309 research outputs found

    Form Factor of a Quantum Graph in a Weak Magnetic Field

    Full text link
    Using periodic orbit theory, we evaluate the form factor of a quantum graph to which a very weak magnetic field is applied. The first correction to the diagonal approximation describing the transition between the universality classes is shown to be in agreement with Pandey and Mehta's formula of parametric random matrix theory.Comment: LaTeX, 7 pages, no figur

    Moments of the Wigner delay times

    Full text link
    The Wigner time delay is a measure of the time spent by a particle inside the scattering region of an open system. For chaotic systems, the statistics of the individual delay times (whose average is the Wigner time delay) are thought to be well described by random matrix theory. Here we present a semiclassical derivation showing the validity of random matrix results. In order to simplify the semiclassical treatment, we express the moments of the delay times in terms of correlation functions of scattering matrices at different energies. In the semiclassical approximation, the elements of the scattering matrix are given in terms of the classical scattering trajectories, requiring one to study correlations between sets of such trajectories. We describe the structure of correlated sets of trajectories and formulate the rules for their evaluation to the leading order in inverse channel number. This allows us to derive a polynomial equation satisfied by the generating function of the moments. Along with showing the agreement of our semiclassical results with the moments predicted by random matrix theory, we infer that the scattering matrix is unitary to all orders in the semiclassical approximation.Comment: Refereed version. 18 pages, 5 figure

    Universality of the momentum band density of periodic networks

    Get PDF
    The momentum spectrum of a periodic network (quantum graph) has a band-gap structure. We investigate the relative density of the bands or, equivalently, the probability that a randomly chosen momentum belongs to the spectrum of the periodic network. We show that this probability exhibits universal properties. More precisely, the probability to be in the spectrum does not depend on the edge lengths (as long as they are generic) and is also invariant within some classes of graph topologies

    Multiplicity of periodic solutions in bistable equations

    Get PDF
    We study the number of periodic solutions in two first order non-autonomous differential equations both of which have been used to describe, among other things, the mean magnetization of an Ising magnet in the time-varying external magnetic field. When the strength of the external field is varied, the set of periodic solutions undergoes a bifurcation in both equations. We prove that despite profound similarities between the equations, the character of the bifurcation can be very different. This results in a different number of coexisting stable periodic solutions in the vicinity of the bifurcation. As a consequence, in one of the models, the Suzuki-Kubo equation, one can effect a discontinuous change in magnetization by adiabatically varying the strength of the magnetic field.Comment: Fixed typos; added and reordered figures. 18 pages, 6 figures. An animation of orbits is available at http://www.maths.strath.ac.uk/~aas02101/bistable

    Dependence of the spectrum of a quantum graph on vertex conditions and edge lengths

    Full text link
    We study the dependence of the quantum graph Hamiltonian, its resolvent, and its spectrum on the vertex conditions and graph edge lengths. In particular, several results on the interlacing (bracketing) of the spectra of graphs with different vertex conditions are obtained and their applications are discussed.Comment: 19 pages, 1 figur
    • ā€¦
    corecore