2,224 research outputs found

    Atomic-SDN: Is Synchronous Flooding the Solution to Software-Defined Networking in IoT?

    Get PDF
    The adoption of Software Defined Networking (SDN) within traditional networks has provided operators the ability to manage diverse resources and easily reconfigure networks as requirements change. Recent research has extended this concept to IEEE 802.15.4 low-power wireless networks, which form a key component of the Internet of Things (IoT). However, the multiple traffic patterns necessary for SDN control makes it difficult to apply this approach to these highly challenging environments. This paper presents Atomic-SDN, a highly reliable and low-latency solution for SDN in low-power wireless. Atomic-SDN introduces a novel Synchronous Flooding (SF) architecture capable of dynamically configuring SF protocols to satisfy complex SDN control requirements, and draws from the authors' previous experiences in the IEEE EWSN Dependability Competition: where SF solutions have consistently outperformed other entries. Using this approach, Atomic-SDN presents considerable performance gains over other SDN implementations for low-power IoT networks. We evaluate Atomic-SDN through simulation and experimentation, and show how utilizing SF techniques provides latency and reliability guarantees to SDN control operations as the local mesh scales. We compare Atomic-SDN against other SDN implementations based on the IEEE 802.15.4 network stack, and establish that Atomic-SDN improves SDN control by orders-of-magnitude across latency, reliability, and energy-efficiency metrics

    A Roadmap for Interdisciplinary Research on the Internet of Things

    No full text
    In mid-2011, the Technology Strategy Board started an integrated programme of work focused on the Internet of Things (IoT), which included strategic investment and the establishment of a Special Interest Group aimed at building and engaging a UK community of innovators and researchers in the IoT. As the portfolio of activities with businesses, academics and other stakeholders progressed, it became apparent to us that the community had a keen interest in taking a more concerted and deeper look at the fundamental research issues in the IoT and that a more interdisciplinary approach was needed.Responding to this level of interest, the Technology Strategy Board joined forces with the Arts and Humanities Research Council, the Economic and Social Research Council, the Engineering and Physical Sciences Research Council and the Research Councils UK Digital Economy Programme and agreed to collaborate on an interdisciplinary R&D roadmapping activity, arguably the first of its kind in the UK. The activity, led by Professors Rahim Tafazolli, Hamid Aghvami, Rachel Cooper, William Dutton and Dr Colin Upstill brought together insight from a wide group of leaders and culminated in a two-day ‘meeting of minds’ in Loughborough on 11 and 12 July 2012. This report summarises the outcomes of the activity and makes important wide-ranging recommendations

    Exploring Security, Privacy, and Reliability Strategies to Enable the Adoption of IoT

    Get PDF
    The Internet of things (IoT) is a technology that will enable machine-to-machine communication and eventually set the stage for self-driving cars, smart cities, and remote care for patients. However, some barriers that organizations face prevent them from the adoption of IoT. The purpose of this qualitative exploratory case study was to explore strategies that organization information technology (IT) leaders use for security, privacy, and reliability to enable the adoption of IoT devices. The study population included organization IT leaders who had knowledge or perceptions of security, privacy, and reliability strategies to adopt IoT at an organization in the eastern region of the United States. The diffusion of innovations theory, developed by Rogers, was used as the conceptual framework for the study. The data collection process included interviews with organization IT leaders (n = 8) and company documents and procedures (n = 15). Coding from the interviews and member checking were triangulated with company documents to produce major themes. Through methodological triangulation, 4 major themes emerged during my analysis: securing IoT devices is critical for IoT adoption, separating private and confidential data from analytical data, focusing on customer satisfaction goes beyond reliability, and using IoT to retrofit products. The findings from this study may benefit organization IT leaders by enhancing their security, privacy, and reliability practices and better protect their organization\u27s data. Improved data security practices may contribute to social change by reducing risk in security and privacy vulnerabilities while also contributing to new knowledge and insights that may lead to new discoveries such as a cure for a disease

    5G Multi-access Edge Computing: Security, Dependability, and Performance

    Full text link
    The main innovation of the Fifth Generation (5G) of mobile networks is the ability to provide novel services with new and stricter requirements. One of the technologies that enable the new 5G services is the Multi-access Edge Computing (MEC). MEC is a system composed of multiple devices with computing and storage capabilities that are deployed at the edge of the network, i.e., close to the end users. MEC reduces latency and enables contextual information and real-time awareness of the local environment. MEC also allows cloud offloading and the reduction of traffic congestion. Performance is not the only requirement that the new 5G services have. New mission-critical applications also require high security and dependability. These three aspects (security, dependability, and performance) are rarely addressed together. This survey fills this gap and presents 5G MEC by addressing all these three aspects. First, we overview the background knowledge on MEC by referring to the current standardization efforts. Second, we individually present each aspect by introducing the related taxonomy (important for the not expert on the aspect), the state of the art, and the challenges on 5G MEC. Finally, we discuss the challenges of jointly addressing the three aspects.Comment: 33 pages, 11 figures, 15 tables. This paper is under review at IEEE Communications Surveys & Tutorials. Copyright IEEE 202
    corecore