6,877 research outputs found

    Learning what matters - Sampling interesting patterns

    Get PDF
    In the field of exploratory data mining, local structure in data can be described by patterns and discovered by mining algorithms. Although many solutions have been proposed to address the redundancy problems in pattern mining, most of them either provide succinct pattern sets or take the interests of the user into account-but not both. Consequently, the analyst has to invest substantial effort in identifying those patterns that are relevant to her specific interests and goals. To address this problem, we propose a novel approach that combines pattern sampling with interactive data mining. In particular, we introduce the LetSIP algorithm, which builds upon recent advances in 1) weighted sampling in SAT and 2) learning to rank in interactive pattern mining. Specifically, it exploits user feedback to directly learn the parameters of the sampling distribution that represents the user's interests. We compare the performance of the proposed algorithm to the state-of-the-art in interactive pattern mining by emulating the interests of a user. The resulting system allows efficient and interleaved learning and sampling, thus user-specific anytime data exploration. Finally, LetSIP demonstrates favourable trade-offs concerning both quality-diversity and exploitation-exploration when compared to existing methods.Comment: PAKDD 2017, extended versio

    Re-mining item associations: methodology and a case study in apparel retailing

    Get PDF
    Association mining is the conventional data mining technique for analyzing market basket data and it reveals the positive and negative associations between items. While being an integral part of transaction data, pricing and time information have not been integrated into market basket analysis in earlier studies. This paper proposes a new approach to mine price, time and domain related attributes through re-mining of association mining results. The underlying factors behind positive and negative relationships can be characterized and described through this second data mining stage. The applicability of the methodology is demonstrated through the analysis of data coming from a large apparel retail chain, and its algorithmic complexity is analyzed in comparison to the existing techniques

    When Things Matter: A Data-Centric View of the Internet of Things

    Full text link
    With the recent advances in radio-frequency identification (RFID), low-cost wireless sensor devices, and Web technologies, the Internet of Things (IoT) approach has gained momentum in connecting everyday objects to the Internet and facilitating machine-to-human and machine-to-machine communication with the physical world. While IoT offers the capability to connect and integrate both digital and physical entities, enabling a whole new class of applications and services, several significant challenges need to be addressed before these applications and services can be fully realized. A fundamental challenge centers around managing IoT data, typically produced in dynamic and volatile environments, which is not only extremely large in scale and volume, but also noisy, and continuous. This article surveys the main techniques and state-of-the-art research efforts in IoT from data-centric perspectives, including data stream processing, data storage models, complex event processing, and searching in IoT. Open research issues for IoT data management are also discussed

    The EDAM Project: Mining Atmospheric Aerosol Datasets

    Get PDF
    Data mining has been a very active area of research in the database, machine learning, and mathematical programming communities in recent years. EDAM (Exploratory Data Analysis and Management) is a joint project between researchers in Atmospheric Chemistry and Computer Science at Carleton College and the University of Wisconsin-Madison that aims to develop data mining techniques for advancing the state of the art in analyzing atmospheric aerosol datasets. There is a great need to better understand the sources, dynamics, and compositions of atmospheric aerosols. The traditional approach for particle measurement, which is the collection of bulk samples of particulates on filters, is not adequate for studying particle dynamics and real-time correlations. This has led to the development of a new generation of real-time instruments that provide continuous or semi-continuous streams of data about certain aerosol properties. However, these instruments have added a significant level of complexity to atmospheric aerosol data, and dramatically increased the amounts of data to be collected, managed, and analyzed. Our abilit y to integrate the data from all of these new and complex instruments now lags far behind our data-collection capabilities, and severely limits our ability to understand the data and act upon it in a timely manner. In this paper, we present an overview of the EDAM project. The goal of the project, which is in its early stages, is to develop novel data mining algorithms and approaches to managing and monitoring multiple complex data streams. An important objective is data quality assurance, and real-time data mining offers great potential. The approach that we take should also provide good techniques to deal with gas-phase and semi-volatile data. While atmospheric aerosol analysis is an important and challenging domain that motivates us with real problems and serves as a concrete test of our results, our objective is to develop techniques that have broader applicability, and to explore some fundamental challenges in data mining that are not specific to any given application domain

    Graph-Query Suggestions for Knowledge Graph Exploration

    Get PDF
    We consider the task of exploratory search through graph queries on knowledge graphs. We propose to assist the user by expanding the query with intuitive suggestions to provide a more informative (full) query that can retrieve more detailed and relevant answers. To achieve this result, we propose a model that can bridge graph search paradigms with well-established techniques for information-retrieval. Our approach does not require any additional knowledge from the user and builds on principled language modelling approaches. We empirically show the effectiveness and efficiency of our approach on a large knowledge graph and how our suggestions are able to help build more complete and informative queries
    corecore