1,103 research outputs found

    Fastest mixing Markov chain on graphs with symmetries

    Full text link
    We show how to exploit symmetries of a graph to efficiently compute the fastest mixing Markov chain on the graph (i.e., find the transition probabilities on the edges to minimize the second-largest eigenvalue modulus of the transition probability matrix). Exploiting symmetry can lead to significant reduction in both the number of variables and the size of matrices in the corresponding semidefinite program, thus enable numerical solution of large-scale instances that are otherwise computationally infeasible. We obtain analytic or semi-analytic results for particular classes of graphs, such as edge-transitive and distance-transitive graphs. We describe two general approaches for symmetry exploitation, based on orbit theory and block-diagonalization, respectively. We also establish the connection between these two approaches.Comment: 39 pages, 15 figure

    Graph Signal Processing: Overview, Challenges and Applications

    Full text link
    Research in Graph Signal Processing (GSP) aims to develop tools for processing data defined on irregular graph domains. In this paper we first provide an overview of core ideas in GSP and their connection to conventional digital signal processing. We then summarize recent developments in developing basic GSP tools, including methods for sampling, filtering or graph learning. Next, we review progress in several application areas using GSP, including processing and analysis of sensor network data, biological data, and applications to image processing and machine learning. We finish by providing a brief historical perspective to highlight how concepts recently developed in GSP build on top of prior research in other areas.Comment: To appear, Proceedings of the IEE

    The spectrum of the Hilbert space valued second derivative with general self-adjoint boundary conditions

    Full text link
    We consider a large class of self-adjoint elliptic problem associated with the second derivative acting on a space of vector-valued functions. We present two different approaches to the study of the associated eigenvalues problems. The first, more general one allows to replace a secular equation (which is well-known in some special cases) by an abstract rank condition. The latter seems to apply particularly well to a specific boundary condition, sometimes dubbed "anti-Kirchhoff" in the literature, that arise in the theory of differential operators on graphs; it also permits to discuss interesting and more direct connections between the spectrum of the differential operator and some graph theoretical quantities. In either case our results yield, among other, some results on the symmetry of the spectrum

    Distance-regular graphs

    Get PDF
    This is a survey of distance-regular graphs. We present an introduction to distance-regular graphs for the reader who is unfamiliar with the subject, and then give an overview of some developments in the area of distance-regular graphs since the monograph 'BCN' [Brouwer, A.E., Cohen, A.M., Neumaier, A., Distance-Regular Graphs, Springer-Verlag, Berlin, 1989] was written.Comment: 156 page

    Relaxation-Based Coarsening for Multilevel Hypergraph Partitioning

    Get PDF
    Multilevel partitioning methods that are inspired by principles of multiscaling are the most powerful practical hypergraph partitioning solvers. Hypergraph partitioning has many applications in disciplines ranging from scientific computing to data science. In this paper we introduce the concept of algebraic distance on hypergraphs and demonstrate its use as an algorithmic component in the coarsening stage of multilevel hypergraph partitioning solvers. The algebraic distance is a vertex distance measure that extends hyperedge weights for capturing the local connectivity of vertices which is critical for hypergraph coarsening schemes. The practical effectiveness of the proposed measure and corresponding coarsening scheme is demonstrated through extensive computational experiments on a diverse set of problems. Finally, we propose a benchmark of hypergraph partitioning problems to compare the quality of other solvers

    A modularity based spectral method for simultaneous community and anti-community detection

    Full text link
    In a graph or complex network, communities and anti-communities are node sets whose modularity attains extremely large values, positive and negative, respectively. We consider the simultaneous detection of communities and anti-communities, by looking at spectral methods based on various matrix-based definitions of the modularity of a vertex set. Invariant subspaces associated to extreme eigenvalues of these matrices provide indications on the presence of both kinds of modular structure in the network. The localization of the relevant invariant subspaces can be estimated by looking at particular matrix angles based on Frobenius inner products
    corecore