24 research outputs found

    Ball-Shaped Robots

    Get PDF

    A concept study of small planetary rovers : using Tensegrity Structures on Venus

    Get PDF
    Venus is among the most enigmatic and interesting places to explore in the solar system. However, the surface of Venus is a very hostile, rocky environment with extreme temperatures, pressures, and chemical corrosivity. A planetary rover to explore the surface would be scientifically valuable, but must use unconventional methods in place of traditional robotic control and mobility. This study proposes that a tensegrity structure can provide adaptivity and control in place of a traditional mechanism and electronic controls for mobility on the surface of Venus and in other extreme environments. Tensegrity structures are light and compliant, being constructed from simple repeating rigid and flexible members and stabilized only by tension, drawing inspiration from biology and geometry, and are suitable for folding, deployment, and adaptability to terrain. They can also utilize properties of smart materials and geometry to achieve prescribed movements. Based on the needs of scientific exploration, a simple tensegrity rover can provide mobility and robustness to terrain and environmental conditions, and can be powered by environmental sources such as wind. A wide variety of tensegrity structures are possible, and some initial concepts suitable for volatile and complex environments are proposed here

    Enabling All-Access Mobility for Planetary Exploration Vehicles via Transformative Reconfiguration

    Get PDF
    Effective large-scale exploration of planetary surfaces requires robotic vehicles capable of mobility across chaotic terrain. Characterized by a combination of ridges, cracks and valleys, the demands of this environment can cause spacecraft to experience significant reductions in operating footprint, performance, or even result in total system loss. Significantly increasing the scientific return of an interplanetary mission is facilitated by architectures capable of real-time configuration changes that go beyond that of active suspensions while concurrently meeting system, mass, power, and cost constraints. This Phase 1 report systematically explores how in-service architecture changes can expand system capabilities and mission opportunities. A foundation for concept generation is supplied by four Martian mission profiles spanning chasms, ice fields, craters and rocky terrain. A fifth mission profile centered on Near Earth Object exploration is also introduced. Concept generation is directed using four transformation principles - a taxonomy developed by the engineering design community to explain the cause of an architecture change and existing brainstorming techniques. This allowed early conceptual sketches of architecture changes to be organized by the principle driving the greatest increase in mission performance capability

    Luontoa jäljittelevän pallorobotin kehittäminen planeettatutkimukseen

    Get PDF
    Planeetoille suuntautuvat tutkimusmatkat tähtäävät usein maaperänäytteiden keräämiseen ja tutkimiseen, usein myös näytteiden palauttamiseen Maahan tarkempia tutkimuksia varten. Äskettäiset Marsiin suuntautuneet robottimissiot ovat osoittaneet liikkuvien robottien kyvyn suorittaa tutkimustehtäviä. Vieraalla planeetalla robotin liikkumiskyky on tarpeen tutkittavan alueen laajentamiseksi ja tutkimusten kohdentamiseksi haluttuihin tieteellisesti kiinnostavimpiin kohteisiin. Luonnon kehittämiä ratkaisuja jäljittelevä liikkumistapa saattaa tarjota liikkuvalle robotille nykyisiä parempaa mukautumis- ja viansietokykyä. Tämä tutkimustyö etsii luonnosta uusia innovaatioita ja tähtää uudenlaisten joustavien ja tehokkaiden liikkumistapojen kehittämiseen liikkuville roboteille. Erityisesti työ keskittyy pallomaisen, aro-ohdakkeen mukaan englanniksi 'Thistle':ksi nimetyn, robotin määrittelyyn ja alustavaan kehitystyöhön. Tutkimus käsittelee myös keinoja hyödyntää liikkumisessa Marsin paikallisia energialähteitä, kuten tuuli- ja lämpöenergiaa. Useita erilaisia energiankeruutapoja esitellään ja arvioidaan. Vaikka kaikki tutkitut konseptit eivät heti vaikuta toteuttamiskelpoisilta, on ne kuitenkin esitelty mitään pois jättämättä, jotta ne voisivat olla innoittajina tuleville uusille asiaan liittyville tutkimuksille.Planetary exploration missions often aim to carry out in-situ analysis and possibly return samples to Earth for more thorough examination. Recent robotic missions to Mars have demonstrated effectiveness of robotic exploration of planetary surface. Purpose of a mobile robot on planet surface is to enlarge the area to be investigated, and to concentrate investigations on subjects with most scientific interest. The application of biomimetic locomotion to the Martian surface offers the possibility of increased robustness and failure tolerance of a mobile robot. This study searches for new innovations from nature and aims to develop a novel system to provide robust and efficient locomotion system to be used for exploring surface of foreign planets. Especially this work describes definition and conceptual development of a rolling robot -later called 'The Thistle' mimicking a Russian Thistle -plant. The study considers locomotion and power generation methods that would utilize local power generation resources like wind or heat. This study involves the identification and conceptual development of innovative concepts for planetary surface locomotion and energy collection. Several concepts are presented and evaluated. Considering nature of the study, although evaluation reveals some concepts probably not adequate, these are not removed from the thesis, but are left here for the interest and further inspiration of the reader

    The low cost manufacture of high technology machines

    Get PDF
    This paper argues for the importance, within the Mars Society in Australia and elsewhere, of the development not only of new kinds of hardware, but of new processes for constructing them. The task of preparing the way for future planetary exploration is a demanding one, especially for volunteers working with limited resources of time, money and skills. Successfully managing high-technology projects under these conditions could depend on teams taking advantage of and further adapting the best management methods and tools available. Project managers should strive from the outset to design hardware and processes that cost less, depend less on skilled labour, are flexible, are economical in short run or once-off quantities, meet the needs of scientific field testing and appear credible to media and public scrutiny. Practical lessons learned by the author while managing the construction of the Starchaser pressurised rover prototype are offered to exemplify some of these principles. The paper concludes with a brief call to the international Mars Society to extend this process beyond manufacturing to the foundation of a new synthetic culture, fostering values of pioneer self-reliance, mastery of technology, recognition of human limits and service to the group

    WindBots: A Concept for Persistent In-Situ Science Explorers for Gas Giants

    Get PDF
    This report summarizes the study of a mission concept to Jupiter with one or multiple Wind Robots able to operate in the Jovian atmosphere, above and below the clouds - down to 10 bar, for long durations and using energy obtained from local sources. This concept would be a step towards persistent exploration of gas giants by robots performing in-situ atmospheric science, powered by locally harvested energy. The Wind Robots, referred in this report as WindBots (WBs), would ride the planetary winds and transform aeolian energy into kinetic energy of flight, and electrical energy for on-board equipment. Small shape adjustments modify the aerodynamic characteristics of their surfaces, allowing for changes in direction and a high movement autonomy. Specifically, we sought solutions to increase survivability to strong/turbulent winds, and mobility and autonomy compared to passive balloons

    NASA Innovative Advanced Concepts (NIAC) Phase 1 Final Report: Venus Landsailer Zephyr

    Get PDF
    Imagine sailing across the hot plains of Venus! A design for a craft to do just this was completed by the COncurrent Multidisciplinary Preliminary Assessment of Space Systems (COMPASS) Team for the NASA Innovative Advanced Concepts (NIAC) project. The robotic craft could explore over 30 km of surface of Venus, driven by the power of the wind

    Space Resources Roundtable Six

    Get PDF
    Covers developing and utilizing the resources of space, including the Moon, Mars, and asteroids.Sponsored by: Colorado School of Mines, Lunar and Planetary Institute, Space Resources Roundtable, Inc.Steering Committee: Joe Burris, WorldTradeNetwork, R. Scott Baird, NASA Johnson Space Center, David Criswell, University of Houston, Michael B. Duke, Colorado School of Mines, Stephen Mackwell, Lunar and Planetary Institute, Clyde Parish, NASA Kennedy Space Center, Sanders Rosenberg, InSpace Propulsion, Inc., Frank Schowengerdt, NASA Headquarters, G. Jeffrey Taylor, University of Hawai'i, Lawrence Taylor, University a/Tennessee.PARTIAL CONTENTS: Dielectric Constant Measurements on Lunar Soils and- Terrestrial Minerals / R. C. Anderson, M. G. Buehler, S. Seshardri, and M. G. Schaap--Dust Mitigation of Astronaut Spacesuits / H. Angel, P. Thanh, and M Nakagawa--Toward a Sustainable Mars Infrastructure / R. L. Ash--Granular Materials and Risks In ISRU / R. P. Behringer and R. A. Wilkinson--ISRU Technology Modeling and Analysis / B. R. Blair, J. Diaz, B. Ruiz, and M. B. Duke--Costs and Benefits of ISRU-Based Human Space Exploration / B. R. Blair, M. B. Duke, J. Diaz, and B. Ruiz--Report on the Construction and Testing of a Bucket Wheel Excavator / D. S. Boucher and J Richard--The Lunar Polar Illumination Environment: What We Know & What We Don't / D. B. J. Bussey and P. D. Spudis--Lunar Simulants: JSC-l is Gone; The Need for New Standardized Root Simulants / J. L. Carter, D. S. McKay, L. A. Taylor, and W. D. Carrier III--Space Transportation for a Lunar Resources Base (LRB) / H. P. Davis

    Methods and tools for the formulation, evaluation and optimization of rover mission concepts

    Get PDF
    Thesis (Ph. D.)--Massachusetts Institute of Technology, Dept. of Aeronautics and Astronautics, 2007.Page 256 blank.Includes bibliographical references (p. 245-255).Traditionally, Mars rover missions have been conceived with a single point design approach, exploring a limited architectural trade space. The design of future missions must resolve a conflict between increasingly ambitious scientific objectives and strict technical and programmatic constraints. Therefore, there is a need for advanced mission study engineers to consider a wider range of surface exploration concepts in order to identify those with superior performance and robustness with respect to evolving mission objectives. To this end, a three stage trade space exploration approach has been developed to supplement point design development in the early conceptual phase of Mars rover missions. The product is an integrated set of theoretical methods and analytical tools which enhances the understanding and enables the rapid exploration of the rover mission trade space. In the formulation stage, the first stage of the approach, a parallel decomposition of the functional and physical aspects of Mars exploration architectures is employed to explore trade space of surface mission concepts. At each step of the decomposition, architectural alternatives are assessed with respect to stakeholder figures of merit.(cont.) The resulting concept development trees allow for a rapid assessment of a given design's strength and robustness with respect to stakeholder priorities. In the evaluation stage, the Mars Surface Exploration (MSE) rover system design tool is used to support quantitative analysis of the superior designs identified in the formulation stage. This tool, for advanced mission studies, offers unique functionality: breadth of exploration, system-level modeling fidelity and rapidity. As a demonstration of its capabilities, the tool is used to model and evaluate a multi-rover mission concept in less than two hours. In the optimization stage, two systems engineering methods are developed to optimize, with MSE, the more complex technical and physical aspects of rover mission architectures. The first method assesses the value of autonomy technologies in future missions; it is based on the principle that the monetary worth of autonomy can be evaluated by benchmarking its performance against competing solutions with known cost. The method is applied to value autonomy development for site-to-site traverse and sample approach activities.(cont.) The second method optimizes platform strategies for space exploration systems; an innovative optimization technique is developed to enumerate of all platform options. In the six rover mission campaigns analyzed, the best platform strategies are shown to generate very limited savings compared to traditional strategies. The two case studies demonstrate that the analytical capabilities of MSE combined with a theoretical structure form a valuable decision making tool for early conceptual design trade-offs.by Julien-Alexandre Lamamy.Ph.D

    Venus Landsailer Zephyr

    Get PDF
    Imagine sailing across the hot plains of Venus! A design for a craft to do just this was completed by the COncurrent Multidisciplinary Preliminary Assessment of Space Systems (COMPASS) Team for the NASA Innovative Advanced Concepts (NIAC) project. The robotic craft could explore over 30 kilometers of the surface of Venus, driven by the power of the wind. The Zephyr Venus Landsailer is a science mission concept for exploring the surface of Venus with a mobility and science capability roughly comparable to the Mars Exploration Rovers (MER) mission, but using the winds of the thick atmosphere of Venus for propulsion. It would explore the plains of Venus in the year 2025, near the Venera 10 landing site, where wind velocities in the range of 80 to 120 centimeters per second (cm/s) were measured by earlier Soviet landing missions. These winds are harnessed by a large wing/sail which would also carry the solar cells to generate power. At around 250 kilograms (kg), Zephyr would carry an 8 meter tall airfoil sail (12 square meters area), 25 kg of science equipment (mineralogy, grinder, and weather instruments) and return 2 gigabytes of science over a 30 day mission. Due to the extreme temperatures (450 degrees Centigrade) and pressures (90 bar) on Venus, Zephyr would have only basic control systems (based on high temperature silicon carbide (SiC)electronics) and actuators. Control would come from an orbiter which is in turn controlled from Earth. Due to the time delay from the Earth a robust control system would need to exist on the orbiter to keep Zephyr on course. Data return and control would be made using a 250 megahertz link with the orbiter with a maximum data rate of 2 kilobits per second. At the minimal wind speed required for mobility of 35 cm/s, the vehicle move at a slow but steady 4 cm/s by positioning the airfoil and use of one wheel that is steered for pointing control. Navigation commands from the orbiter will be based upon navigation cameras, simple accelerometers and stability sensors; Zephyr's stability is robust, using a wide wheel base along with controls to "feather" or "luff" the airfoil and apply brakes to stop the vehicle in the case of unexpected conditions. This would be the science gathering configuration. The vehicle itself would need to be made from titanium (Ti) as the structural material, with a corrosion-barrier overcoating due to extreme temperatures on the surface
    corecore