visual programming systems that are prominent in the literature 
and common in the marketplace. Upson et al's Application 
Visualisation System (AVS) [Upson et al. 19891 and North and 
Shneiderman's snap-together system [North and Shneiderman 
20001 are two good examples. AVS is predominantly aimed at 
scientific visualisation, for modelling or simulating physical 
processes such as fluid dynamics, and concentrates on channelling 
data through algorithmic processes for transformation and 
rendering. The emphasis here is on the data-flow. North and 
Shneidennan's snap-together system, on the other hand, is 
concemed with information visualisation. In this system there is 
less emphasis upon the algorithmic processes for transforming 
data and more on the transformation of graphical representations 
by way of multiple interconnected views. Here the flow of 
interaction takes precedence. 

HIVE borrows from the data-flow model of AVS to he flexible in 
creating efficient algorithms for the visualisations. However, to be 
in line with the goal of information visualisation, it concentrates 
on exploration rather than simulation. This is achieved by 
supplementing the data-flow with interaction flow across multiple 
views, rather like the snap-together system. It must be said, 
however, that this approach does not come without drawbacks. It 
is important to note that if the level of abstraction used in the 
visual programming language is too low then there might he too 
many visual modules, in that programming would become 
complicated and the flow networks too large and hard to manage 

in the available screen space. One solution being considered is to 
allow the user to dynamically increase the level of abstraction by 
aggregating groups of modules, simplifying the graph of 
interconnected modules and the programming task. 

As well as implementing visual programming to steer data-flow 
and co-ordinate multiple views, HIVE has at its core a novel 
hybrid algorithmic framework, exploring a general approach to 
the composition of efficient and flexible hybrid algorithms. The 
choice of each algorithmic component is influenced by many 
characteristics including computational cost, the cardinality, 
dimensionality and distribution of the data, and the other 
interaction components that might he used within a larger 
workspace, such as scatterplots and fisheye tables. We suggest 
that these choices can be made incrementally, so that the user 
employs intermediate representations as they work with and 
explore their data. We also suggest that the system can assist the 
user by using a pre-authored classification of data-based on, 
initially, cardinality and dimensionality of data sets-and a 
corresponding classification of available algorithmic components 
based on the classes of data each is suited for. This offers us an 
incremental and combinatorial approach to the creation of 
efficient and informative hybrid visualisations. 

Our work has focused on data set cardinality, N, and the 
dimensionality or number of variables associated with each 
object: D. We roughly categorise D and N using an ordinal range 
(high, medium and low), and then we can categorise an 
algorithmic component with values of D and N for 'good' inputs 
and for the component's outputs, effectively stating our opinion 
that the component is hest suited to such combinations of D and 
N .  For example, we consider that the input to K-means clustering 
should he medium to high in D and N, whereas a canonical O(Nz) 
spring model algorithm can only handle low N and low to medium 
D 
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Figure 2. Data input to components in a hybrid algorithmic 
architecture can he categorised by the ranges of 
dimensionality and cardinality they are best suited for- 
high, medium or low. Each component transforms the data, 
effectively moving across the 3x3 grid. Our hybrid layout 
algorithm produces a low-dimensional layout of a large 
high-dimensional data set i.e. a move from ( X H )  to (L,H) 
that involves several steps shown as dotted lines in the 
figure: sampling, which reduces N, then a spring model of 
the sample, which reduces D, and then interpolation, which 
increases N. 
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As shown in Figure 2, the choice of components and how they are 
connected allows one to solve familiar problems in new ways. 
The hybrid algorithm o f  [Morrison et al. 20031 transforms a large 
set of data of high D to low D. It can be thought of as a move 
across the grid of combinations of D and N, stepping from (H, H) 
to (L, H)-but taking an indirect route via (H, L) and (L. L) that 
involves sampling, spring model layout of the sample, and 
interpolation based on that intermediate representation. 

Tentative default values for these ordinal categories of data are as 
follows. We derived these values from our own experience of 
constructing hybrid algorithms, however, HIVE allows the user to 
tailor them: 

L o w D < 3  

3 <= Moderate D <= 100 

High D > 100 

L o w N <  1000 

1000 <=Moderate N <= 25000 

High N >  25000 

The HIVE system has been designed and implemented with this 
hybrid algorithmic approach in mind, and serves to provide a 
workspace for experimental algorithm design and exploratory data 
analysis. The visual modules that have been implemented 50 far 
include a CSV data-importer, Chalmers’ 1996 spring model 
[Chalmers 19961; radial interpolation [Morrison et al. 20021, K- 
means [MacQueen 19671, neural PCA [Oja 19821, stochastic 
sampling, scatterplot, histogram and fisheye table. These. 
components are the ingredients used in an algorithmic 
‘cookbook’, in which components deemed to suit particular data 
characteristics can he automatically connected to form hybrid 
algorithmic paths that span the grid of Figure 2. Examples are 
discussed in Section 5 ,  following the next section’s discussion of 
HIVE’S internal structure and component composition model. 

4. Implementation 

The software has been implemented in Java SDK 1.4. The system 
architecture has been designed to let users compose visualisation 
tools using modular components for importing data, algorithmic 
processing and graphical rendering. In general terms, the 
architecture involves a graph manager that supports the user’s 
composition of a flow of data through components such as 
scatterplots, K-means clustering, spring model layouts, table 
views and so forth. A view manager handles linked user 
interaction with these components. 

The graph manager allows the user to incrementally create 
executable networks of components. It employs a 
scriptinglcomposition model [Nierstrasr et al. 19911 to impose 
constraints upon which modules can be connected and through 
which ‘ports’, depending upon factors such as the categorisation 
of data type mentioned in Section 3, as well as graph structure and 
port polarity (input only, output only, two-way). A user can 
manually connect together components, but be uwned of 
potentially unsuitable or inefficient connections. Another mode 
offers an automatically generated default path through the grid of 
Figure 2, instantiating components based on the system’s 
classification of the input data set. 

The graph manager defines three types of components to support 
the construction of hybrid visualisations. These are (1) data source 
components to allow the import of disparate data sets and perform 
the required variable type transformations; (2) algorithmic 
components to transform data into metadata and intermediate 
representations; and finally, (3) visualisation components for 
rendering. It should be noted that this system is not strictly a data- 
flow model since it is not the original data that is passed between 
components through links and ports, hut references to the data and 
any transformations that are applied. The primary benefit of this is 
the more efficient support for tightly coupled interaction, e.g. 
brushing. 

To facilitate extensibility, the visual modules that represent 
algorithmic processes and visualisations are all derived from a 
common Java class. This means that to accommodate new 
algorithms and visualisations, the programmer need only extend 
the base class and implement hisiher own specific methods. 

Visual components ‘listen’ to each other by way of their ports. 
When a programmer writes a component, he or she must declare 
the ports that are necessary for the functioning and 
communication of the component. Ports operate by extending the 
Java ‘Observable’ class and implementing the ‘Observer’ 
interface [http:lijava.sun.cadapi/l, 50 that when a link is made 
between two components, the ports at each end of the link register 
with each other. This simple approach means that a component 
can send a message to another connected component by sending 
data through one of its (observable) output ports to the (observer) 
input port of the other component. 

There are five types of port that a visual component can 
implement. These consist of the one-way data-in, data-out, 
trigger-in and trigger-out ports, as well as the two-way ‘select’ 
port. When declaring ports, this type must he defined. However, 
data-in and data-out ports may also define the structure of the data 
that will pass through them as well as the variable types 
comprising those data. Two forms of data structure that the ports 
cater for are high-dimensional feature vectors that can consist of 
real, integer, string and date variables, and 2D real-valued co- 
ordinate vectors. 

The system’s composition model is responsible for laying down 
the rules for which ports can be connected, based upon these port 
types. These rules comprise the default composition model, 
however visual component implementations can override them to 
tighten or loosen connection constraints when required. An 
overview of these rules is as follows: 

polarity ~ one-way ports can only he connected to their 
complement. 

self-connection ~ ports on the same component cannot be 
connected 

fan-In - one input port can only be linked to one output port 

fan-out ~ one output port can be linked to many input ports 

data-structure compatibility - data-in and data-out ports 
can only be connected when they are declared to handle the 
same data structure. 

data-variable compatibility - data-in and data-out ports 
can only be connected when they are declared to handle the 
same variable types. 
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Figure 3. The leftmost scatterplot shows the output of 
neural PCA. The middle scatterplot shows the data after 
interpolation around the K-means centroids while the 
right scatterplot illustrates the output of the final spring 
model component. The highlighted cluster is a small 
subset of erroneous PAR measurements. These clusters 
are much clearer in the hybrid algorithm’s plots than 
with PCA. The histogram shows the PAR distribution at 
a depth of 10 metres. The outlying peak (far-lefl) has 
been selected and this highlights the clusters in the 
scattemlots. 

There is one exception to the data-structure compatibility rule 
above. This is to facilitate the semi-automatic generation of 
hybrid algorithms and occurs when the user connects a high 
dimensional output port such as the output of a data source 
component, to a 2D input port such as the input to a scatterplot. In 
this case HIVE classifies the data on the output port according to 
the ordinal ranges of dimensionality and cardinality as described 
in Section 3. Once this is complete, HIVE loads the appropriate 
algorithm from a default set of hybrid algorithms ~ the 
algorithmic ‘cookbook’. These algorithms have been pre- 
classified in their applicability in spanning the grid of Figure 2, 
and are inserted between the two components that the user had 
originally connected, thus restoring adherence to the data- 
structure compatibility rule described above. 

When HIVE has finished this process the user can run or modify 
the algorithm and visualise hisher data. It is suggested that this 
functionality might aid inexperienced users of the system, as well 
as encourage experimentation with hybrid algorithmic 
conjunctions. If the user modifies the HIVE-generated algorithm, 
heishe can save it and specify that this should be used the next 
time HIVE is prompted to generate an algorithm under the same 
circumstances. 

5 Preliminary experience using HIVE 

Early experience of the HIVE system was gained when exploring 
a data set gathered from an eScience project within the Equator 
Interdisciplinary Research Collaboration (www.equator.ac.uk). 
The eScience team has set up a remote sensing probe at a frozen 
lake in the Antarctic, which transmits data including ice thickness, 
water temperature, UV radiation levels etc. to environmental 

scientists at the University of Nottingham. The aim of this is to 
learn about carbon cycling processes. The data set was composed 
of  2202 probe measurements, each consisting of 16 variables 
measured at five-minute intervals between 171h January 2003 and 
3 I “  January 2003. This was converted into CSV format before 
importing it into HIVE. 

Two algorithms were set up in parallel in HIVE and used to 
perform dimensional reduction of the data so that they could be 
rendered as a point distribution in scatterplots. One algorithm 
consisted of a neural PCA component and the other was generated 
automatically after the user specified the data set and visualisation 
tool, in this case a scatterplot. This latter algorithm was similar to 
the hybrid algorithm illustrated in Figure I with the exception that 
it used K-means instead of stochastic sampling in initially 
reducing the representative cardinality. Both algorithms took less 
than five seconds to mn. By setting up these two algorithmic 
paths in parallel, it was possible to directly compare the 
visualisations produced (Figure 3). 

One notable difference between the visualisations was a small 
cluster made prominent by the hybrid spring model, especially in 
the intermediate view after the interpolation phase, which was not 
apparent in the PCA output. By linking a histogram to the 
scatterplots it was found that this cluster of points represented 
data where the photosynthetically active radiation (PAR) 
measurements at a depth of 10 metres were invalid. It tumed out 
that these erroneous measurements were caused by the light level 
exceeding the sensor’s maximum input threshold. 

The two algorithms used here are examples of ‘recipes’ that are in 
the algorithmic cookbook mentioned in Section 3. Since the data 
set used here is deemed to be of moderate cardinality and 
dimensionality, K-means is applicable in reducing the 
representative cardinality (centroids) to make it low enough for 
Chalmers’ spring model to converge very quickly and reduce the 
dimensionality to 2 dimensions. From here, the rest of the data set 
is interpolated onto the layout to restore the representative 
cardinality. A final spring model step is added to tun for a small 
constant number of iterations to refine the final layout. This 
algorithm was generated by HIVE to span the grid in Figure 2 
from (M, M) to (L, m. Ifhowever, the cardinality of the data set 
was high, the algorithm would have had to span from (M. Hi to 
(L, Hi ,  in which case HIVE would have generated a variant of the 
hybrid algorithm. In this case stochastic sampling would be 
employed instead of K-means in the initial phase, to speed things 
up. The other algorithm used in the exercise, neural PCA, was 
composed manually and can be regarded as a direct jump from 
(M. Mi to (L, M) with respect to the algorithmic space in Figure 2. 

This exercise demonstrated the fact that some algorithms can be 
more effective than others when employed in MDS. If  PCA had 
been used alone, the anomalous data might have been overlooked, 
whereas the hybrid spring model made the cluster immediately 
apparent. Also, the value of the intermediate view after 
interpolation boosted the cluster’s separation and made it more 
visible. 

6 Ongoing and Future Work 

Our ongoing work is focused on implementing further visual 
modules to be included in the cookbook of hybrid algorithms that 
will span the simple 3x3 space represented in Figure 2. 
Algorithms to be considered include SOMs [Kohonen et al. 20001 
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and Random Mapping [Kaski 19981. We are also experimenting 
with new algorithmic components such as  Morrison and 
Chalmers' O(h3'4) hybrid algorithm [Morrison .and Chalmers 
20031. These algorithms are being analysed with respect to the 
data types they can handle, their complexity in time and space, 
whether or not they produce visualisations as useful intermediate 
representations, and the order in which they should be applied in a 
hybrid conjunction. We will also investigate aggregation of visual 
modules, as described in Section 3 ,  as a means of increasing 
abstraction and therefore simplifying visual programming. Given 
a larger 'palette' of components, we will then carry out user trials 
of the workspace and the framework. 

One boundary issue that could impact on the implementation and 
usage of the proposed HIVE framework relates to applicable data 
formats. There are several well-established standards for encoding 
and handling data including the hierarchical data format (HDF) 
and others such as  the common data format (CDF). For the HIVE 
fiamework to be adopted as  a feasible information visualisation 
workspace in a non-experimental setting, the formats of data that 
it should he capable of importing, modifying, and possibly 
exporting, should employ these standards. 

7 Conclusion 

A framework for hybrid algorithmic development has been 
described and a system, HIVE, embodying the framework has 
been implemented. From our early experience with our prototype, 
w e  suggest that the hybrid approach has two-fold benefits: 
significant improvements in run times of MDS algorithms can be 
achieved, and intermediate views of the data and the visualisation 
program structure can provide greater insight and control over the 
visualisation process. In the near future, we intend to carry out 
user trials to test this opinion, and to derive system improvements 
and new design ideas 

Overall, we suggest that the growth in the number, variety and 
internal complexity of visualisation algorithms is a similar 
situation to the growth in the size and complexity of the data we 
visualise. While we are not yet at the stage of having hundreds or 
thousands of components to visualise, we feel that the task of 
constructing, adapting and using information visualisation tools is 
becoming a user activity that may benefit from system assistance. 
Visual programming is a promising first step in this direction, as 
we hoped to demonstrate in this paper, but there may be rich and 
useful work to do in using InfoVis techniques to support the 
understanding and use of InfoVis systems. 
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